1
|
Fatima F, Chourasiya NK, Mishra M, Kori S, Pathak S, Das R, Kashaw V, Iyer AK, Kashaw SK. Curcumin and its Derivatives Targeting Multiple Signaling Pathways to Elicit Anticancer Activity: A Comprehensive Perspective. Curr Med Chem 2024; 31:3668-3714. [PMID: 37221681 DOI: 10.2174/0929867330666230522144312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/23/2023] [Accepted: 04/07/2023] [Indexed: 05/25/2023]
Abstract
The uncontrolled growth and spread of aberrant cells characterize the group of disorders known as cancer. According to GLOBOCAN 2022 analysis of cancer patients in either developed countries or developing countries the main concern cancers are breast cancer, lung cancer, and liver cancer which may rise eventually. Natural substances with dietary origins have gained interest for their low toxicity, anti-inflammatory, and antioxidant effects. The evaluation of dietary natural products as chemopreventive and therapeutic agents, the identification, characterization, and synthesis of their active components, as well as the enhancement of their delivery and bioavailability, have all received significant attention. Thus, the treatment strategy for concerning cancers must be significantly evaluated and may include the use of phytochemicals in daily lifestyle. In the present perspective, we discussed one of the potent phytochemicals, that has been used over the past few decades known as curcumin as a panacea drug of the "Cure-all" therapy concept. In our review firstly we included exhausted data from in vivo and in vitro studies on breast cancer, lung cancer, and liver cancer which act through various cancer-targeting pathways at the molecular level. Now, the second is the active constituent of turmeric known as curcumin and its derivatives are enlisted with their targeted protein in the molecular docking studies, which help the researchers design and synthesize new curcumin derivatives with respective implicated molecular and cellular activity. However, curcumin and its substituted derivatives still need to be investigated with unknown targeting mechanism studies in depth.
Collapse
Affiliation(s)
- Firdous Fatima
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Nikhil Kumar Chourasiya
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Mitali Mishra
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Shivam Kori
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Sandhya Pathak
- Department of Chemistry, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Ratnesh Das
- Department of Chemistry, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Varsha Kashaw
- Sagar Institute of Pharmaceutical Sciences, Sagar (M.P.), India
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA
- Molecular Imaging Program, Karmanos Cancer Institute, Detroit, Michigan, USA
| | - Sushil Kumar Kashaw
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| |
Collapse
|
2
|
Wang S, Gao X, Li J, Wei S, Shao Y, Yin Y, Zhang D, Tang M. The anticancer effects of curcumin and clinical research progress on its effects on esophageal cancer. Front Pharmacol 2022; 13:1058070. [DOI: 10.3389/fphar.2022.1058070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
Esophageal cancer (EC) is a common tumor of the gastrointestinal system and a major threat to human health. The etiology and incidence of EC vary depending on the type of pathology. Owing to the unique physiological structure of the esophagus and the poor biological behavior of EC, the treatment modalities available are limited, and the prognosis of patients is relatively poor. Curcumin is a type of natural phytochemical belonging to the class of phenolic compounds. It exerts favorable anticancer effects on various cancers. A growing body of evidence indicates that curcumin suppresses tumor development and progression by inhibiting tumor cell proliferation, invasion, and migration, thus inducing apoptosis, regulating microRNA expression, reversing multidrug resistance, and inducing sensitivity to the therapeutic effect of chemoradiotherapy. Multiple cellular molecules, growth factors, and genes encoding proteins participating in different signaling pathways interact with each other to contribute to the complex and orderly anticancer effect. The efficacy and safety of curcumin have been established in preclinical studies for EC and clinical trials for other cancers. However, the low bioavailability of curcumin limits its clinical application. Therefore, the modification of curcumin analogs, the combination of curcumin with other drugs or therapies, and the use of novel nanocarriers have been widely investigated to improve the clinical effects of curcumin in EC.
Collapse
|
3
|
Cao L, Wang X, Zhu G, Li S, Wang H, Wu J, Lu T, Li J. Traditional Chinese Medicine Therapy for Esophageal Cancer: A Literature Review. Integr Cancer Ther 2021; 20:15347354211061720. [PMID: 34825600 PMCID: PMC8649093 DOI: 10.1177/15347354211061720] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Esophageal cancer (EC) is the sixth leading cause of cancer-related deaths worldwide. Western medicine has played a leading role in its treatment, but its prognosis remains unsatisfactory. Therefore, the development of effective therapies is important. Traditional Chinese medicine (TCM) has been practiced for thousands of years, and involves taking measures before diseases occur, deteriorate, and recur. Interestingly, there is growing evidence that TCM can improve the therapeutic effects in reversing precancerous lesions, inhibiting the recurrence and metastasis of EC. In this article, we review traditional Chinese herbs and formulas that have preventive and therapeutic effects on EC, summarize the application and research status of TCM in patients with EC, and discuss its shortcomings and prospects in the context of translational, evidence-based, and precision medicine.
Collapse
Affiliation(s)
- Luchang Cao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinmiao Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guanghui Zhu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Shixin Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Heping Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingyuan Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Taicheng Lu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Jie Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Morshedi K, Borran S, Ebrahimi MS, Masoud Khooy MJ, Seyedi ZS, Amiri A, Abbasi-Kolli M, Fallah M, Khan H, Sahebkar A, Mirzaei H. Therapeutic effect of curcumin in gastrointestinal cancers: A comprehensive review. Phytother Res 2021; 35:4834-4897. [PMID: 34173992 DOI: 10.1002/ptr.7119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/18/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022]
Abstract
Gastrointestinal (GI) cancers with a high global prevalence are a leading cause of morbidity and mortality. Accordingly, there is a great need to develop efficient therapeutic approaches. Curcumin, a naturally occurring agent, is a promising compound with documented safety and anticancer activities. Recent studies have demonstrated the activity of curcumin in the prevention and treatment of different cancers. According to systematic studies on curcumin use in various diseases, it can be particularly effective in GI cancers because of its high bioavailability in the gastrointestinal tract. Nevertheless, the clinical applications of curcumin are largely limited because of its low solubility and low chemical stability in water. These limitations may be addressed by the use of relevant analogues or novel delivery systems. Herein, we summarize the pharmacological effects of curcumin against GI cancers. Moreover, we highlight the application of curcumin's analogues and novel delivery systems in the treatment of GI cancers.
Collapse
Affiliation(s)
- Korosh Morshedi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sarina Borran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Zeynab Sadat Seyedi
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Atefeh Amiri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Fallah
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
5
|
Guan R, Van Le Q, Yang H, Zhang D, Gu H, Yang Y, Sonne C, Lam SS, Zhong J, Jianguang Z, Liu R, Peng W. A review of dietary phytochemicals and their relation to oxidative stress and human diseases. CHEMOSPHERE 2021; 271:129499. [PMID: 33445014 DOI: 10.1016/j.chemosphere.2020.129499] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Phytochemicals refer to active substances in plant-based diets. Phytochemicals found in for example fruits, vegetables, grains and seed oils are considered relatively safe for consumption due to mammal-plant co-evolution and adaptation. A number of human diseases are related to oxidative stress caused by for example chemical environmental contaminants in air, water and food; while also lifestyle including smoking and lack of exercise and dietary preferences are important factors for disease development in humans. Here we explore the dietary sources of antioxidant phytochemicals that have beneficial effects on oxidative stress, cardiovascular and neurological diseases as well as cancer. Plant-based diets usually contain phenolic acids, flavonoids and carotenoids, which have strong antioxidant properties, and therefore remove the excess of active oxygen in the body, and protect cells from damage, reducing the risk of cardiovascular and Alzheimer's disease. In most cases, obesity is related to diet and inactivity and plant-based diets change lipid composition and metabolism, which reduce obesity related hazards. Cruciferous and Allium vegetables are rich in organic sulphides that can act on the metabolism of carcinogens and therefore used as anti-cancer and suppressing agents while dietary fibres and plant sterols may improve intestinal health and prevent intestinal diseases. Thus, we recommend a diet rich in fruits, vegetables, and grains as its content of phytochemicals may have the potential to prevent or improve a broad sweep of various diseases.
Collapse
Affiliation(s)
- Ruirui Guan
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Quyet Van Le
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Han Yang
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Dangquan Zhang
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Haiping Gu
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yafeng Yang
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark; Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jiateng Zhong
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Zhu Jianguang
- Pharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Runqiang Liu
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Wanxi Peng
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
6
|
Potential Role of Curcumin and Its Nanoformulations to Treat Various Types of Cancers. Biomolecules 2021; 11:biom11030392. [PMID: 33800000 PMCID: PMC8001478 DOI: 10.3390/biom11030392] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer is a major burden of disease globally. Each year, tens of millions of people are diagnosed with cancer worldwide, and more than half of the patients eventually die from it. Significant advances have been noticed in cancer treatment, but the mortality and incidence rates of cancers are still high. Thus, there is a growing research interest in developing more effective and less toxic cancer treatment approaches. Curcumin (CUR), the major active component of turmeric (Curcuma longa L.), has gained great research interest as an antioxidant, anticancer, and anti-inflammatory agent. This natural compound shows its anticancer effect through several pathways including interfering with multiple cellular mechanisms and inhibiting/inducing the generation of multiple cytokines, enzymes, or growth factors including IκB kinase β (IκKβ), tumor necrosis factor-alpha (TNF-α), signal transducer, and activator of transcription 3 (STAT3), cyclooxygenase II (COX-2), protein kinase D1 (PKD1), nuclear factor-kappa B (NF-κB), epidermal growth factor, and mitogen-activated protein kinase (MAPK). Interestingly, the anticancer activity of CUR has been limited primarily due to its poor water solubility, which can lead to low chemical stability, low oral bioavailability, and low cellular uptake. Delivering drugs at a controlled rate, slow delivery, and targeted delivery are other very attractive methods and have been pursued vigorously. Multiple CUR nanoformulations have also been developed so far to ameliorate solubility and bioavailability of CUR and to provide protection to CUR against hydrolysis inactivation. In this review, we have summarized the anticancer activity of CUR against several cancers, for example, gastrointestinal, head and neck, brain, pancreatic, colorectal, breast, and prostate cancers. In addition, we have also focused on the findings obtained from multiple experimental and clinical studies regarding the anticancer effect of CUR in animal models, human subjects, and cancer cell lines.
