1
|
Amato B, Ippolito D, Vitale M, Alduina R, Galluzzo P, Gerace E, Pruiti Ciarello F, Fiasconaro M, Cannella V, Di Marco Lo Presti V. Comparative Study of Mycobacterium bovis and Mycobacterium avium subsp. paratuberculosis In Vitro Infection in Bovine Bone Marrow Derived Macrophages: Preliminary Results. Microorganisms 2024; 12:407. [PMID: 38399810 PMCID: PMC10893549 DOI: 10.3390/microorganisms12020407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Bovine tuberculosis and paratuberculosis are endemic in many areas worldwide. This work aims to study cytokines production and gene expression profiles of bovine macrophages infected with Mycobacterium bovis and Mycobacterium paratuberculosis subsp. avium (MAP) strains to identify potential diagnostic biomarkers. Bovine bone marrow stem cells were differentiated into macrophages and subsequently infected in vitro with different spoligotypes of M. bovis and MAP field strains (as single infections and coinfections), using different multiplicity of infection. Supernatant and cell pellets were collected 24 h, 48 h, and one week post-infection. Preliminarily, gene expression on cell pellets of IL-1β, IL-2, INFγ, IL-6, IL-10, IL-12, and TNFα was assessed by qRT-PCR one week p.i. Subsequently, IL-1β and IL-6 were measured by ELISA and qRT-PCR to investigated their production retrospectively 24 h and 48 h p.i. A variability in macrophages response related to the concentration of mycobacteria, the coinfection with MAP, and M. bovis spoligotypes was identified. An early and constant IL-6 increase was observed in the M. bovis infection. A lower increase in IL-1β was also detected at the highest concentration of the two M. bovis spoligotypes one week post-infection. IL-6 and IL-1 β production was reduced and differently expressed in the MAP infection. IL-6 appeared to be the earliest cytokines produced by bovine macrophages infected with M. bovis.
Collapse
Affiliation(s)
- Benedetta Amato
- Bristol Veterinary School Langford Campus, University of Bristol, Bristol BS40 5DU, UK;
| | - Dorotea Ippolito
- Unit of Emerging Zoonoses, Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
- Istituto Zooprofilattico Sperimentale della Sicilia, via S. Andrea 96, 98051 Barcellona Pozzo di Gotto, Italy; (M.V.); (P.G.); (E.G.); (F.P.C.); (M.F.); (V.C.); (V.D.M.L.P.)
| | - Maria Vitale
- Istituto Zooprofilattico Sperimentale della Sicilia, via S. Andrea 96, 98051 Barcellona Pozzo di Gotto, Italy; (M.V.); (P.G.); (E.G.); (F.P.C.); (M.F.); (V.C.); (V.D.M.L.P.)
| | - Rosa Alduina
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy;
| | - Paola Galluzzo
- Istituto Zooprofilattico Sperimentale della Sicilia, via S. Andrea 96, 98051 Barcellona Pozzo di Gotto, Italy; (M.V.); (P.G.); (E.G.); (F.P.C.); (M.F.); (V.C.); (V.D.M.L.P.)
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy;
| | - Elisabetta Gerace
- Istituto Zooprofilattico Sperimentale della Sicilia, via S. Andrea 96, 98051 Barcellona Pozzo di Gotto, Italy; (M.V.); (P.G.); (E.G.); (F.P.C.); (M.F.); (V.C.); (V.D.M.L.P.)
| | - Flavia Pruiti Ciarello
- Istituto Zooprofilattico Sperimentale della Sicilia, via S. Andrea 96, 98051 Barcellona Pozzo di Gotto, Italy; (M.V.); (P.G.); (E.G.); (F.P.C.); (M.F.); (V.C.); (V.D.M.L.P.)
| | - Michele Fiasconaro
- Istituto Zooprofilattico Sperimentale della Sicilia, via S. Andrea 96, 98051 Barcellona Pozzo di Gotto, Italy; (M.V.); (P.G.); (E.G.); (F.P.C.); (M.F.); (V.C.); (V.D.M.L.P.)
| | - Vincenza Cannella
- Istituto Zooprofilattico Sperimentale della Sicilia, via S. Andrea 96, 98051 Barcellona Pozzo di Gotto, Italy; (M.V.); (P.G.); (E.G.); (F.P.C.); (M.F.); (V.C.); (V.D.M.L.P.)
| | - Vincenzo Di Marco Lo Presti
- Istituto Zooprofilattico Sperimentale della Sicilia, via S. Andrea 96, 98051 Barcellona Pozzo di Gotto, Italy; (M.V.); (P.G.); (E.G.); (F.P.C.); (M.F.); (V.C.); (V.D.M.L.P.)
