1
|
Gong W, Pan C, Cheng P, Wang J, Zhao G, Wu X. Peptide-Based Vaccines for Tuberculosis. Front Immunol 2022; 13:830497. [PMID: 35173740 PMCID: PMC8841753 DOI: 10.3389/fimmu.2022.830497] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis. As a result of the coronavirus disease 2019 (COVID-19) pandemic, the global TB mortality rate in 2020 is rising, making TB prevention and control more challenging. Vaccination has been considered the best approach to reduce the TB burden. Unfortunately, BCG, the only TB vaccine currently approved for use, offers some protection against childhood TB but is less effective in adults. Therefore, it is urgent to develop new TB vaccines that are more effective than BCG. Accumulating data indicated that peptides or epitopes play essential roles in bridging innate and adaptive immunity and triggering adaptive immunity. Furthermore, innovations in bioinformatics, immunoinformatics, synthetic technologies, new materials, and transgenic animal models have put wings on the research of peptide-based vaccines for TB. Hence, this review seeks to give an overview of current tools that can be used to design a peptide-based vaccine, the research status of peptide-based vaccines for TB, protein-based bacterial vaccine delivery systems, and animal models for the peptide-based vaccines. These explorations will provide approaches and strategies for developing safer and more effective peptide-based vaccines and contribute to achieving the WHO's End TB Strategy.
Collapse
Affiliation(s)
- Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Peng Cheng
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
- Hebei North University, Zhangjiakou City, China
| | - Jie Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Gong W, Wu X. Differential Diagnosis of Latent Tuberculosis Infection and Active Tuberculosis: A Key to a Successful Tuberculosis Control Strategy. Front Microbiol 2021; 12:745592. [PMID: 34745048 PMCID: PMC8570039 DOI: 10.3389/fmicb.2021.745592] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/24/2021] [Indexed: 12/16/2022] Open
Abstract
As an ancient infectious disease, tuberculosis (TB) is still the leading cause of death from a single infectious agent worldwide. Latent TB infection (LTBI) has been recognized as the largest source of new TB cases and is one of the biggest obstacles to achieving the aim of the End TB Strategy. The latest data indicate that a considerable percentage of the population with LTBI and the lack of differential diagnosis between LTBI and active TB (aTB) may be potential reasons for the high TB morbidity and mortality in countries with high TB burdens. The tuberculin skin test (TST) has been used to diagnose TB for > 100 years, but it fails to distinguish patients with LTBI from those with aTB and people who have received Bacillus Calmette–Guérin vaccination. To overcome the limitations of TST, several new skin tests and interferon-gamma release assays have been developed, such as the Diaskintest, C-Tb skin test, EC-Test, and T-cell spot of the TB assay, QuantiFERON-TB Gold In-Tube, QuantiFERON-TB Gold-Plus, LIAISON QuantiFERON-TB Gold Plus test, and LIOFeron TB/LTBI. However, these methods cannot distinguish LTBI from aTB. To investigate the reasons why all these methods cannot distinguish LTBI from aTB, we have explained the concept and definition of LTBI and expounded on the immunological mechanism of LTBI in this review. In addition, we have outlined the research status, future directions, and challenges of LTBI differential diagnosis, including novel biomarkers derived from Mycobacterium tuberculosis and hosts, new models and algorithms, omics technologies, and microbiota.
Collapse
Affiliation(s)
- Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Almshayakhchi R, Nagarajan D, Vadakekolathu J, Guinn BA, Reeder S, Brentville V, Metheringham R, Pockley AG, Durrant L, McArdle S. A Novel HAGE/WT1-ImmunoBody ® Vaccine Combination Enhances Anti-Tumour Responses When Compared to Either Vaccine Alone. Front Oncol 2021; 11:636977. [PMID: 34262856 PMCID: PMC8273701 DOI: 10.3389/fonc.2021.636977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/14/2021] [Indexed: 02/02/2023] Open
Abstract
Many cancers, including myeloid leukaemia express the cancer testis antigen (CTA) DDX43 (HAGE) and/or the oncogene Wilms’ tumour (WT1). Here we demonstrate that HAGE/WT1-ImmunoBody® vaccines derived T-cells can kill ex-vivo human CML cell lines expressing these antigens and significantly delay B16/HHDII+/DR1+/HAGE+/WT1+ tumour growth in the HHDII/DR1 mice and prolonged mouse survival in the prophylactic setting in comparison to non-immunised control mice. We show that immunisation of HHDII/DR1 mice with HAGE- and WT1-ImmunoBody® DNA vaccines in a prime-boost regime in two different flanks induce significant IFN-γ release by splenocytes from treated mice, and a significant level of cytotoxicity against tumour targets expressing HAGE/WT1 in vitro. More importantly, the combined HAGE/WT1 ImmunoBody® vaccine significantly delayed tumour growth in the B16/HHDII+/DR1+/HAGE+/WT1+ tumour model and prolonged mouse survival in the prophylactic setting in comparison to non-immunised control mice. Overall, this work demonstrates that combining both HAGE- and WT1-ImmunoBody® into a single vaccine is better than either vaccine alone. This combination vaccine could be given to patients whose cancer expresses HAGE and WT1 in parallel with existing therapies in order to decrease the chance of disease progression and relapse.
