1
|
Wang J, Su H, Wang M, Ward R, An S, Xu TR. Pyroptosis and the fight against lung cancer. Med Res Rev 2025; 45:5-28. [PMID: 39132876 DOI: 10.1002/med.22071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 06/26/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
Pyroptosis, a newly characterized type of inflammatory programmed cell death (PCD), is usually triggered by multiple inflammasomes which can recognize different danger or damage-associated molecular patterns (DAMPs), leading to the activation of caspase-1 and the cleavage of gasdermin D (GSDMD). Gasdermin family pore-forming proteins are the executers of pyroptosis and are normally maintained in an inactive state through auto-inhibition. Upon caspases mediated cleavage of gasdermins, the pro-pyroptotic N-terminal fragment is released from the auto-inhibition of C-terminal fragment and oligomerizes, forming pores in the plasma membrane. This results in the secretion of interleukin (IL)-1β, IL-18, and high-mobility group box 1 (HMGB1), generating osmotic swelling and lysis. Current therapeutic approaches including chemotherapy, radiotherapy, molecularly targeted therapy and immunotherapy for lung cancer treatment efficiently force the cancer cells to undergo pyroptosis, which then generates local and systemic antitumor immunity. Thus, pyroptosis is recognized as a new therapeutic regimen for the treatment of lung cancer. In this review, we briefly describe the signaling pathways involved in pyroptosis, and endeavor to discuss the antitumor effects of pyroptosis and its potential application in lung cancer therapy, focusing on the contribution of pyroptosis to microenvironmental reprogramming and evocation of antitumor immune response.
Collapse
Affiliation(s)
- Jiwei Wang
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, China
- Center for Pharmaceutical Sciences and Engineering, Kunming University of Science and Technology, Kunming, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Huiling Su
- Center for Pharmaceutical Sciences and Engineering, Kunming University of Science and Technology, Kunming, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Min Wang
- Center for Pharmaceutical Sciences and Engineering, Kunming University of Science and Technology, Kunming, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Richard Ward
- Centre for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, College of Medical, University of Glasgow, Glasgow, UK
| | - Su An
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, China
- Center for Pharmaceutical Sciences and Engineering, Kunming University of Science and Technology, Kunming, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Tian-Rui Xu
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, China
- Center for Pharmaceutical Sciences and Engineering, Kunming University of Science and Technology, Kunming, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
2
|
Jalali AM, Mitchell KJ, Pompoco C, Poludasu S, Tran S, Ramana KV. Therapeutic Significance of NLRP3 Inflammasome in Cancer: Friend or Foe? Int J Mol Sci 2024; 25:13689. [PMID: 39769450 PMCID: PMC11728390 DOI: 10.3390/ijms252413689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Besides various infectious and inflammatory complications, recent studies also indicated the significance of NLRP3 inflammasome in cancer progression and therapy. NLRP3-mediated immune response and pyroptosis could be helpful or harmful in the progression of cancer, and also depend on the nature of the tumor microenvironment. The activation of NLRP3 inflammasome could increase immune surveillance and the efficacy of immunotherapy. It can also lead to the removal of tumor cells by the recruitment of phagocytic macrophages, T-lymphocytes, and other immune cells to the tumor site. On the other hand, NLRP3 activation can also be harmful, as chronic inflammation driven by NLRP3 supports tumor progression by creating an environment that facilitates cancer cell proliferation, migration, invasion, and metastasis. The release of pro-inflammatory cytokines such as IL-1β and IL-18 can promote tumor growth and angiogenesis, while sustained inflammation may lead to immune suppression, hindering effective anti-tumor responses. In this review article, we discuss the role of NLRP3 inflammasome-mediated inflammatory response in the pathophysiology of various cancer types; understanding this role is essential for the development of innovative therapeutic strategies for cancer growth and spread.
Collapse
Affiliation(s)
| | | | | | | | | | - Kota V. Ramana
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA
| |
Collapse
|
3
|
Karati D, Mukherjee S, Roy S. Deciphering the molecular mechanistic paths describing the chemotherapeutic potential and epigenetic regulation of curcumin in lung cancer: a mini review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2715-2725. [PMID: 37982888 DOI: 10.1007/s00210-023-02838-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/03/2023] [Indexed: 11/21/2023]
Abstract
In an uncontrolled inflammatory environment, the complex process of lung carcinogenesis occurs. Lung cancer remains the leading cause of cancer-related mortality worldwide. The average 5-year survival rate is still low despite significant advancements in our knowledge of lung carcinogenesis and the development of innovative therapies in recent decades. Research on adjuvant treatment, lung carcinogenesis pathways, and possible prognostic indicators has to be refocused using an innovative approach. The majority of lung cancers are discovered at an advanced stage when there is little chance of recovery. It has grown in popularity in recent years to supplement already available chemotherapeutic therapies with adjuvant herbal medications, which may lessen toxicity and adverse effects without sacrificing therapeutic efficiency. One such prospective contender is curcumin. In-depth research has been done on curcumin as a multi-target anti-tumor and anti-inflammatory molecule. A pharmacologically active polyphenol produced from turmeric is called curcumin. Over the past few decades, curcumin's therapeutic potential has been thoroughly studied, and data indicate that curcumin may play a part in a variety of biological processes, most notably its potent anticancer activity. Being a pleiotropic chemical, curcumin regulates a variety of molecules that are key players in many cell signaling pathways. It has been shown to stifle transformation, restrain proliferation, and trigger apoptosis. Curcumin can reduce the development of non-small cell LC by downregulating Circular RNA hsa_circ_0007580, which in turn controls the expression of integrin subunit beta 1 by adsorbing miR-384. Nevertheless, despite all these advantages, curcumin's effectiveness is still restricted because of its weak bioavailability, poor absorption within the systemic circulation, and quick removal from the body. In an effort to overcome these constraints, scientists from all around the world are working to develop a synthetic and improved curcuminoid by appropriately altering the parent skeleton structurally. These curcuminoids will simultaneously improve the physicochemical properties and efficacy. This review presents evidence from the most recent clinical trials coupled with the molecular mechanisms of curcumin in LC.
Collapse
Affiliation(s)
- Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, West Bengal, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata, 124 B.L. Saha Road, Kolkata, West Bengal, 700053, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata, 124 B.L. Saha Road, Kolkata, West Bengal, 700053, India.
| |
Collapse
|
4
|
Tang M, Yin Y, Wang W, Gong K, Dong J, Gao X, Li J, Fang L, Ma J, Hong Y, Li Z, Bi T, Zhang W, Liu W. Exploring the multifaceted effects of Interleukin-1 in lung cancer: From tumor development to immune modulation. Life Sci 2024; 342:122539. [PMID: 38423172 DOI: 10.1016/j.lfs.2024.122539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Lung cancer, acknowledged as one of the most fatal cancers globally, faces limited treatment options on an international scale. The success of clinical treatment is impeded by challenges such as late diagnosis, restricted treatment alternatives, relapse, and the emergence of drug resistance. This predicament has led to a saturation point in lung cancer treatment, prompting a rapid shift in focus towards the tumor microenvironment (TME) as a pivotal area in cancer research. Within the TME, Interleukin-1 (IL-1) is abundantly present, originating from immune cells, tissue stromal cells, and tumor cells. IL-1's induction of pro-inflammatory mediators and chemokines establishes an inflammatory milieu influencing tumor occurrence, development, and the interaction between tumors and the host immune system. Notably, IL-1 expression in the TME exhibits characteristics such as staging, tissue specificity, and functional pluripotency. This comprehensive review aims to delve into the impact of IL-1 on lung cancer, encompassing aspects of occurrence, invasion, metastasis, immunosuppression, and immune surveillance. The ultimate goal is to propose a novel treatment approach, considering the intricate dynamics of IL-1 within the TME.
Collapse
Affiliation(s)
- Mingbo Tang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yipeng Yin
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Wei Wang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China; "Chuangxin China" Innovation Base of stem cell and Gene Therapy for endocrine Metabolic diseases, Jinan, Shandong 250021, China; Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China; Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China
| | - Kejian Gong
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Junxue Dong
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Universitätsklinikum Schleswig-Holstein (UKSH), Christian Albrechts University of Kiel, Kiel, Germany
| | - Xinliang Gao
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Jialin Li
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Linan Fang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Jianzun Ma
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yang Hong
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Zhiqin Li
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Taiyu Bi
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Wenyu Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Wei Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
5
|
Paz-Ares L, Goto Y, Wan-Teck Lim D, Halmos B, Chul Cho B, Cobo M, Luis González Larriba J, Zhou C, Demedts I, Atmaca A, Baka S, Mookerjee B, Portella S, Zhu Z, Wu J, Demanse D, Dharan B, Reck M. Canakinumab in combination with docetaxel compared with docetaxel alone for the treatment of advanced non-small cell lung cancer following platinum-based doublet chemotherapy and immunotherapy (CANOPY-2): A multicenter, randomized, double-blind, phase 3 trial. Lung Cancer 2024; 189:107451. [PMID: 38354535 DOI: 10.1016/j.lungcan.2023.107451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 02/16/2024]
Abstract
OBJECTIVES Canakinumab, an interleukin-1 beta inhibitor, previously showed reduced lung cancer incidence and mortality (CANTOS). Here, we compare the efficacy/safety of canakinumab versus placebo in patients with advanced non-small cell lung cancer (NSCLC) who had progressed after platinum-based doublet chemotherapy (PDC) and immunotherapy. MATERIALS AND METHODS CANOPY-2, a randomized, double-blind, phase 3 trial, enrolled adult patients with stage IIIB/IV NSCLC, without EGFR or ALK alterations, who had received one prior PDC regimen and one prior programmed death-1/programmed death-ligand 1 inhibitor and experienced subsequent disease progression. Patients were randomized to canakinumab plus docetaxel or placebo plus docetaxel. RESULTS A total of 237 patients were randomly allocated: 120 (51 %) to canakinumab and 117 (49 %) to placebo, stratified by histology and prior lines of therapy. Three patients in the placebo arm did not receive study treatment. The trial did not meet its primary endpoint of overall survival: median 10.6 months (95 % confidence interval [CI], 8.2-12.4) for the canakinumab arm and 11.3 months (95 % CI, 8.5-13.8) for the placebo arm (hazard ratio, 1.06 [95 % CI, 0.76-1.48]; one-sided P-value = 0.633). AEs (any grade) were reported in 95 % of patients in the canakinumab group and in 98 % of patients in the placebo group. Grade 3-4 AEs were experienced by 62 % and 64 % of patients in the canakinumab and placebo groups, respectively, and grade 5 AEs were experienced by 8 % and 5 %. Prespecified, post-hoc subgroup analyses showed that patients with undetected circulating tumor DNA (ctDNA) and/or lower levels (< 10 mg/L) of C-reactive protein (CRP) achieved longer progression-free and overall survival than those with detected ctDNA or higher (≥ 10 mg/L) CRP levels. There was no association with treatment arm. CONCLUSION Adding canakinumab to docetaxel did not provide additional benefit for patients with advanced NSCLC who had progressed after PDC and immunotherapy. CLINICAL REGISTRATION NCT03626545.