| |
Collapse
|
2
|
Khalid H, van Hooij A, Connelley TK, Geluk A, Hope JC. Protein Levels of Pro-Inflammatory Cytokines and Chemokines as Biomarkers of Mycobacterium bovis Infection and BCG Vaccination in Cattle. Pathogens 2022; 11:pathogens11070738. [PMID: 35889984 PMCID: PMC9320177 DOI: 10.3390/pathogens11070738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 12/10/2022] Open
Abstract
Bovine tuberculosis (bTB), caused by Mycobacterium bovis, is a globally prevalent infectious disease with significant animal welfare and economic impact. Difficulties in implementing test-and-slaughter measures in low- and middle-income countries (LMICs) and the underperformance of the current diagnostics establish a clear need to develop improved diagnostics. Adaptive immunity biomarkers other than IFNγ could be useful as suggested by various gene expression studies; however, a comprehensive assessment at the protein level is lacking. Here, we screened a range of chemokines and cytokines for their potential as biomarkers in samples from M. bovis experimentally challenged or naive animals. Although serum concentrations for most proteins were low, the pro-inflammatory markers, IL-2, CXCL-9, IP-10 and CCL4, in addition to IFNγ, were found to be significantly elevated in bovine tuberculin (PPDb)-stimulated whole blood supernatants. Further assessment of these molecules in BCG-vaccinated with or without subsequent M. bovis challenge or naive animals revealed that PPDb-specific IL-2 and IP-10, in addition to IFNγ, could discriminate naive and BCG-vaccinated from M. bovis challenged animals. Moreover, these proteins, along with CCL4, showed DIVA potential, i.e., enabling differentiation of M. bovis-infected animals from BCG-vaccinated animals. Combined analysis of cytokines and chemokines could also accurately identify M. bovis infection with strong correlations observed between PPDb-specific IFNγ, IL-2 and IP-10 levels. This provides proof of concept for utilizing multiple biomarker signatures for discrimination of animals with respect to M. bovis infection or BCG vaccination status.
Collapse
Affiliation(s)
- Hamza Khalid
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK;
- Center for Inflammation Research, The Queen’s Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
- Correspondence: (H.K.); (J.C.H.)
| | - Anouk van Hooij
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.v.H.); (A.G.)
| | - Timothy K. Connelley
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK;
| | - Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.v.H.); (A.G.)
| | - Jayne C. Hope
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK;
- Correspondence: (H.K.); (J.C.H.)
| |
Collapse
|
3
|
Alvarez AH. Revisiting tuberculosis screening: An insight to complementary diagnosis and prospective molecular approaches for the recognition of the dormant TB infection in human and cattle hosts. Microbiol Res 2021; 252:126853. [PMID: 34536677 DOI: 10.1016/j.micres.2021.126853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 12/17/2022]
Abstract
Tuberculosis (TB) is defined as a chronic infection in both human and cattle hosts and many subclinical cases remain undetected. After the pathogen is inhaled by a host, phagocyted bacilli can persist inside macrophages surviving intracellularly. Hosts develop granulomatous lesions in the lungs or lymph nodes, limiting infection. However, bacilli become persister cells. Immunological diagnosis of TB is performed basically by routine tuberculin skin test (TST), and in some cases, by ancillary interferon-gamma release assay (IGRA). The concept of human latent TB infection (LTBI) by M. tuberculosis is recognized in cohorts without symptoms by routine clinical diagnostic tests, and nowadays IGRA tests are used to confirm LTBI with either active or latent specific antigens of M. tuberculosis. On the other hand, dormant infection in cattle by M. bovis has not been described by TST or IGRA testing as complications occur by cross-reactive immune responses to homolog antigens of environmental mycobacteria or a false-negative test by anergic states of a wained bovine immunity, evidencing the need for deciphering more specific biomarkers by new-generation platforms of analysis for detection of M. bovis dormant infection. The study and description of bovine latent TB infection (boLTBI) would permit the recognition of hidden animal infection with an increase in the sensitivity of routine tests for an accurate estimation of infected dairy cattle. Evidence of immunological and experimental analysis of LTBI should be taken into account to improve the study and the description of the still neglected boLTBI.
Collapse
Affiliation(s)
- Angel H Alvarez
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco A.C. (CIATEJ), Consejo Nacional de Ciencia y Tecnología (CONACYT), Av. Normalistas 800 C.P. 44270, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
4
|
Catozzi C, Zamarian V, Marziano G, Costa ED, Martucciello A, Serpe P, Vecchio D, Lecchi C, De Carlo E, Ceciliani F. The effects of intradermal M. bovis and M. avium PPD test on immune-related mRNA and miRNA in dermal oedema exudates of water buffaloes (Bubalus bubalis). Trop Anim Health Prod 2021; 53:250. [PMID: 33825069 PMCID: PMC8024229 DOI: 10.1007/s11250-021-02696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/29/2021] [Indexed: 11/29/2022]
Abstract
Tuberculosis (TB) is a zoonotic disease primarily caused by pathogens belonging to the genus of Mycobacterium. Programs of control and eradication for bovine TB include a screening using single intradermal tuberculin (SIT) test with Mycobacterium bovis (M. bovis)-purified protein derivatives (PPD-B) single or concurrent with Mycobacterium avium (M. avium)-purified protein derivatives (PPD-A). This study aimed to determine the effects of intradermal PPD-B and PPD-A test on immune-related mRNA and microRNAs in dermal oedema exudates of water buffaloes (Bubalus bubalis). The investigation was carried out on RNA extracted from dermal oedema exudates of 36 animals, of which 24 were M. bovis positive (M. bovis+) and 12 M. avium positive (M. avium+). The lymphocyte polarization toward Th1, Th2, TReg, and Th17 lineages was addressed by measuring the abundance of the respective cytokines and transcription factors, namely TBET, STAT4, IFNγ, and IL1β for Th1; STAT5B, and IL4 for Th2; FOXP3 and IL10 for TReg; and RORC, STAT3, and IL17A for Th17. Due to the very low abundance of Th17-related genes, a digital PCR protocol was also applied. The abundance of microRNAs involved in the immune response against PPDs, including miR-122-5p, miR-148a-3p, miR30a, and miR-455-5p, was equally measured. Results showed that IFNγ (fold change = 2.54; p = 0.037) and miR-148a-3p (fold change = 2.54; p = 0.03) were upregulated in M. bovis+ as compared to M. avium+ samples. Our preliminary results supported the pivotal role of IFNγ in the local immune response related to PPD-B and highlighted the differential expression of miR-148a-3p, which downregulates the proinflammatory cytokines and the TLR4-mediated NF-κB activation, providing an anti-inflammation modulator in responses to mycobacterial infection.