Collapse
|
7
|
Sultana S, Munir N, Mahmood Z, Riaz M, Akram M, Rebezov M, Kuderinova N, Moldabayeva Z, Shariati MA, Rauf A, Rengasamy KRR. Molecular targets for the management of cancer using Curcuma longa Linn. phytoconstituents: A Review. Biomed Pharmacother 2021; 135:111078. [PMID: 33433356 DOI: 10.1016/j.biopha.2020.111078] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/21/2020] [Accepted: 11/27/2020] [Indexed: 12/17/2022] Open
Abstract
Medicinal plants are being used for therapeutic purposes since the dawn of human civilization. The therapeutic efficacy of medicinal plants is due to the presence of wide range phytochemical constituents or secondary metabolites. The medicinal plants are traditionally used for several types of ailments. Even in those pathological conditions where other methods of treatment fail to work. Curcuma longa Linn is very common ingredient used as spice in foods as preservative and coloring material in different part of the world. It has been used as a home remedy for a variety of diseases. Curcuma longa and its isolated constituent curcumin are widely evaluated for anticancer activity. Curcumin possesses broad remedial potential due to its multi-targeting effect against many different carcinoma including leukemia, genitourinary cancers, gastrointestinal cancers and breast cancer etc. Hence, Curcumin has potential for the development of new medicine for the treatment of several diseases.
Collapse
Affiliation(s)
- Sabira Sultana
- Department of Eastern Medicine, Government College University Faisalabad, Pakistan
| | - Naveed Munir
- Department of Biochemistry, Government College University Faisalabad, Pakistan
| | - Zahed Mahmood
- Department of Biochemistry, Government College University Faisalabad, Pakistan
| | - Muhammad Riaz
- Department of Allied Health Sciences, Sargodha Medical College, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad, Pakistan
| | - Maksim Rebezov
- V. M. Gorbatov Federal Research Center for Food Systems of RussianAcademy of Sciences, Moscow, Russian Federation; Prokhorov General Physics Institute, Russian Academy of Sciences,Moscow, Russian Federation; K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation
| | | | | | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation; Shakarim State University of Semey, Semey, Kazakhstan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, KPK, Pakistan
| | - Kannan R R Rengasamy
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam; Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2745, North West Province, South Africa.
| |
Collapse
|
8
|
Health Benefits of Turmeric and Curcumin Against Food Contaminants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1328:171-197. [DOI: 10.1007/978-3-030-73234-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
9
|
Zhao C, Zhou J, Gu Y, Pan E, Sun Z, Zhang H, Lu Q, Zhang Y, Yu X, Liu R, Pu Y, Yin L. Urinary exposure of N-nitrosamines and associated risk of esophageal cancer in a high incidence area in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139713. [PMID: 32526409 DOI: 10.1016/j.scitotenv.2020.139713] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/27/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Esophageal cancer (EC) is a deadly malignancy worldwide with a high incidence and exhibits unevenly geographic prevalence, which suggests that environmental factors are deeply involved in the development of EC. Although the carcinogenesis of nitrosamines in the esophagus has been identified by tremendous toxicological data, the role of nitrosamines in the genesis of human EC has so far proved inconclusive largely due to a lack of convincing evidences. In this study, urinary nitrosamines in population controls and cases with esophageal precancerous lesions, including reflux esophagitis (RE) accompanying with basal cell hyperplasia (BCH) and dysplasia (DYS), and esophageal squamous cell carcinoma (ESCC) were detected by a SPE-LC-MS/MS method and the associated risk was evaluated. Higher excretion concentrations of N-nitrosomethylethylamine (NMEA) in the RE/BCH patients, NMEA and N-nitrosodibutylamine (NDBA) in the DYS patients, and NMEA, NDBA, N-nitrosopyrrolidine (NPyr) and N-nitrosomorpholine (NMor) in the ESCC patients were observed compared with the controls (p < .05). And with the progression of esophageal lesion, the exposure complexity increased in terms of the categories of nitrosamines. Furthermore, the observed positive associations between the hazardous exposure of NMEA, NDBA and NPyr and the increased risk of ESCC, and between NMEA and NDBA and RE/BCH were established. These findings provided direct evidence to support the hypothesis that exposure to nitrosamines are involved in the carcinogenesis of esophageal epithelia in this high incidence area from the perspective of endogenous exposure assessment. However, discoveries in this study need to be confirmed by systematic researches in the future. And the dose-response relationships, the reference ranges or cutoff values to predict the risks of nitrosamines exposure also need to be defined.
Collapse
Affiliation(s)
- Chao Zhao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing210009, Jiangsu, China
| | - Jingjing Zhou
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing210009, Jiangsu, China
| | - Yun Gu
- Departments of Thoracic Surgery, People's Hospital of Lianshui, Lianshui 223400, Jiangsu, China
| | - Enchun Pan
- Huai'an Center for Disease Control and Prevention, Huai'an 223001, Jiangsu, China
| | - Zhongming Sun
- Huai'an Center for Disease Control and Prevention, Huai'an 223001, Jiangsu, China
| | - Hu Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing210009, Jiangsu, China
| | - Qiang Lu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing210009, Jiangsu, China
| | - Ying Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing210009, Jiangsu, China
| | - Xiaojin Yu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing210009, Jiangsu, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing210009, Jiangsu, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing210009, Jiangsu, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing210009, Jiangsu, China.
| |
Collapse
|
10
|
Salehi B, Lopez-Jornet P, Pons-Fuster López E, Calina D, Sharifi-Rad M, Ramírez-Alarcón K, Forman K, Fernández M, Martorell M, Setzer WN, Martins N, Rodrigues CF, Sharifi-Rad J. Plant-Derived Bioactives in Oral Mucosal Lesions: A Key Emphasis to Curcumin, Lycopene, Chamomile, Aloe vera, Green Tea and Coffee Properties. Biomolecules 2019; 9:biom9030106. [PMID: 30884918 PMCID: PMC6468600 DOI: 10.3390/biom9030106] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/06/2019] [Accepted: 03/13/2019] [Indexed: 02/07/2023] Open
Abstract
Oral mucosal lesions have many etiologies, including viral or bacterial infections, local trauma or irritation, systemic disorders, and even excessive alcohol and tobacco consumption. Folk knowledge on medicinal plants and phytochemicals in the treatment of oral mucosal lesions has gained special attention among the scientific community. Thus, this review aims to provide a brief overview on the traditional knowledge of plants in the treatment of oral mucosal lesions. This review was carried out consulting reports between 2008 and 2018 of PubMed (Medline), Web of Science, Embase, Scopus, Cochrane Database, Science Direct, and Google Scholar. The chosen keywords were plant, phytochemical, oral mucosa, leukoplakia, oral lichen planus and oral health. A special emphasis was given to certain plants (e.g., chamomile, Aloe vera, green tea, and coffea) and plant-derived bioactives (e.g., curcumin, lycopene) with anti-oral mucosal lesion activity. Finally, preclinical (in vitro and in vivo) and clinical studies examining both the safety and efficacy of medicinal plants and their derived phytochemicals were also carefully addressed.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran.
| | - Pia Lopez-Jornet
- Instituto Murciano de InvestigaciónBiosanitaria (IMIB-Arrixaca-UMU), Clínica Odontológica Universitaria Hospital Morales Meseguer Adv. Marques de los velez s/n, 30008 Murcia, Spain.
| | - Eduardo Pons-Fuster López
- University of Murciaand, Clínica Odontológica Universitaria Hospital Morales Meseguer, Adv. Marques de los velez s/n, 30008 Murcia, Spain.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology, Zabol University of Medical Sciences, Zabol 61663-335, Iran.
| | - Karina Ramírez-Alarcón
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion 4070386, Chile.
| | - Katherine Forman
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion 4070386, Chile.
| | - Marcos Fernández
- Department of Pharmacy, Faculty of Pharmacy, University of Concepcion, Concepcion 4070386, Chile.
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion 4070386, Chile.
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal.
| | - Célia F Rodrigues
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
| | - Javad Sharifi-Rad
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan 35198-99951, Iran.
| |
Collapse
|
11
|
Bigelsen S. Evidence-based complementary treatment of pancreatic cancer: a review of adjunct therapies including paricalcitol, hydroxychloroquine, intravenous vitamin C, statins, metformin, curcumin, and aspirin. Cancer Manag Res 2018; 10:2003-2018. [PMID: 30034255 PMCID: PMC6049054 DOI: 10.2147/cmar.s161824] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Despite new and exciting research and renewed optimism about future therapy, current statistics of survival from pancreatic cancer remains dismal. Patients seeking alternative or complementary treatments should be warned to avoid the hype and instead look to real science. A variety of relatively safe and inexpensive treatment options that have shown success in preclinical models and/or retrospective studies are currently available. Patients require their physicians to provide therapeutic guidance and assistance in obtaining and administrating these various therapies. Paricalcitol, an analog of vitamin D, has been shown by researchers at the Salk Institute for Biological Studies to break though the protective stroma surrounding tumor cells. Hydroxychloroquine has been shown to inhibit autophagy, a process by which dying cells recycle injured organelles and internal toxins to generate needed energy for survival and reproduction. Intravenous vitamin C creates a toxic accumulation of hydrogen peroxide within cancer cells, hastening their death. Metformin inhibits mitochondrial oxidative metabolism utilized by cancer stem cells. Statins inhibit not only cholesterol but also other factors in the same pathway that affect cancer cell growth, protein synthesis, and cell cycle progression. A novel formulation of curcumin may prevent resistance to chemotherapy and inhibit pancreatic cancer cell proliferation. Aspirin therapy has been shown to prevent pancreatic cancer and may be useful to prevent recurrence. These therapies are all currently available and are reviewed in this paper with emphasis on the most recent laboratory research and clinical studies.