Collapse
Affiliation(s)
- Luis Paz-Ares
- CNIO-H120 Lung Cancer Unit, University Hospital 12 de Octubre, Universidad Complutense de Madrid and CIBERONC, Madrid, Spain.
| | - Yasushi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | | | - Balazs Halmos
- Division of Medical Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY, USA
| | - Byoung Chul Cho
- Department of Internal Medicine, Yonsei University Health System, YUCM, Seoul, Republic of Korea
| | - Manuel Cobo
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Regional y Virgen de la Victoria Hospital, IBIMA, Málaga, Spain
| | | | - Caicun Zhou
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Ingel Demedts
- Department of Pulmonary Diseases, AZ Delta Hospital, Roeselare, Belgium
| | - Akin Atmaca
- Department of Hematology and Oncology, University Cancer Center (UCT), Frankfurt, Germany
| | - Sofia Baka
- Oncology Department, European Interbalkan Medical Center, Thessaloniki, Greece
| | | | | | - Zewen Zhu
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Jincheng Wu
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | | | - Bharani Dharan
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Martin Reck
- LungenClinic, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany
| |
Collapse
|
6
|
Khilwani R, Singh S. Systems Biology and Cytokines Potential Role in Lung Cancer Immunotherapy Targeting Autophagic Axis. Biomedicines 2023; 11:2706. [PMID: 37893079 PMCID: PMC10604646 DOI: 10.3390/biomedicines11102706] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/29/2023] Open
Abstract
Lung cancer accounts for the highest number of deaths among men and women worldwide. Although extensive therapies, either alone or in conjunction with some specific drugs, continue to be the principal regimen for evolving lung cancer, significant improvements are still needed to understand the inherent biology behind progressive inflammation and its detection. Unfortunately, despite every advancement in its treatment, lung cancer patients display different growth mechanisms and continue to die at significant rates. Autophagy, which is a physiological defense mechanism, serves to meet the energy demands of nutrient-deprived cancer cells and sustain the tumor cells under stressed conditions. In contrast, autophagy is believed to play a dual role during different stages of tumorigenesis. During early stages, it acts as a tumor suppressor, degrading oncogenic proteins; however, during later stages, autophagy supports tumor cell survival by minimizing stress in the tumor microenvironment. The pivotal role of the IL6-IL17-IL23 signaling axis has been observed to trigger autophagic events in lung cancer patients. Since the obvious roles of autophagy are a result of different immune signaling cascades, systems biology can be an effective tool to understand these interconnections and enhance cancer treatment and immunotherapy. In this review, we focus on how systems biology can be exploited to target autophagic processes that resolve inflammatory responses and contribute to better treatment in carcinogenesis.
Collapse
Affiliation(s)
| | - Shailza Singh
- Systems Medicine Laboratory, National Centre for Cell Science, SPPU Campus, Ganeshkhind Road, Pune 411007, India;
| |
Collapse
|
7
|
Çakır Gündoğdu A, Arı NS, Höbel A, Şenol G, Eldiven Ö, Kar F. Boric Acid Exhibits Anticancer Properties in Human Endometrial Cancer Ishikawa Cells. Cureus 2023; 15:e44277. [PMID: 37772231 PMCID: PMC10531031 DOI: 10.7759/cureus.44277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2023] [Indexed: 09/30/2023] Open
Abstract
Objective This study aims to explore the potential anti-cancer properties of boric acid (BA) in human endometrial cancer Ishikawa cells by assessing its influence on cell viability, apoptosis, oxidative stress, and inflammatory responses. Methods The impact of BA at concentrations ranging from 2.5 to 100 mM on cell viability was assessed in Ishikawa cells and normal fibroblast L929 cells (used as the control) through the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Spectrophotometric measurements were performed to determine the total oxidant status (TOS) and total antioxidant status (TAS) in BA-treated cells, and the oxidative stress index (OSI) was calculated. The enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of cytochrome c and caspase 3, both of which are constituents of the extrinsic apoptotic pathway. Furthermore, changes in the concentrations of pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interleukin-1beta (IL-1β) in the cells were analyzed using ELISA and immunofluorescence staining. Results The exposure of Ishikawa cells to BA for 24 hours led to a dose-dependent decline in cell viability, with an IC50 value of 40 mM. BA dose-dependently increased cytochrome c and caspase 3 levels in cancer cells. In Ishikawa cells, BA treatment led to a significant elevation in OSI. Moreover, the concentrations of TNF-α and IL-1β exhibited a dose-dependent decrease in BA-treated cells. On the other hand, in L929 cells, BA decreased OSI in a dose-dependent manner but did not change TNF-α and IL-1β levels. Concentrations up to 80 mM had no effect on cell viability and apoptosis, but BA at 80 mM concentration decreased viability and increased cytochrome c and caspase 3 levels in L929 cells. Conclusion BA inhibited cell viability, triggered apoptosis, induced oxidative stress, and suppressed inflammatory responses in endometrial cancer cells. Notably, at its IC50 concentration, BA had no cytotoxic effect on normal fibroblasts. Given its favorable properties, BA may provide a valuable therapeutic option to impede the development and progression of endometrial cancer.
Collapse
Affiliation(s)
| | - Neziha Senem Arı
- Histology and Embryology, Kütahya Health Sciences University, Kütahya, TUR
| | - Asiye Höbel
- Histology and Embryology, Kütahya Health Sciences University, Kütahya, TUR
| | - Gülnihal Şenol
- Histology and Embryology, Kütahya Health Sciences University, Kütahya, TUR
| | - Ömer Eldiven
- Histology and Embryology, Kütahya Health Sciences University, Kütahya, TUR
| | - Fatih Kar
- Medical Biochemistry, Kutahya University of Health Sciences, School of Medicine, Kütahya, TUR
| |
Collapse
|
8
|
Zhao J, Qiu P, Wang Y, Wang Y, Zhou J, Zhang B, Zhang L, Gou D. Chitosan-based hydrogel wound dressing: From mechanism to applications, a review. Int J Biol Macromol 2023:125250. [PMID: 37307982 DOI: 10.1016/j.ijbiomac.2023.125250] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/17/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
As promising biomaterials, hydrogels are widely used in the medical engineering field, especially in wound repairing. Compared with traditional wound dressings, such as gauze and bandage, hydrogel could absorb and retain more water without dissolving or losing its three-dimensional structure, thus avoiding secondary injury and promoting wound healing. Chitosan and its derivatives have become hot research topics for hydrogel wound dressing production due to their unique molecular structure and diverse biological activities. In this review, the mechanism of wound healing was introduced systematically. The mechanism of action of chitosan in the first three stages of wound repair (hemostasis, antimicrobial properties and progranulation), the effect of chitosan deacetylation and the molecular weight on its performance are analyzed. Additionally, the recent progress in intelligent and drug-loaded chitosan-based hydrogels and the features and advantages of chitosan were discussed. Finally, the challenges and prospects for the future development of chitosan-based hydrogels were discussed.
Collapse
Affiliation(s)
- Jun Zhao
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Peng Qiu
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yue Wang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yufan Wang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Jianing Zhou
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Baochun Zhang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Lihong Zhang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Dongxia Gou
- College of Food Science and Engineering, Changchun University, Changchun 130022, China.
| |
Collapse
|
9
|
Faroni E, Sabattini S, Guerra D, Iannuzzi C, Chalfon C, Agnoli C, Stefanello D, Polton G, Ramos S, Aralla M, Ciaccini R, Foglia A, Okonji S, Marconato L. Timely adjuvant chemotherapy improves outcome in dogs with non-metastatic splenic hemangiosarcoma undergoing splenectomy. Vet Comp Oncol 2023; 21:123-130. [PMID: 36633399 DOI: 10.1111/vco.12875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/24/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023]
Abstract
Timely delivery of adjuvant chemotherapy has been shown to be advantageous in many human cancers and canine osteosarcoma. Adjuvant chemotherapy has been shown to improve outcome for canine splenic hemangiosarcoma. The aim of this retrospective study was to investigate whether timely adjuvant chemotherapy administration resulted in better outcome in dogs with non-metastatic splenic hemangiosarcoma undergoing splenectomy. Medical records were searched for dogs with non-metastatic, splenic hemangiosarcoma that received splenectomy and adjuvant chemotherapy. The number of days from surgery to the first chemotherapy dose (StoC) was evaluated to identify the cut-off value associated with the best survival advantage. StoC and other possible prognostic factors were tested for influence on time to metastasis (TTM) and overall survival (OS). Seventy dogs were included. Median StoC was 20 days (range: 4-70). The time interval associated with the greatest survival benefit was 21 days. Median TTM and OS of dogs with StoC ≤ 21 days were significantly longer than those with StoC >21 days (TTM: 163 vs. 118 days, p = .001; OS: 238 vs. 146 days, p < .001). On multivariable analysis, StoC >21 days was the only variable significantly associated with increased risk of tumour progression (HR 2.1, p = .010) and death (HR 2.3; p = .008). Starting adjuvant chemotherapy within 21 days of surgery may be associated with a survival benefit in dogs with non-metastatic splenic hemangiosarcoma, possibly due to the early targeting of newly recruited metastatic cells after surgery.
Collapse
Affiliation(s)
- Eugenio Faroni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Ozzano dell'Emilia, Italy
| | - Silvia Sabattini
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Ozzano dell'Emilia, Italy
| | - Dina Guerra
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Ozzano dell'Emilia, Italy
| | - Chiara Iannuzzi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Ozzano dell'Emilia, Italy
| | - Carmit Chalfon
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Ozzano dell'Emilia, Italy
| | - Chiara Agnoli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Ozzano dell'Emilia, Italy
| | - Damiano Stefanello
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
| | - Gerry Polton
- North Downs Specialist Referrals, Bletchingley, UK
| | - Sofia Ramos
- North Downs Specialist Referrals, Bletchingley, UK
| | | | | | - Armando Foglia
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Ozzano dell'Emilia, Italy
| | - Samuel Okonji
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Ozzano dell'Emilia, Italy
| | - Laura Marconato
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Ozzano dell'Emilia, Italy
| |
Collapse
|
10
|
Banna GL, Friedlaender A, Tagliamento M, Mollica V, Cortellini A, Rebuzzi SE, Prelaj A, Naqash AR, Auclin E, Garetto L, Mezquita L, Addeo A. Biological Rationale for Peripheral Blood Cell-Derived Inflammatory Indices and Related Prognostic Scores in Patients with Advanced Non-Small-Cell Lung Cancer. Curr Oncol Rep 2022; 24:1851-1862. [PMID: 36255605 DOI: 10.1007/s11912-022-01335-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW To describe the biological rationale of peripheral blood cells (PBC)-derived inflammatory indexes and assess the related prognostic scores for patients with advanced non-small cell lung cancer (aNSCLC) treated with immune-checkpoint inhibitors (ICI). RECENT FINDINGS Inflammatory indexes based on PBC may indicate a pro-inflammatory condition affecting the immune response to cancer. The lung immune prognostic index (LIPI), consisting of derived neutrophils-to-lymphocyte ratio (NLR) and lactate dehydrogenase, is a validated prognostic tool, especially for pretreated aNSCLC patients, where the combination of NLR and PD-L1 tumour expression might also be predictive of immunotherapy benefit. In untreated high-PD-L1 aNSCLC patients, the Lung-Immune-Prognostic score (LIPS), including NLR, ECOG PS and concomitant steroids, is prognostic, and its modified version might indicate patients with favourable outcomes despite an ECOG PS of 2. NLR times platelets (i.e., SII), included in the NHS-Lung score, might improve the prognostication for combined chemoimmunotherapy. PBC-derived inflammatory indexes and related scores represent accurate, reproducible and non-expensive prognostic tools with clinical and research utility.
