1
|
Manescu (Paltanea) V, Antoniac I, Paltanea G, Nemoianu IV, Mohan AG, Antoniac A, Rau JV, Laptoiu SA, Mihai P, Gavrila H, Al-Moushaly AR, Bodog AD. Magnetic Hyperthermia in Glioblastoma Multiforme Treatment. Int J Mol Sci 2024; 25:10065. [PMID: 39337552 PMCID: PMC11432100 DOI: 10.3390/ijms251810065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Glioblastoma multiforme (GBM) represents one of the most critical oncological diseases in neurological practice, being considered highly aggressive with a dismal prognosis. At a worldwide level, new therapeutic methods are continuously being researched. Magnetic hyperthermia (MHT) has been investigated for more than 30 years as a solution used as a single therapy or combined with others for glioma tumor assessment in preclinical and clinical studies. It is based on magnetic nanoparticles (MNPs) that are injected into the tumor, and, under the effect of an external alternating magnetic field, they produce heat with temperatures higher than 42 °C, which determines cancer cell death. It is well known that iron oxide nanoparticles have received FDA approval for anemia treatment and to be used as contrast substances in the medical imagining domain. Today, energetic, efficient MNPs are developed that are especially dedicated to MHT treatments. In this review, the subject's importance will be emphasized by specifying the number of patients with cancer worldwide, presenting the main features of GBM, and detailing the physical theory accompanying the MHT treatment. Then, synthesis routes for thermally efficient MNP manufacturing, strategies adopted in practice for increasing MHT heat performance, and significant in vitro and in vivo studies are presented. This review paper also includes combined cancer therapies, the main reasons for using these approaches with MHT, and important clinical studies on human subjects found in the literature. This review ends by describing the most critical challenges associated with MHT and future perspectives. It is concluded that MHT can be successfully and regularly applied as a treatment for GBM if specific improvements are made.
Collapse
Affiliation(s)
- Veronica Manescu (Paltanea)
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (I.A.); (A.A.)
- Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (I.V.N.)
| | - Iulian Antoniac
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (I.A.); (A.A.)
- Academy of Romanian Scientists, 54 Splaiul Independentei, RO-050094 Bucharest, Romania
| | - Gheorghe Paltanea
- Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (I.V.N.)
| | - Iosif Vasile Nemoianu
- Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (I.V.N.)
| | - Aurel George Mohan
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, RO-410073 Oradea, Romania
- Department of Neurosurgery, Clinical Emergency Hospital Oradea, 65 Gheorghe Doja Street, RO-410169 Oradea, Romania
| | - Aurora Antoniac
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (I.A.); (A.A.)
| | - Julietta V. Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy;
- Institute of Pharmacy, Department of Analytical, Physical and Colloid Chemistry, I.M. Sechenov First Moscow State Medical University, Trubetskaya St. 8, Build.2, 119048 Moscow, Russia
| | - Stefan Alexandru Laptoiu
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (I.A.); (A.A.)
| | - Petruta Mihai
- Faculty of Entrepreneurship, Business Engineering and Management, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania;
| | - Horia Gavrila
- Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (I.V.N.)
- Technical Sciences Academy of Romania, 26 Bulevardul Dacia, RO-030167 Bucharest, Romania
| | | | - Alin Danut Bodog
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, RO-410073 Oradea, Romania
| |
Collapse
|
2
|
Jiao W, Wen N, Wang S, Zhou G, Lu Q, Su Z, Wang X, Hu S, Xie Y, Zhang N, Liu X. Effect of surface modification on the distribution of magnetic nanorings in hepatocellular carcinoma and immune cells. J Mater Chem B 2024; 12:2628-2638. [PMID: 38376513 DOI: 10.1039/d3tb02560h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Magnetic nanomaterial-mediated magnetic hyperthermia is a localized heating treatment modality that has been applied to treat aggressive cancer in clinics. In addition to being taken up by tumor cells to function in cancer therapy, magnetic nanomaterials can also be internalized by immune cells in the tumor microenvironment, which may contribute to regulating the anti-tumor immune effects. However, there exists little studies on the distribution of magnetic nanomaterials in different types of cells within tumor tissue. Herein, ferrimagnetic vortex-domain iron oxide nanorings (FVIOs) with or without the liver-cancer-targeting peptide SP94 have been successfully synthesized as a model system to investigate the effect of surface modification of FVIOs (with or without SP94) on the distribution of tumor cells and different immune cells in hepatocellular carcinoma (HCC) microenvironment of a mouse. The distribution ratio of FVIO-SP94s in tumor cells was 1.3 times more than that of FVIOs. Immune cells in the liver tumor microenvironment took up fewer FVIO-SP94s than FVIOs. In addition, myeloid cells were found to be much more amenable than lymphoid cells in terms of their ability to phagocytose nanoparticles. Specifically, the distributions of FVIOs/FVIO-SP94s in tumor-associated macrophages, dendritic cells, and myeloid-derived suppressor cells were 13.8%/12%, 3.7%/0.9%, and 6.3%/1.2%, respectively. While the distributions of FVIOs/FVIO-SP94s in T cells, B cells, and natural killer cells were 5.5%/0.7%, 3.0%/0.7%, and 0.4%/0.3%, respectively. The results described in this article enhance our understanding of the distribution of nanomaterials in the tumor microenvironment and provide a strategy for rational design of magnetic hyperthermia agents that can effectively regulate anti-tumor immune effects.
Collapse
Affiliation(s)
- Wangbo Jiao
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
| | - Nana Wen
- School of Science and Chemical Engineering, Ningxia Institute of Science and Technology, Shizuishan, Ningxia 753000, China
| | - Siyao Wang
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
| | - Guxiang Zhou
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research, Shaanxi Provincial Key Laboratory of Magnetic Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Qiaoyi Lu
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
| | - Zijun Su
- School of materials, Sun Yat-Sen University, Shen Zhen, Guangdong 529406, China
| | - Xinxin Wang
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
| | - Shuwei Hu
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
| | - Youbang Xie
- Department of Hematology and Rheumatology, Qinghai Provincial People's Hospital, 2 Gonghe Road, Xining, Qinghai 810007, China
| | - Nan Zhang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research, Shaanxi Provincial Key Laboratory of Magnetic Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiaoli Liu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research, Shaanxi Provincial Key Laboratory of Magnetic Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
| |
Collapse
|
3
|
Peng L, Xu Q, Yin S, Zhang Y, Wu H, Liu Y, Chen L, Hu Y, Yuan J, Peng K, Lin Q. The emerging nanomedicine-based technology for non-small cell lung cancer immunotherapy: how far are we from an effective treatment. Front Oncol 2023; 13:1153319. [PMID: 37182180 PMCID: PMC10172578 DOI: 10.3389/fonc.2023.1153319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is a prominent etiology of cancer-related mortality. The heterogeneous nature of this disease impedes its accurate diagnosis and efficacious treatment. Consequently, constant advancements in research are imperative in order to comprehend its intricate nature. In addition to currently available therapies, the utilization of nanotechnology presents an opportunity to enhance the clinical outcomes of NSCLC patients. Notably, the burgeoning knowledge of the interaction between the immune system and cancer itself paves the way for developing novel, emerging immunotherapies for treating NSCLC in the early stages of the disease. It is believed that with the novel engineering avenues of nanomedicine, there is a possibility to overcome the inherent limitations derived from conventional and emerging treatments, such as off-site drug cytotoxicity, drug resistance, and administration methods. Combining nanotechnology with the convergence points of current therapies could open up new avenues for meeting the unmet needs of NSCLC treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Qin Lin
- Department of Thoracic Surgery, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
4
|
Sharma A, Jangam A, Shen JLY, Ahmad A, Arepally N, Rodriguez B, Borrello J, Bouras A, Kleinberg L, Ding K, Hadjipanayis C, Kraitchman DL, Ivkov R, Attaluri A. Validation of a Temperature-Feedback Controlled Automated Magnetic Hyperthermia Therapy Device. Cancers (Basel) 2023; 15:327. [PMID: 36672278 PMCID: PMC9856953 DOI: 10.3390/cancers15020327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
We present in vivo validation of an automated magnetic hyperthermia therapy (MHT) device that uses real-time temperature input measured at the target to control tissue heating. MHT is a thermal therapy that uses heat generated by magnetic materials exposed to an alternating magnetic field. For temperature monitoring, we integrated a commercial fiber optic temperature probe containing four gallium arsenide (GaAs) temperature sensors. The controller device used temperature from the sensors as input to manage power to the magnetic field applicator. We developed a robust, multi-objective, proportional-integral-derivative (PID) algorithm to control the target thermal dose by modulating power delivered to the magnetic field applicator. The magnetic field applicator was a 20 cm diameter Maxwell-type induction coil powered by a 120 kW induction heating power supply operating at 160 kHz. Finite element (FE) simulations were performed to determine values of the PID gain factors prior to verification and validation trials. Ex vivo verification and validation were conducted in gel phantoms and sectioned bovine liver, respectively. In vivo validation of the controller was achieved in a canine research subject following infusion of magnetic nanoparticles (MNPs) into the brain. In all cases, performance matched controller design criteria, while also achieving a thermal dose measured as cumulative equivalent minutes at 43 °C (CEM43) 60 ± 5 min within 30 min.
Collapse
Affiliation(s)
- Anirudh Sharma
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Avesh Jangam
- Department of Mechanical Engineering, School of Science, Engineering, and Technology, The Pennsylvania State University—Harrisburg, Harrisburg, PA 17057, USA
| | - Julian Low Yung Shen
- Department of Mechanical Engineering, School of Science, Engineering, and Technology, The Pennsylvania State University—Harrisburg, Harrisburg, PA 17057, USA
| | - Aiman Ahmad
- Department of Mechanical Engineering, School of Science, Engineering, and Technology, The Pennsylvania State University—Harrisburg, Harrisburg, PA 17057, USA
| | - Nageshwar Arepally
- Department of Mechanical Engineering, School of Science, Engineering, and Technology, The Pennsylvania State University—Harrisburg, Harrisburg, PA 17057, USA
| | - Benjamin Rodriguez
- Sinai BioDesign, Mount Sinai Hospital, New York, NY 10029, USA
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joseph Borrello
- Sinai BioDesign, Mount Sinai Hospital, New York, NY 10029, USA
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexandros Bouras
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Lawrence Kleinberg
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Kai Ding
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Constantinos Hadjipanayis
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Dara L. Kraitchman
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert Ivkov
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Anilchandra Attaluri
- Department of Mechanical Engineering, School of Science, Engineering, and Technology, The Pennsylvania State University—Harrisburg, Harrisburg, PA 17057, USA
| |
Collapse
|
5
|
Yan B, Wang S, Liu C, Wen N, Li H, Zhang Y, Wang H, Xi Z, Lv Y, Fan H, Liu X. Engineering magnetic nano-manipulators for boosting cancer immunotherapy. J Nanobiotechnology 2022; 20:547. [PMID: 36587223 PMCID: PMC9805281 DOI: 10.1186/s12951-022-01760-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023] Open
Abstract
Cancer immunotherapy has shown promising therapeutic results in the clinic, albeit only in a limited number of cancer types, and its efficacy remains less than satisfactory. Nanoparticle-based approaches have been shown to increase the response to immunotherapies to address this limitation. In particular, magnetic nanoparticles (MNPs) as a powerful manipulator are an appealing option for comprehensively regulating the immune system in vivo due to their unique magnetically responsive properties and high biocompatibility. This review focuses on assessing the potential applications of MNPs in enhancing tumor accumulation of immunotherapeutic agents and immunogenicity, improving immune cell infiltration, and creating an immunotherapy-sensitive environment. We summarize recent progress in the application of MNP-based manipulators to augment the efficacy of immunotherapy, by MNPs and their multiple magnetically responsive effects under different types of external magnetic field. Furthermore, we highlight the mechanisms underlying the promotion of antitumor immunity, including magnetically actuated delivery and controlled release of immunotherapeutic agents, tracking and visualization of immune response in real time, and magnetic regulation of innate/adaptive immune cells. Finally, we consider perspectives and challenges in MNP-based immunotherapy.