Collapse
Affiliation(s)
- Rukaia Almshayakhchi
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,Centre for Health, Ageing and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Divya Nagarajan
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,Centre for Health, Ageing and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Jayakumar Vadakekolathu
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,Centre for Health, Ageing and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Barbara-Ann Guinn
- Department of Biomedical Sciences, University of Hull, Hull, United Kingdom
| | - Stephen Reeder
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,Centre for Health, Ageing and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Victoria Brentville
- Scancell Ltd, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Rachael Metheringham
- Scancell Ltd, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - A Graham Pockley
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,Centre for Health, Ageing and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Lindy Durrant
- Scancell Ltd, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Stephanie McArdle
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,Centre for Health, Ageing and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
4
|
Identification of CTL Epitopes on Efflux Pumps of the ATP-Binding Cassette and the Major Facilitator Superfamily of Mycobacterium tuberculosis. J Immunol Res 2021; 2021:8899674. [PMID: 33490292 PMCID: PMC7803423 DOI: 10.1155/2021/8899674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/30/2020] [Accepted: 12/19/2020] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis is the world's most deadly infectious disease, with 10 million people falling ill and 1.5 million people dying from the disease every year. With the increasing number of drug-resistant Mycobacterium tuberculosis (MTB) strains and prevalence of coinfection of MTB with human immunodeficiency virus, many challenges remain in the prevention and treatment of tuberculosis. Therefore, the development of safe and effective tuberculosis vaccines is an urgent issue. In this study, we identified cytotoxic T lymphocyte epitopes on drug resistance-associated membrane protein efflux pumps of MTB, the ATP-binding cassette and the major facilitator superfamilies. First, three online software were used to predict HLA-A2-restricted epitopes. Then, the candidate epitopes were confirmed with the T2A2 cell binding affinity and peptide/MHC (pMHC) complex stability assays and in vitro immune activity experiments. Two drug-resistant T lymphocyte epitopes, designated Rv1218c-p24 and Rv2477c-p182, were selected, and their immunogenic activities studied in vivo in genetically engineered mice. The immune activities of these two epitopes were improved with the help of complete Freund's adjuvant (CFA). The epitopes identified here provide a foundation for the diagnosis and treatment of patients infected with drug resistant and the future development of a multiepitope vaccine.
Collapse
|
5
|
Hu L, Wen Z, Chen J, Chen Y, Jin L, Shi H, Chen J, Chen J. The cytomegalovirus UL146 gene product vCXCL1 promotes the resistance of hepatic cells to CD8 + T cells through up-regulation of PD-L1. Biochem Biophys Res Commun 2020; 532:393-399. [PMID: 32883520 DOI: 10.1016/j.bbrc.2020.08.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/15/2020] [Indexed: 01/03/2023]
Abstract
The HCMV (human cytomegalovirus) encodes numerous proteins which function to evade the immune response, which allows the virus to replicate. Exploring the mechanisms of HCMV immune escape helps to find the strategy to inhibit HCMV replicate. CD8+ T cells play a critical role in the immune response to viral pathogens. However, the mechanisms of HCMV to evade the attack by CD8+ T cells remain largely unknown. Viral CXCL1 (vCXCL1) is the production of HCMV UL146 gene. Here, we found that vCXCL1 promoted the resistance of hepatic cells to CD8+ T cells. vCXCL1 increased the levels of PD-L1 protein expression and mRNA expression. VCXCL1 enhanced the binding of STAT3 transcription factor to the promoter of PD-L1 and increased the activity of PD-L1 promoter. Furthermore, down-regulation of PD-L1 reduced the effects of vCXCL1 on the resistance of hepatic cells to CD8+ T cells. Taken together, vCXCL1 promotes the resistance of hepatic cells to CD8+ T cells through up-regulation of PD-L1. This finding might provide a new mechanism of HCMV immune escape.