Collapse
Affiliation(s)
| | - Alex Friedlaender
- Department of Oncology, Clinique Générale Beaulieu, Geneva, Switzerland
- Department of Oncology, University Hospital of Geneva, Geneva, Switzerland
| | - Marco Tagliamento
- Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genoa, Genoa, Italy
| | - Veronica Mollica
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Alessio Cortellini
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Sara Elena Rebuzzi
- Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genoa, Genoa, Italy
- Medical Oncology Unit, Ospedale San Paolo, Savona, Italy
| | - Arsela Prelaj
- Medical Oncology Department 1, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
- Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Abdul Rafeh Naqash
- Medical Oncology/TSET Phase 1 Program, Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Edouard Auclin
- Medical Oncology, Hôpital Européen Georges Pompidou, AP-HP, Université Paris Cité, Paris, France
| | - Lucia Garetto
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Laura Mezquita
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, Spain
- Laboratory of Translational Genomics and Targeted Therapies in Solid Tumors, IDIBAPS, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Alfredo Addeo
- Department of Oncology, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
11
|
Differential expression of immune-regulatory proteins C5AR1, CLEC4A and NLRP3 on peripheral blood mononuclear cells in early-stage non-small cell lung cancer patients. Sci Rep 2022; 12:18439. [PMID: 36323738 PMCID: PMC9630369 DOI: 10.1038/s41598-022-21891-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/05/2022] [Indexed: 01/06/2023] Open
Abstract
Changes in gene expression profiling of peripheral blood mononuclear cells (PBMC) appear to represent the host's response to the cancer cells via paracrine signaling. We speculated that protein expression on circulating T-lymphocytes represent T-lymphocyte trafficking before infiltration into the tumor microenvironment. The possibility of using protein expression on circulating T-lymphocytes as a biomarker to discriminate early-stage non-small cell lung cancer (NSCLC) was explored. Four independent PBMC gene expression microarray datasets (GSE12771, GSE13255, GSE20189 and GSE3934) were analyzed. We selected C5AR1, CLEC4A and NLRP3 based on their significant protein expression in tumor-infiltrating lymphocytes, but not in normal lymphoid tissue. A validation study using automated flow cytometry was conducted in 141 study participants including 76 treatment-naive early-stage non-small cell lung cancer patients (NSCLC), 12 individuals with non-malignant pulmonary diseases, and 53 healthy individuals. Median ratios of C5AR1, CLEC4A and NLRP3 specific antibody staining to CD3 positive cells in early-stage NSCLC patients compared to healthy controls were 0.014 [0-0.37] vs. 0.01 [0-0.07, p = 0.13], 0.03 [0-0.87] vs. 0.02 [0-0.13, p = 0.10] and 0.19 [0-0.60] vs. 0.09 [0.02-0.31, p < 0.0001], respectively. Median fluorescence intensity (MFI) of CD3+C5AR1+, CD3+CLEC4A+ and CD3+NLRP3+ expression in early-stage NSCLC patients compared to healthy volunteers was 185 [64.2-4801] vs. 107.5 [27-229, p < 0.0001], 91.2 [42.4-2355] vs. 71.25 [46.2-103, p = 0.0005], and 1585 [478-5224] vs. 758.5 [318-1976, p < 0.0001], respectively. NLRP3:CD3 ratio, CD3+C5AR1+, CD3+CLEC4A+ and CD3+NLRP3+ MFI were significantly higher in early-stage NSCLC than healthy volunteers with an area under the ROC curve of 0.69-0.76. The CD3+NLRP3+ MFI provided the most distinguishable expression at 71.5% sensitivity and 70% specificity. Furthermore, CD3+NLRP3+ MFI potentially discriminated between early-stage NSCLC from malignant-mimic inflammation and infection pulmonary disease. Further validation in various pulmonary inflammatory disease might be warranted. Our proof-of-principle findings strengthen the hypothesis that malignancies generate distinctive protein expression fingerprints on circulating T-lymphocytes.
Collapse
|
12
|
Lee JM, Tsuboi M, Kim ES, Mok TS, Garrido P. Overcoming immunosuppression and pro-tumor inflammation in lung cancer with combined IL-1β and PD-1 inhibition. Future Oncol 2022; 18:3085-3100. [PMID: 36004638 DOI: 10.2217/fon-2021-1567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Inflammation in the tumor microenvironment is a complicit and known carcinogenesis driver. Inhibition of IL-1β, one of the most abundant and influential cytokines in the tumor microenvironment, may enhance the efficacy of PD-1. In a post-hoc analysis of phase III cardiovascular CANTOS trial, canakinumab, a monoclonal anti-IL-1β antibody, significantly reduced lung cancer incidence. Immune checkpoint inhibition (ICI) is the standard of care in non-small-cell lung cancer. However, ICI efficacy is heavily impacted by programmed death ligand-1 (PD-L1) status. Most patients with non-small-cell lung cancer have low PD-L1 expression levels. Thus, combinational strategies are needed to improve ICI efficacy and expand its use. Here, we describe the preclinical and clinical evidence to support the combination of IL-1β and PD-1 under investigation in the CANOPY program. The perioperative use of canakinumab with or without PD-1 inhibition in the CANOPY-N trial is described as a potential chemotherapy-free immunotherapy strategy.
Collapse
Affiliation(s)
- Jay M Lee
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-7313, USA
| | - Masahiro Tsuboi
- National Cancer Center Hospital East, Kashiwanoha, Kashiwa, Chiba, Japan
| | - Edward S Kim
- Levine Cancer Institute, Atrium Health, Charlotte, NC 28204, USA
| | - Tony Sk Mok
- State Key Laboratory of South China, The Chinese University of Hong Kong, Hong Kong, China
| | - Pilar Garrido
- Medical Oncology Department, Hospital Ramón y Cajal, Madrid, Spain
| |
Collapse
|
13
|
Zhang J, Veeramachaneni N. Targeting interleukin-1β and inflammation in lung cancer. Biomark Res 2022; 10:5. [PMID: 35086565 PMCID: PMC8796434 DOI: 10.1186/s40364-021-00341-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022] Open
Abstract
Inflammation is a process that protects organs against various potentially harmful stimuli and enables repair. Dysregulated inflammation, however, damages tissues and leads to disease, including cancer. Cancer-related inflammation is characterized by cytokine production, leukocyte infiltration, angiogenesis, and tissue remodeling-all critical processes in modulating the tumor microenvironment (TME). The TME is known to play a key role in tumor progression, and targeting its immune component to achieve a better anti-tumor response is the basis of immunotherapy. Despite the critical role cytokines play in the TME and tumor progression, there is currently only one therapy approved by the FDA that directly involves cytokine signaling: human recombinant interleukin-2 protein, aldesleukin. The recent Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS) trial evaluated the use of anti-interleukin-1β therapy in atherosclerotic disease; however, it also revealed interleukin-1β (IL-1β) blockade with canakinumab led to a significantly lower incidence of lung cancer. This has opened a promising new avenue for lung cancer therapy, and strategies using anti-IL-1β therapy alone or in combination with chemotherapy and/or immune checkpoint blockade are currently being evaluated in several clinical trials.
Collapse
Affiliation(s)
- Jun Zhang
- Division of Medical Oncology, Department of Internal Medicine, Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
| | - Nirmal Veeramachaneni
- Department of Cardiovascular and Thoracic Surgery, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160 , USA
| |
Collapse
|
14
|
Sohel M, Sultana H, Sultana T, Al Amin M, Aktar S, Ali MC, Rahim ZB, Hossain MA, Al Mamun A, Amin MN, Dash R. Chemotherapeutic potential of hesperetin for cancer treatment, with mechanistic insights: A comprehensive review. Heliyon 2022; 8:e08815. [PMID: 35128104 PMCID: PMC8810372 DOI: 10.1016/j.heliyon.2022.e08815] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/23/2021] [Accepted: 01/19/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cancer has become a significant concern in the medical sector with increasing disease complexity. Although some available conventional treatments are still a blessing for cancer patients, short-and long-term adverse effects and poor efficiency make it more difficult to treat cancer patients, demonstrating the need for new potent and selective anticancer drugs. In search of potent anticancer agents, naturally occurring compounds have always been admired due to their structural diversity, where Hesperetin (HSP) may be one of the potent candidates. PURPOSE We aimed to summarize all sources, pharmacological properties, anticancer activities of HSP against numerous cancers types through targeting multiple pathological processes, mechanism of HSP on sensitizing the current anti-cancer agents and other phytochemicals, overcoming resistance pattern and determining absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox). METHODS Information was retrieved from PubMed, Science Direct, and Google Scholar based on some key points like Hesperetin, cancer name, anticancer resistance, nanoformulation, and ADME/Tox was determined by in silico approaches. RESULT HSP is a phytoestrogen present in citrus fruits in a high concentration (several hundred mg/kg) and exhibited anti-cancer activities through interfering at several pathways. HSP can suppress tumor formation by targeting several cellular proteins such as cell cycle regulatory, apoptosis, metastatic, tyrosine kinase, growth factor receptor, estrogen metabolism, and antioxidant-related protein.HSP has shown remarkable synergistic properties in combination therapy and has been reported to overcome multidrug cancer resistance drugs, leading to an improved defensive mechanism. These anticancer activities of HSP may be due to proper structural chemistry. CONCLUSION Overall, HSP showed potential anticancer activities against all cancer and possess better pharmacokinetic properties. So this phytochemical alone or combination with other agents can be an effective alternative drug for cancer treatment.