Collapse
Affiliation(s)
- Stephen Bigelsen
- Department of Allergy, Asthma and Immunology, Rutgers New Jersey Medical School, Newark, NJ, USA,
| |
Collapse
|
12
|
Shubin AV, Lesovaya EA, Kirsanov KI, Antoshina EE, Trukhanova LS, Gorkova TG, Belitsky GA, Yakubovskaya MG, Demidyuk IV. Re-Examination of the Esophageal Squamous Cell Carcinoma Model in Rats Induced by N-Nitrososarcosine Ethyl Ester Precursors. Bull Exp Biol Med 2018; 164:676-679. [PMID: 29577190 DOI: 10.1007/s10517-018-4057-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Indexed: 11/27/2022]
Abstract
Studies of the molecular mechanisms of esophageal cancer development have to be carried out on sufficient amount of tumor material, obtained under conditions of controlled exposure to carcinogenic factors. Esophageal cancer models on laboratory animals serve an indispensable source of this material. One of these models is esophageal cancer induction in rats by N-nitroso compound precursors. Despite adequate reproduction of human esophageal cancer, this model in fact has not been used since the 1990ies. Re-examination of esophageal cancer model, induced by N-nitrososarcosine ethyl ester precursors, is carried out and its efficiency in induction of squamous cell carcinoma is confirmed.
Collapse
Affiliation(s)
- A V Shubin
- Institute of Molecular Genetics, the Russian Academy of Sciences, Moscow, Russia
| | - E A Lesovaya
- N. N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, Moscow, Russia
| | - K I Kirsanov
- N. N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, Moscow, Russia
| | - E E Antoshina
- N. N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, Moscow, Russia
| | - L S Trukhanova
- N. N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, Moscow, Russia
| | - T G Gorkova
- N. N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, Moscow, Russia
| | - G A Belitsky
- N. N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, Moscow, Russia
| | - M G Yakubovskaya
- N. N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, Moscow, Russia
| | - I V Demidyuk
- Institute of Molecular Genetics, the Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
13
|
Shubin AV, Demidyuk IV, Komissarov AA, Rafieva LM, Kostrov SV. Cytoplasmic vacuolization in cell death and survival. Oncotarget 2018; 7:55863-55889. [PMID: 27331412 PMCID: PMC5342458 DOI: 10.18632/oncotarget.10150] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 06/06/2016] [Indexed: 12/15/2022] Open
Abstract
Cytoplasmic vacuolization (also called cytoplasmic vacuolation) is a well-known morphological phenomenon observed in mammalian cells after exposure to bacterial or viral pathogens as well as to various natural and artificial low-molecular-weight compounds. Vacuolization often accompanies cell death; however, its role in cell death processes remains unclear. This can be attributed to studying vacuolization at the level of morphology for many years. At the same time, new data on the molecular mechanisms of the vacuole formation and structure have become available. In addition, numerous examples of the association between vacuolization and previously unknown cell death types have been reported. Here, we review these data to make a deeper insight into the role of cytoplasmic vacuolization in cell death and survival.
Collapse
Affiliation(s)
- Andrey V Shubin
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Moscow, Russia.,Laboratory of Chemical Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Moscow, Russia.,Laboratory of Biologically Active Nanostructures, N.F. Gamaleya Institute of Epidemiology and Microbiology, Moscow, Russia
| | - Ilya V Demidyuk
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Moscow, Russia
| | - Alexey A Komissarov
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Moscow, Russia
| | - Lola M Rafieva
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Moscow, Russia
| | - Sergey V Kostrov
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Moscow, Russia
| |
Collapse
|
14
|
Veeran S, Shu B, Cui G, Fu S, Zhong G. Curcumin induces autophagic cell death in Spodoptera frugiperda cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 139:79-86. [PMID: 28595926 DOI: 10.1016/j.pestbp.2017.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/25/2017] [Accepted: 05/01/2017] [Indexed: 05/20/2023]
Abstract
The increasing interest in the role of autophagy (type II cell death) in the regulation of insect toxicology has propelled study of investigating autophagic cell death pathways. Turmeric, the rhizome of the herb Curcuma longa (Mañjaḷ in Tamil, India and Jiānghuáng in Chinese) have been traditionally used for the pest control either alone or combination with other botanical pesticides. However, the mechanisms by which Curcuma longa or curcumin exerts cytotoxicity in pests are not well understood. In this study, we investigated the potency of Curcuma longa (curcumin) as a natural pesticide employing Sf9 insect line. Autophagy induction effect of curcumin on Spodoptera frugiperda (Sf9) cells was investigated using various techniques including cell proliferation assay, morphology analysis with inverted phase contrast microscope and Transmission Electron Microscope (TEM) analysis. Autophagy was evaluated using the fluorescent dye monodansylcadaverine (MDC). Cell death measurement was examined using 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) within the concentrations of 5-15μg/mL. Curcumin inhibited the growth of the Sf9 cells and induced autophagic cell death in a time and dose dependent manner. Staining the cells with MDC showed the presence of autophagic vacuoles while increased in a dose and time dependent manner. At the ultrastructural level transmission electron microscopy, cells revealed massive autophagy vacuole accumulation and absence of chromatin condensation. Protein expression levels of ATG8-I and ATG8-II, well-established markers of autophagy related protein were elevated in a time dependent manner after curcumin treatment. The present study proves that curcumin induces autophagic cell death in Sf9 insect cell line and this is the first report of cytotoxic effect of curcumin in insect cells and that will be utilized as natural pesticides in future.
Collapse
Affiliation(s)
- Sethuraman Veeran
- Laboratory of Insect Toxicology, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, People's Republic of China
| | - Benshui Shu
- Laboratory of Insect Toxicology, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, People's Republic of China
| | - Gaofeng Cui
- Laboratory of Insect Toxicology, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, People's Republic of China
| | - Shengjiao Fu
- Laboratory of Insect Toxicology, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, People's Republic of China
| | - Guohua Zhong
- Laboratory of Insect Toxicology, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, People's Republic of China.
| |
Collapse
|
15
|
Affiliation(s)
| | - A. Spiro
- British Nutrition Foundation; London UK
| |
Collapse
|
16
|
Ullah MF, Bhat SH, Husain E, Abu-Duhier F, Hadi SM, Sarkar FH, Ahmad A. Pharmacological Intervention through Dietary Nutraceuticals in Gastrointestinal Neoplasia. Crit Rev Food Sci Nutr 2017; 56:1501-18. [PMID: 25365584 DOI: 10.1080/10408398.2013.772091] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neoplastic conditions associated with gastrointestinal (GI) tract are common worldwide with colorectal cancer alone accounting for the third leading rate of cancer incidence. Other GI malignancies such as esophageal carcinoma have shown an increasing trend in the last few years. The poor survival statistics of these fatal cancer diseases highlight the need for multiple alternative treatment options along with effective prophylactic strategies. Worldwide geographical variation in cancer incidence indicates a correlation between dietary habits and cancer risk. Epidemiological studies have suggested that populations with high intake of certain dietary agents in their regular meals have lower cancer rates. Thus, an impressive embodiment of evidence supports the concept that dietary factors are key modulators of cancer including those of GI origin. Preclinical studies on animal models of carcinogenesis have reflected the pharmacological significance of certain dietary agents called as nutraceuticals in the chemoprevention of GI neoplasia. These include stilbenes (from red grapes and red wine), isoflavones (from soy), carotenoids (from tomatoes), curcuminoids (from spice turmeric), catechins (from green tea), and various other small plant metabolites (from fruits, vegetables, and cereals). Pleiotropic action mechanisms have been reported for these diet-derived chemopreventive agents to retard, block, or reverse carcinogenesis. This review presents a prophylactic approach to primary prevention of GI cancers by highlighting the translational potential of plant-derived nutraceuticals from epidemiological, laboratory, and clinical studies, for the better management of these cancers through consumption of nutraceutical rich diets and their intervention in cancer therapeutics.
Collapse
Affiliation(s)
- Mohammad F Ullah
- a Prince Fahad Research Chair , Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk , Tabuk , Saudi Arabia
| | - Showket H Bhat
- a Prince Fahad Research Chair , Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk , Tabuk , Saudi Arabia
| | - Eram Husain
- a Prince Fahad Research Chair , Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk , Tabuk , Saudi Arabia
| | - Faisel Abu-Duhier
- a Prince Fahad Research Chair , Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk , Tabuk , Saudi Arabia
| | - S M Hadi
- b Department of Biochemistry , Faculty of Life Sciences, Aligarh Muslim University , Uttar Pradesh , India
| | - Fazlul H Sarkar
- c Department of Pathology , Karmanos Cancer Institute, Wayne State University School of Medicine , Detroit , Michigan USA
| | - Aamir Ahmad
- c Department of Pathology , Karmanos Cancer Institute, Wayne State University School of Medicine , Detroit , Michigan USA
| |
Collapse
|
17
|
Allegra A, Innao V, Russo S, Gerace D, Alonci A, Musolino C. Anticancer Activity of Curcumin and Its Analogues: Preclinical and Clinical Studies. Cancer Invest 2016; 35:1-22. [PMID: 27996308 DOI: 10.1080/07357907.2016.1247166] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Curcumin has been shown to have a wide variety of therapeutic effects, ranging from anti-inflammatory, chemopreventive, anti-proliferative, and anti-metastatic. This review provides an overview of the recent research conducted to overcome the problems with the bioavailability of curcumin, and of the preclinical and clinical studies that have reported success in combinatorial strategies coupling curcumin with other treatments. Research on the signaling pathways that curcumin treatment targets shows that it potently acts on major intracellular components involved in key processes such as genomic modulations, cell invasion and cell death pathways. Curcumin is a promising molecule for the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Alessandro Allegra
- a Division of Hematology, Department of General Surgery, Oncology and Pathological Anatomy , University of Messina , Messina , Italy
| | - Vanessa Innao
- a Division of Hematology, Department of General Surgery, Oncology and Pathological Anatomy , University of Messina , Messina , Italy
| | - Sabina Russo
- a Division of Hematology, Department of General Surgery, Oncology and Pathological Anatomy , University of Messina , Messina , Italy
| | - Demetrio Gerace
- a Division of Hematology, Department of General Surgery, Oncology and Pathological Anatomy , University of Messina , Messina , Italy
| | - Andrea Alonci
- a Division of Hematology, Department of General Surgery, Oncology and Pathological Anatomy , University of Messina , Messina , Italy
| | - Caterina Musolino
- a Division of Hematology, Department of General Surgery, Oncology and Pathological Anatomy , University of Messina , Messina , Italy
| |
Collapse
|
18
|
Kumar G, Mittal S, Sak K, Tuli HS. Molecular mechanisms underlying chemopreventive potential of curcumin: Current challenges and future perspectives. Life Sci 2016; 148:313-28. [PMID: 26876915 DOI: 10.1016/j.lfs.2016.02.022] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/25/2016] [Accepted: 02/07/2016] [Indexed: 12/11/2022]
Abstract
In recent years, natural compounds have received considerable attention in preventing and curing most dreadful diseases including cancer. The reason behind the use of natural compounds in chemoprevention is associated with fewer numbers of side effects than conventional chemotherapeutics. Curcumin (diferuloylmethane, PubMed CID: 969516), a naturally occurring polyphenol, is derived from turmeric, which is used as a common Indian spice. It governs numerous intracellular targets, including proteins involved in antioxidant response, immune response, apoptosis, cell cycle regulation and tumor progression. A huge mass of available studies strongly supports the use of Curcumin as a chemopreventive drug. However, the main challenge encountered is the low bioavailability of Curcumin. This extensive review covers various therapeutic interactions of Curcumin with its recognized cellular targets involved in cancer treatment, strategies to overcome the bioavailability issue and adverse effects associated with Curcumin consumption.