Collapse
Affiliation(s)
- Linglong Hu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, People's Republic of China
| | - Zhengwang Wen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, People's Republic of China
| | - Jingjing Chen
- Wenzhou Medical University, Zhejiang Province, People's Republic of China
| | - Yiping Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, People's Republic of China
| | - Longteng Jin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, People's Republic of China
| | - Haifan Shi
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, People's Republic of China
| | - Junya Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, People's Republic of China
| | - Jie Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, People's Republic of China.
| |
Collapse
|
6
|
Thema N, Tshilwane S, Son L, Smith R, Faber F, Steyn H, van Kleef M, Liebenberg J, Pretorius A. Ehrlichia ruminantium antigens and peptides induce cytotoxic T cell responses in vitro. Vet Immunol Immunopathol 2019; 207:1-9. [DOI: 10.1016/j.vetimm.2018.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/25/2018] [Accepted: 11/18/2018] [Indexed: 01/31/2023]
|
7
|
Duan Z, Li D, Jia Q, Xu J, Chen X, Xu Z, Liu H, Chen B, Wen J. The diagnostic potential of MPT63-derived HLA-A*0201-restricted CD8+ T-cell epitopes for active pulmonary tuberculosis. Microbiol Immunol 2015; 59:705-15. [PMID: 26577013 DOI: 10.1111/1348-0421.12339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 12/23/2022]
Abstract
MPT63 protein is found only in Mycobacterium tuberculosis complex, including M. tuberculosis and M. bovis. Detection of MPT63-specific IFN-γ-secreting T cells could be useful for the diagnosis of tuberculosis (TB) diseases. In the present study, the HLA-A*0201 restriction of ten predicted MPT63-derived CD8(+) T-cell epitopes was assessed on the basis of T2 cell line and HLA-A*0201 transgenic mice. The diagnostic potential of immunogenic peptides in active pulmonary TB patients was evaluated using an IFN-γ enzyme-linked immunospot assay. It was found that five peptides bound to HLA-A*0201 with high affinity, whereas the remaining peptides exhibited low affinity for HLA-A*0201. Five immunogenic peptides (MPT6318-26 , MPT6329-37 , MPT6320-28 , MPT635-14 and MPT6310-19 ) elicited large numbers of cytotoxic IFN-γ-secreting T cells in HLA-A*0201 transgenic mice. Each of the five immunogenic peptides was recognized by peripheral blood mononuclear cells from 45% to 73% of 40 HLA-A*0201 positive TB patients. The total diagnostic sensitivity of the five immunogenic peptides was higher than that of a T-SPOT.TB assay (based on ESAT-6 and CFP-10) (93% versus 90%). It is noticeable that the diagnostic sensitivity of the combination of five immunogenic peptides and T-SPOT.TB assay reached 100%. These MPT63-derived HLA-A*0201-restricted CD8(+) T-cell epitopes would likely contribute to the immunological diagnosis of M. tuberculosis infection and may provide the components for designing an effective TB vaccine.