Collapse
Affiliation(s)
- Md Sohel
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Habiba Sultana
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Tayeba Sultana
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Md. Al Amin
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Suraiya Aktar
- Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi, Bangladesh
| | - Md. Chayan Ali
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia 7003, Bangladesh
| | - Zahed Bin Rahim
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Md. Arju Hossain
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Abdullah Al Mamun
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Mohammad Nurul Amin
- Department of Pharmacy, Atish Dipankar University of Science and Technology, Dhaka 1230, Bangladesh
- Pratyasha Health Biomedical Research Center, Dhaka 1230 Bangladesh
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| |
Collapse
|
15
|
Tan Q, Duan L, Huang Q, Chen W, Yang Z, Chen J, Jin Y. Interleukin -1β Promotes Lung Adenocarcinoma Growth and Invasion Through Promoting Glycolysis via p38 Pathway. J Inflamm Res 2021; 14:6491-6509. [PMID: 34880649 PMCID: PMC8648110 DOI: 10.2147/jir.s319433] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Background There is a close relationship among inflammation, glycolysis, and tumors. The IL-1 family includes important inflammatory cytokines, among which IL-1β has been widely studied. In this study, we focused on the effect of IL-1β on glycolysis of lung adenocarcinoma (LUAD) cells in vivo and in vitro and explored its possible mechanisms. Methods A bioinformatic database and quantitative real-time PCR were used to analyze the expression of glycolysis-related enzyme genes and their correlations with IL1β in human LUAD samples. The human LUAD cell line A549 and Lewis lung carcinoma LLC cell line were stimulated with IL-1β. In vitro treatment effects, including glycolysis level, migration, and invasion were evaluated with a glucose assay kit, lactate assay kit, Western blotting, wound healing, and the transwell method. We established a mouse model of subcutaneous tumors using LLC cells pretreated with IL-1β and analyzed in vivo treatment effects through positron-emission tomography-computed tomography and staining. Virtual screening and molecular dynamic simulation were used to screen potential inhibitors of IL-1β. Results Our results showed that IL1β was positively correlated with the expression of glycolysis-related enzyme genes in LUAD. Glycolysis, migration, and invasion significantly increased in A549 and LLC stimulated with IL-1β. In vivo, IL-1β increased growth, mean standard uptake value, and pulmonary tumor metastasis, which were inhibited by the glycolysis inhibitor 2-deoxy-D-glucose and p38-pathway inhibitors. Small molecular compound ZINC14610053 was suggested being a potential inhibitor of IL-1β. Conclusion IL-1β promotes glycolysis of LUAD cells through p38 signaling, further enhancing tumor-cell migration and invasion. These results show that IL-1β links inflammation to glycolysis in LUAD, and targeting IL-1β and the glycolysis pathway may be a potential therapeutic strategy for lung cancer.
Collapse
Affiliation(s)
- Qi Tan
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
| | - Limin Duan
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
| | - Qi Huang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
| | - Wenjuan Chen
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
| | - Zimo Yang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
| | - Jiangbin Chen
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
| |
Collapse
|
16
|
Targeting the NLRP3 Inflammasome as a New Therapeutic Option for Overcoming Cancer. Cancers (Basel) 2021; 13:cancers13102297. [PMID: 34064909 PMCID: PMC8151587 DOI: 10.3390/cancers13102297] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammasomes are multiprotein complexes that regulate the maturation and secretion of the proinflammatory cytokines interleukin-1beta (IL-1β and interleukin-18 (IL-18) in response to various intracellular stimuli. As a member of the inflammasomes family, NLRP3 is the most studied and best characterized inflammasome and has been shown to be involved in several pathologies. Recent findings have made it increasingly apparent that the NLRP3 inflammasome may also play a central role in tumorigenesis, and it has attracted attention as a potential anticancer therapy target. In this review, we discuss the role of NLRP3 in the development and progression of cancer, offering a detailed summary of NLRP3 inflammasome activation (and inhibition) in the pathogenesis of various forms of cancer. Moreover, we focus on the therapeutic potential of targeting NLRP3 for cancer therapy, emphasizing how understanding NLRP3 inflammasome-dependent cancer mechanisms might guide the development of new drugs that target the inflammatory response of tumor-associated cells.
Collapse
|
17
|
Jang JH, Kim DH, Surh YJ. Dynamic roles of inflammasomes in inflammatory tumor microenvironment. NPJ Precis Oncol 2021; 5:18. [PMID: 33686176 PMCID: PMC7940484 DOI: 10.1038/s41698-021-00154-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/12/2021] [Indexed: 02/08/2023] Open
Abstract
The inflammatory tumor microenvironment has been known to be closely connected to all stages of cancer development, including initiation, promotion, and progression. Systemic inflammation in the tumor microenvironment is increasingly being recognized as an important prognostic marker in cancer patients. Inflammasomes are master regulators in the first line of host defense for the initiation of innate immune responses. Inflammasomes sense pathogen-associated molecular patterns and damage-associated molecular patterns, following recruitment of immune cells into infection sites. Therefore, dysregulated expression/activation of inflammasomes is implicated in pathogenesis of diverse inflammatory disorders. Recent studies have demonstrated that inflammasomes play a vital role in regulating the development and progression of cancer. This review focuses on fate-determining roles of the inflammasomes and the principal downstream effector cytokine, IL-1β, in the tumor microenvironment.
Collapse
Affiliation(s)
- Jeong-Hoon Jang
- grid.31501.360000 0004 0470 5905Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Do-Hee Kim
- grid.411203.50000 0001 0691 2332Department of Chemistry, College of Convergence and Integrated Science, Kyonggi University, Suwon, Gyeonggi-do South Korea
| | - Young-Joon Surh
- grid.31501.360000 0004 0470 5905Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea ,grid.31501.360000 0004 0470 5905Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea ,grid.31501.360000 0004 0470 5905Cancer Research Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
18
|
Peng JL, Wu JZ, Li GJ, Wu JL, Xi YM, Li XQ, Wang L. Identification of potential biomarkers of peripheral blood mononuclear cell in hepatocellular carcinoma using bioinformatic analysis: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e24172. [PMID: 33466191 PMCID: PMC7808450 DOI: 10.1097/md.0000000000024172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/11/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the cause of an overwhelming number of cancer-related deaths across the world. Developing precise and noninvasive biomarkers is critical for diagnosing HCC. Our research was designed to explore potentially useful biomarkers of host peripheral blood mononuclear cell (PBMC) in HCC by integrating comprehensive bioinformatic analysis. METHODS Gene expression data of PBMC in both healthy individuals and patients with HCC were extracted from the Gene Expression Omnibus (GEO) to identify differentially expressed genes (DEGs). The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were applied to annotate the function of DEGs. Protein-protein interaction analysis was performed to screen the hub genes from DEGs. cBioportal database analysis was performed to assess the prognostic significance of hub genes. The Cancer Cell Line Encyclopedia (CCLE) and The Human Protein Atlas (HPA) database analyses were performed to confirm the expression levels of the hub genes in HCC cells and tissue. RESULTS A total of 95 DEGs were screened. Results of the GO analysis revealed that DEGs were primarily involved in platelet degranulation, cytoplasm, and protein binding. Results of the KEGG analysis indicated that DEGs were primarily enriched in focal adhesion. Five genes, namely, myosin light chain kinase (MYLK), interleukin 1 beta (IL1B), phospholipase D1 (PLD1), cortactin (CTTN), and moesin (MSN), were identified as hub genes. A search in the CCLE and HPA database showed that the expression levels of these hub genes were remarkably increased in the HCC samples. Survival analysis revealed that the overexpression of MYLK, IL1B, and PLD1 may have a significant effect on HCC survival. The aberrant high expression levels of MYLK, IL1B, and PLD1 strongly indicated worse prognosis in patients with HCC. CONCLUSIONS The identified hub genes may be closely linked with HCC tumorigenicity and may act as potentially useful biomarkers for the prognostic prediction of HCC in PBMC samples.
Collapse
Affiliation(s)
- Jin-lin Peng
- Department of Infectious Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, Nanning, Guangxi
| | - Ji-zhou Wu
- Department of Infectious Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, Nanning, Guangxi
| | - Guo-jian Li
- Department of Infectious Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, Nanning, Guangxi
| | - Jian-lin Wu
- Department of Infectious Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, Nanning, Guangxi
| | - Yu-mei Xi
- Department of Infectious Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, Nanning, Guangxi
| | - Xiao-qing Li
- Department of Infectious Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, Nanning, Guangxi
| | - Lei Wang
- College of Health and Rehabilitation, Chengdu University of Chinese Medicine, Chengdu, Sichuan, PR China
| |
Collapse
|
19
|
Wong CC, Baum J, Silvestro A, Beste MT, Bharani-Dharan B, Xu S, Wang YA, Wang X, Prescott MF, Krajkovich L, Dugan M, Ridker PM, Martin AM, Svensson EC. Inhibition of IL1β by Canakinumab May Be Effective against Diverse Molecular Subtypes of Lung Cancer: An Exploratory Analysis of the CANTOS Trial. Cancer Res 2020; 80:5597-5605. [DOI: 10.1158/0008-5472.can-19-3176] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 08/18/2020] [Accepted: 09/21/2020] [Indexed: 11/16/2022]
|
20
|
Alieva M, van Rheenen J, Broekman MLD. Potential impact of invasive surgical procedures on primary tumor growth and metastasis. Clin Exp Metastasis 2018; 35:319-331. [PMID: 29728948 PMCID: PMC6063335 DOI: 10.1007/s10585-018-9896-8] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/30/2018] [Indexed: 02/08/2023]
Abstract
Surgical procedures such as tumor resection and biopsy are still the gold standard for diagnosis and (determination of) treatment of solid tumors, and are prognostically beneficial for patients. However, growing evidence suggests that even a minor surgical trauma can influence several (patho) physiological processes that might promote postoperative metastatic spread and tumor recurrence. Local effects include tumor seeding and a wound healing response that can promote tumor cell migration, proliferation, differentiation, extracellular matrix remodeling, angiogenesis and extravasation. In addition, local and systemic immunosuppression impairs antitumor immunity and contributes to tumor cell survival. Surgical manipulation of the tumor can result in cancer cell release into the circulation, thus increasing the chance of tumor cell dissemination. To prevent these undesired effects of surgical interventions, therapeutic strategies targeting immune response exacerbation or alteration have been proposed. This review summarizes the current literature regarding these local, systemic and secondary site effects of surgical interventions on tumor progression and dissemination, and discusses studies that aimed to identify potential therapeutic approaches to prevent these effects in order to further increase the clinical benefit from surgical procedures.