Collapse
Affiliation(s)
- Bin Yan
- grid.412262.10000 0004 1761 5538Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 Shaanxi China
| | - Siyao Wang
- grid.412262.10000 0004 1761 5538Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 Shaanxi China
| | - Chen Liu
- grid.412262.10000 0004 1761 5538Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 Shaanxi China
| | - Nana Wen
- grid.412262.10000 0004 1761 5538Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 Shaanxi China
| | - Hugang Li
- grid.412262.10000 0004 1761 5538Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 Shaanxi China
| | - Yihan Zhang
- grid.412262.10000 0004 1761 5538College of Chemistry & Materials Science, Northwest University, Xi’an, 710127 Shaanxi China
| | - Hao Wang
- grid.412262.10000 0004 1761 5538Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 Shaanxi China
| | - Ziyi Xi
- grid.412262.10000 0004 1761 5538Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 Shaanxi China
| | - Yi Lv
- grid.452438.c0000 0004 1760 8119Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China ,grid.452438.c0000 0004 1760 8119National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Haiming Fan
- grid.412262.10000 0004 1761 5538Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 Shaanxi China ,grid.412262.10000 0004 1761 5538College of Chemistry & Materials Science, Northwest University, Xi’an, 710127 Shaanxi China
| | - Xiaoli Liu
- grid.412262.10000 0004 1761 5538Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, 710069 Shaanxi China ,grid.452438.c0000 0004 1760 8119Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China ,grid.452438.c0000 0004 1760 8119National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| |
Collapse
|
6
|
Molecular Events in the Melanogenesis Cascade as Novel Melanoma-Targeted Small Molecules: Principle and Development. Cancers (Basel) 2022; 14:cancers14225588. [PMID: 36428680 PMCID: PMC9688330 DOI: 10.3390/cancers14225588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Malignant melanoma is one of the most malignant of all cancers. Melanoma occurs at the epidermo-dermal interface of the skin and mucosa, where small vessels and lymphatics are abundant. Consequently, from the onset of the disease, melanoma easily metastasizes to other organs throughout the body via lymphatic and blood circulation. At present, the most effective treatment method is surgical resection, and other attempted methods, such as chemotherapy, radiotherapy, immunotherapy, targeted therapy, and gene therapy, have not yet produced sufficient results. Since melanogenesis is a unique biochemical pathway that functions only in melanocytes and their neoplastic counterparts, melanoma cells, the development of drugs that target melanogenesis is a promising area of research. Melanin consists of small-molecule derivatives that are always synthesized by melanoma cells. Amelanosis reflects the macroscopic visibility of color changes (hypomelanosis). Under microscopy, melanin pigments and their precursors are present in amelanotic melanoma cells. Tumors can be easily targeted by small molecules that chemically mimic melanogenic substrates. In addition, small-molecule melanin metabolites are toxic to melanocytes and melanoma cells and can kill them. This review describes our development of chemo-thermo-immunotherapy based on the synthesis of melanogenesis-based small-molecule derivatives and conjugation to magnetite nanoparticles. We also introduce the other melanogenesis-related chemotherapy and thermal medicine approaches and discuss currently introduced targeted therapies with immune checkpoint inhibitors for unresectable/metastatic melanoma.
Collapse
|
7
|
Catanzaro E, Feron O, Skirtach AG, Krysko DV. Immunogenic Cell Death and Role of Nanomaterials Serving as Therapeutic Vaccine for Personalized Cancer Immunotherapy. Front Immunol 2022; 13:925290. [PMID: 35844506 PMCID: PMC9280641 DOI: 10.3389/fimmu.2022.925290] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/02/2022] [Indexed: 07/20/2023] Open
Abstract
Immunogenic cell death (ICD) is a rapidly growing research area representing one of the emerging therapeutic strategies of cancer immunotherapy. ICD is an umbrella term covering several cell death modalities including apoptosis, necroptosis, ferroptosis and pyroptosis, and is the product of a balanced combination of adjuvanticity (damage-associated molecular patterns and chemokines/cytokines) and antigenicity (tumor associated antigens). Only a limited number of anti-cancer therapies are available to induce ICD in experimental cancer therapies and even much less is available for clinical use. To overcome this limitation, nanomaterials can be used to increase the immunogenicity of cancer cells killed by anti-cancer therapy, which in themselves are not necessarily immunogenic. In this review, we outline the current state of knowledge of ICD modalities and discuss achievements in using nanomaterials to increase the immunogenicity of dying cancer cells. The emerging trends in modulating the immunogenicity of dying cancer cells in experimental and translational cancer therapies and the challenges facing them are described. In conclusion, nanomaterials are expected to drive further progress in their use to increase efficacy of anti-cancer therapy based on ICD induction and in the future, it is necessary to validate these strategies in clinical settings, which will be a challenging research area.
Collapse
Affiliation(s)
- Elena Catanzaro
- Cell Death Investigation and Therapy (CDIT) Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Olivier Feron
- Cancer Translational Research Laboratory, Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium
| | - André G. Skirtach
- Cancer Research Institute Ghent, Ghent, Belgium
- Nano-BioTechnology Laboratory, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Dmitri V. Krysko
- Cell Death Investigation and Therapy (CDIT) Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
8
|
Immunomodulation of Melanoma by Chemo-Thermo-Immunotherapy Using Conjugates of Melanogenesis Substrate NPrCAP and Magnetite Nanoparticles: A Review. Int J Mol Sci 2022; 23:ijms23126457. [PMID: 35742905 PMCID: PMC9223671 DOI: 10.3390/ijms23126457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 12/30/2022] Open
Abstract
A major advance in drug discovery and targeted therapy directed at cancer cells may be achieved by the exploitation and immunomodulation of their unique biological properties. This review summarizes our efforts to develop novel chemo-thermo-immunotherapy (CTI therapy) by conjugating a melanogenesis substrate, N-propionyl cysteaminylphenol (NPrCAP: amine analog of tyrosine), with magnetite nanoparticles (MNP). In our approach, NPrCAP provides a unique drug delivery system (DDS) because of its selective incorporation into melanoma cells. It also functions as a melanoma-targeted therapeutic drug because of its production of highly reactive free radicals (melanoma-targeted chemotherapy). Moreover, the utilization of MNP is a platform to develop thermo-immunotherapy because of heat shock protein (HSP) expression upon heat generation in MNP by exposure to an alternating magnetic field (AMF). This comprehensive review covers experimental in vivo and in vitro mouse melanoma models and preliminary clinical trials with a limited number of advanced melanoma patients. We also discuss the future directions of CTI therapy.
Collapse
|
9
|
Lerner EC, Edwards RM, Wilkinson DS, Fecci PE. Laser ablation: Heating up the anti-tumor response in the intracranial compartment. Adv Drug Deliv Rev 2022; 185:114311. [PMID: 35489652 PMCID: PMC10589123 DOI: 10.1016/j.addr.2022.114311] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/29/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023]
Abstract
Immunotherapies, such as immune checkpoint inhibition (ICI), have had limited success in treating intracranial malignancies. These failures are due partly to the restrictive blood-brain-barrier (BBB), the profound tumor-dependent induction of local and systemic immunosuppression, and immune evasion exhibited by these tumors. Therefore, novel approaches must be explored that aim to overcome these stringent barriers. LITT is an emerging treatment for brain tumors that utilizes thermal ablation to kill tumor cells. LITT provides an additional therapeutic benefit by synergizing with ICI and systemic chemotherapies to strengthen the anti-tumor immune response. This synergistic relationship involves transient disruption of the BBB and local augmentation of immune function, culminating in increased CNS drug penetrance and improved anti-tumor immunity. In this review, we will provide an overview of the challenges facing immunotherapy for brain tumors, and discuss how LITT may synergize with the endogenous anti-tumor response to improve the efficacy of ICI.
Collapse
Affiliation(s)
- Emily C Lerner
- Duke Medical School, Duke University Medical Center, Durham, NC, United States
| | - Ryan M Edwards
- Duke Medical School, Duke University Medical Center, Durham, NC, United States
| | - Daniel S Wilkinson
- Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - Peter E Fecci
- Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States.
| |
Collapse
|
10
|
Combined Fluorescence-Guided Resection and Intracavitary Thermotherapy with Superparamagnetic Iron‐Oxide Nanoparticles for Recurrent High-Grade Glioma: Case Series with Emphasis on Complication Management. Cancers (Basel) 2022; 14:cancers14030541. [PMID: 35158809 PMCID: PMC8833446 DOI: 10.3390/cancers14030541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Recurrent high-grade gliomas are difficult to treat. Here, we report on our single-center experience in combining fluorescence-guided tumor resection with 5-ALA and local thermotherapy with superparamagnetic iron nanoparticles. In total, 18 patients were operated on and received thermotherapy with or without additional radiotherapy. The median progression-free survival was 5.5 months and median overall survival was 9.5 months. Although no major side effects were observed during active treatment, 72% of the patients developed cerebral edema requiring steroid treatment or even surgical removal of the nanoparticles. In conclusion, the combination of fluorescence-guided resection and intracavitary thermotherapy provides a novel and promising treatment option for improving local tumor control in recurrent high-grade gliomas, but further refinements of the treatment protocol are needed to decrease major side effects. Abstract Background: Concepts improving local tumor control in high-grade glioma (HGG) are desperately needed. The aim of this study is to report an extended series of cases treated with a combination of 5-ALA-fluorescence-guided resection (FGR) and intracavitary thermotherapy with superparamagnetic iron oxide nanoparticles (SPION). Methods: We conducted a single-center retrospective review of all recurrent HGG treated with FGR and intracavitary thermotherapy (n = 18). Patients underwent six hyperthermia sessions in an alternating magnetic field and received additional adjuvant therapies on a case-by-case basis. Results: Nine patients were treated for first tumor recurrence; all other patients had suffered at least two recurrences. Nine patients received combined radiotherapy and thermotherapy. The median progression-free survival was 5.5 (95% CI: 4.67–6.13) months and median overall survival was 9.5 (95% CI: 7.12–11.79) months. No major side effects were observed during active treatment. Thirteen patients (72%) developed cerebral edema and more clinical symptoms during follow-up and were initially treated with dexamethasone. Six (33%) of these patients underwent surgical removal of nanoparticles due to refractory edema. Conclusions: The combination of FGR and intracavitary thermotherapy with SPION provides a new treatment option for improving local tumor control in recurrent HGG. The development of cerebral edema is a major issue requiring further refinements of the treatment protocol.