Collapse
Affiliation(s)
- Gaurav Kumar
- Department of Biochemistry, Delhi University, South Campus, New Delhi, India
| | - Sonam Mittal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Katrin Sak
- Department of Hematology and Oncology, University of Tartu, Estonia
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar University, Mulana-Ambala, India.
| |
Collapse
|
19
|
Curcumin induces apoptosis of upper aerodigestive tract cancer cells by targeting multiple pathways. PLoS One 2015; 10:e0124218. [PMID: 25910231 PMCID: PMC4409383 DOI: 10.1371/journal.pone.0124218] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/10/2015] [Indexed: 11/19/2022] Open
Abstract
Curcumin, a natural compound isolated from the Indian spice "Haldi" or "curry powder", has been used for centuries as a traditional remedy for many ailments. Recently, the potential use of curcumin in cancer prevention and therapy urges studies to uncover the molecular mechanisms associated with its anti-tumor effects. In the current manuscript, we investigated the mechanism of curcumin-induced apoptosis in upper aerodigestive tract cancer cell lines and showed that curcumin-induced apoptosis is mediated by the modulation of multiple pathways such as induction of p73, and inhibition of p-AKT and Bcl-2. Treatment of cells with curcumin induced both p53 and the related protein p73 in head and neck and lung cancer cell lines. Inactivation of p73 by dominant negative p73 significantly protected cells from curcumin-induced apoptosis, whereas ablation of p53 by shRNA had no effect. Curcumin treatment also strongly inhibited p-AKT and Bcl-2 and overexpression of constitutively active AKT or Bcl-2 significantly inhibited curcumin-induced apoptosis. Taken together, our findings suggest that curcumin-induced apoptosis is mediated via activating tumor suppressor p73 and inhibiting p-AKT and Bcl-2.
Collapse
|
20
|
Devassy JG, Nwachukwu ID, Jones PJH. Curcumin and cancer: barriers to obtaining a health claim. Nutr Rev 2015; 73:155-65. [DOI: 10.1093/nutrit/nuu064] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
21
|
Safe and targeted anticancer therapy for ovarian cancer using a novel class of curcumin analogs. J Ovarian Res 2013; 6:35. [PMID: 23663277 PMCID: PMC3665575 DOI: 10.1186/1757-2215-6-35] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/01/2013] [Indexed: 12/13/2022] Open
Abstract
A diagnosis of advanced ovarian cancer is the beginning of a long and arduous journey for a patient. Worldwide, approximately half of the individuals undergoing therapy for advanced cancer will succumb to the disease, or consequences of treatment. Well-known and widely-used chemotherapeutic agents such as cisplatin, paclitaxel, 5-fluorouracil, and doxorubicin are toxic to both cancer and non-cancerous cells, and have debilitating side effects Therefore, development of new targeted anticancer therapies that can selectively kill cancer cells while sparing the surrounding healthy tissues is essential to develop more effective therapies. We have developed a new class of synthetic curcumin analogs, diarylidenyl-piperidones (DAPs), which have higher anticancer activity and enhanced bio-absorption than curcumin. The DAP backbone structure exhibits cytotoxic (anticancer) activity, whereas the N-hydroxypyrroline (-NOH) moiety found on some variants functions as a cellular- or tissue-specific modulator (antioxidant) of cytotoxicity. The anticancer activity of the DAPs has been evaluated using a number of ovarian cancer cell lines, and the safety has been evaluated in a number of non-cancerous cell lines. Both variations of the DAP compounds showed similar levels of cell death in ovarian cancer cells, however the compounds with the -NOH modification were less toxic to non-cancerous cells. The selective cytotoxicity of the DAP-NOH compounds suggests that they will be useful as safe and effective anticancer agents. This article reviews some of the key findings of our work with the DAP compounds, and compares this to some of the targeted therapies currently used in ovarian cancer therapy.
Collapse
|
22
|
Jiang JL, Su X, Zhang H, Zhang XH, Yuan YJ. A novel approach to active compounds identification based on support vector regression model and mean impact value. Chem Biol Drug Des 2013; 81:650-7. [PMID: 23350785 DOI: 10.1111/cbdd.12111] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 12/13/2012] [Accepted: 01/14/2013] [Indexed: 01/02/2023]
Abstract
Traditionally, active compounds were discovered from natural product extracts by bioassay-guided fractionation, which was with high cost and low efficiency. A well-trained support vector regression model based on mean impact value was used to identify lead active compounds on inhibiting the proliferation of the HeLa cells in curcuminoids from Curcuma longa L. Eight constituents possessing the high absolute mean impact value were identified to have significant cytotoxicity, and the cytotoxic effect of these constituents was partly confirmed by subsequent MTT (3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays and previous reports. In the dosage range of 0.2-211.2, 0.1-140.2, 0.2-149.9 μm, 50% inhibiting concentrations (IC50 ) of curcumin, demethoxycurcumin, and bisdemethoxycurcumin were 26.99 ± 1.11, 19.90 ± 1.22, and 35.51 ± 7.29 μm, respectively. It was demonstrated that our method could successfully identify lead active compounds in curcuminoids from Curcuma longa L. prior to bioassay-guided separation. The use of a support vector regression model combined with mean impact value analysis could provide an efficient and economical approach for drug discovery from natural products.
Collapse
Affiliation(s)
- Jian-Lan Jiang
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin Key Laboratory of Biological and Pharmaceutical Engineering, Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
| | | | | | | | | |
Collapse
|
23
|
Park W, Amin ARMR, Chen ZG, Shin DM. New perspectives of curcumin in cancer prevention. Cancer Prev Res (Phila) 2013; 6:387-400. [PMID: 23466484 DOI: 10.1158/1940-6207.capr-12-0410] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Numerous natural compounds have been extensively investigated for their potential for cancer prevention over the decades. Curcumin, from Curcuma longa, is a highly promising natural compound that can be potentially used for chemoprevention of multiple cancers. Curcumin modulates multiple molecular pathways involved in the lengthy carcinogenesis process to exert its chemopreventive effects through several mechanisms: promoting apoptosis, inhibiting survival signals, scavenging reactive oxidative species (ROS), and reducing the inflammatory cancer microenvironment. Curcumin fulfills the characteristics for an ideal chemopreventive agent with its low toxicity, affordability, and easy accessibility. Nonetheless, the clinical application of curcumin is currently compromised by its poor bioavailability. Here, we review the potential of curcumin in cancer prevention, its molecular targets, and mechanisms of action. Finally, we suggest specific recommendations to improve its efficacy and bioavailability for clinical applications.
Collapse
Affiliation(s)
- Wungki Park
- Department of Hematology and Medical Oncology, 1365 Clifton Road, C-3094, Winship Cancer Institute of Emory University, School of Medicine, Atlanta, GA, 30322, USA
| | | | | | | |
Collapse
|
24
|
Shehzad A, Lee J, Lee YS. Curcumin in various cancers. Biofactors 2013; 39:56-68. [PMID: 23303705 DOI: 10.1002/biof.1068] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/15/2012] [Accepted: 10/18/2012] [Indexed: 12/18/2022]
Abstract
Curcumin (diferuloylmethane), an active constituent of turmeric, is a well-described phytochemical, which has been used since ancient times for the treatment of various diseases. The dysregulation of cell signaling pathways by the gradual alteration of regulatory proteins is the root cause of cancers. Curcumin modulates regulatory proteins through various molecular mechanisms. Several research studies have provided in-depth analysis of multiple targets through which curcumin induces protective effects against cancers including gastrointestinal, genitourinary, gynecological, hematological, pulmonary, thymic, brain, breast, and bone. The molecular mechanisms of action of curcumin in treating different types of cancers remain under investigation. The multifaceted role of this dietary agent is mediated through its inhibition of several cell signaling pathways at multiple levels. Curcumin has the ability to inhibit carcinogenicity through the modulation of the cell cycle by binding directly and indirectly to molecular targets including transcription factors (NF-kB, STAT3, β-catenin, and AP-1), growth factors (EGF, PDGF, and VEGF), enzymes (COX-2, iNOS, and MMPs), kinases (cyclin D1, CDKs, Akt, PKC, and AMPK), inflammatory cytokines (TNF, MCP, IL-1, and IL-6), upregulation of proapoptotic (Bax, Bad, and Bak) and downregulation of antiapoptotic proteins (Bcl(2) and Bcl-xL). A variety of animal models and human studies have proven that curcumin is safe and well tolerated even at very high doses. This study elaborates the current understanding of the chemopreventive effects of curcumin through its multiple molecular pathways and highlights its therapeutic value in the treatment and prevention of a wide range of cancers.