Collapse
Affiliation(s)
- Maria Alieva
- Princess Máxima Center for Pediatric Oncology, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.
| | - Jacco van Rheenen
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Marike L D Broekman
- Department of Neurology & Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|
21
|
Metodieva SN, Nikolova DN, Cherneva RV, Dimova II, Petrov DB, Toncheva DI. Expression Analysis of Angiogenesis-Related Genes in Bulgarian Patients with Early-Stage Non-Small Cell Lung Cancer. TUMORI JOURNAL 2018; 97:86-94. [DOI: 10.1177/030089161109700116] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Aims and background Angiogenesis is a key process in the early stages of tumor development. In this study we aimed to evaluate the expression of a panel of angiogenesis-related genes in a group of Bulgarian patients with early-stage non-small cell lung cancer (NSCLC). Methods and study design We analyzed the expression of 84 genes associated with the angiogenic process in 12 NSCLCs of two histological subtypes: 7 adenocarcinomas and 5 squamous cell carcinomas. Eight peripheral nontumorous tissues were used as controls. We performed real-time PCR on pathway-specific gene arrays (SABiosciences). Results Our pilot study identified upregulated genes in early-stage NSCLC including growth factors (TGFA and EFNA3), the adhesion molecule THBS2, cytokines and chemokines (MDK, CXCL9, CXCL10), and the serine protease PLAU. Several genes showed downregulation including one growth factor (FIGF), the receptors for growth factors TEK and S1PR1 as well as adhesion molecules (COL4A3 and CDH5), the cytokine IL6, the matrix protein LEP and the transcription factor NOTCH4. The study demonstrated deregulated genes specific for the two histological subtypes including the transcription factor HAND2, which was overexpressed in squamous cell carcinomas but not adenocarcinomas. Conclusions Despite the limited number of patients, our results demonstrated the potential of angiogenesis-related genes as biomarkers in the early stages of NSCLC development. Free full text available at www.tumorionline.it
Collapse
Affiliation(s)
| | | | | | | | - Danail Borisov Petrov
- Department of Thoracic Surgery, University Hospital for Pulmonary Diseases “St Sofia”, Sofia, Bulgaria
| | | |
Collapse
|
22
|
Pandey MK, Gupta SC, Nabavizadeh A, Aggarwal BB. Regulation of cell signaling pathways by dietary agents for cancer prevention and treatment. Semin Cancer Biol 2017; 46:158-181. [PMID: 28823533 DOI: 10.1016/j.semcancer.2017.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/05/2017] [Accepted: 07/12/2017] [Indexed: 12/17/2022]
Abstract
Although it is widely accepted that better food habits do play important role in cancer prevention and treatment, how dietary agents mediate their effects remains poorly understood. More than thousand different polyphenols have been identified from dietary plants. In this review, we discuss the underlying mechanism by which dietary agents can modulate a variety of cell-signaling pathways linked to cancer, including transcription factors, nuclear factor κB (NF-κB), signal transducer and activator of transcription 3 (STAT3), activator protein-1 (AP-1), β-catenin/Wnt, peroxisome proliferator activator receptor- gamma (PPAR-γ), Sonic Hedgehog, and nuclear factor erythroid 2 (Nrf2); growth factors receptors (EGFR, VEGFR, IGF1-R); protein Kinases (Ras/Raf, mTOR, PI3K, Bcr-abl and AMPK); and pro-inflammatory mediators (TNF-α, interleukins, COX-2, 5-LOX). In addition, modulation of proteasome and epigenetic changes by the dietary agents also play a major role in their ability to control cancer. Both in vitro and animal based studies support the role of dietary agents in cancer. The efficacy of dietary agents by clinical trials has also been reported. Importantly, natural agents are already in clinical trials against different kinds of cancer. Overall both in vitro and in vivo studies performed with dietary agents strongly support their role in cancer prevention. Thus, the famous quote "Let food be thy medicine and medicine be thy food" made by Hippocrates 25 centuries ago still holds good.
Collapse
Affiliation(s)
- Manoj K Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA.
| | - Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ali Nabavizadeh
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | | |
Collapse
|
23
|
Storr SJ, Safuan S, Ahmad N, El-Refaee M, Jackson AM, Martin SG. Macrophage-derived interleukin-1beta promotes human breast cancer cell migration and lymphatic adhesion in vitro. Cancer Immunol Immunother 2017; 66:1287-1294. [PMID: 28551814 PMCID: PMC5626796 DOI: 10.1007/s00262-017-2020-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 05/21/2017] [Indexed: 01/09/2023]
Abstract
Lymphovascular invasion (LVI), encompassing blood and lymphatic vessel invasion, is an important event in tumourigenesis. Macrophages within the tumour microenvironment are linked to the presence of LVI and angiogenesis. This study investigates the role of macrophage-derived, caspase-1-dependent interleukin-1beta (IL-1β) in an in vitro model of LVI. IL-1β significantly augmented the adhesion and transmigration of breast cancer cell lines MCF7 and MDA-MB-231 across endothelial cell barriers. MDA-MB-231 and MCF7 showed a higher percentage of adhesion to lymphatic endothelial cells than blood endothelial cells following endothelial cell IL-1β stimulation (P < 0.001 and P < 0.0001, respectively). Supernatants from activated macrophages increased the adhesion of tumour cells to lymphatic and blood endothelium. Secretion of IL-1β was caspase-1 dependent, and treatment with caspase-1 inhibitor reduced IL-1β production by 73% and concomitantly reduced tumour cell adhesion to levels obtained with resting macrophages. Transmigration of MDA-MB-231 cells across blood and lymphatic endothelial monolayers was significantly increased following IL-1β stimulation. Furthermore, supernatants from activated macrophages increased transmigration of MDA-MB-231 cells across endothelial monolayers, which was abolished by caspase-1 inhibition. IL-1β stimulation of tumour cells significantly increased their migratory ability and a significant increase in migration was observed when MDA-MB-231 cells were stimulated with macrophage conditioned media (two of three donors). Results demonstrate that macrophage production of IL-1β plays an important role in the migration of breast cancer cells and their adhesion to, and transmigration across, blood and lymphatic endothelial cells. Results suggest that IL-1β may play a role in the adhesion to lymphatic endothelial cells in particular.
Collapse
Affiliation(s)
- Sarah J Storr
- Division of Cancer and Stem Cells, Translational and Radiation Biology Research Group, School of Medicine, Academic Clinical Oncology, University of Nottingham, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Sabreena Safuan
- Division of Cancer and Stem Cells, Translational and Radiation Biology Research Group, School of Medicine, Academic Clinical Oncology, University of Nottingham, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, UK.,Health Campus, School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Narmeen Ahmad
- Division of Cancer and Stem Cells, Translational and Radiation Biology Research Group, School of Medicine, Academic Clinical Oncology, University of Nottingham, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Mohammed El-Refaee
- Division of Cancer and Stem Cells, Host-Tumour Interactions Group, School of Medicine, Academic Clinical Oncology, University of Nottingham, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, UK.,Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, the City for Scientific Research and Technology Applications, Alexandria, Egypt
| | - Andrew M Jackson
- Division of Cancer and Stem Cells, Host-Tumour Interactions Group, School of Medicine, Academic Clinical Oncology, University of Nottingham, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Stewart G Martin
- Division of Cancer and Stem Cells, Translational and Radiation Biology Research Group, School of Medicine, Academic Clinical Oncology, University of Nottingham, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, UK.
| |
Collapse
|
24
|
Bouchard G, Therriault H, Bujold R, Saucier C, Paquette B. Induction of interleukin-1β by mouse mammary tumor irradiation promotes triple negative breast cancer cells invasion and metastasis development. Int J Radiat Biol 2017; 93:507-516. [PMID: 27935337 DOI: 10.1080/09553002.2017.1270471] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE Radiotherapy increases the level of inflammatory cytokines, some of which are known to promote metastasis. In a mouse model of triple negative breast cancer (TNBC), we determined whether irradiation of the mammary tumor increases the level of key cytokines and favors the development of lung metastases. MATERIALS AND METHODS D2A1 TNBC cells were implanted in the mammary glands of a Balb/c mouse and then 7 days old tumors were irradiated (4 × 6 Gy). The cytokines IL-1β, IL-4, IL-6, IL-10, IL-17 and MIP-2 were quantified in plasma before, midway and after irradiation. The effect of tumor irradiation on the invasion of cancer cells, the number of circulating tumor cells (CTC) and lung metastases were also measured. RESULTS TNBC tumor irradiation significantly increased the plasma level of IL-1β, which was associated with a greater number of CTC (3.5-fold) and lung metastases (2.3-fold), compared to sham-irradiated animals. Enhancement of D2A1 cell invasion in mammary gland was associated with an increase of the matrix metalloproteinases-2 and -9 activity (MMP-2, -9). The ability of IL-1β to stimulate the invasiveness of irradiated D2A1 cells was confirmed by in vitro invasion chamber assays. CONCLUSION Irradiation targeting a D2A1 tumor and its microenvironment increased the level of the inflammatory cytokine IL-1β and was associated with the promotion of cancer cell invasion and lung metastasis development.
Collapse
Affiliation(s)
- Gina Bouchard
- a Centre for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences , Université de Sherbrooke , Sherbrooke , Québec , Canada
| | - Hélène Therriault
- a Centre for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences , Université de Sherbrooke , Sherbrooke , Québec , Canada
| | - Rachel Bujold
- b Service of Radiation Oncology , Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke , Sherbrooke , Québec , Canada
| | - Caroline Saucier
- c Department of Anatomy and Cellular Biology, Faculty of Medicine and Health Sciences , Université de Sherbrooke , Sherbrooke , Québec , Canada
| | - Benoit Paquette
- a Centre for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences , Université de Sherbrooke , Sherbrooke , Québec , Canada
| |
Collapse
|
25
|
Shi Y, Zuo D, Wang X, Han M, Wu Y. shRNA‑mediated silencing of TARBP2 inhibits NCI‑H1299 non‑small cell lung cancer cell invasion and migration via the JNK/STAT3/AKT pathway. Mol Med Rep 2016; 14:3725-30. [PMID: 27599909 DOI: 10.3892/mmr.2016.5723] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 03/23/2016] [Indexed: 11/06/2022] Open
Abstract
Metastasis is a major cause of lung cancer-associated mortality. The current study aimed to investigate the effects and mechanisms of TAR (human immunodeficiency virus 1) RNA binding protein 2 (TARBP2) in the invasion and migration of non‑small cell lung cancer in vitro. The highly metastatic cell clone H1299/M02 was obtained by TARBP2 overexpression. Expression of TARBP2 in H1299/M02 was also downregulated to different levels via small hairpin RNAs (shRNAs). Subsequent to TARBP2 silencing, the proliferation of H1299/M02 cells was predominantly unaffected, while invasion and migration were significantly inhibited. A positive correlation was observed between invasion and migration and the level of TARBP2 silencing in vitro. Western blotting and reverse transcription‑quantitative polymerase chain reaction indicated that the protein expression levels of amyloid β (A4) precursor protein (APP) and zinc finger protein 395 (ZNF395) were upregulated, while expression levels of pro‑metastatic proteins including interleukin (IL)‑1β, IL‑8, cyclooxygenase (COX)‑2, matrix metalloproteinase 2 (MMP2) and MMP9 were downregulated. Phosphorylation of c‑Jun N‑terminal kinase (JNK), signal transducer and activator of transcription 3 (STAT3) and protein kinase B (AKT) were also inhibited. Overexpression of TARBP2 was suggested to be involved in the metastasis of H1299/M02 cells. Silencing of TARBP2 was able to upregulate levels of APP and ZNF395, in addition to inhibiting metastasis‑promoting cytokines, the JNK/STAT3/AKT pathway and COX‑2 to attenuate the invasion and migration of cancer cells.