Collapse
Affiliation(s)
- Carlotta Catozzi
- Department of Veterinary Medicine, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - Valentina Zamarian
- Department of Veterinary Medicine, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - Gabriele Marziano
- Department of Veterinary Medicine, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - Emanuela Dalla Costa
- Department of Veterinary Medicine, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - Alessandra Martucciello
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, National Reference Centre for Hygiene and Technologies of Water Buffalo Farming and Productions, Via delle Calabrie, 27, 84131, Salerno, Italy
| | - Paola Serpe
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, National Reference Centre for Hygiene and Technologies of Water Buffalo Farming and Productions, Via delle Calabrie, 27, 84131, Salerno, Italy
| | - Domenico Vecchio
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, National Reference Centre for Hygiene and Technologies of Water Buffalo Farming and Productions, Via delle Calabrie, 27, 84131, Salerno, Italy
| | - Cristina Lecchi
- Department of Veterinary Medicine, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - Esterina De Carlo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, National Reference Centre for Hygiene and Technologies of Water Buffalo Farming and Productions, Via delle Calabrie, 27, 84131, Salerno, Italy
| | - Fabrizio Ceciliani
- Department of Veterinary Medicine, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy.
| |
Collapse
|
5
|
Smith K, Kleynhans L, Warren RM, Goosen WJ, Miller MA. Cell-Mediated Immunological Biomarkers and Their Diagnostic Application in Livestock and Wildlife Infected With Mycobacterium bovis. Front Immunol 2021; 12:639605. [PMID: 33746980 PMCID: PMC7969648 DOI: 10.3389/fimmu.2021.639605] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/08/2021] [Indexed: 01/06/2023] Open
Abstract
Mycobacterium bovis has the largest host range of the Mycobacterium tuberculosis complex and infects domestic animal species, wildlife, and humans. The presence of global wildlife maintenance hosts complicates bovine tuberculosis (bTB) control efforts and further threatens livestock and wildlife-related industries. Thus, it is imperative that early and accurate detection of M. bovis in all affected animal species is achieved. Further, an improved understanding of the complex species-specific host immune responses to M. bovis could enable the development of diagnostic tests that not only identify infected animals but distinguish between infection and active disease. The primary bTB screening standard worldwide remains the tuberculin skin test (TST) that presents several test performance and logistical limitations. Hence additional tests are used, most commonly an interferon-gamma (IFN-γ) release assay (IGRA) that, similar to the TST, measures a cell-mediated immune (CMI) response to M. bovis. There are various cytokines and chemokines, in addition to IFN-γ, involved in the CMI component of host adaptive immunity. Due to the dominance of CMI-based responses to mycobacterial infection, cytokine and chemokine biomarkers have become a focus for diagnostic tests in livestock and wildlife. Therefore, this review describes the current understanding of host immune responses to M. bovis as it pertains to the development of diagnostic tools using CMI-based biomarkers in both gene expression and protein release assays, and their limitations. Although the study of CMI biomarkers has advanced fundamental understanding of the complex host-M. bovis interplay and bTB progression, resulting in development of several promising diagnostic assays, most of this research remains limited to cattle. Considering differences in host susceptibility, transmission and immune responses, and the wide variety of M. bovis-affected animal species, knowledge gaps continue to pose some of the biggest challenges to the improvement of M. bovis and bTB diagnosis.
Collapse
Affiliation(s)
- Katrin Smith
- Division of Molecular Biology and Human Genetics, Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Léanie Kleynhans
- Division of Molecular Biology and Human Genetics, Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Robin M Warren
- Division of Molecular Biology and Human Genetics, Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Wynand J Goosen
- Division of Molecular Biology and Human Genetics, Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Michele A Miller
- Division of Molecular Biology and Human Genetics, Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
6
|
Recent advances in non-specific immune memory against bovine tuberculosis. Comp Immunol Microbiol Infect Dis 2021; 75:101615. [PMID: 33529917 DOI: 10.1016/j.cimid.2021.101615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/18/2022]
Abstract
Bovine tuberculosis is an important worldwide disease mainly related to cattle, although it also affects other mammals, including humans. In recent years, there have been considerable advances in the knowledge of the immune response mechanisms underlying the interaction of Mycobacterium bovis, the main agent of bovine tuberculosis, with its hosts. In this review we describe the most recent findings on the cattle immune response to M. bovis, particularly regarding trained innate immune responses and γδ T cells, that could support the development of vaccines and diagnostic tools to control this disease.