Collapse
Affiliation(s)
- Adeeb Shehzad
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 702-701, Korea
| | | | | |
Collapse
|
25
|
Gupta SC, Patchva S, Koh W, Aggarwal BB. Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin Exp Pharmacol Physiol 2012; 39:283-99. [PMID: 22118895 DOI: 10.1111/j.1440-1681.2011.05648.x] [Citation(s) in RCA: 508] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
1. Curcumin is the active ingredient of the dietary spice turmeric and has been consumed for medicinal purposes for thousands of years. Modern science has shown that curcumin modulates various signalling molecules, including inflammatory molecules, transcription factors, enzymes, protein kinases, protein reductases, carrier proteins, cell survival proteins, drug resistance proteins, adhesion molecules, growth factors, receptors, cell cycle regulatory proteins, chemokines, DNA, RNA and metal ions. 2. Because of this polyphenol's potential to modulate multiple signalling molecules, it has been reported to possess pleiotropic activities. First demonstrated to have antibacterial activity in 1949, curcumin has since been shown to have anti-inflammatory, anti-oxidant, pro-apoptotic, chemopreventive, chemotherapeutic, antiproliferative, wound healing, antinociceptive, antiparasitic and antimalarial properties as well. Animal studies have suggested that curcumin may be active against a wide range of human diseases, including diabetes, obesity, neurological and psychiatric disorders and cancer, as well as chronic illnesses affecting the eyes, lungs, liver, kidneys and gastrointestinal and cardiovascular systems. 3. Although many clinical trials evaluating the safety and efficacy of curcumin against human ailments have already been completed, others are still ongoing. Moreover, curcumin is used as a supplement in several countries, including India, Japan, the US, Thailand, China, Korea, Turkey, South Africa, Nepal and Pakistan. Although inexpensive, apparently well tolerated and potentially active, curcumin has not been approved for the treatment of any human disease. 4. In the present article, we discuss the discovery and key biological activities of curcumin, with a particular emphasis on its activities at the molecular and cellular levels, as well as in animals and humans.
Collapse
Affiliation(s)
- Subash C Gupta
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
26
|
Gupta RC, Bansal SS, Aqil F, Jeyabalan J, Cao P, Kausar H, Russell GK, Munagala R, Ravoori S, Vadhanam MV. Controlled-release systemic delivery - a new concept in cancer chemoprevention. Carcinogenesis 2012; 33:1608-15. [PMID: 22696595 DOI: 10.1093/carcin/bgs209] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Many chemopreventive agents have encountered bioavailability issues in pre-clinical/clinical studies despite high oral doses. We report here a new concept utilizing polycaprolactone implants embedded with test compounds to obtain controlled systemic delivery, circumventing oral bioavailability issues and reducing the total administered dose. Compounds were released from the implants in vitro dose dependently and for long durations (months), which correlated with in vivo release. Polymeric implants of curcumin significantly inhibited tissue DNA adducts following the treatment of rats with benzo[a]pyrene, with the total administered dose being substantially lower than typical oral doses. A comparison of bioavailability of curcumin given by implants showed significantly higher levels of curcumin in the plasma, liver and brain 30 days after treatment compared with the dietary route. Withaferin A implants resulted in a nearly 60% inhibition of lung cancer A549 cell xenografts, but no inhibition occurred when the same total dose was administered intraperitoneally. More than 15 phytochemicals have been tested successfully by this formulation. Together, our data indicate that this novel implant-delivery system circumvents oral bioavailability issues, provides continuous delivery for long durations and lowers the total administered dose, eliciting both chemopreventive/chemotherapeutic activities. This would also allow the assessment of activity of minor constituents and synthetic metabolites, which otherwise remain uninvestigated in vivo.
Collapse
Affiliation(s)
- Ramesh C Gupta
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bandyopadhyay D, Banik BK. Bismuth nitrate-induced microwave-assisted expeditious synthesis of vanillin from curcumin. Org Med Chem Lett 2012; 2:15. [PMID: 22519970 PMCID: PMC3364841 DOI: 10.1186/2191-2858-2-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 04/20/2012] [Indexed: 11/10/2022] Open
Abstract
Background Curcumin and vanillin are the two useful compounds in food and medicine. Bismuth nitrate pentahydrate is an economical and ecofriendly reagent. Method Bismuth nitrate pentahydrate impregnated montmorillonite KSF clay and curcumin were subjected to microwave irradiation. Results Microwave-induced bismuth nitrate-promoted synthesis of vanillin from curcumin has been accomplished in good yield under solvent-free condition. Twenty-five different reaction conditions have been studied to optimize the process. Conclusion The present procedure for the synthesis of vanillin may find useful application in the area of industrial process development.
Collapse
Affiliation(s)
- Debasish Bandyopadhyay
- Department of Chemistry, The University of Texas-Pan American, 1201 West University Drive, Edinburg, TX 78539, USA.
| | | |
Collapse
|
28
|
Subramaniam D, Ponnurangam S, Ramamoorthy P, Standing D, Battafarano RJ, Anant S, Sharma P. Curcumin induces cell death in esophageal cancer cells through modulating Notch signaling. PLoS One 2012; 7:e30590. [PMID: 22363450 PMCID: PMC3281833 DOI: 10.1371/journal.pone.0030590] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/19/2011] [Indexed: 12/21/2022] Open
Abstract
Background Curcumin inhibits the growth of esophageal cancer cell lines; however, the mechanism of action is not well understood. It is becoming increasingly clear that aberrant activation of Notch signaling has been associated with the development of esophageal cancer. Here, we have determined that curcumin inhibits esophageal cancer growth via a mechanism mediated through the Notch signaling pathway. Methodology/Principal Findings In this study, we show that curcumin treatment resulted in a dose and time dependent inhibition of proliferation and colony formation in esophageal cancer cell lines. Furthermore, curcumin treatment induced apoptosis through caspase 3 activation, confirmed by an increase in the ratio of Bax to Bcl2. Cell cycle analysis demonstrated that curcumin treatment induced cell death and down regulated cyclin D1 levels. Curcumin treatment also resulted in reduced number and size of esophagospheres. Furthermore, curcumin treatment led to reduced Notch-1 activation, expression of Jagged-1 and its downstream target Hes-1. This reduction in Notch-1 activation was determined to be due to the down-regulation of critical components of the γ-secretase complex proteins such as Presenilin 1 and Nicastrin. The combination of a known γ-secretase inhibitor DAPT and curcumin further decreased proliferation and induced apoptosis in esophageal cancer cells. Finally, curcumin treatment down-regulate the expressions of Notch-1 specific microRNAs miR-21 and miR-34a, and upregulated tumor suppressor let-7a miRNA. Conclusion/Significance Curcumin is a potent inhibitor of esophageal cancer growth that targets the Notch-1 activating γ-secretase complex proteins. These data suggest that Notch signaling inhibition is a novel mechanism of action for curcumin during therapeutic intervention in esophageal cancers.
Collapse
Affiliation(s)
- Dharmalingam Subramaniam
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * (D. Subramaniam); (PS)
| | - Sivapriya Ponnurangam
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Prabhu Ramamoorthy
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - David Standing
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Richard J. Battafarano
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Shrikant Anant
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Prateek Sharma
- Division of Gastroenterology and Hepatology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * (D. Subramaniam); (PS)
| |
Collapse
|
29
|
Ye F, Zhang GH, Guan BX, Xu XC. Suppression of esophageal cancer cell growth using curcumin, (-)-epigallocatechin-3-gallate and lovastatin. World J Gastroenterol 2012; 18:126-35. [PMID: 22253518 PMCID: PMC3257439 DOI: 10.3748/wjg.v18.i2.126] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/28/2011] [Accepted: 08/04/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine the effects of curcumin, (-)-epigallocatechin-3-gallate (EGCG), lovastatin, and their combinations on inhibition of esophageal cancer.
METHODS: Esophageal cancer TE-8 and SKGT-4 cell lines were subjected to cell viability methyl thiazolyl tetrazolium and tumor cell invasion assays in vitro and tumor formation and growth in nude mouse xenografts with or without curcumin, EGCG and lovastatin treatment. Gene expression was detected using immunohistochemistry and Western blotting in tumor cell lines, tumor xenografts and human esophageal cancer tissues, respectively.
RESULTS: These drugs individually or in combinations significantly reduced the viability and invasion capacity of esophageal cancer cells in vitro. Molecularly, these three agents reduced the expression of phosphorylated extracellular-signal-regulated kinases (Erk1/2), c-Jun and cyclooxygenase-2 (COX-2), but activated caspase 3 in esophageal cancer cells. The nude mouse xenograft assay showed that EGCG and the combinations of curcumin, EGCG and lovastatin suppressed esophageal cancer cell growth and reduced the expression of Ki67, phosphorylated Erk1/2 and COX-2. The expression of phosphorylated Erk1/2 and COX-2 in esophageal cancer tissue specimens was also analyzed using immunohistochemistry. The data demonstrated that 77 of 156 (49.4%) tumors expressed phosphorylated Erk1/2 and that 121 of 156 (77.6%) esophageal cancers expressed COX-2 protein. In particular, phosphorylated Erk1/2 was expressed in 23 of 50 (46%) cases of esophageal squamous cell carcinoma (SCC) and in 54 of 106 (50.9%) cases of adenocarcinoma, while COX-2 was expressed in 39 of 50 (78%) esophageal SCC and in 82 of 106 (77.4%) esophageal adenocarcinoma.
CONCLUSION: The combinations of curcumin, EGCG and lovastatin were able to suppress esophageal cancer cell growth in vitro and in nude mouse xenografts, these drugs also inhibited phosphorylated Erk1/2, c-Jun and COX-2 expression.