Collapse
Affiliation(s)
- Zhiliang Duan
- Department of Clinical Laboratory, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Xueyuan West Road
| | - Dezhou Li
- Institute of Arboviruses, School of Basic Medical Sciences, Wenzhou Medical University, Chashan, Wenzhou 325000.,Department of Liver Disease, Second People's Hospital of Ningbo, Ningbo 315010
| | - Qingjun Jia
- Institute of Arboviruses, School of Basic Medical Sciences, Wenzhou Medical University, Chashan, Wenzhou 325000.,Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Chashan, Wenzhou 325000, China
| | - Juanjuan Xu
- Institute of Arboviruses, School of Basic Medical Sciences, Wenzhou Medical University, Chashan, Wenzhou 325000.,Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Chashan, Wenzhou 325000, China
| | - Xinyu Chen
- Department of Clinical Laboratory, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Xueyuan West Road.,Institute of Arboviruses, School of Basic Medical Sciences, Wenzhou Medical University, Chashan, Wenzhou 325000
| | - Zhigang Xu
- Institute of Arboviruses, School of Basic Medical Sciences, Wenzhou Medical University, Chashan, Wenzhou 325000.,Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Chashan, Wenzhou 325000, China
| | - Huifang Liu
- Institute of Arboviruses, School of Basic Medical Sciences, Wenzhou Medical University, Chashan, Wenzhou 325000.,Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Chashan, Wenzhou 325000, China
| | - Bokun Chen
- Institute of Arboviruses, School of Basic Medical Sciences, Wenzhou Medical University, Chashan, Wenzhou 325000
| | - Jinsheng Wen
- Institute of Arboviruses, School of Basic Medical Sciences, Wenzhou Medical University, Chashan, Wenzhou 325000.,Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Chashan, Wenzhou 325000, China
| |
Collapse
|
8
|
Lohia N, Baranwal M. Identification of Conserved Peptides Comprising Multiple T Cell Epitopes of Matrix 1 Protein in H1N1 Influenza Virus. Viral Immunol 2015; 28:570-9. [PMID: 26398199 DOI: 10.1089/vim.2015.0060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cell mediated immune response plays a key role in combating viral infection and thus identification of new vaccine targets manifesting T cell mediated response may serve as an ideal approach for influenza vaccine. The present study involves the application of an immunoinformatics-based consensus approach for epitope prediction (three epitope prediction tools each for CD4+ and CD8+ T cell epitopes) and molecular docking to identify peptide sequences containing T cell epitopes using the conserved sequences from all the Matrix 1 protein sequences of H1N1 virus available until April 2015. Three peptides comprising CD4+ and CD8+ T cell epitopes were obtained, which were not exactly reported in earlier studies. Population coverage study of these multi-epitope peptides revealed that they are capable of inducing a potent immune response belonging to individuals from different populations and ethnicity distributed around the globe. Conservation study with other subtypes of influenza virus infecting humans (H2N2, H5N1, H7N9, and H3N2) revealed that these three peptides were conserved (>90%), with 100% identity in most of these strains. Hence, these peptides can impart immunity against H1N1 as well as other subtypes of influenza virus. A molecular docking study of the predicted peptides with class I and II human leukocyte antigen (HLA) molecules has shown that the majority of them have comparable binding energies to that of native peptides. Hence, these peptides from Matrix 1 protein of H1N1 appear to be promising candidates for universal vaccine design.
Collapse
Affiliation(s)
- Neha Lohia
- Department of Biotechnology, Thapar University , Patiala, India
| | - Manoj Baranwal
- Department of Biotechnology, Thapar University , Patiala, India
| |
Collapse
|
9
|
Zhai MX, Chen F, Zhao YY, Wu YH, Li GD, Gao YF, Qi YM. Novel epitopes identified from efflux pumps of Mycobacterium tuberculosis could induce cytotoxic T lymphocyte response. PeerJ 2015; 3:e1229. [PMID: 26417538 PMCID: PMC4582945 DOI: 10.7717/peerj.1229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/14/2015] [Indexed: 12/05/2022] Open
Abstract
Overcoming drug-resistance is one of the major challenges to control tuberculosis (TB). The up-regulation of efflux pumps is one common mechanism that leads to drug-resistance. Therefore, immunotherapy targeting these efflux pump antigens could be promising strategy to be combined with current chemotherapy. Considering that CD8+ cytotoxic T lymphocytes (CTLs) induced by antigenic peptides (epitopes) could elicit HLA-restricted anti-TB immune response, efflux pumps from classical ABC family (Mycobacterium tuberculosis, Mtb) were chosen as target antigens to identify CTL epitopes. HLA-A2 restricted candidate peptides from Rv2937, Rv2686c and Rv2687c of Mycobacterium tuberculosis were predicted, synthesized and tested. Five peptides could induce IFN-γ release and cytotoxic activity in PBMCs from HLA-A2+ PPD+ donors. Results from HLA-A2/Kb transgenic mice immunization assay suggested that four peptides Rv2937-p168, Rv2937-p266, Rv2686c-p151, and Rv2686c-p181 could induce significant CTL response in vivo. These results suggested that these novel epitopes could be used as immunotherapy candidates to TB drug-resistance.