Collapse
|
7
|
Smith K, Kleynhans L, Snyders C, Bernitz N, Cooper D, van Helden P, Warren RM, Miller MA, Goosen WJ. Use of the MILLIPLEX ® bovine cytokine/chemokine multiplex assay to identify Mycobacterium bovis-infection biomarkers in African buffaloes (Syncerus caffer). Vet Immunol Immunopathol 2020; 231:110152. [PMID: 33227620 DOI: 10.1016/j.vetimm.2020.110152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/17/2020] [Accepted: 11/07/2020] [Indexed: 12/19/2022]
Abstract
As a recognized Mycobacterium bovis maintenance host, the African buffalo (Syncerus caffer) poses transmission risks to livestock, humans and other wildlife. Early detection of M. bovis infection is critical for limiting its spread. Currently, tests detecting cell-mediated immune responses are used for diagnosis in buffaloes. However, these may have suboptimal sensitivity or specificity, depending on the blood stimulation method. Recent evidence suggests that assays using combinations of host cytokine biomarkers may increase diagnostic performance. Therefore, this study aimed to investigate the application of a MILLIPLEX® bovine cytokine/chemokine multiplex assay to identify candidate biomarkers of M. bovis infection in buffaloes. Whole blood from twelve culture-confirmed M. bovis-infected buffaloes, stimulated with the QuantiFERON® TB Gold Plus in-tube system, was tested using the MILLIPLEX® platform. Results indicated binding of bovine antibodies to fifteen buffalo cytokine/chemokine targets. Moreover, there was a significant difference in concentrations between unstimulated and TB antigen-stimulated buffalo samples for seven cytokines/chemokines included in the kit. Although these preliminary results require further investigation in larger sample sets and a comparison between M. bovis-infected and uninfected cohorts, the utility of the MILLIPLEX® platform in a novel species was demonstrated, in addition to identifying potential African buffalo cytokines for future research.
Collapse
Affiliation(s)
- Katrin Smith
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Léanie Kleynhans
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Candice Snyders
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Netanya Bernitz
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - David Cooper
- Ezemvelo KwaZulu-Natal Wildlife, PO Box 25, Mtubatuba 3935, South Africa
| | - Paul van Helden
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Robin M Warren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Michele A Miller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Wynand J Goosen
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
8
|
Shukla SK, Shukla S, Chauhan A, Sarvjeet, Khan R, Ahuja A, Singh LV, Sharma N, Prakash C, Singh AV, Panigrahi M. Differential gene expression in Mycobacterium bovis challenged monocyte-derived macrophages of cattle. Microb Pathog 2017; 113:480-489. [PMID: 29170044 DOI: 10.1016/j.micpath.2017.11.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/14/2017] [Accepted: 11/18/2017] [Indexed: 12/18/2022]
Abstract
A functional genomics approach was used to examine the immune response for transcriptional profiling of PBMC M. bovis infected cattle and healthy control cattle to stimulation with bovine tuberculin (purified protein derivative PPD-b). Total cellular RNA was extracted from non-challenged control and M. bovis challenged MDM for all animals at intervals of 6 h post-challenge, in response to in-vitro challenge with M. bovis (multiplicity of infection 2:1) and prepared for global gene expression analysis using the Agilent Bovine (V2) Gene Expression Microarray, 8 × 60 K. The pattern of expression of these genes in PPD bovine stimulated PBMC provides the first description of an M. bovis specific signature of infection that may provide insights into the molecular basis of the host response to infection. Analysis of these mapped reads showed 2450 genes (1291 up regulated and 1158 down regulated) 462 putative natural antisense transcripts (354 up-regulated and 108 down regulated) that were differentially expressed based on sense and antisense strand data, respectively (adjusted P-value ≤ 0.05). The results provided enrichment for genes involved top ten up regulated and down regulated panel of genes, including transcription factors proliferation of T and B lymphocytes. The highest differentially-expressed genes were associated to immune and inflammatory responses, immunity, differentiation, cell growth, apoptosis, cellular trafficking and regulation of lipolysis and thermogenesis. Microarray results were confirmed in infected cattle by RT qPCR to identify potential biomarkers TLR2, CD80, NFKB1, IL8, CXCL6 and ADORA3 of bovine tuberculosis.
Collapse
Affiliation(s)
- Sanjeev Kumar Shukla
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P., India.