Collapse
|
11
|
Zhang Y, Gao X, Yan B, Wen N, Lee WSV, Liang XJ, Liu X. Enhancement of CD8 + T-Cell-Mediated Tumor Immunotherapy via Magnetic Hyperthermia. ChemMedChem 2021; 17:e202100656. [PMID: 34806311 DOI: 10.1002/cmdc.202100656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/17/2021] [Indexed: 12/12/2022]
Abstract
Magnetic hyperthermia (MHT) uses magnetic iron oxide nanoparticles (MIONs) to irradiate heat when subjected to an alternating magnetic field (AMF), which then trigger a series of biological effects to realize rapid tumor-killing effects. With the deepening in research, MHT has also shown significant potential in achieving antitumor immunity. On the other hand, immunotherapy in cancer treatment has gained increasing attention over recent years and excellent results have generally been reported. Using MHT to activate antitumor immunity and clarifying its synergistic mechanism, i. e., immunogenic cell death (ICD) and immunosuppressive tumor microenvironment (TME) reversal, can achieve a synergistically enhanced therapeutic effect on primary tumors and metastatic lesions, and this can prevent cancer recurrence and metastasis, which thus prolong survival. In this review, we discussed the role of MHT when utilized alone and combining MHT with other treatments (such as radiotherapy, photodynamic therapy, and immune checkpoint blockers) in the process of tumor immunotherapy, including antigen release, dendritic cells (DCs) maturation, and activation of CD8+ cytotoxic T lymphocytes. Finally, the challenges and future development of current MHT and immunotherapy are discussed.
Collapse
Affiliation(s)
- Yihan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China
| | - Xiao Gao
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Bin Yan
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Nana Wen
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Wee Siang Vincent Lee
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117573, Singapore
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Centre for Excellence in Nanoscience, National Centre for Nanoscience and Technology of China, China
| | - Xiaoli Liu
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China.,CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Centre for Excellence in Nanoscience, National Centre for Nanoscience and Technology of China, China
| |
Collapse
|
12
|
Li Y, Liu X, Zhang X, Pan W, Li N, Tang B. Immunogenic cell death inducers for enhanced cancer immunotherapy. Chem Commun (Camb) 2021; 57:12087-12097. [PMID: 34714302 DOI: 10.1039/d1cc04604g] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Inducing the immunogenic cell death (ICD) of cancer cells is an important method to improve the immunogenicity of tumor cells for enhanced cancer immunotherapy. Therefore, we discuss the ICD process and then highlight various ICD inducers and strategies for triggering the ICD of cancer cells. We hope that this Feature Article will inspire readers to develop more effective ICD inducers.
Collapse
Affiliation(s)
- Yanhua Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Xiaohan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Xia Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
13
|
Tay ZW, Chandrasekharan P, Fellows BD, Arrizabalaga IR, Yu E, Olivo M, Conolly SM. Magnetic Particle Imaging: An Emerging Modality with Prospects in Diagnosis, Targeting and Therapy of Cancer. Cancers (Basel) 2021; 13:5285. [PMID: 34771448 PMCID: PMC8582440 DOI: 10.3390/cancers13215285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Magnetic Particle Imaging (MPI) is an emerging imaging modality for quantitative direct imaging of superparamagnetic iron oxide nanoparticles (SPION or SPIO). With different physics from MRI, MPI benefits from ideal image contrast with zero background tissue signal. This enables clear visualization of cancer with image characteristics similar to PET or SPECT, but using radiation-free magnetic nanoparticles instead, with infinite-duration reporter persistence in vivo. MPI for cancer imaging: demonstrated months of quantitative imaging of the cancer-related immune response with in situ SPION-labelling of immune cells (e.g., neutrophils, CAR T-cells). Because MPI suffers absolutely no susceptibility artifacts in the lung, immuno-MPI could soon provide completely noninvasive early-stage diagnosis and treatment monitoring of lung cancers. MPI for magnetic steering: MPI gradients are ~150 × stronger than MRI, enabling remote magnetic steering of magneto-aerosol, nanoparticles, and catheter tips, enhancing therapeutic delivery by magnetic means. MPI for precision therapy: gradients enable focusing of magnetic hyperthermia and magnetic-actuated drug release with up to 2 mm precision. The extent of drug release from the magnetic nanocarrier can be quantitatively monitored by MPI of SPION's MPS spectral changes within the nanocarrier. CONCLUSION MPI is a promising new magnetic modality spanning cancer imaging to guided-therapy.
Collapse
Affiliation(s)
- Zhi Wei Tay
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios Building, Singapore 138667, Singapore;
| | - Prashant Chandrasekharan
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA 94720-1762, USA; (P.C.); (B.D.F.); (I.R.A.); (E.Y.); (S.M.C.)
| | - Benjamin D. Fellows
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA 94720-1762, USA; (P.C.); (B.D.F.); (I.R.A.); (E.Y.); (S.M.C.)
| | - Irati Rodrigo Arrizabalaga
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA 94720-1762, USA; (P.C.); (B.D.F.); (I.R.A.); (E.Y.); (S.M.C.)
| | - Elaine Yu
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA 94720-1762, USA; (P.C.); (B.D.F.); (I.R.A.); (E.Y.); (S.M.C.)
| | - Malini Olivo
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios Building, Singapore 138667, Singapore;
| | - Steven M. Conolly
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA 94720-1762, USA; (P.C.); (B.D.F.); (I.R.A.); (E.Y.); (S.M.C.)
| |
Collapse
|
14
|
Magnetic Nanoparticles Used in Oncology. MATERIALS 2021; 14:ma14205948. [PMID: 34683540 PMCID: PMC8539633 DOI: 10.3390/ma14205948] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/25/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022]
Abstract
Recently, magnetic nanoparticles (MNPs) have more and more often been used in experimental studies on cancer treatments, which have become one of the biggest challenges in medical research. The main goal of this research is to treat and to cure advanced or metastatic cancer with minimal side effects through nanotechnology. Drug delivery approaches take into account the fact that MNPs can be bonded to chemotherapeutical drugs, nucleic acids, synthetized antibodies or radionuclide substances. MNPs can be guided, and different treatment therapies can be applied, under the influence of an external magnetic field. This paper reviews the main MNPs’ synthesis methods, functionalization with different materials and highlight the applications in cancer therapy. In this review, we describe cancer cell monitorization based on different types of magnetic nanoparticles, chemotherapy, immunotherapy, magnetic hyperthermia, gene therapy and ferroptosis. Examples of applied treatments on murine models or humans are analyzed, and glioblastoma cancer therapy is detailed in the review. MNPs have an important contribution to diagnostics, investigation, and therapy in the so called theranostics domain. The main conclusion of this paper is that MNPs are very useful in different cancer therapies, with limited side effects, and they can increase the life expectancy of patients with cancer drug resistance.
Collapse
|
15
|
Tranberg KG. Local Destruction of Tumors and Systemic Immune Effects. Front Oncol 2021; 11:708810. [PMID: 34307177 PMCID: PMC8298109 DOI: 10.3389/fonc.2021.708810] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022] Open
Abstract
Current immune-based therapies signify a major advancement in cancer therapy; yet, they are not effective in the majority of patients. Physically based local destruction techniques have been shown to induce immunologic effects and are increasingly used in order to improve the outcome of immunotherapies. The various local destruction methods have different modes of action and there is considerable variation between the different techniques with respect to the ability and frequency to create a systemic anti-tumor immunologic effect. Since the abscopal effect is considered to be the best indicator of a relevant immunologic effect, the present review focused on the tissue changes associated with this effect in order to find determinants for a strong immunologic response, both when local destruction is used alone and combined with immunotherapy. In addition to the T cell-inflammation that was induced by all methods, the analysis indicated that it was important for an optimal outcome that the released antigens were not destroyed, tumor cell death was necrotic and tumor tissue perfusion was at least partially preserved allowing for antigen presentation, immune cell trafficking and reduction of hypoxia. Local treatment with controlled low level hyperthermia met these requisites and was especially prone to result in abscopal immune activity on its own.
Collapse
|
16
|
Persano S, Das P, Pellegrino T. Magnetic Nanostructures as Emerging Therapeutic Tools to Boost Anti-Tumour Immunity. Cancers (Basel) 2021; 13:2735. [PMID: 34073106 PMCID: PMC8198238 DOI: 10.3390/cancers13112735] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022] Open
Abstract
Cancer immunotherapy has shown remarkable results in various cancer types through a range of immunotherapeutic approaches, including chimeric antigen receptor-T cell (CAR-T) therapy, immune checkpoint blockade (ICB), and therapeutic vaccines. Despite the enormous potential of cancer immunotherapy, its application in various clinical settings has been limited by immune evasion and immune suppressive mechanisms occurring locally or systemically, low durable response rates, and severe side effects. In the last decades, the rapid advancement of nanotechnology has been aiming at the development of novel synthetic nanocarriers enabling precise and enhanced delivery of immunotherapeutics, while improving drug stability and effectiveness. Magnetic nanostructured formulations are particularly intriguing because of their easy surface functionalization, low cost, and robust manufacturing procedures, together with their suitability for the implementation of magnetically-guided and heat-based therapeutic strategies. Here, we summarize and discuss the unique features of magnetic-based nanostructures, which can be opportunely designed to potentiate classic immunotherapies, such as therapeutic vaccines, ICB, adoptive cell therapy (ACT), and in situ vaccination. Finally, we focus on how multifunctional magnetic delivery systems can facilitate the anti-tumour therapies relying on multiple immunotherapies and/or other therapeutic modalities. Combinatorial magnetic-based therapies are indeed offering the possibility to overcome current challenges in cancer immunotherapy.
Collapse
Affiliation(s)
- Stefano Persano
- Nanomaterials for Biomedical Applications, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy;
| | | | - Teresa Pellegrino
- Nanomaterials for Biomedical Applications, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy;
| |
Collapse
|
17
|
Rivera-Rodriguez A, Rinaldi-Ramos CM. Emerging Biomedical Applications Based on the Response of Magnetic Nanoparticles to Time-Varying Magnetic Fields. Annu Rev Chem Biomol Eng 2021; 12:163-185. [PMID: 33856937 DOI: 10.1146/annurev-chembioeng-102720-015630] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Magnetic nanoparticles are of interest for biomedical applications because of their biocompatibility, tunable surface chemistry, and actuation using applied magnetic fields. Magnetic nanoparticles respond to time-varying magnetic fields via physical particle rotation or internal dipole reorientation, which can result in signal generation or conversion of magnetic energy to heat. This dynamic magnetization response enables their use as tracers in magnetic particle imaging (MPI), an emerging biomedical imaging modality in which signal is quantitative of tracer mass and there is no tissue background signal or signal attenuation. Conversion of magnetic energy to heat motivates use in nanoscale thermal cancer therapy, magnetic actuation of drug release, and rapid rewarming of cryopreserved organs. This review introduces basic concepts of magnetic nanoparticle response to time-varying magnetic fields and presents recent advances in the field, with an emphasis on MPI and conversion of magnetic energy to heat.