Collapse
Affiliation(s)
- Yue Shi
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Duo Zuo
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Xia Wang
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Meng Han
- Department of Clinical Laboratory, The First Center Hospital, Tianjin 300192, P.R. China
| | - Yan Wu
- Department of Clinical Laboratory, TEAD Community Health Service Center, Tianjin 300457, P.R. China
| |
Collapse
|
26
|
Elevated IL-1β expression induces invasiveness of triple negative breast cancer cells and is suppressed by zerumbone. Chem Biol Interact 2016; 258:126-33. [PMID: 27567548 DOI: 10.1016/j.cbi.2016.08.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/29/2016] [Accepted: 08/24/2016] [Indexed: 12/23/2022]
Abstract
Aberrant interleukin-1 beta (IL-1β) expression is associated with cancer development, metastasis, and poor prognosis. Here, we have investigated the regulatory mechanism of IL-1β expression, and the inhibitory effect of zerumbone (ZER) on IL-1β expression and IL-1β-induced signatures, including cell invasion and signaling activation in triple negative breast cancer (TNBC) cells. The basal IL-1β and cell invasiveness levels were significantly higher in TNBC cells, compared with non-TNBC cells. The invasiveness of TNBC cells was also increased following IL-1β treatment. In contrast, the invasiveness of TNBC cells was decreased following IL-1 receptor antagonist (IL-1RA) treatment. Additionally, the basal IL-1β level and the invasiveness of TNBC cells were decreased by Bay11-7085. In contrast, overexpression of NF-κB (p65) caused an increase in IL-1β expression in TNBC cells. Our results showed that treatment with ZER decreased the basal IL-1β expression level, and the phosphorylation level of NF-κB, in TNBC cells. Furthermore, we found that ZER completely suppressed IL-1β-induced NF-κB phosphorylation, but did not suppress IL-1β-induced Akt phosphorylation, in TNBC cells. Our results also demonstrate that IL-1β-induced cell invasion is suppressed by ZER in TNBC cells. Taken together, we demonstrated that IL-1β expression is regulated by the NF-κB-dependent pathway, and that elevated IL-1β is directly influencing the invasiveness of TNBC cells. ZER down-regulates IL-1β expression through the inhibition of NF-κB activity, and then suppresses cell invasiveness of TNBC.
Collapse
|
27
|
Promotion of a cancer-like phenotype, through chronic exposure to inflammatory cytokines and hypoxia in a bronchial epithelial cell line model. Sci Rep 2016; 6:18907. [PMID: 26759080 PMCID: PMC4725362 DOI: 10.1038/srep18907] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/13/2015] [Indexed: 12/12/2022] Open
Abstract
Globally, lung cancer accounts for approximately 20% of all cancer related deaths. Five-year survival is poor and rates have remained unchanged for the past four decades. There is an urgent need to identify markers of lung carcinogenesis and new targets for therapy. Given the recent successes of immune modulators in cancer therapy and the improved understanding of immune evasion by tumours, we sought to determine the carcinogenic impact of chronic TNF-α and IL-1β exposure in a normal bronchial epithelial cell line model. Following three months of culture in a chronic inflammatory environment under conditions of normoxia and hypoxia (0.5% oxygen), normal cells developed a number of key genotypic and phenotypic alterations. Important cellular features such as the proliferative, adhesive and invasive capacity of the normal cells were significantly amplified. In addition, gene expression profiles were altered in pathways associated with apoptosis, angiogenesis and invasion. The data generated in this study provides support that TNF-α, IL-1β and hypoxia promotes a neoplastic phenotype in normal bronchial epithelial cells. In turn these mediators may be of benefit for biomarker and/or immune-therapy target studies. This project provides an important inflammatory in vitro model for further immuno-oncology studies in the lung cancer setting.
Collapse
|
28
|
Fibrocyte-like cells mediate acquired resistance to anti-angiogenic therapy with bevacizumab. Nat Commun 2015; 6:8792. [PMID: 26635184 PMCID: PMC4686833 DOI: 10.1038/ncomms9792] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/02/2015] [Indexed: 12/19/2022] Open
Abstract
Bevacizumab exerts anti-angiogenic effects in cancer patients by inhibiting vascular endothelial growth factor (VEGF). However, its use is still limited due to the development of resistance to the treatment. Such resistance can be regulated by various factors, although the underlying mechanisms remain incompletely understood. Here we show that bone marrow-derived fibrocyte-like cells, defined as alpha-1 type I collagen-positive and CXCR4-positive cells, contribute to the acquired resistance to bevacizumab. In mouse models of malignant pleural mesothelioma and lung cancer, fibrocyte-like cells mediate the resistance to bevacizumab as the main producer of fibroblast growth factor 2. In clinical specimens of lung cancer, the number of fibrocyte-like cells is significantly increased in bevacizumab-treated tumours, and correlates with the number of treatment cycles, as well as CD31-positive vessels. Our results identify fibrocyte-like cells as a promising cell biomarker and a potential therapeutic target to overcome resistance to anti-VEGF therapy.
Collapse
|
29
|
Choi SI, Kim SY, Lee J, Cho EW, Kim IG. TM4SF4 overexpression in radiation-resistant lung carcinoma cells activates IGF1R via elevation of IGF1. Oncotarget 2015; 5:9823-37. [PMID: 25344917 PMCID: PMC4259440 DOI: 10.18632/oncotarget.2450] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Transmembrane 4 L six family member 4 (TM4SF4) is a member of the tetraspanin L6 domain family. Other members of this family, TM4SF1 (also known as L6-Ag) and TM4SF5, have been shown to be upregulated in multiple tumors and involved in epithelial-to-mesenchymal transition and cell migration. However, unlike its homologs, little is known about TM4SF4. Here, we show that TM4SF4 was highly expressed in radiation-resistant lung adenocarcinoma cells, such as A549 and Calu-3 cells, and its expression activated cell growth, migration, and invasion. Overexpression of TM4SF4 in A549 cells increased the activation of PI3K, AKT, and NF-kappaB and the expression of PTEN. IGF1R was clearly activated by overexpression of TM4SF4, although EGFR was also slightly activated. TM4SF4 expression was correlated with the increased expression of IGF1, consequently resulting in IGF1R activation. Tumorigenic activity of TM4SF4 in lung adenocarcinoma cells was also demonstrated by xenograft assay; however, this activity was almost completely suppressed by treatment with anti-TM4SF4 antibody. Our results suggest that TM4SF4 overexpression in lung carcinoma cells results in resistance to radiotherapy via IGF1-induced IGF1R activation and blocking the activity of TM4SF4 using specific antibody can be a promising therapeutics against TM4SF4-overexpressing lung adenocarcinoma.
Collapse
Affiliation(s)
- Soo-Im Choi
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute (KAERI), Daedeok-daero, Yuseong-gu, Daejeon, South Korea. Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology, Daedeok-daero, Yuseong-gu, Daejeon, South Korea
| | - Seo-Yeon Kim
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute (KAERI), Daedeok-daero, Yuseong-gu, Daejeon, South Korea
| | - Jaeha Lee
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute (KAERI), Daedeok-daero, Yuseong-gu, Daejeon, South Korea. Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology, Daedeok-daero, Yuseong-gu, Daejeon, South Korea
| | - Eun-Wie Cho
- Epigenomics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Gwahak-ro, Yuseong-gu, Daejeon, South Korea
| | - In-Gyu Kim
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute (KAERI), Daedeok-daero, Yuseong-gu, Daejeon, South Korea. Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology, Daedeok-daero, Yuseong-gu, Daejeon, South Korea
| |
Collapse
|
30
|
Differential expression of inflammasomes in lung cancer cell lines and tissues. Tumour Biol 2015; 36:7501-13. [PMID: 25910707 DOI: 10.1007/s13277-015-3473-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/15/2015] [Indexed: 12/22/2022] Open
Abstract
As pivotal elements involved in inflammation, inflammasomes represent a group of multiprotein complexes triggering the maturation of proinflammatory cytokine interleukin (IL)-1β and IL-18. Although the importance of the inflammasomes in inflammatory diseases is well appreciated, a precise characterization of their expressions in lung cancer remains obscure. This study aimed to determine the expressions of inflammasomes in various lung cancer cell lines and tissues to understand their potential roles in lung cancer. Our findings showed that inflammasome components were markedly upregulated in lung cancer and elicited the maturation of IL-1β and IL-18. In addition, enormous variations in subtypes and levels of inflammasomes were detected in lung cancers depending on their histological type and grading, invasion ability, as well as chemoresistance. Generally, AIM2 inflammasome was overexpressed in nonsmall cell lung cancer (NSCLC), while NLRP3 inflammasome was upregulated in lung adenocarcinoma (ADC) and small cell lung cancer (SCLC). The high-metastatic or cisplatin-sensitive NSCLC cells expressed more inflammasome components and products than their counterpart low-metastatic or cisplatin-resistant NSCLC cells, respectively. In resected lung cancer tissues, high-grade ADC expressed more inflammasome components and products than low-grade ADC. Together, these findings suggest that inflammasomes may be crucial biomarkers for lung cancer as well as potential modulators of the biological behaviors of lung cancer. Further, pharmacotherapeutics targeting inflammasomes might be novel adjuvant therapy strategies for lung cancer.
Collapse
|
31
|
NLRP3 Inflammasome and Pathobiology in AMD. J Clin Med 2015; 4:172-92. [PMID: 26237026 PMCID: PMC4470247 DOI: 10.3390/jcm4010172] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/19/2014] [Indexed: 02/07/2023] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of central vision loss and blindness in the elderly. It is characterized by a progressive loss of photoreceptors in the macula due to damage to the retinal pigment epithelium (RPE). Clinically, it is manifested by drusen deposition between the RPE and underlying choroid and accumulation of lipofuscin in the RPE. End-stage disease is characterized by geographic atrophy (dry AMD) or choroidal neovascularization (wet AMD). The NLRP3 inflammasome has recently been implicated in the disease pathology. Here we review the current knowledge on the involvement of this multiprotein complex and its effector cytokines interleukin-1β (IL-1β) and IL-18 in AMD progression. We also describe cell death mechanisms that have been proposed to underlie RPE degeneration in AMD and discuss the role of autophagy in the regulation of disease progression.
Collapse
|
32
|
Weidert E, Pohler SE, Gomez EW, Dong C. Actinomyosin contraction, phosphorylation of VE-cadherin, and actin remodeling enable melanoma-induced endothelial cell-cell junction disassembly. PLoS One 2014; 9:e108092. [PMID: 25225982 PMCID: PMC4167543 DOI: 10.1371/journal.pone.0108092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/25/2014] [Indexed: 02/07/2023] Open
Abstract
During melanoma cell extravasation through the vascular endothelium, melanoma cells interact with endothelial cells through secretion of cytokines and by adhesion between proteins displayed on opposing cell surfaces. How these tumor cell associated signals together regulate the dynamics of intracellular signaling pathways within endothelial cells leading to endothelial cell-cell junction disruption is not well understood. Here, we used a combination of experimental and computational approaches to examine the individual and combined effects of activation of the vascular cell adhesion molecule (VCAM)-1, interleukin (IL)-8, and IL-1β signaling pathways on the integrity of vascular junctions. Our simulations predict a multifaceted interplay of signaling resulting from individual activation of VCAM-1, IL-8 and IL-1β pathways that is neither synergistic nor additive compared to all inputs turned on simultaneously. Furthermore, we show that the levels of phosphorylated proteins associated with actinomyosin contractility and junction disassembly peak prior to those related to actin remodeling. The results of this work provide insight into the dynamics of tumor-mediated endothelial junction disassembly and suggest that targeting proteins downstream of several interaction pathways may be the most effective therapeutic approach to reduce melanoma extravasation.