Collapse
Affiliation(s)
- Ming-Xia Zhai
- School of Life Sciences, Zhengzhou University , Zhengzhou , China
| | - Fei Chen
- School of Life Sciences, Zhengzhou University , Zhengzhou , China
| | - Yuan-Yuan Zhao
- School of Life Sciences, Zhengzhou University , Zhengzhou , China
| | - Ya-Hong Wu
- School of Life Sciences, Zhengzhou University , Zhengzhou , China
| | - Guo-Dong Li
- School of Life Sciences, Zhengzhou University , Zhengzhou , China
| | - Yan-Feng Gao
- School of Life Sciences, Zhengzhou University , Zhengzhou , China
| | - Yuan-Ming Qi
- School of Life Sciences, Zhengzhou University , Zhengzhou , China
| |
Collapse
|
10
|
Nair SK, Tomaras GD, Sales AP, Boczkowski D, Chan C, Plonk K, Cai Y, Dannull J, Kepler TB, Pruitt SK, Weinhold KJ. High-throughput identification and dendritic cell-based functional validation of MHC class I-restricted Mycobacterium tuberculosis epitopes. Sci Rep 2014; 4:4632. [PMID: 24755960 PMCID: PMC4894389 DOI: 10.1038/srep04632] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/24/2014] [Indexed: 11/12/2022] Open
Abstract
Emergence of drug-resistant strains of the pathogen Mycobacterium tuberculosis (Mtb) and the ineffectiveness of BCG in curtailing Mtb infection makes vaccine development for tuberculosis an important objective. Identifying immunogenic CD8+ T cell peptide epitopes is necessary for peptide-based vaccine strategies. We present a three-tiered strategy for identifying and validating immunogenic peptides: first, identify peptides that form stable complexes with class I MHC molecules; second, determine whether cytotoxic T lymphocytes (CTLs) raised against the whole protein antigen recognize and lyse target cells pulsed with peptides that passed step 1; third, determine whether peptides that passed step 2, when administered in vivo as a vaccine in HLA-A2 transgenic mice, elicit CTLs that lyse target cells expressing the whole protein antigen. Our innovative approach uses dendritic cells transfected with Mtb antigen-encoding mRNA to drive antigen expression. Using this strategy, we have identified five novel peptide epitopes from the Mtb proteins Apa, Mtb8.4 and Mtb19.
Collapse
Affiliation(s)
- Smita K Nair
- 1] Departments of Surgery, Duke University Medical Center, Durham, NC 27710 [2]
| | - Georgia D Tomaras
- 1] Departments of Surgery, Duke University Medical Center, Durham, NC 27710 [2]
| | - Ana Paula Sales
- 1] Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710 [2]
| | - David Boczkowski
- Departments of Surgery, Duke University Medical Center, Durham, NC 27710
| | - Cliburn Chan
- Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710
| | - Kelly Plonk
- Departments of Surgery, Duke University Medical Center, Durham, NC 27710
| | - Yongting Cai
- 1] Departments of Surgery, Duke University Medical Center, Durham, NC 27710 [2]
| | - Jens Dannull
- Departments of Surgery, Duke University Medical Center, Durham, NC 27710
| | - Thomas B Kepler
- 1] Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710 [2]
| | - Scott K Pruitt
- 1] Departments of Surgery, Duke University Medical Center, Durham, NC 27710 [2]
| | - Kent J Weinhold
- Departments of Surgery, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
11
|
Shi RR, Liu J, Zou Z, Qi YM, Zhai MX, Zhai WJ, Gao YF. The immunogenicity of a novel cytotoxic T lymphocyte epitope from tumor antigen PL2L60 could be enhanced by 4-chlorophenylalanine substitution at position 1. Cancer Immunol Immunother 2013; 62:1723-32. [PMID: 24077852 PMCID: PMC11029738 DOI: 10.1007/s00262-013-1478-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 09/18/2013] [Indexed: 10/26/2022]
Abstract
PIWIL2, a member of PIWI/AGO family, is expressed in germline stem cells and precancerous stem cells, but not in adult somatic cells. PIWIL2 plays an important role in tumor development. It is considered as a cancer–testis antigen (CT80). It has been reported that the spliced fragment of PIWIL2, PL2L60, was widely expressed in cancer cell lines. In this study, HLA-A2-restricted epitopes from PL2L60 were predicted by online tools. To improve the activity of the native epitope, a candidate peptide P281 with potent binding affinity was chosen to investigate the modification strategy. A series of aromatic amino acids were introduced to substitute the first residue of P281. Then, we tested the binding affinity and stability of the peptide