Collapse
Affiliation(s)
- Angelie Rivera-Rodriguez
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, USA; ,
| | - Carlos M Rinaldi-Ramos
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, USA; , .,Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
18
|
Magnetic Hyperthermia as an adjuvant cancer therapy in combination with radiotherapy versus radiotherapy alone for recurrent/progressive glioblastoma: a systematic review. J Neurooncol 2021; 152:419-428. [PMID: 33713248 DOI: 10.1007/s11060-021-03729-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 02/27/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Hyperthermia therapy (HT) is a recognized treatment modality, that can sensitize tumors to the effects of radiotherapy (RT) and chemotherapy by heating up tumor cells to 40-45 °C. The advantages of noninvasive inductive magnetic hyperthermia (MH) over RT or chemotherapy in the treatment of recurrent/progressive glioma have been confirmed by several clinical trials. Thus, here we have conducted a systematic review to provide a concise, albeit brief, account of the currently available literature regarding this topic. METHODS Five databases, PubMed/Medline, Embace, Ovid, WOS, and Scopus, were investigated to identify clinical studies comparing overall survival (OS) following RT/chemotherapy versus RT/chemotherapy + MH. RESULTS Eleven articles were selected for this systematic review, including reports on 227 glioma patients who met the study inclusion criteria. The papers included in this review comprised nine pilot clinical trials, one non-randomized clinical trial, and one retrospective investigation. As the clinical trials suggested, MH improved OS in primary glioblastoma (GBM), however, in the case of recurrent glioblastoma, no significant change in OS was reported. All 11 studies ascertained that no major side effects were observed during MH therapy. CONCLUSION Our systematic review indicates that MH therapy as an adjuvant for RT could result in improved survival, compared to the therapeutic outcomes achieved with RT alone in GBM, especially by intratumoral injection of magnetic nanoparticles. However, heterogeneity in the methodology of the most well-known studies, and differences in the study design may significantly limit the extent to which conclusions can be drawn. Thus, further investigations are required to shed more light on the efficacy of MH therapy as an adjuvant treatment modality in GBM.
Collapse
|
19
|
Modulating the Heat Stress Response to Improve Hyperthermia-Based Anticancer Treatments. Cancers (Basel) 2021; 13:cancers13061243. [PMID: 33808973 PMCID: PMC8001574 DOI: 10.3390/cancers13061243] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Hyperthermia is a method to expose a tumor to elevated temperatures. Heating of the tumor promotes the effects of various treatment regimens that are based on chemo and radiotherapy. Several aspects, however, limit the efficacy of hyperthermia-based treatments. This review provides an overview of the effects and limitations of hyperthermia and discusses how current drawbacks of the therapy can potentially be counteracted by inhibiting the heat stress response—a mechanism that cells activate to defend themselves against hyperthermia. Abstract Cancer treatments based on mild hyperthermia (39–43 °C, HT) are applied to a widening range of cancer types, but several factors limit their efficacy and slow down more widespread adoption. These factors include difficulties in adequate heat delivery, a short therapeutic window and the acquisition of thermotolerance by cancer cells. Here, we explore the biological effects of HT, the cellular responses to these effects and their clinically-relevant consequences. We then identify the heat stress response—the cellular defense mechanism that detects and counteracts the effects of heat—as one of the major forces limiting the efficacy of HT-based therapies and propose targeting this mechanism as a potentially universal strategy for improving their efficacy.
Collapse
|
20
|
Wang S, Sun Z, Hou Y. Engineering Nanoparticles toward the Modulation of Emerging Cancer Immunotherapy. Adv Healthc Mater 2021; 10:e2000845. [PMID: 32790039 DOI: 10.1002/adhm.202000845] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/09/2020] [Indexed: 12/16/2022]
Abstract
Cancer immunotherapy is a new therapeutic strategy to fight cancer by activating the patients' own immune system. At present, immunotherapy approaches such as cancer vaccines, immune checkpoint blockade (ICB), adoptive cell transfer (ACT), monoclonal antibodies (mAbs) therapy, and cytokines therapy have therapeutic potential in preclinical and clinical applications. However, the intrinsic limitations of conventional immunotherapy are difficulty of precise dosage control, insufficient enrichment in tumor tissues, partial immune response silencing or hyperactivity, and high cost. Engineering nanoparticles (NPs) have been emerging as a promising multifunctional platform to enhance conventional immunotherapy due to their intrinsic immunogenicity, convenient delivery function, controlled surface chemistry activity, multifunctional modifying potential, and intelligent targeting. This review presents the recent progress reflected by engineering NPs, including the diversified selection of functionalized NPs, the superiority of engineering NPs for enhancing conventional immunotherapy, and NP-mediated multiscale strategies for synergistic therapy consisting of compositions and their mechanism. Finally, the perspective on multifunctional NP-based cancer immunotherapy for boosting immunomodulation is discussed, which reveals the expanding landscape of engineering NPs in clinical translation.
Collapse
Affiliation(s)
- Shuren Wang
- Beijing Key Laboratory of Magnetoelectric Materials and Devices Department of Materials Science and Engineering College of Engineering Beijing Innovation Centre for Engineering Science and Advanced Technology Peking University Beijing 100871 China
| | - Zhaoli Sun
- Beijing Key Laboratory of Magnetoelectric Materials and Devices Department of Materials Science and Engineering College of Engineering Beijing Innovation Centre for Engineering Science and Advanced Technology Peking University Beijing 100871 China
- College of Life Sciences Peking University Beijing 100871 China
| | - Yanglong Hou
- Beijing Key Laboratory of Magnetoelectric Materials and Devices Department of Materials Science and Engineering College of Engineering Beijing Innovation Centre for Engineering Science and Advanced Technology Peking University Beijing 100871 China
| |
Collapse
|
21
|
Dallet L, Stanicki D, Voisin P, Miraux S, Ribot EJ. Micron-sized iron oxide particles for both MRI cell tracking and magnetic fluid hyperthermia treatment. Sci Rep 2021; 11:3286. [PMID: 33558583 PMCID: PMC7870900 DOI: 10.1038/s41598-021-82095-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 01/14/2021] [Indexed: 12/17/2022] Open
Abstract
Iron oxide particles (IOP) are commonly used for Cellular Magnetic Resonance Imaging (MRI) and in combination with several treatments, like Magnetic Fluid Hyperthermia (MFH), due to the rise in temperature they provoke under an Alternating Magnetic Field (AMF). Micrometric IOP have a high sensitivity of detection. Nevertheless, little is known about their internalization processes or their potential heat power. Two micrometric commercial IOP (from Bangs Laboratories and Chemicell) were characterized by Transmission Electron Microscopy (TEM) and their endocytic pathways into glioma cells were analyzed. Their Specific Absorption Rate (SAR) and cytotoxicity were evaluated using a commercial AMF inductor. T2-weighted imaging was used to monitor tumor growth in vivo after MFH treatment in mice. The two micron-sized IOP had similar structures and r2 relaxivities (100 mM-1 s-1) but involved different endocytic pathways. Only ScreenMAG particles generated a significant rise in temperature following AMF (SAR = 113 W g-1 Fe). After 1 h of AMF exposure, 60% of ScreenMAG-labeled cells died. Translated to a glioma model, 89% of mice responded to the treatment with smaller tumor volume 42 days post-implantation. Micrometric particles were investigated from their characterization to their intracellular internalization pathways and applied in one in vivo cancer treatment, i.e. MFH.
Collapse
Affiliation(s)
- Laurence Dallet
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/Univ. Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Dimitri Stanicki
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, 19 avenue Maistriau, 7000, Mons, Belgium
| | - Pierre Voisin
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/Univ. Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Sylvain Miraux
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/Univ. Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Emeline J Ribot
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/Univ. Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France.
| |
Collapse
|
22
|
Lu Y, Rivera-Rodriguez A, Tay ZW, Hensley D, Fung KLB, Colson C, Saayujya C, Huynh Q, Kabuli L, Fellows B, Chandrasekharan P, Rinaldi C, Conolly S. Combining magnetic particle imaging and magnetic fluid hyperthermia for localized and image-guided treatment. Int J Hyperthermia 2021; 37:141-154. [PMID: 33426994 DOI: 10.1080/02656736.2020.1853252] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Magnetic fluid hyperthermia (MFH) has been widely investigated as a treatment tool for cancer and other diseases. However, focusing traditional MFH to a tumor deep in the body is not feasible because the in vivo wavelength of 300 kHz very low frequency (VLF) excitation fields is longer than 100 m. Recently we demonstrated that millimeter-precision localized heating can be achieved by combining magnetic particle imaging (MPI) with MFH. In principle, real-time MPI imaging can also guide the location and dosing of MFH treatments. Hence, the combination of MPI imaging plus real time localized MPI-MFH could soon permit closed-loop high-resolution hyperthermia treatment. In this review, we will discuss the fundamentals of localized MFH (e.g. physics and biosafety limitations), hardware implementation, MPI real-time guidance, and new research directions on MPI-MFH. We will also discuss how the scale up to human-sized MPI-MFH scanners could proceed.
Collapse
Affiliation(s)
- Yao Lu
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Angelie Rivera-Rodriguez
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Zhi Wei Tay
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | | | - K L Barry Fung
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Caylin Colson
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Chinmoy Saayujya
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Quincy Huynh
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Leyla Kabuli
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Benjamin Fellows
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | | | - Carlos Rinaldi
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.,Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Steven Conolly
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA.,Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| |
Collapse
|
23
|
Yang SJ, Huang CH, Wang CH, Shieh MJ, Chen KC. The Synergistic Effect of Hyperthermia and Chemotherapy in Magnetite Nanomedicine-Based Lung Cancer Treatment. Int J Nanomedicine 2020; 15:10331-10347. [PMID: 33376324 PMCID: PMC7755349 DOI: 10.2147/ijn.s281029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
Background Lung cancer is the leading cause of cancer patient death in the world. There are many treatment options for lung cancer, including surgery, radiation therapy, chemotherapy, targeted therapy, and combined therapy. Despite significant progress has been made in the diagnosis and treatment of lung cancer during the past few decades, the prognosis is still unsatisfactory. Purpose To resolve the problem of chemotherapy failure, we developed a magnetite-based nanomedicine for chemotherapy acting synergistically with loco-regional hyperthermia. Methods The targeting carrier consisted of a complex of superparamagnetic iron oxide (SPIO) and poly(sodium styrene sulfonate) (PSS) at the core and a layer-by-layer shell with cisplatin (CDDP), together with methotrexate – human serum albumin conjugate (MTX−HSA conjugate) for lung cancer-specific targeting, referred to hereafter as SPIO@PSS/CDDP/HSA−MTX nanoparticles (NPs). Results SPIO@PSS/CDDP/HSA−MTX NPs had good biocompatibility and stability in physiological solutions. Furthermore, SPIO@PSS/CDDP/HSA−MTX NPs exhibited a higher temperature increase rate than SPIO nanoparticles under irradiation by a radiofrequency (RF) generator. Therefore, SPIO@PSS/CDDP/HSA−MTX NPs could be used as a hyperthermia inducer under RF exposure after nanoparticles preferentially targeted and then accumulated at tumor sites. In addition, SPIO@PSS/CDDP/HSA−MTX NPs were developed to be used during combined chemotherapy and hyperthermia therapy, exhibiting a synergistic anticancer effect better than the effect of monotherapy. Conclusion Both in vitro and in vivo results suggest that the designed SPIO@PSS/CDDP/HSA−MTX NPs are a powerful candidate nanoplatform for future antitumor treatment strategies.