| | - Shubhra Shukla
- Department of Biosciences, Integral University, Lucknow, U.P., India
| | - Anuj Chauhan
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P., India
| | - Sarvjeet
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P., India
| | - Rehan Khan
- Division of Hematology, Mayo Clinic, Rochester, MN, United States
| | - Anuj Ahuja
- The Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, Safed, Israel
| | - Lakshya Veer Singh
- Tuberculosis Aerosol Challenge Facility Laboratory, ICGEB, Campus, New Delhi, India
| | - Naveen Sharma
- Department of Health Research, IRCS Building, New Delhi, India
| | - Chandan Prakash
- CADRAD, Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P., India
| | - Ajay Vir Singh
- ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, U.P., India
| | - Manjit Panigrahi
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P., India
| |
Collapse
|
9
|
Salguero FJ, Gibson S, Garcia-Jimenez W, Gough J, Strickland TS, Vordermeier HM, Villarreal-Ramos B. Differential Cell Composition and Cytokine Expression Within Lymph Node Granulomas from BCG-Vaccinated and Non-vaccinated Cattle Experimentally Infected with Mycobacterium bovis. Transbound Emerg Dis 2016; 64:1734-1749. [PMID: 27615603 DOI: 10.1111/tbed.12561] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Indexed: 01/12/2023]
Abstract
Cattle vaccination against bovine tuberculosis (bTB) has been proposed as a supplementary method to help control the incidences of this disease. Bacillus Calmette-Guérin (BCG) is currently the only viable candidate vaccine for immunization of cattle against bTB, caused by Mycobacterium bovis (M. bovis). In an attempt to characterize the differences in the immune response following M. bovis infection between BCG-vaccinated and non-vaccinated animals, a combination of gross pathology, histopathology and immunohistochemical (IHC) analyses was used. BCG vaccination was found to significantly reduce the number of gross and microscopic lesions present within the lungs and lymph nodes. Additionally, the microscopically visible bacterial load of stages III and IV granulomas was reduced. IHC using cell surface markers revealed the number of CD68+ (macrophages), CD3+ (T lymphocytes) and WC1+ cells (γδ T cells) to be significantly reduced in lymph node granulomas of BCG-vaccinated animals, when compared to non-vaccinated animals. B lymphocytes (CD79a+) were significantly increased in BCG-vaccinated cattle for granulomas at stages II, III and IV. IHC staining for iNOS showed a higher expression in granulomas from BCG-vaccinated animals compared to non-vaccinated animals for all stages, being statistically significant in stages I and IV. TGFβ expression decreased alongside the granuloma development in non-vaccinated animals, whereas BCG-vaccinated animals showed a slight increase alongside lesion progression. IHC analysis of the cytokines IFN-γ and TNF-α demonstrated significantly increased expression within the lymph node granulomas of BCG-vaccinated cattle. This is suggestive of a protective role for IFN-γ and TNF-α in response to M. bovis infection. Findings shown in this study suggest that the use of BCG vaccine can reduce the number and severity of lesions, induce a different phenotypic response and increase the local expression of key cytokines related to protection.
Collapse
Affiliation(s)
- F J Salguero
- TB Research Group, Departments of Bacteriology and Pathology, Animal and Plant Health Agency, APHA-Weybridge, New Haw, Addlestone, Surrey, UK.,Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, UK
| | - S Gibson
- TB Research Group, Departments of Bacteriology and Pathology, Animal and Plant Health Agency, APHA-Weybridge, New Haw, Addlestone, Surrey, UK.,Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, UK
| | - W Garcia-Jimenez
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, UK
| | - J Gough
- TB Research Group, Departments of Bacteriology and Pathology, Animal and Plant Health Agency, APHA-Weybridge, New Haw, Addlestone, Surrey, UK
| | - T S Strickland
- TB Research Group, Departments of Bacteriology and Pathology, Animal and Plant Health Agency, APHA-Weybridge, New Haw, Addlestone, Surrey, UK
| | - H M Vordermeier
- TB Research Group, Departments of Bacteriology and Pathology, Animal and Plant Health Agency, APHA-Weybridge, New Haw, Addlestone, Surrey, UK
| | - B Villarreal-Ramos
- TB Research Group, Departments of Bacteriology and Pathology, Animal and Plant Health Agency, APHA-Weybridge, New Haw, Addlestone, Surrey, UK
| |
Collapse
|
10
|
Blanco FC, Bigi F, Soria MA. Identification of potential biomarkers of disease progression in bovine tuberculosis. Vet Immunol Immunopathol 2014; 160:177-83. [PMID: 24856732 DOI: 10.1016/j.vetimm.2014.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/18/2014] [Accepted: 04/25/2014] [Indexed: 10/25/2022]
Abstract
Bovine tuberculosis (bTB) remains an important animal and zoonotic disease in many countries. The diagnosis of bTB is based on tuberculin skin test and IFN-γ release assays (IGRA). Positive animals are separated from the herd and sacrificed. The cost of this procedure is difficult to afford for developing countries with high prevalence of bTB; therefore, the improvement of diagnostic methods and the identification of animals in different stages of the disease will be helpful to control the infection. To identify biomarkers that can discriminate between tuberculin positive cattle with and without tuberculosis lesions (ML+ and ML-, respectively), we assessed a group of immunological parameters with three different classification methods: lineal discriminant analysis (LDA), quadratic discriminant analysis (QDA) and K nearest neighbors (k-nn). For this purpose, we used data from 30 experimentally infected cattle. All the classifiers (LDA, QDA and k-nn) selected IL-2 and IL-17 as the most discriminatory variables. The best classification method was LDA using IL-17 and IL-2 as predictors. The addition of IL-10 to LDA improves the performance of the classifier to discriminate ML-individuals (93.3% vs. 86.7%). Thus, the expression of IL-17, IL-2 and, in some cases, IL-10 would serve as an additional tool to study disease progression in herds with a history of bTB.