analogs and their ability to elicit specific immune responses both in vitro and in vivo. Our results indicated that the cytotoxic T lymphocytes (CTLs) induced by [4-Cl-Phe1]P281 could elicit more potent activities than that of P281 and other analogs. The CTLs induced by this analog could lyze target cells in HLA-A2-restricted and antigen-specific manners. [4-Cl-Phe1]P281 also showed the best resistance against degradation in human serum. In conclusion, the introduction of the unnatural amino acid, 4-Cl-Phe, into the first position could enhance the activity of the native epitope to induce cytotoxic T lymphocytes. It might be a good strategy to modify other promising native epitopes. The novel epitopes identified in this study could be used as novel candidates to the immunotherapy of HLA-A2 positive patients with tumors expressing PL2L60.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Argonaute Proteins/genetics
- Argonaute Proteins/immunology
- Argonaute Proteins/metabolism
- Blotting, Western
- Cell Line
- Cytotoxicity, Immunologic/immunology
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Gene Expression Regulation, Neoplastic
- HLA-A2 Antigen/immunology
- HT29 Cells
- Humans
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- MCF-7 Cells
- Mice
- Mice, Transgenic
- Neoplasms/genetics
- Neoplasms/metabolism
- Neoplasms/pathology
- Peptides/genetics
- Peptides/immunology
- Peptides/metabolism
- Phenylalanine/genetics
- Phenylalanine/immunology
- Phenylalanine/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- Ran-ran Shi
- Department of Bioengineering, Zhengzhou University, 100 Science Road, Zhengzhou, 450001 Henan Province People’s Republic of China
| | - Jing Liu
- Department of Bioengineering, Zhengzhou University, 100 Science Road, Zhengzhou, 450001 Henan Province People’s Republic of China
| | - Zhe Zou
- Department of Bioengineering, Zhengzhou University, 100 Science Road, Zhengzhou, 450001 Henan Province People’s Republic of China
| | - Yuan-ming Qi
- Department of Bioengineering, Zhengzhou University, 100 Science Road, Zhengzhou, 450001 Henan Province People’s Republic of China
| | - Ming-xia Zhai
- Department of Bioengineering, Zhengzhou University, 100 Science Road, Zhengzhou, 450001 Henan Province People’s Republic of China
| | - Wen-jie Zhai
- Department of Bioengineering, Zhengzhou University, 100 Science Road, Zhengzhou, 450001 Henan Province People’s Republic of China
| | - Yan-feng Gao
- Department of Bioengineering, Zhengzhou University, 100 Science Road, Zhengzhou, 450001 Henan Province People’s Republic of China
| |
Collapse
|
12
|
Zhao J, Sun Z, Pei H, Ye J, Chen C, Samten B, Zhang S, Guo X. Immunological evaluation of a novel Mycobacterium tuberculosis antigen, Rv3117, absent in Mycobacterium bovis BCG. Mol Med Rep 2013; 8:1587-93. [PMID: 24045507 DOI: 10.3892/mmr.2013.1687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 09/04/2013] [Indexed: 11/05/2022] Open
Abstract
Tuberculosis (TB) remains a global infectious disease. To investigate the value of a novel Mycobacterium tuberculosis (M. tuberculosis) region of difference 5 (RD5)-encoded antigen, Rv3117, in the development of effective immuno-diagnostics and vaccines against TB, the immune responses to the antigen were examined in human subjects, as well as in C57BL/6 mice. The results showed that Rv3117 was able to evoke specific humoral and cellular immune responses. Consistent with the results from the RD1-encoded antigens, culture filtrate protein 10 kDa (CFP-10) and early secreted antigenic target 6 kDa (ESAT-6), the immunoglobulin G (IgG), IgM and IgA antibody responses to Rv3117 were able to statistically distinguish between the 65 patients with active pulmonary TB and the 59 healthy controls (P<0.01, respectively). In addition, higher levels of Rv3117‑specific interferon-γ (IFN-γ) were observed in immunized C57BL/6 mice than in the negative control mice (P<0.05). Furthermore, high titers of total IgG, IgG1 and IgG2a antibodies were present in the sera from immunized mice, even six weeks subsequent to the immunization. In conclusion, the present results suggested that Rv3117 may be used as a candidate for the development of TB immunodiagnostics and vaccine design.
Collapse
Affiliation(s)
- Junwei Zhao
- Department of Medical Microbiology and Parasitology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|