Collapse
Affiliation(s)
- Shu-Jyuan Yang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Chung-Huan Huang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | | | - Ming-Jium Shieh
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan.,Department of Oncology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Ke-Cheng Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan.,Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| |
Collapse
|
24
|
Yang SJ, Tseng SY, Wang CH, Young TH, Chen KC, Shieh MJ. Magnetic nanomedicine for CD133-expressing cancer therapy using locoregional hyperthermia combined with chemotherapy. Nanomedicine (Lond) 2020; 15:2543-2561. [DOI: 10.2217/nnm-2020-0222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Aim: Cells with CD133 overexpression, a theoretical cancer stem cells (CSCs) marker, have been shown to induce colorectal cancer (CRC) initiation and relapse. Therefore, the detection and treatment of CSCs are the most important factors in overcoming CRC. Materials & methods: Herein, we developed a magnetite-based nanomedicine (superparamagnetic iron oxide@poly(sodium styrene sulfonate)/irinotecan/human serum albumin-anti-CD133 nanoparticle) using loco-regional hyperthermia combined with chemotherapy for CRC- and CSC-specific targeting treatment. Results: The designed nanoparticles were highly biocompatible and exhibited a higher temperature increase rate under radiofrequency generator irradiation. The nanoparticles could be used as a T2-weighted magnetic resonance imaging contrast media, and also applied during hyperthermia and chemotherapy to display a synergistic anticancer effect. Conclusion: Therefore, the superparamagnetic iron oxide@poly(sodium styrene sulfonate)/irinotecan/human serum albumin-anti-CD133 nanoparticles are a powerful candidate for future antitumor strategies.
Collapse
Affiliation(s)
- Shu-Jyuan Yang
- Institute of Biomedical Engineering, College of Medicine & College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Shu-Yi Tseng
- Institute of Biomedical Engineering, College of Medicine & College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Chung-Hao Wang
- Gene'e Tech Co. Ltd. 2F., No.661, Bannan Rd., Zhonghe Dist., New Taipei City 235, Taiwan
| | - Tai-Horng Young
- Institute of Biomedical Engineering, College of Medicine & College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Ke-Cheng Chen
- Institute of Biomedical Engineering, College of Medicine & College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
- Department of Surgery, National Taiwan University Hospital & College of Medicine, No. 7, Chung-Shan South Road, Taipei 100, Taiwan
| | - Ming-Jium Shieh
- Institute of Biomedical Engineering, College of Medicine & College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
- Department of Oncology, National Taiwan University Hospital & College of Medicine, No. 7, Chung-Shan South Road, Taipei 100, Taiwan
| |
Collapse
|
25
|
Miyazaki T, Tange T, Kawashita M, Jeyadevan B. Structural control of magnetite nanoparticles for hyperthermia by modification with organic polymers: effect of molecular weight. RSC Adv 2020; 10:26374-26380. [PMID: 35519777 PMCID: PMC9055426 DOI: 10.1039/d0ra04220j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/08/2020] [Indexed: 11/21/2022] Open
Abstract
Hyperthermia treatment using appropriate magnetic materials in an alternating magnetic field to generate heat has been recently proposed as a low-invasive cancer treatment method. Magnetite (Fe3O4) nanoparticles are expected to be an appropriate type of magnetic thermal seed for this purpose, and the addition of organic substances during the synthesis process has been studied for controlling particle size and improving biological functions. However, the role of the properties of the organic polymer chosen as the modifier in the physical properties of the thermal seed has not yet been comprehensively revealed. Therefore, this study clarifies these points in terms of the molecular weight and the charge of the functional groups of the added polymers. Excepting polyethyleneimine, the Fe3O4 crystallite size decreased with increasing polymer molecular weight. Neutral polymers did not suppress the Fe3O4 formation regardless of the difference in molecular weight, while suppression of the Fe3O4 formation was observed for low molecular weight anionic polymers and high molecular weight cationic polymers. Samples with a small amount of Fe3O4 or with crystallite size less than 10 nm induced low heat generation under an alternating magnetic field.
Collapse
Affiliation(s)
- Toshiki Miyazaki
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology 2-4 Hibikino, Wakamatsu-ku Kitakyushu Japan
| | - Takayuki Tange
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology 2-4 Hibikino, Wakamatsu-ku Kitakyushu Japan
| | - Masakazu Kawashita
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University Tokyo Japan
| | | |
Collapse
|
26
|
Srinivasan ES, Sankey EW, Grabowski MM, Chongsathidkiet P, Fecci PE. The intersection between immunotherapy and laser interstitial thermal therapy: a multipronged future of neuro-oncology. Int J Hyperthermia 2020; 37:27-34. [PMID: 32672126 PMCID: PMC11229985 DOI: 10.1080/02656736.2020.1746413] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/04/2020] [Accepted: 03/15/2020] [Indexed: 10/23/2022] Open
Abstract
The rise of immunotherapy (IT) in oncological treatment has greatly improved outcomes in a number of disease states. However, its use in tumors of the central nervous system (CNS) remains limited for multiple reasons related to the unique immunologic tumor microenvironment. As such, it is valuable to consider the intersection of IT with additional treatment methods that may improve access to the CNS and effectiveness of existing IT modalities. One such combination is the pairing of IT with localized hyperthermia (HT) generated through technologies such as laser interstitial thermal therapy (LITT). The wide-ranging immunomodulatory effects of localized and whole-body HT have been investigated for some time. Hyperthermia has demonstrated immunostimulatory effects at the level of tumor cells, immune cells, and the broader environment governing potential immune surveillance. A thorough understanding of these effects as well as the current and upcoming investigations of such in combination with IT is important in considering the future directions of neuro-oncology.
Collapse
Affiliation(s)
- Ethan S Srinivasan
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
| | - Eric W Sankey
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | | | | | - Peter E Fecci
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
27
|
Esser AK, Ross MH, Fontana F, Su X, Gabay A, Fox GC, Xu Y, Xiang J, Schmieder AH, Yang X, Cui G, Scott M, Achilefu S, Chauhan J, Fletcher S, Lanza GM, Weilbaecher KN. Nanotherapy delivery of c-myc inhibitor targets Protumor Macrophages and preserves Antitumor Macrophages in Breast Cancer. Theranostics 2020; 10:7510-7526. [PMID: 32685002 PMCID: PMC7359087 DOI: 10.7150/thno.44523] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/30/2020] [Indexed: 12/27/2022] Open
Abstract
Tumor-associated macrophages (TAMs) enhance tumor growth in mice and are correlated with a worse prognosis for breast cancer patients. While early therapies sought to deplete all macrophages, current therapeutics aim to reprogram pro-tumor macrophages (M2) and preserve those necessary for anti-tumor immune responses (M1). Recent studies have shown that c-MYC (MYC) is induced in M2 macrophages in vitro and in vivo where it regulates the expression of tumor-promoting genes. In a myeloid lineage MYC KO mouse model, MYC had important roles in macrophage maturation and function leading to reduced tumor growth. We therefore hypothesized that targeted delivery of a MYC inhibitor to established M2 TAMs could reduce polarization toward an M2 phenotype in breast cancer models. Methods: In this study, we developed a MYC inhibitor prodrug (MI3-PD) for encapsulation within perfluorocarbon nanoparticles, which can deliver drugs directly to the cytosol of the target cell through a phagocytosis independent mechanism. We have previously shown that M2-like TAMs express significant levels of the vitronectin receptor, integrin β3, and in vivo targeting and therapeutic potential was evaluated using αvβ3 integrin targeted rhodamine-labeled nanoparticles (NP) or integrin αvβ3-MI3-PD nanoparticles. Results: We observed that rhodamine, delivered by αvβ3-rhodamine NP, was incorporated into M2 tumor promoting macrophages through both phagocytosis-independent and dependent mechanisms, while NP uptake in tumor suppressing M1 macrophages was almost exclusively through phagocytosis. In a mouse model of breast cancer (4T1-GFP-FL), M2-like TAMs were significantly reduced with αvβ3-MI3-PD NP treatment. To validate this effect was independent of drug delivery to tumor cells and was specific to the MYC inhibitor, mice with integrin β3 knock out tumors (PyMT-Bo1 β3KO) were treated with αvβ3-NP or αvβ3-MI3-PD NP. M2 macrophages were significantly reduced with αvβ3-MI3-PD nanoparticle therapy but not αvβ3-NP treatment. Conclusion: These data suggest αvβ3-NP-mediated drug delivery of a c-MYC inhibitor can reduce protumor M2-like macrophages while preserving antitumor M1-like macrophages in breast cancer.
Collapse
|
28
|
Hernández-Hernández AA, Aguirre-Álvarez G, Cariño-Cortés R, Mendoza-Huizar LH, Jiménez-Alvarado R. Iron oxide nanoparticles: synthesis, functionalization, and applications in diagnosis and treatment of cancer. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01229-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Liu X, Zhang Y, Wang Y, Zhu W, Li G, Ma X, Zhang Y, Chen S, Tiwari S, Shi K, Zhang S, Fan HM, Zhao YX, Liang XJ. Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy. Theranostics 2020; 10:3793-3815. [PMID: 32206123 PMCID: PMC7069093 DOI: 10.7150/thno.40805] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/13/2020] [Indexed: 12/20/2022] Open
Abstract
Magnetic hyperthermia (MH) has been introduced clinically as an alternative approach for the focal treatment of tumors. MH utilizes the heat generated by the magnetic nanoparticles (MNPs) when subjected to an alternating magnetic field (AMF). It has become an important topic in the nanomedical field due to their multitudes of advantages towards effective antitumor therapy such as high biosafety, deep tissue penetration, and targeted selective tumor killing. However, in order for MH to progress and to realize its paramount potential as an alternative choice for cancer treatment, tremendous challenges have to be overcome. Thus, the efficiency of MH therapy needs enhancement. In its recent 60-year of history, the field of MH has focused primarily on heating using MNPs for therapeutic applications. Increasing the thermal conversion efficiency of MNPs is the fundamental strategy for improving therapeutic efficacy. Recently, emerging experimental evidence indicates that MNPs-MH produces nano-scale heat effects without macroscopic temperature rise. A deep understanding of the effect of this localized induction heat for the destruction of subcellular/cellular structures further supports the efficacy of MH in improving therapeutic therapy. In this review, the currently available strategies for improving the antitumor therapeutic efficacy of MNPs-MH will be discussed. Firstly, the recent advancements in engineering MNP size, composition, shape, and surface to significantly improve their energy dissipation rates will be explored. Secondly, the latest studies depicting the effect of local induction heat for selectively disrupting cells/intracellular structures will be examined. Thirdly, strategies to enhance the therapeutics by combining MH therapy with chemotherapy, radiotherapy, immunotherapy, photothermal/photodynamic therapy (PDT), and gene therapy will be reviewed. Lastly, the prospect and significant challenges in MH-based antitumor therapy will be discussed. This review is to provide a comprehensive understanding of MH for improving antitumor therapeutic efficacy, which would be of utmost benefit towards guiding the users and for the future development of MNPs-MH towards successful application in medicine.