Collapse
Affiliation(s)
- Federico Carlos Blanco
- Instituto de Biotecnología, CICVyA-INTA, N. Repetto y De los Reseros, 1686 Hurlingham, Buenos Aires, Argentina
| | - Fabiana Bigi
- Instituto de Biotecnología, CICVyA-INTA, N. Repetto y De los Reseros, 1686 Hurlingham, Buenos Aires, Argentina
| | - Marcelo Abel Soria
- Microbiología Agrícola, Facultad de Agronomía, Universidad de Buenos Aires, INBA Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
11
|
le Roex N, van Helden PD, Koets AP, Hoal EG. Bovine TB in livestock and wildlife: what's in the genes? Physiol Genomics 2013; 45:631-7. [PMID: 23757394 DOI: 10.1152/physiolgenomics.00061.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Bovine tuberculosis (BTB) is a chronic, infectious disease found in domestic livestock and wildlife. It is caused predominantly by Mycobacterium bovis, which forms part of the Mycobacterium tuberculosis complex. BTB has serious implications for the movement of animals and animal products, biodiversity, and public health and is of significant economic concern. The existence of wildlife maintenance hosts makes it extremely difficult to eradicate BTB, even when established control strategies are in place, creating the need for alternative methods for controlling this disease. There are multiple factors that influence the outcome of infection by a pathogen, one of which is the host's genome. The identification of genetic variants involved in the susceptibility to BTB would supply a new selection of potential drug targets as well as the possibility for the breeding of animals with greater disease resistance. In this review, we collate the results of the BTB heritability and association studies performed in cattle and wildlife, discuss considerations and other methodologies (such as gene expression work) to be taken into account when performing genetic studies, and make some recommendations for future work in this area.
Collapse
Affiliation(s)
- Nikki le Roex
- Department of Science & Technology/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research/Medical Research Council Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa.
| | | | | | | |
Collapse
|
12
|
Blanco FC, Bianco MV, Garbaccio S, Meikle V, Gravisaco MJ, Montenegro V, Alfonseca E, Singh M, Barandiaran S, Canal A, Vagnoni L, Buddle BM, Bigi F, Cataldi A. Mycobacterium bovis Δmce2 double deletion mutant protects cattle against challenge with virulent M. bovis. Tuberculosis (Edinb) 2013; 93:363-72. [PMID: 23518075 DOI: 10.1016/j.tube.2013.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 01/25/2013] [Accepted: 02/04/2013] [Indexed: 10/27/2022]
Abstract
A Mycobacterium bovis strain deleted in mce2A and mce2B genes (M. bovis Δmce2) was tested as an experimental vaccine in cattle challenged with a virulent M. bovis strain. Three-and-a-half-month old calves (n = 5 to 6 per group) were vaccinated and challenged with a virulent strain of M. bovis by the intratracheal route 9 weeks after vaccination. A non-vaccinated group and a group vaccinated with BCG were included as controls. Blood samples were collected to measure IFN-γ by an interferon-gamma release assay (IGRA), cytometry and cytokine responses of bovine purified protein derivative (PPD) restimulated peripheral blood mononuclear cells (PBMCs). The IGRA test showed IFN-γ values similar to pre-vaccination except for the animals vaccinated with M. bovis Δmce2, where a significant increase was observed at 30 days post-vaccination. The expression of IL-2R on CD4(+) cells in response to PPD from the animals vaccinated with Δmce2 increased at 15 days post-vaccination compared to cells from non-vaccinated group. Vaccination of cattle with M. bovis Δmce2 induced the highest (P < 0.05) expression of IFN-γ and IL-17 mRNA upon PPD stimulation of PBMCs compared to vaccination with BCG or that for the non-vaccinated group. There was a weak positive correlation between the production of these proinflammatory cytokines post-vaccination and reduced pathology scores post-challenge. The animals were euthanized and necropsied 100 days after challenge. The group vaccinated with M. bovis Δmce2 displayed a significantly lower histopathological score for lesions in lungs and pulmonary lymph nodes than for the other groups (P < 0.05). A marked positive reaction to tuberculin intradermal test was observed post-vaccination in animals vaccinated with M. bovis Δmce2 compared to those vaccinated with BCG or the non-vaccinated group. In contrast, after challenge, non-vaccinated animals had greater skin test responses than the vaccinated animals. In summary, M. bovis Δmce2 is a promising vaccine candidate to control M. bovis pathogenesis in cattle.
Collapse
Affiliation(s)
- Federico Carlos Blanco
- Instituto de Biotecnología, INTA, N. Repetto y De los Reseros, 1686 Hurlingham, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Babesia bovis:lipids from virulent S2P and attenuated R1A strains trigger differential signalling and inflammatory responses in bovine macrophages. Parasitology 2013; 140:530-40. [DOI: 10.1017/s003118201200193x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SUMMARYThe intra-erythrocytic protozoanBabesia bovisis an economically important pathogen that causes an acute and often fatal infection in adult cattle. Babesiosis limitation depends on the early activation of macrophages, essential cells of the host innate immunity, which can generate an inflammatory response mediated by cytokines and nitric oxide (NO). Herein, we demonstrate in bovine macrophages that lipids fromB. bovisattenuated R1A strain (LA) produced a stronger NO release, an early TNFαmRNA induction and 2-fold higher IL-12p35 mRNA levels compared to the lipids of virulent S2P strain (LV). Neither LAnor LVinduced anti-inflammatory IL-10. Regarding signalling pathways, we here report that LAinduced a significant phosphorylation of p38 and extracellular signal-regulated kinases 1 and 2 (ERK1/2) whereas LVonly induced a reduced activation of ERK1/2. Besides, NF-κB was activated by LAand LV, but LAproduced an early degradation of the inhibitor IκB. Interestingly, LVand the majority of its lipid fractions, exerted a significant inhibition of concanavalin A-induced peripheral blood mononuclear cell proliferation with respect to LAand its corresponding lipid fractions. In addition, we determined that animals infected with R1A developed a higher increase in IgM anti-phosphatidylcholine than those inoculated with S2P. Collectively, S2P lipids generated a decreased inflammatory response contributing to the evasion of innate immunity. Moreover, since R1A lipids induced a pro-inflammatory profile, we propose these molecules as good candidates for immunoprophylactic strategies against babesiosis.