Collapse
|
30
|
Wang Q, Fang T, Liu P, Min X, Li X. Study of the bioeffects of CdTe quantum dots on Escherichia coli cells. J Colloid Interface Sci 2011; 363:476-80. [DOI: 10.1016/j.jcis.2011.08.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 07/30/2011] [Accepted: 08/01/2011] [Indexed: 11/27/2022]
|
31
|
Ip SW, Wu SY, Yu CC, Kuo CL, Yu CS, Yang JS, Lin ZP, Chiou SM, Chung HK, Ho HC, Chung JG. Induction of apoptotic death by curcumin in human tongue squamous cell carcinoma SCC-4 cells is mediated through endoplasmic reticulum stress and mitochondria-dependent pathways. Cell Biochem Funct 2011; 29:641-50. [DOI: 10.1002/cbf.1800] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 07/19/2011] [Accepted: 07/25/2011] [Indexed: 11/12/2022]
Affiliation(s)
- Siu-Wan Ip
- Department of Nutrition; China Medical University; Taichung; Taiwan
| | - Shan-Ying Wu
- Department of Nutrition; China Medical University; Taichung; Taiwan
| | - Chien-Chih Yu
- School of Pharmacy; China Medical University; Taichung; Taiwan
| | - Chao-Lin Kuo
- School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources; China Medical University; Taichung; Taiwan
| | - Chun-Shu Yu
- School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources; China Medical University; Taichung; Taiwan
| | - Jai-Sing Yang
- Department of Pharmacology; China Medical University; Taichung; Taiwan
| | - Zen-Pin Lin
- Department of Holistic Wellness; Mingdao University; Changhua; Taiwan
| | - Shang-Ming Chiou
- Department of Functional Neurosurgery and Gamma Knife Center; China Medical University Hospital; Taichung; Taiwan
| | | | - Heng-Chien Ho
- Department of Biochemistry; China Medical University; Taichung; Taiwan
| | | |
Collapse
|
32
|
Rajasekaran SA. Therapeutic potential of curcumin in gastrointestinal diseases. World J Gastrointest Pathophysiol 2011; 2:1-14. [PMID: 21607160 PMCID: PMC3097964 DOI: 10.4291/wjgp.v2.i1.1] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 11/25/2010] [Accepted: 12/02/2010] [Indexed: 02/06/2023] Open
Abstract
Curcumin, also known as diferuloylmethane, is derived from the plant Curcuma longa and is the active ingredient of the spice turmeric. The therapeutic activities of curcumin for a wide variety of diseases such as diabetes, allergies, arthritis and other chronic and inflammatory diseases have been known for a long time. More recently, curcumin’s therapeutic potential for preventing and treating various cancers is being recognized. As curcumin’s therapeutic promise is being explored more systematically in various diseases, it has become clear that, due to its increased bioavailability in the gastrointestinal tract, curcumin may be particularly suited to be developed to treat gastrointestinal diseases. This review summarizes some of the current literature of curcumin’s anti-inflammatory, anti-oxidant and anti-cancer potential in inflammatory bowel diseases, hepatic fibrosis and gastrointestinal cancers.
Collapse
|
33
|
Dayton A, Selvendiran K, Kuppusamy ML, Rivera BK, Meduru S, Kálai T, Hideg K, Kuppusamy P. Cellular uptake, retention and bioabsorption of HO-3867, a fluorinated curcumin analog with potential antitumor properties. Cancer Biol Ther 2010; 10:1027-32. [PMID: 20798598 DOI: 10.4161/cbt.10.10.13250] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Curcumin, a naturally-occurring compound found in the rhizome of Curcuma longa plant, is known for its antitumor activities. However, its clinical efficacy is limited due to poor bioabsorption. A new class of synthetic analogs of curcumin, namely diarylidenylpiperidone (DAP), has been developed with substantially higher anticancer activity than curcumin. However, its cellular uptake and bioabsorption have not been evaluated. In this study we have determined the absorption of a representative DAP compound, HO-3867, using optical and electron paramagnetic resonance spectrometry. The cellular uptake of HO-3867 was measured in a variety of cancer cell lines. HO-3867 was taken in cells within 15 minutes of exposure and its uptake was more than 100-fold higher than curcumin. HO-3867 was also retained in cells in an active form for 72 hours and possibly longer. HO-3867 was substantially cytotoxic to all the cancer cells tested. However, there was no direct correlation between cellular uptake and cytotoxicity suggesting that the cytotoxic mechanisms could be cell-type specific. When administered to rats by intraperitoneal injection, significantly high levels of HO-3867 were found in the liver, kidney, stomach, and blood after 3 hours. Also, significant accumulation of HO-3867 was found in murine tumor xenografts with a dose-dependent inhibition of tumor growth. The results suggest that the curcumin analog has substantially higher bioabsorption when compared to curcumin.
Collapse
Affiliation(s)
- Alex Dayton
- Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Rafiee P, Binion DG, Wellner M, Behmaram B, Floer M, Mitton E, Nie L, Zhang Z, Otterson MF. Modulatory effect of curcumin on survival of irradiated human intestinal microvascular endothelial cells: role of Akt/mTOR and NF-{kappa}B. Am J Physiol Gastrointest Liver Physiol 2010; 298:G865-77. [PMID: 20299603 PMCID: PMC3774333 DOI: 10.1152/ajpgi.00339.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Radiation therapy is an essential modality in the treatment of colorectal cancers. Radiation exerts an antiangiogenic effect on tumors, inhibiting endothelial proliferation and survival in the tumor microvasculature. However, damage from low levels of irradiation can induce a paradoxical effect, stimulating survival in endothelial cells. We used human intestinal microvascular endothelial cells (HIMEC) to define effects of radiation on these gut-specific endothelial cells. Low-level irradiation (1-5 Gy) activates NF-kappaB and the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, which is involved in cell cycle reentry and cell survival in HIMEC. A downstream target of PI3K/Akt is mammalian target of rapamycin (mTOR), which contributes to endothelial proliferation and angiogenesis. The aim of this study was to investigate the signaling molecules involved in the radiosensitizing effects of curcumin on HIMEC subjected to low levels of irradiation. We have demonstrated that exposure of HIMEC to low levels of irradiation induced Akt and mTOR phosphorylation, which was attenuated by curcumin, rapamycin, LY294002, and mTOR small interference RNA (siRNA). Activation of NF-kappaB by low levels of irradiation was inhibited by curcumin, SN-50, and mTOR siRNA. Curcumin also induced apoptosis by induction of caspase-3 cleavage in irradiated HIMEC. In conclusion, curcumin significantly inhibited NF-kappaB and attenuated the effect of irradiation-induced prosurvival signaling through the PI3K/Akt/mTOR and NF-kappaB pathways in these gut-specific endothelial cells. Curcumin may be a potential radiosensitizing agent for enhanced antiangiogenic effect in colorectal cancer radiation therapy.
Collapse
Affiliation(s)
- Parvaneh Rafiee
- Department. of Surgery, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA.
| | - David G. Binion
- 2Department of Medicine University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania; and
| | | | | | - Martin Floer
- 4Department of Medicine B, University Hospital, Muenster, Germany
| | - Elizabeth Mitton
- 5Division of Gastroenterology/Hepatology, Medical College of Wisconsin, Milwaukee, Wisconsin;
| | | | - Zhihong Zhang
- 5Division of Gastroenterology/Hepatology, Medical College of Wisconsin, Milwaukee, Wisconsin;
| | | |
Collapse
|
35
|
Abstract
Curcumin is the active ingredient of turmeric. It is widely used as a kitchen spice and food colorant throughout India, Asia and the Western world. Curcumin is a major constituent of curry powder, to which it imparts its characteristic yellow colour. For over 4000 years, curcumin has been used in traditional Asian and African medicine to treat a wide variety of ailments. There is a strong current public interest in naturally occurring plant-based remedies and dietary factors related to health and disease. Curcumin is non-toxic to human subjects at high doses. It is a complex molecule with multiple biological targets and different cellular effects. Recently, its molecular mechanisms of action have been extensively investigated. It has anti-inflammatory, antioxidant and anti-cancer properties. Under some circumstances its effects can be contradictory, with uncertain implications for human treatment. While more studies are warranted to further understand these contradictions, curcumin holds promise as a disease-modifying and chemopreventive agent. We review the evidence for the therapeutic potential of curcumin from in vitro studies, animal models and human clinical trials.
Collapse
|
36
|
O'Sullivan-Coyne G, O'Sullivan GC, O'Donovan TR, Piwocka K, McKenna SL. Curcumin induces apoptosis-independent death in oesophageal cancer cells. Br J Cancer 2009; 101:1585-95. [PMID: 19809435 PMCID: PMC2778521 DOI: 10.1038/sj.bjc.6605308] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Oesophageal cancer incidence is increasing and survival rates remain extremely poor. Natural agents with potential for chemoprevention include the phytochemical curcumin (diferuloylmethane). We have examined the effects of curcumin on a panel of oesophageal cancer cell lines. METHODS MTT (3-(4,5-dimethyldiazol-2-yl)-2,5 diphenyl tetrazolium bromide) assays and propidium iodide staining were used to assess viability and DNA content, respectively. Mitotic catastrophe (MC), apoptosis and autophagy were defined by both morphological criteria and markers such as MPM-2, caspase 3 cleavage and monodansylcadaverine (MDC) staining. Cyclin B and poly-ubiquitinated proteins were assessed by western blotting. RESULTS Curcumin treatment reduces viability of all cell lines within 24 h of treatment in a 5-50 muM range. Cytotoxicity is associated with accumulation in G2/M cell-cycle phases and distinct chromatin morphology, consistent with MC. Caspase-3 activation was detected in two out of four cell lines, but was a minor event. The addition of a caspase inhibitor zVAD had a marginal or no effect on cell viability, indicating predominance of a non-apoptotic form of cell death. In two cell lines, features of both MC and autophagy were apparent. Curcumin-responsive cells were found to accumulate poly-ubiquitinated proteins and cyclin B, consistent with a disturbance of the ubiquitin-proteasome system. This effect on a key cell-cycle checkpoint regulator may be responsible for the mitotic disturbances and consequent cytotoxicity of this drug. CONCLUSION Curcumin can induce cell death by a mechanism that is not reliant on apoptosis induction, and thus represents a promising anticancer agent for prevention and treatment of oesophageal cancer.