Collapse
Affiliation(s)
- Xiaoli Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; School of Medicine, Northwest University, Xi'an 710069, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Yanyun Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; School of Medicine, Northwest University, Xi'an 710069, China
| | - Wenjing Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; School of Medicine, Northwest University, Xi'an 710069, China
| | - Galong Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; School of Medicine, Northwest University, Xi'an 710069, China
| | - Xiaowei Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yihan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Shizhu Chen
- Beijing General Pharmaceutical Corporation, Beijing 100101, China
- The National Institutes of Pharmaceutical R&D Co., Ltd., China Resources Pharmaceutical Group Limited, Beijing 102206, China
| | - Shivani Tiwari
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Kejian Shi
- Beijing Institute of Traumatology and Orthopaedics, Beijing 100035, China
| | - Shouwen Zhang
- Neurophysiology Department, Beijing ChaoYang Emergency Medical Center, Beijing 100122, China
| | - Hai Ming Fan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; School of Medicine, Northwest University, Xi'an 710069, China
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Yong Xiang Zhao
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumour Theranostics and Therapy, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Abstract
Therapeutic targeting of the immune system in cancer is now a clinical reality and marked successes have been achieved, most notably through the use of checkpoint blockade antibodies and chimeric antigen receptor T cell therapy. However, efforts to develop new immunotherapy agents or combination treatments to increase the proportion of patients who benefit have met with challenges of limited efficacy and/or significant toxicity. Nanomedicines - therapeutics composed of or formulated in carrier materials typically smaller than 100 nm - were originally developed to increase the uptake of chemotherapy agents by tumours and to reduce their off-target toxicity. Here, we discuss how nanomedicine-based treatment strategies are well suited to immunotherapy on the basis of nanomaterials' ability to direct immunomodulators to tumours and lymphoid organs, to alter the way biologics engage with target immune cells and to accumulate in myeloid cells in tumours and systemic compartments. We also discuss early efforts towards clinical translation of nanomedicine-based immunotherapy.
Collapse
|
31
|
Therapeutic Efficiency of Multiple Applications of Magnetic Hyperthermia Technique in Glioblastoma Using Aminosilane Coated Iron Oxide Nanoparticles: In Vitro and In Vivo Study. Int J Mol Sci 2020; 21:ijms21030958. [PMID: 32023985 PMCID: PMC7038138 DOI: 10.3390/ijms21030958] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/13/2022] Open
Abstract
Magnetic hyperthermia (MHT) has been shown as a promising alternative therapy for glioblastoma (GBM) treatment. This study consists of three parts: The first part evaluates the heating potential of aminosilane-coated superparamagnetic iron oxide nanoparticles (SPIONa). The second and third parts comprise the evaluation of MHT multiple applications in GBM model, either in vitro or in vivo. The obtained heating curves of SPIONa (100 nm, +20 mV) and their specific absorption rates (SAR) stablished the best therapeutic conditions for frequencies (309 kHz and 557 kHz) and magnetic field (300 Gauss), which were stablished based on three in vitro MHT application in C6 GBM cell line. The bioluminescence (BLI) signal decayed in all applications and parameters tested and 309 kHz with 300 Gauss have shown to provide the best therapeutic effect. These parameters were also established for three MHT applications in vivo, in which the decay of BLI signal correlates with reduced tumor and also with decreased tumor glucose uptake assessed by positron emission tomography (PET) images. The behavior assessment showed a slight improvement after each MHT therapy, but after three applications the motor function displayed a relevant and progressive improvement until the latest evaluation. Thus, MHT multiple applications allowed an almost total regression of the GBM tumor in vivo. However, futher evaluations after the therapy acute phase are necessary to follow the evolution or tumor total regression. BLI, positron emission tomography (PET), and spontaneous locomotion evaluation techniques were effective in longitudinally monitoring the therapeutic effects of the MHT technique.
Collapse
|
32
|
Sandler SE, Fellows B, Mefford OT. Best Practices for Characterization of Magnetic Nanoparticles for Biomedical Applications. Anal Chem 2019; 91:14159-14169. [DOI: 10.1021/acs.analchem.9b03518] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sarah E. Sandler
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Benjamin Fellows
- Department of Bioengineering, University of California at Berkeley, Berkeley, California 94720, United States
| | - O. Thompson Mefford
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
33
|
Magnetoliposomes Containing Calcium Ferrite Nanoparticles for Applications in Breast Cancer Therapy. Pharmaceutics 2019; 11:pharmaceutics11090477. [PMID: 31540088 PMCID: PMC6781553 DOI: 10.3390/pharmaceutics11090477] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 01/06/2023] Open
Abstract
Magnetoliposomes containing calcium ferrite (CaFe2O4) nanoparticles were developed and characterized for the first time. CaFe2O4 nanoparticles were covered by a lipid bilayer or entrapped in liposomes forming, respectively, solid or aqueous magnetoliposomes as nanocarriers for new antitumor drugs. The magnetic nanoparticles were characterized by UV/Visible absorption, XRD, HR-TEM, and SQUID, exhibiting sizes of 5.2 ± 1.2 nm (from TEM) and a superparamagnetic behavior. The magnetoliposomes were characterized by DLS and TEM. The incorporation of two new potential antitumor drugs (thienopyridine derivatives) specifically active against breast cancer in these nanosystems was investigated by fluorescence emission and anisotropy. Aqueous magnetoliposomes, with hydrodynamic diameters around 130 nm, and solid magnetoliposomes with sizes of ca. 170 nm, interact with biomembranes by fusion and are able to transport the antitumor drugs with generally high encapsulation efficiencies (70%). These fully biocompatible drug-loaded magnetoliposomes can be promising as therapeutic agents in future applications of combined breast cancer therapy.
Collapse
|
34
|
Rezaei M, Hosseini SN, Khavari-Nejad RA, Najafi F, Mahdavi M. HBs antigen and mannose loading on the surface of iron oxide nanoparticles in order to immuno-targeting: fabrication, characterization, cellular and humoral immunoassay. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1543-1558. [PMID: 31007088 DOI: 10.1080/21691401.2019.1577888] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mannosylation of nanovaccine is an appropriate strategy for targeting the mannose receptors on DCs. Here, HBsAg and mannose loaded on the surface of iron oxide nanoparticles to increases HBsAg vaccine potency. Nanoparticles are made by co-precipitation method and bonded to the HBsAg and mannose by chemical bonding. The physicochemical properties of nano-vaccines, their toxicity and antigenicity were determined. The synthesized nano-vaccine showed spherical shape with a mean particle size of 60 nm, a zeta potential of -44 mV, an antigen-binding efficiency of around 100% and for mannose 78%. In vitro release of nanoparticles exhibited about 30% at the first day and about 60% until the third day. SDSPAGE analysis confirmed structural integrity of HBsAg loaded on nanoparticles. The HBsAg-loaded LCMNP and MLCMNP nanoparticles had no toxic effects on HEK293 cell line. The quantification of the intracellular Fe by ICP-OES as a criterion of nano-vaccine uptake revealed mannose intensify uptake of MLCMNP. In addition, mannose in the structure of MLCMNP improved IL-6, TNF-α and IFN-γ (>16 fold) cytokines genes expression by macrophage/dendritic cells after exposure in 12 h. Immunization of experimental mice (subcutaneously, two times with 2-week intervals) with 5 µg of HBsAg loaded on MLCMNP nanoparticles increased specific total IgG and IgG2a/IgG1 ratio. In addition, TNF-α, IL-12, IL-2 and IL-4 cytokines in mannosylated nano-vaccine increased versus nano-vaccine group while lymphocyte proliferation and IFN-γ responses in the targeted nano-vaccine group show a tiny increase versus the nano-vaccine group. The results show that mannosylated nano-vaccine promotes higher level of cellular and humoural immune responses against HBsAg nano-vaccine.
Collapse
Affiliation(s)
- Mahsa Rezaei
- a Department of Biology , Sciences and Research Branch, Islamic Azad University , Tehran , Iran
| | - Seyed Nezamedin Hosseini
- b Department of Hepatitis B Vaccine Production , Production & Research Complex, Pasteur Institute of Iran , Tehran , Iran
| | | | - Farhood Najafi
- c Department of Resin and Additives , Institute for Color Science and Technology , Tehran , Iran
| | - Mehdi Mahdavi
- d Recombinant Vaccine Research Center , Tehran University of Medical Sciences , Tehran , Iran.,e Department of Immunology , Pasteur Institute of Iran , Tehran , Iran
| |
Collapse
|
35
|
Yu K, Liang B, Zheng Y, Exner A, Kolios M, Xu T, Guo D, Cai X, Wang Z, Ran H, Chu L, Deng Z. PMMA-Fe 3O 4 for internal mechanical support and magnetic thermal ablation of bone tumors. Am J Cancer Res 2019; 9:4192-4207. [PMID: 31281541 PMCID: PMC6592182 DOI: 10.7150/thno.34157] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 05/09/2019] [Indexed: 12/28/2022] Open
Abstract
Background: Minimally invasive modalities are of great interest in the field of treating bone tumors. However, providing reliable mechanical support and fast killing of tumor cells to achieve rapid recovery of physical function is still challenging in clinical works. Methods: A material with two functions, mechanical support and magnetic thermal ablation, was developed from Fe3O4 nanoparticles (NPs) distributed in a polymethylmethacrylate (PMMA) bone cement. The mechanical properties and efficiency of magnetic field-induced thermal ablation were systematically and successfully evaluated in vitro and ex vivo. CT images and pathological examination were successfully applied to evaluate therapeutic efficacy with a rabbit bone tumor model. Biosafety evaluation was performed with a rabbit in vivo, and a cytotoxicity test was performed in vitro. Results: An NP content of 6% Fe3O4 (PMMA-6% Fe3O4, mFe: 0.01 g) gave the most suitable performance for in vivo study. At the 56-day follow-up after treatment, bone tumors were ablated without obvious side effects. The pathological examination and new bone formation in CT images clearly illustrate that the bone tumors were completely eliminated. Correspondingly, after treatment, the tendency of bone tumors toward metastasis significantly decreased. Moreover, with well-designed mechanical properties, PMMA-6%Fe3O4 implantation endowed tumor-bearing rabbit legs with excellent bio-mimic bone structure and internal support. Biosafety evaluation did not induce an increase or decrease in the immune response, and major functional parameters were all at normal levels. Conclusion: We have presented a novel, highly efficient and minimally invasive approach for complete bone tumor regression and bone defect repair by magnetic thermal ablation based on PMMA containing Fe3O4 NPs; this approach shows excellent heating ability for rabbit VX2 tibial plateau tumor ablation upon exposure to an alternating magnetic field (AMF) and provides mechanical support for bone repair. The new and powerful dual-function implant is a promising minimally invasive agent for the treatment of bone tumors and has good clinical translation potential.