Collapse
|
14
|
Rizzi C, Bianco MV, Blanco FC, Soria M, Gravisaco MJ, Montenegro V, Vagnoni L, Buddle B, Garbaccio S, Delgado F, Leal KS, Cataldi AA, Dellagostin OA, Bigi F. Vaccination with a BCG strain overexpressing Ag85B protects cattle against Mycobacterium bovis challenge. PLoS One 2012; 7:e51396. [PMID: 23251517 PMCID: PMC3519572 DOI: 10.1371/journal.pone.0051396] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/31/2012] [Indexed: 12/29/2022] Open
Abstract
Mycobacterium bovis is the causative agent of tuberculosis in cattle but also infects other animals, including humans. Previous studies in cattle have demonstrated that the protection induced by BCG is not complete. In order to improve the protection efficacy of BCG, in this study we overexpressed Ag85B in a BCG Pasteur strain, by using an expression system based on the use of an auxotrophic strain for the leucine amino acid, and complementation with leuD. We found that vaccination of cattle with BCG overexpressing Ag85B induced higher production of IL-17 and IL-4 mRNA upon purified protein derivative (PPDB) stimulation of peripheral blood mononuclear cells (PBMCs) than vaccination with BCG. Moreover, the IL-17 mRNA expression after vaccination negatively correlated with disease severity resulting from a subsequent challenge with M. bovis, suggesting that this cytokine is a potential biomarker of cattle protection against bovine tuberculosis. Importantly, vaccination with the recombinant BCG vaccine protected cattle better than the wild-type BCG Pasteur.
Collapse
Affiliation(s)
- Caroline Rizzi
- Núcleo de Biotecnologia, CDTec, Universidade Federal de Pelotas, Pelotas, Brazil
| | - María Verónica Bianco
- Instituto de Biotecnología, CICVyA-INTA, N. Repetto y De los Reseros, Buenos Aires, Argentina
| | - Federico Carlos Blanco
- Instituto de Biotecnología, CICVyA-INTA, N. Repetto y De los Reseros, Buenos Aires, Argentina
| | - Marcelo Soria
- Microbiología Agrícola, Facultad de Agronomía, Universidad de Buenos Aires, INBA-CONICET, Ciudad de Buenos Aires, Argentina
| | - María José Gravisaco
- Instituto de Biotecnología, CICVyA-INTA, N. Repetto y De los Reseros, Buenos Aires, Argentina
| | - Valeria Montenegro
- Instituto de Biotecnología, CICVyA-INTA, N. Repetto y De los Reseros, Buenos Aires, Argentina
| | - Lucas Vagnoni
- Instituto de Patobiología, CICVyA- INTA, N. Repetto y De los Reseros, Buenos Aires, Argentina
| | - Bryce Buddle
- AgResearch, Hopkirk Research Institute, Palmerston North, New Zealand
| | - Sergio Garbaccio
- Instituto de Patobiología, CICVyA- INTA, N. Repetto y De los Reseros, Buenos Aires, Argentina
| | - Fernando Delgado
- Instituto de Patobiología, CICVyA- INTA, N. Repetto y De los Reseros, Buenos Aires, Argentina
| | - Karen Silva Leal
- Núcleo de Biotecnologia, CDTec, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Angel Adrián Cataldi
- Instituto de Biotecnología, CICVyA-INTA, N. Repetto y De los Reseros, Buenos Aires, Argentina
| | | | - Fabiana Bigi
- Instituto de Biotecnología, CICVyA-INTA, N. Repetto y De los Reseros, Buenos Aires, Argentina
| |
Collapse
|
15
|
Bezos J, Álvarez J, Moreno I, de Juan L, Romero B, Rodríguez S, Domínguez M, Toraño A, Mateos A, Domínguez L, Aranaz A. Study of peripheral blood cell populations involved in the immune response of goats naturally infected with Mycobacterium caprae. Res Vet Sci 2012; 93:163-7. [DOI: 10.1016/j.rvsc.2011.05.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/13/2011] [Accepted: 05/28/2011] [Indexed: 10/18/2022]
|
16
|
Blanco FC, Soria M, Bianco MV, Bigi F. Transcriptional response of peripheral blood mononuclear cells from cattle infected with Mycobacterium bovis. PLoS One 2012; 7:e41066. [PMID: 22815916 PMCID: PMC3397951 DOI: 10.1371/journal.pone.0041066] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 06/16/2012] [Indexed: 12/31/2022] Open
Abstract
Mycobacterium bovis is the causative agent of most cases of bovine tuberculosis. The identification of bTB biomarkers in specific stages of the disease will contribute to a better understanding of the immunopathology associated with tuberculosis and will enable their use in disease diagnosis and prognosis. The aim of this study was to evaluate the gene expression profile induced after specific stimulation of bovine peripheral blood mononuclear cells from cattle infected with M. bovis using the Affymetrix® GeneChip® Bovine Genome Array. A total of 172 genes showed differential expression profile that was statistically significant with log2-fold change >2.5 and <−2.5. Twenty-four out of these genes were upregulated and 148 were downregulated in bovine peripheral blood mononuclear cells of M. bovis-infected cattle. The highest differentially-expressed genes were related to immune and inflammatory responses, apoptosis, endocytosis, cellular trafficking and genes encoding proteins involved in cellular matrix degradation. Microarray results were confirmed in another group of infected cattle by RT-qPCR for the CD14, IL-1R, THBS1, MMP9 and FYVE genes. This study confirms previous findings that have shown that M. bovis infection in cattle results in the downregulation of immune response-related genes. Moreover, it validates the use of microarray platforms in combination with RT-qPCR to identify biomarkers of bovine tuberculosis. In addition, we propose CD14, IL-1R, THBS1, MMP9 and FYVE as potential biomarkers of bovine tuberculosis.