Collapse
Affiliation(s)
- G O'Sullivan-Coyne
- Leslie C. Quick Laboratory, Cork Cancer Research Centre, BioSciences Institute, University College Cork and Mercy University Hospital, Cork, Ireland
| | | | | | | | | |
Collapse
|
37
|
Dujic J, Kippenberger S, Ramirez-Bosca A, Diaz-Alperi J, Bereiter-Hahn J, Kaufmann R, Bernd A, Hofmann M. Curcumin in combination with visible light inhibits tumor growth in a xenograft tumor model. Int J Cancer 2009; 124:1422-8. [DOI: 10.1002/ijc.23997] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Abstract
Esophageal cancer is a significant worldwide health problem because of its poor prognosis and high incidence in certain parts of the world. Tobacco smoke and alcohol consumption are significant risk factors for esophageal squamous cell carcinoma, whereas frequent gastroesophageal reflux and subsequent inflammatory reactions play a role in causing the adenocarcinoma. Esophageal carcinogenesis involves multiple genetic alterations. A large body of knowledge has been generated regarding molecular alterations associated with esophageal carcinogenesis. These alterations include aberrant cell cycle control, DNA repair, cellular enzymes, growth factor receptors, and nuclear receptors. This chapter reviews the most frequent gene alterations and their correlation with risk factors as well as the prevention strategies in esophageal cancer.
Collapse
Affiliation(s)
- Xiao-chun Xu
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
39
|
López-Lázaro M. Anticancer and carcinogenic properties of curcumin: considerations for its clinical development as a cancer chemopreventive and chemotherapeutic agent. Mol Nutr Food Res 2008; 52 Suppl 1:S103-27. [PMID: 18496811 DOI: 10.1002/mnfr.200700238] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A growing body of research suggests that curcumin, the major active constituent of the dietary spice turmeric, has potential for the prevention and therapy of cancer. Preclinical data have shown that curcumin can both inhibit the formation of tumors in animal models of carcinogenesis and act on a variety of molecular targets involved in cancer development. In vitro studies have demonstrated that curcumin is an efficient inducer of apoptosis and some degree of selectivity for cancer cells has been observed. Clinical trials have revealed that curcumin is well tolerated and may produce antitumor effects in people with precancerous lesions or who are at a high risk for developing cancer. This seems to indicate that curcumin is a pharmacologically safe agent that may be used in cancer chemoprevention and therapy. Both in vitro and in vivo studies have shown, however, that curcumin may produce toxic and carcinogenic effects under specific conditions. Curcumin may also alter the effectiveness of radiotherapy and chemotherapy. This review article analyzes the in vitro and in vivo cancer-related activities of curcumin and discusses that they are linked to its known antioxidant and pro-oxidant properties. Several considerations that may help develop curcumin as an anticancer agent are also discussed.
Collapse
Affiliation(s)
- Miguel López-Lázaro
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Sevilla, Spain.
| |
Collapse
|
40
|
Hatcher H, Planalp R, Cho J, Torti FM, Torti SV. Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci 2008; 65:1631-52. [PMID: 18324353 PMCID: PMC4686230 DOI: 10.1007/s00018-008-7452-4] [Citation(s) in RCA: 1218] [Impact Index Per Article: 76.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Curcumin is the active ingredient in the traditional herbal remedy and dietary spice turmeric (Curcuma longa). Curcumin has a surprisingly wide range of beneficial properties, including anti-inflammatory, antioxidant, chemopreventive and chemotherapeutic activity. The pleiotropic activities of curcumin derive from its complex chemistry as well as its ability to influence multiple signaling pathways, including survival pathways such as those regulated by NF-kappaB, Akt, and growth factors; cytoprotective pathways dependent on Nrf2; and metastatic and angiogenic pathways. Curcumin is a free radical scavenger and hydrogen donor, and exhibits both pro- and antioxidant activity. It also binds metals, particularly iron and copper, and can function as an iron chelator. Curcumin is remarkably non-toxic and exhibits limited bioavailability. Curcumin exhibits great promise as a therapeutic agent, and is currently in human clinical trials for a variety of conditions, including multiple myeloma, pancreatic cancer, myelodysplastic syndromes, colon cancer, psoriasis and Alzheimer's disease.
Collapse
Affiliation(s)
- H Hatcher
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | |
Collapse
|
41
|
Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett 2008; 269:199-225. [PMID: 18479807 DOI: 10.1016/j.canlet.2008.03.009] [Citation(s) in RCA: 714] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Revised: 03/16/2008] [Accepted: 03/03/2008] [Indexed: 12/23/2022]
Abstract
Because most cancers are caused by dysregulation of as many as 500 different genes, agents that target multiple gene products are needed for prevention and treatment of cancer. Curcumin, a yellow coloring agent in turmeric, has been shown to interact with a wide variety of proteins and modify their expression and activity. These include inflammatory cytokines and enzymes, transcription factors, and gene products linked with cell survival, proliferation, invasion, and angiogenesis. Curcumin has been found to inhibit the proliferation of various tumor cells in culture, prevents carcinogen-induced cancers in rodents, and inhibits the growth of human tumors in xenotransplant or orthotransplant animal models either alone or in combination with chemotherapeutic agents or radiation. Several phase I and phase II clinical trials indicate that curcumin is quite safe and may exhibit therapeutic efficacy. These aspects of curcumin are discussed further in detail in this review.
Collapse
|
42
|
Abstract
Curcumin (diferuloylmethane) is an orange-yellow component of turmeric (Curcuma longa), a spice often found in curry powder. In recent years, considerable interest has been focused on curcumin due to its use to treat a wide variety of disorders without any side effects. It is one of the major curcuminoids of turmeric, which impart its characteristic yellow colour. It was used in ancient times on the Indian subcontinent to treat various illnesses such as rheumatism, body ache, skin diseases, intestinal worms, diarrhoea, intermittent fevers, hepatic disorders, biliousness, urinary discharges, dyspepsia, inflammations, constipation, leukoderma, amenorrhea, and colic. Curcumin has the potential to treat a wide variety of inflammatory diseases including cancer, diabetes, cardiovascular diseases, arthritis, Alzheimer's disease, psoriasis, etc, through modulation of numerous molecular targets. This article reviews the use of curcumin for the chemoprevention and treatment of various diseases.
Collapse
Affiliation(s)
- Leelavinothan Pari
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| | | | | |
Collapse
|
43
|
Watson JL, Hill R, Lee PW, Giacomantonio CA, Hoskin DW. Curcumin induces apoptosis in HCT-116 human colon cancer cells in a p21-independent manner. Exp Mol Pathol 2008; 84:230-3. [PMID: 18423603 DOI: 10.1016/j.yexmp.2008.02.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 02/11/2008] [Indexed: 10/22/2022]
Abstract
Several micronutrients present in fruits and vegetables exhibit anticancer activity as a result of their actions on molecular targets involved in carcinogenesis and tumor progression. Curcumin, a phenolic phytochemical derived from the rhizome of Curcuma longa, exhibits both cancer-preventative activity and growth inhibitory effects on neoplastic cells. Several studies report that curcumin inhibits cancer cell proliferation and induces apoptosis in cancer cells through p21-mediated cell cycle arrest. Cancer cells that are deficient in p21 are also reported to be more prone to undergo apoptosis in response to a variety of cytotoxic agents. In this study, we determined whether curcumin-induced cytotoxicity in cultures of HCT-116 human colon cancer cells was dependent on p21 status. Curcumin killed wild-type HCT-116 cells in a dose- and time-dependent manner, as measured in an MTT cell viability assay. Moreover, an equivalent cytotoxic effect by curcumin was observed in both p21(+/+) and p21(-/-)HCT-116 cells, indicating that curcumin-induced cytotoxicity was p21-independent. Primary cultures of human dermal fibroblasts were less sensitive than HCT-116 colon cancer cells to lower doses of curcumin, suggesting a degree of selectivity for neoplastic cells. Western blot analysis showed that cell death in curcumin-treated cultures of p21(+/+) and p21(-/-) HCT-116 cells was associated with a reduction in pro-caspase-3 and PARP-1 cleavage, which are indicative of apoptosis. We conclude that curcumin-induced apoptosis in HCT-116 colon cancer cells does not depend on p21 status.
Collapse
Affiliation(s)
- Jane L Watson
- Department of Surgery, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | |
Collapse
|
44
|
Murakami A, Ohigashi H. Targeting NOX, INOS and COX-2 in inflammatory cells: chemoprevention using food phytochemicals. Int J Cancer 2007; 121:2357-63. [PMID: 17893865 DOI: 10.1002/ijc.23161] [Citation(s) in RCA: 336] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biological, biochemical and physical stimuli activate inflammatory leukocytes, such as macrophages, resulting in induction and synthesis of proinflammatory proteins and enzymes, together with free radicals, as innate immune responses. On the other hand, chronic and dysregulated activation of some inducible enzymes, including NADPH oxidase (NOX), inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, have been shown to play pivotal roles in the development of certain inflammatory diseases such as oncogenesis. While the use of synthetic agents, especially those targeting molecules, is an attractive and reasonable approach to prevent carcinogenesis, it should be noted that traditional herbs and spices also exist along with their active constituents, which have been demonstrated to disrupt inflammatory signal transduction pathways. In this mini-review, the molecular mechanisms of activation or induction of NOX, iNOS and COX-2, as well as some food phytochemicals with marked potential to regulate those key inflammatory molecules, are highlighted. For example, 1'-acetoxychavicol acetate, which occurs in the rhizomes of the subtropical Zingiberaceae plant, has been shown to attenuate NOX-derived superoxide generation in macrophages, as well as lipopolysaccharide-induced nitric oxide and prostaglandin E(2) production through the suppression of iNOS and COX-2 synthesis, respectively. Notably, this phytochemical has exhibited a wide range of cancer prevention activities in several rodent models of inflammation-associated carcinogenesis. Herein, the cancer preventive potentials of several food phytochemicals targeting the induction of NOX, iNOS and COX-2 are described.