Collapse
Affiliation(s)
- Eric Weidert
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Steven E. Pohler
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Esther W. Gomez
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail: (EWG); (CD)
| | - Cheng Dong
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail: (EWG); (CD)
| |
Collapse
|
33
|
Paquette B, Therriault H, Wagner JR. Role of interleukin-1β in radiation-enhancement of MDA-MB-231 breast cancer cell invasion. Radiat Res 2013; 180:292-8. [PMID: 23927563 DOI: 10.1667/rr3240.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The ability of radiation to increase the invasiveness of cancer cells is associated with the inflammatory response, which is induced in almost all irradiated patients. For breast cancer patients, elevated plasma levels of the inflammatory cytokine interleukin-1β (IL1β) persisted for a few weeks after completion of radiotherapy. The aim of this study was to determine whether IL1β is involved in the enhancement of breast cancer cell invasion induced by radiation. The role of IL1β was assessed with invasion chambers where irradiated fibroblasts were used as chemoattractant for the MDA-MB-231 breast cancer cells plated in the upper compartment. The ability of IL1β to stimulate the expression of cyclooxygenase-2 (COX-2) and biosynthesis of the prostaglandin E2 (PGE2) in MDA-MB-231 cells were also determined. Our results show that radiation-enhancement of MDA-MB-231 cell invasion was prevented with an anti-IL1β antibody. The production of IL1β was increased in irradiated fibroblasts, while the invasiveness of the MDA-MB-231 cells not exposed to irradiated fibroblasts was favored by adding this cytokine. Furthermore, addition of the COX-2 inhibitor NS-398 prevented the stimulation of cancer cell invasion induced either by irradiated fibroblasts or IL1β. We propose that the effect of IL1β on the invasiveness of the MDA-MB-231 cells involves elevation of matrix metalloproteinase-9 (MMP-9) production, induction of COX-2 expression and PGE2 biosynthesis. In conclusion, this study supports the involvement of IL1β in the radiation-enhancement of breast cancer cell invasion.
Collapse
Affiliation(s)
- Benoit Paquette
- Center for Research In Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Science, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | |
Collapse
|
34
|
Mitsuhashi A, Goto H, Kuramoto T, Tabata S, Yukishige S, Abe S, Hanibuchi M, Kakiuchi S, Saijo A, Aono Y, Uehara H, Yano S, Ledford JG, Sone S, Nishioka Y. Surfactant protein A suppresses lung cancer progression by regulating the polarization of tumor-associated macrophages. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1843-53. [PMID: 23499372 DOI: 10.1016/j.ajpath.2013.01.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 01/03/2013] [Accepted: 01/10/2013] [Indexed: 10/27/2022]
Abstract
Surfactant protein A (SP-A) is a large multimeric protein found in the lungs. In addition to its immunoregulatory function in infectious respiratory diseases, SP-A is also used as a marker of lung adenocarcinoma. Despite the finding that SP-A expression levels in cancer cells has a relationship with patient prognosis, the function of SP-A in lung cancer progression is unknown. We investigated the role of SP-A in lung cancer progression by introducing the SP-A gene into human lung adenocarcinoma cell lines. SP-A gene transduction suppressed the progression of tumor in subcutaneous xenograft or lung metastasis mouse models. Immunohistochemical analysis showed that the number of M1 antitumor tumor-associated macrophages (TAMs) was increased and the number of M2 tumor-promoting TAMs was not changed in the tumor tissue produced by SP-A-expressing cells. In addition, natural killer (NK) cells were also increased and activated in the SP-A-expressing tumor. Moreover, SP-A did not inhibit tumor progression in mice depleted of NK cells. Taking into account that SP-A did not directly activate NK cells, these results suggest that SP-A inhibited lung cancer progression by recruiting and activating NK cells via controlling the polarization of TAMs.
Collapse
Affiliation(s)
- Atsushi Mitsuhashi
- Department of Respiratory Medicine and Rheumatology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Park BB, Yoon JS, Kim ES, Choi J, Won YW, Choi JH, Lee YY. Inhibitory effects of eupatilin on tumor invasion of human gastric cancer MKN-1 cells. Tumour Biol 2013; 34:875-85. [PMID: 23292941 DOI: 10.1007/s13277-012-0621-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 12/06/2012] [Indexed: 12/23/2022] Open
Abstract
Extracts of the whole herb of Artemisia asiatica Nakai (Asteraceae) are used in traditional oriental medicine to treat inflammation. Eupatilin (5,7-dihydroxy-3',4',6-trimethoxyflavone) is one of the pharmacologically active components found in A. asiatica, and has been shown to possess anti-tumoral effects in some malignancies, including gastric cancer. However, its anti-metastatic effect in gastric cancer is hardly known. In this study, anti-metastatic effect of eupatilin was investigated in the human gastric cancer cell line, MKN-1. Eupatilin inhibited MKN-1 growth in a dose- and a time-dependent manner, and induced apoptosis with a concomitant increase of caspase-3 activity. ELISA demonstrated that release of pro-inflammatory cytokines (IL-1β, TNF-α, IL-6, and IL-8) was significantly reduced by eupatilin. And p-AKT and p-ERK (p44/42) was reduced. Expression level of β-catenin and integrin was reduced and p-GSKβ was increased. In transcription reporter system, the activity of the transcriptional factor, NF-κB, was reduced by eupatilin and the expression of p65 was down-regulated when MKN-1 cells were treated with eupatilin. Moreover, a zymography study revealed that this reduction in invasive potential resulted from a reduction in type IV collagenolytic (gelatinolytic) activity. The expressions of metalloproteinases (MMP-2 and MMP-9) were also reduced in MKN-1 cells treated with eupatilin. In vitro invasion assay, eupatilin inhibited MKN-1 penetrating reconstituted basement membrane barriers. These results suggest that eupatilin inhibits the MKN-1 gastric cancer cell proliferation via activation of caspase-3 and the metastatic potential of gastric cancer cells via down-regulation of NF-κB activity followed by reduction of pro-inflammatory cytokine-mediated MMPs expressions.
Collapse
Affiliation(s)
- Byeong Bae Park
- Department of Internal Medicine, Han Yang University College of Medicine, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Reactive oxygen species (ROS) at physiological levels are important cell signaling molecules. However, aberrantly high ROS are intimately associated with disease and commonly observed in cancer. Mitochondria are primary sources of intracellular ROS, and their maintenance is essential to cellular health. Autophagy, an evolutionarily conserved process whereby cytoplasmic components are delivered to lysosomes for degradation, is responsible for mitochondrial turnover and removal of damaged mitochondria. Impaired autophagy is implicated in many pathological conditions, including neurological disorders, inflammatory bowel disease, diabetes, aging, and cancer. The first reports connecting autophagy to cancer showed that allelic loss of the essential autophagy gene BECLIN1 (BECN1) is prevalent in human breast, ovarian, and prostate cancers and that Becn1+/- mice develop mammary gland hyperplasias, lymphomas, lung and liver tumors. Subsequent studies demonstrated that Atg5-/- and Atg7-/- livers give rise to adenomas, Atg4C-/- mice are susceptible to chemical carcinogenesis, and Bif1-/- mice are prone to spontaneous tumors, indicating that autophagy defects promote tumorigenesis. Due to defective mitophagy, autophagy-deficient cells accumulate damaged mitochondria and deregulated ROS levels, which likely contribute to their tumor-initiating capacity. However, the role of autophagy in tumorigenesis is complex, as more recent work also revealed tumor dependence on autophagy: autophagy-competent mutant-Ras-expressing cells form tumors more efficiently than their autophagy-deficient counterparts; similarly, FIP200 deficiency suppresses PyMT-driven mammary tumorigenesis. These latter findings are attributed to the fact that tumors driven by powerful oncogenes have high metabolic demands catered to by autophagy. In this review, we discuss the relationship between ROS and autophagy and summarize our current knowledge on their functional interactions in tumorigenesis.
Collapse
Affiliation(s)
- Sameera Kongara
- Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey Piscataway, NJ, USA ; The Cancer Institute of New Jersey New Brunswick, NJ, USA
| | | |
Collapse
|
37
|
Kim WJ, Kim SK, Jeong P, Yun SJ, Cho IC, Kim IY, Moon SK, Um HD, Choi YH. A four-gene signature predicts disease progression in muscle invasive bladder cancer. Mol Med 2011; 17:478-85. [PMID: 21308147 DOI: 10.2119/molmed.2010.00274] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 02/03/2011] [Indexed: 11/06/2022] Open
Abstract
There are no reliable criteria to handle disease progression of muscle invasive bladder cancer (MIBC), which strongly influences patient survival. Therefore, an accurate predicting method to identify progressive MIBC patients is greatly needed. The aim of this study was to identify a genetic signature associated with disease progression in MIBC. To address this issue, we analyzed three independent cohorts (a training set, test set 1 and test set 2) comprising a total of 128 MIBC patients. Microarray gene expression profiling, including gene network analysis, was performed in the training set to identify a gene expression signature associated with disease progression. The prognostic value of the signature was validated in test set 1 and test set 2 by microarray and real-time reverse transcriptase polymerase chain reaction (RT-PCR), respectively. The determination of gene expression patterns by microarray data analysis identified 1,320 genes associated with disease progression. Gene network analysis of the 1,320 genes suggested that IL1B, S100A8, S100A9 and EGFR were important mediators of MIBC progression. We validated this putative four-gene signature in two independent cohorts (log-rank test, P < 0.05 each, respectively) and estimated the predictive value of the signature by multivariate Cox regression analysis (hazard ratio [HR], 6.24; 95% confidence interval [CI], 1.58-24.61; P = 0.009). Finally, signature-based stratification demonstrated that the four-gene signature was an independent predictor of MIBC progression. In conclusion, a molecular signature defined by four genes represents a promising diagnostic tool for the identification of MIBC patients at high risk of progression.