Collapse
Affiliation(s)
- Federico Carlos Blanco
- Instituto de Biotecnología-CICVyA, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina
| | - Marcelo Soria
- Agricultural Microbiology, School of Agronomy, Buenos Aires University, INBA-Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
| | - María Verónica Bianco
- Instituto de Biotecnología-CICVyA, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina
| | - Fabiana Bigi
- Instituto de Biotecnología-CICVyA, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
17
|
Assessment of the immune responses induced in cattle after inoculation of a Mycobacterium bovis strain deleted in two mce2 genes. J Biomed Biotechnol 2012; 2012:258353. [PMID: 22719207 PMCID: PMC3374952 DOI: 10.1155/2012/258353] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 04/11/2012] [Indexed: 11/29/2022] Open
Abstract
The generation of efficient candidate vaccines against bovine tuberculosis will contribute to the control of this zoonotic disease. Rationally attenuated Mycobacterium bovis strains generated by knockout of virulence genes are promising candidate vaccines. However, to be effective, these candidate vaccines should at least maintain the immunological properties of their virulent parental M. bovis strains. Therefore, the aim of this study was to obtain an M. bovis strain deleted in the mce2 genes and evaluate the effect of the mutation on the immunological profile elicited by the bacteria in cattle. We showed that the activation of CD4+ T cells in cattle inoculated with the mutant strain was equivalent to that in animals inoculated with the parental strain. Moreover, after in vitro stimulation, peripheral blood mononuclear cells from animals inoculated with the mutant produced higher levels of mRNA Th-1 cytokines than the parental strain. Therefore, these results indicate that the mce2 mutant is a promising candidate vaccine against bovine tuberculosis.
Collapse
|
18
|
Immune responses and safety after dart or booster vaccination of bison with Brucella abortus strain RB51. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:642-8. [PMID: 22461528 DOI: 10.1128/cvi.00033-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
One alternative for management of brucellosis in Yellowstone National Park bison (Bison bison) is vaccination of calves and yearlings. Although Brucella abortus strain RB51 vaccination protects bison against experimental challenge, the effect of booster vaccinations was unknown. This study characterized immunologic responses after dart or booster vaccination of bison with Brucella abortus strain RB51. In two studies, 8- to 10-month-old female bison were inoculated with saline (n = 14), hand vaccinated with 1.1 × 10(10) to 2.0 × 10(10) CFU of RB51 (n = 21), or dart vaccinated with 1.8 × 10(10) CFU of RB51 (n = 7). A subgroup of hand vaccinates in study 1 was randomly selected for booster vaccination 15 months later with 2.2 × 10(10) CFU of RB51. Compared to single vaccinates, booster-vaccinated bison had greater serologic responses to RB51. However, there was a trend for antigen-specific proliferative responses of peripheral blood mononuclear cells (PBMC) from booster vaccinates to be reduced compared to responses of PBMC from single vaccinates. PBMC from booster vaccinates tended to have greater gamma interferon (IFN-γ) production than those from single vaccinates. In general, dart vaccination with RB51 induced immunologic responses similar to those of hand vaccination. All vaccinates (single hand, dart, or booster) demonstrated greater (P < 0.05) immunologic responses at various times after vaccination than nonvaccinated bison. Booster vaccination with RB51 in early gestation did not induce abortion or fetal infection. Our data suggest that booster vaccination does not induce strong anamnestic responses. However, phenotypic data on resistance to experimental challenge are required to fully assess the effect of booster vaccination on protective immunity.
Collapse
|
19
|
Increased IL-17 expression is associated with pathology in a bovine model of tuberculosis. Tuberculosis (Edinb) 2010; 91:57-63. [PMID: 21185783 DOI: 10.1016/j.tube.2010.11.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 10/26/2010] [Accepted: 11/16/2010] [Indexed: 11/21/2022]
Abstract
The identification of bovine tuberculosis (bTB) biomarkers in specific stages of the disease will contribute to a better understanding of the immunopathology associated with tuberculosis and to improve the disease diagnosis and prognosis. The aim of this study was to understand the changing profile of the immune responses during the course of infection and to identify biomarkers associated with pathology. Here we describe the immune response developed in experimentally infected cattle with field Mycobacterium bovis strains. Blood samples were taken from each animal at different time points after M. bovis intratracheal infection and lymphocyte subset activation and cytokine mRNA expression were determined from peripheral blood mononuclear cells in response to purified protein derivative (PPDB). We found that CD4 and CD8 activation during the early stages of infection, together with IL-17 gene expression, were positively associated with pathology. The results of this study provide evidences of the role of IL-17 in the immunopathology of tuberculosis and support the use of IL-17 as a potential biomarker with predictive value of prognosis in bTB.
Collapse
|