Collapse
Affiliation(s)
- Akira Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| | | |
Collapse
|
45
|
Stoner GD, Wang LS, Chen T. Chemoprevention of esophageal squamous cell carcinoma. Toxicol Appl Pharmacol 2007; 224:337-49. [PMID: 17475300 PMCID: PMC2128258 DOI: 10.1016/j.taap.2007.01.030] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 01/19/2007] [Accepted: 01/26/2007] [Indexed: 12/12/2022]
Abstract
Esophageal squamous cell carcinoma (SCC) is responsible for approximately one-sixth of all cancer-related mortality worldwide. This malignancy has a multifactorial etiology involving several environmental, dietary and genetic factors. Since esophageal cancer has often metastasized at the time of diagnosis, current treatment modalities offer poor survival and cure rates. Chemoprevention offers a viable alternative that could well be effective against the disease. Clinical investigations have shown that primary chemoprevention of this disease is feasible if potent inhibitory agents are identified. The Fischer 344 (F-344) rat model of esophageal SCC has been used extensively to investigate the biology of the disease, and to identify chemopreventive agents that could be useful in human trials. Multiple compounds that inhibit tumor initiation by esophageal carcinogens have been identified using this model. These include several isothiocyanates, diallyl sulfide and polyphenolic compounds. These compounds influence the metabolic activation of esophageal carcinogens resulting in reduced genetic (DNA) damage. Recently, a few agents have been shown to inhibit the progression of preneoplastic lesions in the rat esophagus into tumors. These agents include inhibitors of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), vascular endothelial growth factor (VEGF) and c-Jun [a component of activator protein-1 (AP-1)]. Using a food-based approach to cancer prevention, we have shown that freeze-dried berry preparations inhibit both the initiation and promotion/progression stages of esophageal SCC in F-344 rats. These observations have led to a clinical trial in China to evaluate the ability of freeze-dried strawberries to influence the progression of esophageal dysplasia to SCC.
Collapse
Affiliation(s)
- Gary D Stoner
- Division of Hematology and Oncology, Department of Internal Medicine, Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
46
|
Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as "Curecumin": from kitchen to clinic. Biochem Pharmacol 2007; 75:787-809. [PMID: 17900536 DOI: 10.1016/j.bcp.2007.08.016] [Citation(s) in RCA: 1445] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 08/13/2007] [Accepted: 08/14/2007] [Indexed: 02/06/2023]
Abstract
Although turmeric (Curcuma longa; an Indian spice) has been described in Ayurveda, as a treatment for inflammatory diseases and is referred by different names in different cultures, the active principle called curcumin or diferuloylmethane, a yellow pigment present in turmeric (curry powder) has been shown to exhibit numerous activities. Extensive research over the last half century has revealed several important functions of curcumin. It binds to a variety of proteins and inhibits the activity of various kinases. By modulating the activation of various transcription factors, curcumin regulates the expression of inflammatory enzymes, cytokines, adhesion molecules, and cell survival proteins. Curcumin also downregulates cyclin D1, cyclin E and MDM2; and upregulates p21, p27, and p53. Various preclinical cell culture and animal studies suggest that curcumin has potential as an antiproliferative, anti-invasive, and antiangiogenic agent; as a mediator of chemoresistance and radioresistance; as a chemopreventive agent; and as a therapeutic agent in wound healing, diabetes, Alzheimer disease, Parkinson disease, cardiovascular disease, pulmonary disease, and arthritis. Pilot phase I clinical trials have shown curcumin to be safe even when consumed at a daily dose of 12g for 3 months. Other clinical trials suggest a potential therapeutic role for curcumin in diseases such as familial adenomatous polyposis, inflammatory bowel disease, ulcerative colitis, colon cancer, pancreatic cancer, hypercholesteremia, atherosclerosis, pancreatitis, psoriasis, chronic anterior uveitis and arthritis. Thus, curcumin, a spice once relegated to the kitchen shelf, has moved into the clinic and may prove to be "Curecumin".
Collapse
Affiliation(s)
- Ajay Goel
- Gastrointestinal Cancer Research Laboratory, Department of Internal Medicine, Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, TX, United States
| | | | | |
Collapse
|
47
|
Surh YJ, Chun KS. CANCER CHEMOPREVENTIVE EFFECTS OF CURCUMIN. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 595:149-72. [PMID: 17569209 DOI: 10.1007/978-0-387-46401-5_5] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chemoprevention, which is referred to as the use of nontoxic natural or synthetic chemicals to intervene in multistage carcinogenesis, has emerged as a promising and pragmatic medical approach to reduce the risk of cancer. Numerous components of edible plants, collectively termed "phytochemicals" have been reported to possess substantial chemopreventive properties. Curcumin, a yellow coloring ingredient derived from Curcuma longa L. (Zingiberaceae), is one of the most extensively investigated and well-defined chemopreventive phytochemicals. Curcumin has been shown to protect against skin, oral, intestinal, and colon carcinogenesis and also to suppress angiogenesis and metastasis in a variety animal tumor models. It also inhibits the proliferation of cancer cells by arresting them in the various phases of the cell cycle and by inducing apoptosis. Moreover, curcumin has a capability to inhibit carcinogen bioactivation via suppression of specific cytochrome P450 isozymes, as well as to induce the activity or expression of phase II carcinogen detoxifying enzymes. Well-designed intervention studies are necessary to assess the chemopreventive efficacy of curcumin in normal individuals as well as high-risk groups. Sufficient data from pharmacodynamic as well as mechanistic studies are necessary to advocate clinical evaluation of curcumin for its chemopreventive potential.
Collapse
Affiliation(s)
- Young-Joon Surh
- National Research Laboratory of Molecular Carcinogenesis and Chemoprevention, College of Pharmacy, Seoul National University, South Korea.
| | | |
Collapse
|
48
|
Kuttan G, Kumar KBH, Guruvayoorappan C, Kuttan R. Antitumor, anti-invasion, and antimetastatic effects of curcumin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 595:173-84. [PMID: 17569210 DOI: 10.1007/978-0-387-46401-5_6] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Curcumin was found to be cytotoxic in nature to a wide variety of tumor cell lines of different tissue origin. The action of curcumin is dependent on with the cell type, the concentration of curcumin (IC50: 2-40 microg/mL), and the time of the treatment. The major mechanism by which curcumin induces cytotoxicity is the induction of apoptosis. Curcumin decreased the expression of antiapoptotic members of the Bcl-2 family and elevated the expression of p53, Bax, procaspases 3, 8, and 9. Curcumin prevents the entry of nuclear factor KB (NF-KB) into the nucleus there by decreasing the expression of cell cycle regulatory proteins and survival factors such as Bcl-2 and survivin. Curcumin arrested the cell cycle by preventing the expression of cyclin D1, cdk-1 and cdc-25. Curcumin inhibited the growth of transplantable tumors in different animal models and increased the life span of tumor-harboring animals. Curcumin inhibits metastasis of tumor cells as shown in in vitro as well as in vivo models, and the possible mechanism is the inhibition of matrix metalloproteases. Curcumin was found to suppress the expression of cyclooxygenase-2, vascular endothelial growth factor, and intercellular adhesion molecule- and elevated the expression of antimetastatic proteins, the tissue inhibitor of metalloproteases-2, nonmetastatic gene 23, and Ecadherin. These results indicate that curcumin acts at various stages of tumor cell progression.
Collapse
Affiliation(s)
- Girija Kuttan
- Department of Immunology, Amala Cancer Research Centre, Thrissur Kerala, India.
| | | | | | | |
Collapse
|
49
|
Aggarwal BB, Sundaram C, Malani N, Ichikawa H. CURCUMIN: THE INDIAN SOLID GOLD. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 595:1-75. [PMID: 17569205 DOI: 10.1007/978-0-387-46401-5_1] [Citation(s) in RCA: 842] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Turmeric, derived from the plant Curcuma longa, is a gold-colored spice commonly used in the Indian subcontinent, not only for health care but also for the preservation of food and as a yellow dye for textiles. Curcumin, which gives the yellow color to turmeric, was first isolated almost two centuries ago, and its structure as diferuloylmethane was determined in 1910. Since the time of Ayurveda (1900 Bc) numerous therapeutic activities have been assigned to turmeric for a wide variety of diseases and conditions, including those of the skin, pulmonary, and gastrointestinal systems, aches, pains, wounds, sprains, and liver disorders. Extensive research within the last half century has proven that most of these activities, once associated with turmeric, are due to curcumin. Curcumin has been shown to exhibit antioxidant, anti-inflammatory, antiviral, antibacterial, antifungal, and anticancer activities and thus has a potential against various malignant diseases, diabetes, allergies, arthritis, Alzheimer's disease, and other chronic illnesses. These effects are mediated through the regulation of various transcription factors, growth factors, inflammatory cytokines, protein kinases, and other enzymes. Curcumin exhibits activities similar to recently discovered tumor necrosis factor blockers (e.g., HUMIRA, REMICADE, and ENBREL), a vascular endothelial cell growth factor blocker (e.g., AVASTIN), human epidermal growth factor receptor blockers (e.g., ERBITUX, ERLOTINIB, and GEFTINIB), and a HER2 blocker (e.g., HERCEPTIN). Considering the recent scientific bandwagon that multitargeted therapy is better than monotargeted therapy for most diseases, curcumin can be considered an ideal "Spice for Life".
Collapse
MESH Headings
- Animals
- Anti-Bacterial Agents/chemistry
- Anti-Bacterial Agents/pharmacology
- Anti-Bacterial Agents/therapeutic use
- Anti-Inflammatory Agents, Non-Steroidal/chemistry
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Antifungal Agents/chemistry
- Antifungal Agents/pharmacology
- Antifungal Agents/therapeutic use
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/therapeutic use
- Antioxidants/chemistry
- Antioxidants/pharmacology
- Antioxidants/therapeutic use
- Antiviral Agents/chemistry
- Antiviral Agents/pharmacology
- Antiviral Agents/therapeutic use
- Arthritis, Rheumatoid/drug therapy
- Curcuma/chemistry
- Curcumin/analogs & derivatives
- Curcumin/chemistry
- Curcumin/metabolism
- Curcumin/pharmacology
- Curcumin/therapeutic use
- Humans
- India
- Medicine, Ayurvedic
- Models, Biological
- Molecular Structure
- Neoplasms/drug therapy
- Phytotherapy
- Plants, Medicinal
- Spices
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Bharat B Aggarwal
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
50
|
Affiliation(s)
- Shishir Shishodia
- Department of Biology, Texas Southern University, Houston, Texas, USA
| | | | | |
Collapse
|