Collapse
|
36
|
Gupta R, Sharma D. Evolution of Magnetic Hyperthermia for Glioblastoma Multiforme Therapy. ACS Chem Neurosci 2019; 10:1157-1172. [PMID: 30715851 DOI: 10.1021/acschemneuro.8b00652] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive type of glial tumor, and despite many recent advances, its prognosis remains dismal. Hence, new therapeutic approaches for successful GBM treatment are urgently required. Magnetic hyperthermia-mediated cancer therapy (MHCT), which is based on heating the tumor tissues using magnetic nanoparticles on exposure to an alternating magnetic field (AMF), has shown promising results in the preclinical studies conducted so far. The aim of this Review is to evaluate the progression of MHCT for GBM treatment and to determine its effectiveness on the treatment either alone or in combination with other adjuvant therapies. The preclinical studies presented MHCT as an effective treatment module for the reduction of tumor cell growth and increase in survival of the tumor models used. Over the years, much research has been done to prove MHCT alone as the missing notch for successful GBM therapy. However, very few combinatorial studies have been reported. Some of the clinical studies carried out so far depicted that MHCT could be applied safely while possessing minimal side effects. Finally, we believe that, in the future, advancements in magnetic nanosystems might contribute toward establishing MHCT as a potential treatment tool for glioma therapy.
Collapse
Affiliation(s)
- Ruby Gupta
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Sector-64, Mohali, Punjab-160062, India
| | - Deepika Sharma
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Sector-64, Mohali, Punjab-160062, India
| |
Collapse
|
37
|
Duan X, Chan C, Lin W. Nanoparticle-Mediated Immunogenic Cell Death Enables and Potentiates Cancer Immunotherapy. Angew Chem Int Ed Engl 2019; 58:670-680. [PMID: 30016571 PMCID: PMC7837455 DOI: 10.1002/anie.201804882] [Citation(s) in RCA: 619] [Impact Index Per Article: 103.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/08/2018] [Indexed: 12/23/2022]
Abstract
Cancer immunotherapies that train or stimulate the inherent immunological systems to recognize, attack, and eradicate tumor cells with minimal damage to healthy cells have demonstrated promising clinical responses in recent years. However, most of these immunotherapeutic strategies only benefit a small subset of patients and cause systemic autoimmune side effects in some patients. Immunogenic cell death (ICD)-inducing modalities not only directly kill cancer cells but also induce antitumor immune responses against a broad spectrum of solid tumors. Such strategies for generating vaccine-like functions could be used to stimulate a "cold" tumor microenvironment to become an immunogenic, "hot" tumor microenvironment, working in synergy with immunotherapies to increase patient response rates and lead to successful treatment outcomes. This Minireview will focus on nanoparticle-based treatment modalities that can induce and enhance ICD to potentiate cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaopin Duan
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Christina Chan
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
38
|
Maity D, Kandasamy G, Sudame A. Superparamagnetic Iron Oxide Nanoparticles for Cancer Theranostic Applications. Nanotheranostics 2019. [DOI: 10.1007/978-3-030-29768-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
39
|
Mahmoudi K, Bouras A, Bozec D, Ivkov R, Hadjipanayis C. Magnetic hyperthermia therapy for the treatment of glioblastoma: a review of the therapy's history, efficacy and application in humans. Int J Hyperthermia 2018; 34:1316-1328. [PMID: 29353516 PMCID: PMC6078833 DOI: 10.1080/02656736.2018.1430867] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/14/2018] [Accepted: 01/17/2018] [Indexed: 02/07/2023] Open
Abstract
Hyperthermia therapy (HT) is the exposure of a region of the body to elevated temperatures to achieve a therapeutic effect. HT anticancer properties and its potential as a cancer treatment have been studied for decades. Techniques used to achieve a localised hyperthermic effect include radiofrequency, ultrasound, microwave, laser and magnetic nanoparticles (MNPs). The use of MNPs for therapeutic hyperthermia generation is known as magnetic hyperthermia therapy (MHT) and was first attempted as a cancer therapy in 1957. However, despite more recent advancements, MHT has still not become part of the standard of care for cancer treatment. Certain challenges, such as accurate thermometry within the tumour mass and precise tumour heating, preclude its widespread application as a treatment modality for cancer. MHT is especially attractive for the treatment of glioblastoma (GBM), the most common and aggressive primary brain cancer in adults, which has no cure. In this review, the application of MHT as a therapeutic modality for GBM will be discussed. Its therapeutic efficacy, technical details, and major experimental and clinical findings will be reviewed and analysed. Finally, current limitations, areas of improvement, and future directions will be discussed in depth.
Collapse
Affiliation(s)
- Keon Mahmoudi
- Department of Neurosurgery, Brain Tumor Nanotechnology Laboratory, Tisch Cancer Institute at Mount Sinai, New York, NY, USA
| | - Alexandros Bouras
- Department of Neurosurgery, Brain Tumor Nanotechnology Laboratory, Tisch Cancer Institute at Mount Sinai, New York, NY, USA
| | - Dominique Bozec
- Department of Neurosurgery, Brain Tumor Nanotechnology Laboratory, Tisch Cancer Institute at Mount Sinai, New York, NY, USA
| | - Robert Ivkov
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Constantinos Hadjipanayis
- Department of Neurosurgery, Brain Tumor Nanotechnology Laboratory, Tisch Cancer Institute at Mount Sinai, New York, NY, USA
- Department of Neurosurgery, Mount Sinai Beth Israel, New York, NY, USA
| |
Collapse
|
40
|
Grauer O, Jaber M, Hess K, Weckesser M, Schwindt W, Maring S, Wölfer J, Stummer W. Combined intracavitary thermotherapy with iron oxide nanoparticles and radiotherapy as local treatment modality in recurrent glioblastoma patients. J Neurooncol 2018; 141:83-94. [PMID: 30506500 PMCID: PMC6341053 DOI: 10.1007/s11060-018-03005-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/13/2018] [Indexed: 12/17/2022]
Abstract
Background There is an increasing interest in local tumor ablative treatment modalities that induce immunogenic cell death and the generation of antitumor immune responses. Methods We report six recurrent glioblastoma patients who were treated with intracavitary thermotherapy after coating the resection cavity wall with superparamagnetic iron oxide nanoparticles (“NanoPaste” technique). Patients underwent six 1-h hyperthermia sessions in an alternating magnetic field and, if possible, received concurrent fractionated radiotherapy at a dose of 39.6 Gy. Results There were no major side effects during active treatment. However, after 2–5 months, patients developed increasing clinical symptoms. CT scans showed tumor flare reactions with prominent edema around nanoparticle deposits. Patients were treated with dexamethasone and, if necessary, underwent re-surgery to remove nanoparticles. Histopathology revealed sustained necrosis directly adjacent to aggregated nanoparticles without evidence for tumor activity. Immunohistochemistry showed upregulation of Caspase-3 and heat shock protein 70, prominent infiltration of macrophages with ingested nanoparticles and CD3+ T-cells. Flow cytometric analysis of freshly prepared tumor cell suspensions revealed increased intracellular ratios of IFN-γ to IL-4 in CD4+ and CD8+ memory T cells, and activation of tumor-associated myeloid cells and microglia with upregulation of HLA-DR and PD-L1. Two patients had long-lasting treatment responses > 23 months without receiving any further therapy. Conclusion Intracavitary thermotherapy combined with radiotherapy can induce a prominent inflammatory reaction around the resection cavity which might trigger potent antitumor immune responses possibly leading to long-term stabilization of recurrent GBM patients. These results warrant further investigations in a prospective phase-I trial.
Collapse
Affiliation(s)
- Oliver Grauer
- Department of Neurology, University Hospital of Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany.
| | - Mohammed Jaber
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
| | - Katharina Hess
- Institute of Neuropathology, University Hospital of Münster, Münster, Germany
| | - Matthias Weckesser
- Department of Nuclear Medicine, University Hospital of Münster, Münster, Germany
| | - Wolfram Schwindt
- Institute of Radiology, University Hospital of Münster, Münster, Germany
| | - Stephan Maring
- Department of Radiation Oncology, University Hospital of Münster, Münster, Germany
| | - Johannes Wölfer
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany.,Competence Center for Neurosurgery, Hufeland Klinikum GmbH, Langensalzaer Landstraße 1, 99974, Mühlhausen, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
| |
Collapse
|
41
|
|
42
|
Mazur J, Roy K, Kanwar JR. Recent advances in nanomedicine and survivin targeting in brain cancers. Nanomedicine (Lond) 2017; 13:105-137. [PMID: 29161215 DOI: 10.2217/nnm-2017-0286] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Brain cancer is a highly lethal disease, especially devastating toward both the elderly and children. This cancer has no therapeutics available to combat it, predominately due to the blood-brain barrier (BBB) preventing treatments from maintaining therapeutic levels within the brain. Recently, nanoparticle technology has entered the forefront of cancer therapy due to its ability to deliver therapeutic effects while potentially passing physiological barriers. Key nanoparticles for brain cancer treatment include glutathione targeted PEGylated liposomes, gold nanoparticles, superparamagnetic iron oxide nanoparticles and nanoparticle-albumin bound drugs, with these being discussed throughout this review. Recently, the survivin protein has gained attention as it is over-expressed in a majority of tumors. This review will briefly discuss the properties of survivin, while focusing on how both nanoparticles and survivin-targeting treatments hold potential as brain cancer therapies. This review may provide useful insight into new brain cancer treatment options, particularly survivin inhibition and nanomedicine.
Collapse
Affiliation(s)
- Jake Mazur
- Nanomedicine-Laboratory of Immunology & Molecular Biomedical Research, Centre for Molecular and Medical Research (CMMR), School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Geelong VIC 3217, Australia
| | - Kislay Roy
- Nanomedicine-Laboratory of Immunology & Molecular Biomedical Research, Centre for Molecular and Medical Research (CMMR), School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Geelong VIC 3217, Australia
| | - Jagat R Kanwar
- Nanomedicine-Laboratory of Immunology & Molecular Biomedical Research, Centre for Molecular and Medical Research (CMMR), School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Geelong VIC 3217, Australia
| |
Collapse
|
43
|
Abstract
Owing to their abilities to identify diseased conditions, to modulate biological processes, and to control cellular activities, magnetic nanoparticles have become one of the most popular nanomaterials in the biomedical field. Targeted drug delivery, controlled drug release, hyperthermia treatment, imaging, and stimulation of several biological entities are just some of the several tasks that can be accomplished by taking advantage of magnetic nanoparticles in tandem with magnetic fields. The huge interest towards this class of nanomaterials arises from the possibility to physically drive their spatiotemporal localization inside the body, and to deliver an externally applied stimulation at a target site. They in fact behave as actual nanotransducers, converting energy stemming from the external magnetic field into heat and mechanical forces, which act as signals for therapeutic processes such as hyperthermia and controlled drug release. Magnetic nanoparticles are a noninvasive tool that enables the remote activation of biological processes, besides behaving as formidable tracers for different imaging modalities, thus allowing to simultaneously carry out diagnosis and therapy. In view of all this, owing to their multifunctional and multitasking nature, magnetic nanoparticles are already one of the most important nanotechnological protagonists in medicine and biology, enabling an actual theranostic approach in many pathological conditions. In this Concept, we first provide a brief introduction on some physical properties of magnetic materials and on important features that determine the physical properties of magnetic nanoparticles. Thereafter, we will consider some major biomedical applications: hyperthermia, drug delivery/release, and nanoparticle-mediated control of biological processes, even at subcellular level.
Collapse
Affiliation(s)
- Agostina Grillone
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera (Italy)
| | - Gianni Ciofani
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera (Italy); Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)
| |
Collapse
|
44
|
Williams HM. The application of magnetic nanoparticles in the treatment and monitoring of cancer and infectious diseases. ACTA ACUST UNITED AC 2017. [DOI: 10.1093/biohorizons/hzx009] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Harry M. Williams
- School of Life Sciences, Keele University, Keele, Newcastle ST5 5BG, UK
| |
Collapse
|
45
|
Huang L, Hu J, Huang S, Wang B, Siaw-Debrah F, Nyanzu M, Zhang Y, Zhuge Q. Nanomaterial applications for neurological diseases and central nervous system injury. Prog Neurobiol 2017; 157:29-48. [PMID: 28743465 DOI: 10.1016/j.pneurobio.2017.07.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 12/20/2022]
Abstract
The effectiveness of noninvasive treatment for neurological disease is generally limited by the poor entry of therapeutic agents into the central nervous system (CNS). Most CNS drugs cannot permeate into the brain parenchyma because of the blood-brain barrier thus, overcoming this problem has become one of the most significant challenges in the development of neurological therapeutics. Nanotechnology has emerged as an innovative alternative for treating neurological diseases. In fact, rapid advances in nanotechnology have provided promising solutions to this challenge. This review highlights the applications of nanomaterials in the developing neurological field and discusses the evidence for their efficacies.
Collapse
Affiliation(s)
- Lijie Huang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, PR China; Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, PR China
| | - Jiangnan Hu
- Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, PR China
| | - Shengwei Huang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, PR China; Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, PR China
| | - Brian Wang
- Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Felix Siaw-Debrah
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, PR China
| | - Mark Nyanzu
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, PR China
| | - Yu Zhang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, PR China
| | - Qichuan Zhuge
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, PR China; Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, PR China.
| |
Collapse
|
46
|
Soleymani M, Edrissi M, Alizadeh AM. Tailoring La1−xSrxMnO3(0.25 ≤ x ≤ 0.35) nanoparticles for self-regulating magnetic hyperthermia therapy: an in vivo study. J Mater Chem B 2017; 5:4705-4712. [DOI: 10.1039/c7tb00922d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Silica-coated La1−xSrxMnO3(0.25 ≤x≤ 0.35) nanoparticles were designed for self-regulating magnetic hyperthermia therapy. The efficacy of the prepared nanoparticles was investigated on a typical animal model of breast cancer.
Collapse
Affiliation(s)
- Meysam Soleymani
- Department of Chemical Engineering
- Faculty of Engineering
- Arak University
- Arak
- Iran
| | - Mohammad Edrissi
- Department of Chemical Engineering
- Amirkabir University of Technology
- Tehran
- Iran
| | | |
Collapse
|
47
|
Chiu-Lam A, Rinaldi C. Nanoscale thermal phenomena in the vicinity of magnetic nanoparticles in alternating magnetic fields. ADVANCED FUNCTIONAL MATERIALS 2016; 26:3933-3941. [PMID: 29225561 PMCID: PMC5720376 DOI: 10.1002/adfm.201505256] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Magnetic nanoparticles can be made to dissipate heat to their immediate surroundings in response to an applied alternating magnetic field. This property, combined with the biocompatibility of iron oxide nanoparticles and the ability of magnetic fields to penetrate deep in the body, makes magnetic nanoparticles attractive in a range of biomedical applications where thermal energy is used either directly to achieve a therapeutic effect or indirectly to actuate the release of a therapeutic agent. Although the concept of bulk heating of fluids and tissues using energy dissipated by magnetic nanoparticles has been well accepted and applied for several decades, many new and exciting biomedical applications of magnetic nanoparticles take advantage of heat effects that are confined to the immediate nanoscale vicinity of the nanoparticles. Until recently the existence of these nanoscale thermal phenomena had remained controversial. In this short review we summarize some of the recent developments in this field and emerging applications for nanoscale thermal phenomena in the vicinity of magnetic nanoparticles in alternating magnetic fields.
Collapse
Affiliation(s)
- Andreina Chiu-Lam
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, 32611-6005, USA
| | - Carlos Rinaldi
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, 32611-6005, USA
| |
Collapse
|
48
|
Zhu J, Zhang Y, Zhang A, He K, Liu P, Xu LX. Cryo-thermal therapy elicits potent anti-tumor immunity by inducing extracellular Hsp70-dependent MDSC differentiation. Sci Rep 2016; 6:27136. [PMID: 27256519 PMCID: PMC4891716 DOI: 10.1038/srep27136] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/05/2016] [Indexed: 12/11/2022] Open
Abstract
Achieving control of metastatic disease is a long-sought goal in cancer therapy. Treatments that encourage a patient’s own immune system are bringing new hopes in reaching such a goal. In clinic, local hyperthermia and cryoablation have been explored to induce anti-tumor immune responses against tumors. We have also developed a novel therapeutic modality of cryo-thermal treatment by alternating liquid nitrogen (LN2) cooling and radio frequency (RF) heating, and better therapeutic effect was achieved in treating metastatic cancer in animal model. In this study, we investigated the mechanism of systemic immune response elicited by cryo-thermal therapy. In the 4T1 murine mammary carcinoma model, we found that local cryo-thermal therapy resulted in a considerable reduction of distant lung metastases, and improved long-term survival. Moreover, results of tumor re-challenge experiments indicated generation of a strong tumor-specific immune memory after the local treatment of primary tumors. Our further study indicated that cryo-thermal therapy caused an elevated extracellular release of Hsp70. Subsequently, Hsp70 induced differentiation of MDSCs into mature DCs, contributing to the relief of MDSCs-mediated immunosuppression and ultimately the activation of strong anti-tumor immune response. Our findings reveal new insight into the mechanism of robust therapeutic effects of cryo-thermal therapy against metastatic cancers.
Collapse
Affiliation(s)
- Jun Zhu
- The School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.,Neurosurgery Department, Ruijin Hospital,School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Zhang
- The School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Aili Zhang
- The School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Kun He
- The School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Liu
- The School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Lisa X Xu
- The School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
49
|
Silva ACD, Oliveira TR, Mamani JB, Malheiros SMF, Pavon LF, Sibov TT, Amaro Junior E, Gamarra LF. Magnetohyperthermia for treatment of gliomas: experimental and clinical studies. EINSTEIN-SAO PAULO 2016; 8:361-7. [PMID: 26760156 DOI: 10.1590/s1679-45082010rw1757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gliomas comprise a group of heterogeneous primary tumors of the central nervous system that originate from glial cells. Malignant gliomas account for the majority of primary malignant CNS tumors and are associated with high morbidity and mortality. Glioblastoma is the most frequent malignant glioma, and despite recent advances in diagnosis and new treatment options, its prognosis remains dismal. New opportunities for the development of effective therapies for malignant gliomas are urgently needed. Magnetohyperthermia consists of heat generation in the region of the tumor through the application of magnetic nanoparticles subjected to an alternating magnetic field and has shown positive results in both preclinical and clinical assays. The aim of this review was to assess the relevance of hyperthermia induced by magnetic nanoparticles in treating gliomas and to describe possible variations of the technique and its implication in the effectiveness of treatment. An electronic search in the literature of articles published from January 1990 to November 2009 was performed, in databases ISI Web of Science and PubMed, and after screening according to the inclusion criteria, 11 articles were selected. Animal models showed that magnetohyperthermia was effective in promoting tumor cell death and reducing tumor mass or increasing survival of the animals. One clinical study demonstrated that magnetohyperthermia could be applied safely and with few adverse effects. Some studies suggested that mechanisms of cell death, such as apoptosis, necrosis, and antitumor immune response were triggered by magnetohyperthermia. Based on these data, it was concluded that the technique proved to be effective in most experiments, and improvement of the nanocomposites, as well as of the alternating magnetic field equipment, can contribute towards establishing magnetohyperthermia as a promising tool to treat malignant gliomas.
Collapse
Affiliation(s)
- André César da Silva
- Instituto Israelita de Ensino e Pesquisa Albert Einstein - IIEPAE, São Paulo, SP, BR
| | | | | | | | - Lorena Favaro Pavon
- Cellular and Molecular Biology, Instituto Israelita de Ensino e Pesquisa Albert Einstein - IIEPAE, São Paulo, SP, BR
| | - Tatiana Taís Sibov
- Cellular and Molecular Biology, Instituto Israelita de Ensino e Pesquisa Albert Einstein - IIEPAE, São Paulo, SP, BR
| | - Edson Amaro Junior
- Instituto Israelita de Ensino e Pesquisa Albert Einstein - IIEPAE, São Paulo, SP, BR
| | - Lionel Fernel Gamarra
- Instituto Israelita de Ensino e Pesquisa Albert Einstein - IIEPAE, São Paulo, SP, BR
| |
Collapse
|
50
|
Bredlau AL, McCrackin MA, Motamarry A, Helke K, Chen C, Broome AM, Haemmerich D. Thermal Therapy Approaches for Treatment of Brain Tumors in Animals and Humans. Crit Rev Biomed Eng 2016; 44:443-457. [PMID: 29431091 DOI: 10.1615/critrevbiomedeng.2017021249] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Primary brain tumors are often aggressive, with short survival from time of diagnosis even with standard of care therapies such as surgery, chemotherapy, and radiation therapy. Thermal therapies have been extensively investigated as both primary and adjuvant therapy. Although thermal therapies are not yet widely used clinically, there have been several promising approaches demonstrated in both animals and humans. This review presents thermal therapy approaches in animal and human studies, including both hyperthermia (temperatures ~42°C-45°C) and thermal ablation (temperatures > 50°C). Hyperthermia is primarily used as adjuvant to chemotherapy and radiotherapy, and is the most widely studied radiation sensitizer where enhanced efficacy has been shown in human patients with brain cancer. Hyperthermia has additional beneficial effects such as immunogenic effects, and opening of the bloodbrain barrier to potentially enhance drug delivery, for example in combination with nanoparticle drug delivery systems. Thermal ablation uses high temperatures for direct local tumor destruction, and it found its way into clinical use as laser interstitial thermal therapy (LITT). This review presents various hyperthermia and ablation approaches, including a review of different devices and methods that have been used for thermal therapies, such as radiofrequency/microwaves, laser, high-intensity focused ultrasound, and magnetic nanoparticles. Current research efforts include the combination of advanced thermal therapy devices, such as focused ultrasound with radiation, as well as the use of thermal therapies to enhance chemotherapy delivery across the blood-brain barrier.
Collapse
Affiliation(s)
- A L Bredlau
- Departments of Pediatrics and Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - M A McCrackin
- Department of Comparative Medicine, Medical University of South Carolina; Ralph H. Johnson VAMC Research Service, Charleston, South Carolina
| | - Anjan Motamarry
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Kris Helke
- Ralph H. Johnson VAMC Research Service, Charleston, South Carolina
| | - Chao Chen
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina
| | - Ann-Marie Broome
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina
| | - Dieter Haemmerich
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA; Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|