Collapse
Affiliation(s)
- Wun-Jae Kim
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Chungbuk, South Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wu KS, Zhou X, Zheng F, Xu XQ, Lin YH, Yang J. Influence of interleukin-1 beta genetic polymorphism, smoking and alcohol drinking on the risk of non-small cell lung cancer. Clin Chim Acta 2010; 411:1441-6. [PMID: 20529668 DOI: 10.1016/j.cca.2010.05.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 05/13/2010] [Accepted: 05/24/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Non-small cell cancer (NSCLC) accounts for approximately 80% of all lung cancers. Reports suggested an association between the interleukin-1beta (IL-1beta) -31 and -511 gene loci and NSCLC, but few studies took into account the effect of smoking and/or alcohol drinking on the association. METHODS Two-hundred thirteen cases of NSCLC (aged 58.2 + or - 10.1) and 213 controls (aged 59.4 + or - 10.3y) were included in this research. Information about the smoking and drinking behaviors, dietary customs, and anamnesis were obtained from all subjects by questionnaires, and genomic DNA was extracted. IL-1beta -31 and -511 gene polymorphisms were detected using PCR-RFLP. The interactions between the genotypes and alcohol drinking/smoking were analyzed using multivariate logistic regression models. RESULTS (The T/T genotype and the T allele of the IL-1beta -31 gene were associated with higher incidence of NSCLC (P<0.05). For the IL-1beta -511 locus, no difference was found in different genotypes between the NSCLC and control groups. After the adjustment of confounding variables, such as age and gender, the binary logistic analysis showed a significant gene-environment interaction (P<0.05). CONCLUSIONS The IL-1beta -31T allele was positively associated with a risk of NSCLC, and the carriers of IL-1beta -31T/T or -511C/C would have a higher risk of suffering from NSCLC if they drank alcohol or smoke heavily.
Collapse
Affiliation(s)
- Kai-song Wu
- Department of Respiratory, Zhongnan Hospital, Wuhan University, Donghu Road 169 Wuhan 430071, PR China
| | | | | | | | | | | |
Collapse
|
39
|
Kim SK, Kim EJ, Leem SH, Ha YS, Kim YJ, Kim WJ. Identification of S100A8-correlated genes for prediction of disease progression in non-muscle invasive bladder cancer. BMC Cancer 2010; 10:21. [PMID: 20096140 PMCID: PMC2828413 DOI: 10.1186/1471-2407-10-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 01/25/2010] [Indexed: 11/12/2022] Open
Abstract
Background S100 calcium binding protein A8 (S100A8) has been implicated as a prognostic indicator in several types of cancer. However, previous studies are limited in their ability to predict the clinical behavior of the cancer. Here, we sought to identify a molecular signature based on S100A8 expression and to assess its usefulness as a prognostic indicator of disease progression in non-muscle invasive bladder cancer (NMIBC). Methods We used 103 primary NMIBC specimens for microarray gene expression profiling. The median follow-up period for all patients was 57.6 months (range: 3.2 to 137.0 months). Various statistical methods, including the leave-one-out cross validation method, were applied to identify a gene expression signature able to predict the likelihood of progression. The prognostic value of the gene expression signature was validated in an independent cohort (n = 302). Results Kaplan-Meier estimates revealed significant differences in disease progression associated with the expression signature of S100A8-correlated genes (log-rank test, P < 0.001). Multivariate Cox regression analysis revealed that the expression signature of S100A8-correlated genes was a strong predictor of disease progression (hazard ratio = 15.225, 95% confidence interval = 1.746 to 133.52, P = 0.014). We validated our results in an independent cohort and confirmed that this signature produced consistent prediction patterns. Finally, gene network analyses of the signature revealed that S100A8, IL1B, and S100A9 could be important mediators of the progression of NMIBC. Conclusions The prognostic molecular signature defined by S100A8-correlated genes represents a promising diagnostic tool for the identification of NMIBC patients that have a high risk of progression to muscle invasive bladder cancer.
Collapse
Affiliation(s)
- Seon-Kyu Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Chungbuk, South Korea
| | | | | | | | | | | |
Collapse
|
40
|
Okamoto M, Liu W, Luo Y, Tanaka A, Cai X, Norris DA, Dinarello CA, Fujita M. Constitutively active inflammasome in human melanoma cells mediating autoinflammation via caspase-1 processing and secretion of interleukin-1beta. J Biol Chem 2009; 285:6477-88. [PMID: 20038581 DOI: 10.1074/jbc.m109.064907] [Citation(s) in RCA: 243] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Interleukin-1beta (IL-1beta) is a pleiotropic cytokine promoting inflammation, angiogenesis, and tissue remodeling as well as regulation of immune responses. Although IL-1beta contributes to growth and metastatic spread in experimental and human cancers, the molecular mechanisms regulating the conversion of the inactive IL-1beta precursor to a secreted and active cytokine remains unclear. Here we demonstrate that NALP3 inflammasome is constitutively assembled and activated with cleavage of caspase-1 in human melanoma cells. Late stage human melanoma cells spontaneously secrete active IL-1beta via constitutive activation of the NALP3 inflammasome and IL-1 receptor signaling, exhibiting a feature of autoinflammatory diseases. Unlike human blood monocytes, these melanoma cells require no exogenous stimulation. In contrast, NALP3 functionality in intermediate stage melanoma cells requires activation of the IL-1 receptor to secrete active IL-1beta; cells from an early stage of melanoma require stimulation of the IL-1 receptor plus the co-stimulant muramyl dipeptide. The spontaneous secretion of IL-1beta from melanoma cells was reduced by inhibition of caspase-1 or the use of small interfering RNA directed against ASC. Supernatants from melanoma cell cultures enhanced macrophage chemotaxis and promoted in vitro angiogenesis, both prevented by pretreating melanoma cells with inhibitors of caspases-1 and -5 or IL-1 receptor blockade. These findings implicate IL-1-mediated autoinflammation as contributing to the development and progression of human melanoma and suggest that inhibiting the inflammasome pathway or reducing IL-1 activity can be a therapeutic option for melanoma patients.
Collapse
Affiliation(s)
- Miyako Okamoto
- Department of Dermatology, University of Colorado Denver, Aurora, Colorado 80045, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Mori A, Moser C, Lang SA, Hackl C, Gottfried E, Kreutz M, Schlitt HJ, Geissler EK, Stoeltzing O. Up-regulation of Krüppel-like factor 5 in pancreatic cancer is promoted by interleukin-1beta signaling and hypoxia-inducible factor-1alpha. Mol Cancer Res 2009; 7:1390-8. [PMID: 19671674 DOI: 10.1158/1541-7786.mcr-08-0525] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Krüppel-like factor 5 (KLF5) is a transcription factor involved in cell transformation, proliferation, and carcinogenesis that can be up-regulated by RAS mutations. However, controversy persists as to whether it functions as a tumor suppressor or as an oncogene. Because KRAS is frequently mutated in pancreatic cancer, we investigated the regulation of KLF5 in this cancer entity. Our results show that KLF5 is overexpressed in pancreatic cancer cells and exceeds KLF5 expression of KRAS-mutated colon cancer cells. Surprisingly, inhibition of B-Raf/C-Raf or MAPK/Erk did not reduce KLF5 levels, suggesting that KLF5 expression is not promoted by KRAS-Raf-MEK-Erk signaling in pancreatic cancer. This finding is in striking contrast to reports on MEK-Erk-mediated KLF5 induction in colon cancer cells. Moreover, KLF5 expression levels neither correlated with the mutational status of KRAS nor with MEK phosphorylation in pancreatic cancer cells. Importantly, KLF5 was significantly up-regulated by interleukin (IL)-1beta or hypoxia. The IL-1 beta-mediated induction of KLF5 was diminished by blocking the p38 pathway. In addition, blocking IL-1R reduced the constitutive KLF5 expression, suggesting an autocrine activation loop. Moreover, KLF5 coimmunoprecipitated with hypoxia-inducible factor-1alpha (HIF-1alpha) and HIF-1alpha(siRNA) reduced constitutive KLF5. Similarly, KLF5(siRNA) reduced the expression of the HIF-1alpha target gene GLUT-1. Furthermore, KLF5 expression was significantly elevated by high cell density, by anchorage-independent cell growth, and in tumor spheroids. Down-regulation of KLF5 by RNAi reduced the expression of the target genes, survivin, and platelet-derived growth factor-A. In conclusion, overexpression of KLF5 in human pancreatic cancer cells is not mediated by KRAS/Raf/MAPK/Erk signaling, but involves the IL-1beta/IL-1R system, p38, and the transcription factor HIF-1alpha.
Collapse
Affiliation(s)
- Akira Mori
- Department of Surgery and Surgical Oncology, University of Regensburg Medical Center, Regensburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
van der Bij GJ, Oosterling SJ, Beelen RHJ, Meijer S, Coffey JC, van Egmond M. The perioperative period is an underutilized window of therapeutic opportunity in patients with colorectal cancer. Ann Surg 2009; 249:727-34. [PMID: 19387333 DOI: 10.1097/sla.0b013e3181a3ddbd] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE In this review, we address the underlying mechanisms by which surgery augments metastases outgrowth and how these insights can be used to develop perioperative therapeutic strategies for prevention of tumor recurrence. SUMMARY BACKGROUND DATA Surgical removal of the primary tumor provides the best chance of long-term disease-free survival for patients with colorectal cancer (CRC). Unfortunately, a significant part of CRC patients will develop metastases, even after successful resection of the primary tumor. Paradoxically, it is now becoming clear that surgery itself contributes to development of both local recurrences and distant metastases. METHODS Data for this review were identified by searches of PubMed and references from relevant articles using the search terms "surgery," "CRC," and "metastases." RESULTS Surgical trauma and concomitant wound-healing processes induce local and systemic changes, including impairment of tissue integrity and production of inflammatory mediators and angiogenic factors. This can lead to immune suppression and enhanced growth or adhesion of tumor cells, all of which increase the chance of exfoliated tumor cells developing into secondary malignancies. CONCLUSIONS Because surgery remains the appropriate and necessary means of treatment for most CRC patients, new adjuvant therapeutic strategies that prevent tumor recurrence after surgery need to be explored since the perioperative therapeutic window of opportunity offers promising means of improving patient outcome but is unfortunately underutilized.
Collapse
Affiliation(s)
- Gerben J van der Bij
- Department of Surgical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
43
|
Intensification therapy with anti-parathyroid hormone-related protein antibody plus zoledronic acid for bone metastases of small cell lung cancer cells in severe combined immunodeficient mice. Mol Cancer Ther 2009; 8:119-26. [DOI: 10.1158/1535-7163.mct-08-0874] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Boost KA, Sadik CD, Bachmann M, Zwissler B, Pfeilschifter J, Mühl H. IFN-gamma impairs release of IL-8 by IL-1beta-stimulated A549 lung carcinoma cells. BMC Cancer 2008; 8:265. [PMID: 18801189 PMCID: PMC2556346 DOI: 10.1186/1471-2407-8-265] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 09/18/2008] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Production of interferon (IFN)-gamma is key to efficient anti-tumor immunity. The present study was set out to investigate effects of IFNgamma on the release of the potent pro-angiogenic mediator IL-8 by human A549 lung carcinoma cells. METHODS A549 cells were cultured and stimulated with interleukin (IL)-1beta alone or in combination with IFNgamma. IL-8 production by these cells was analyzed with enzyme linked immuno sorbent assay (ELISA). mRNA-expression was analyzed by real-time PCR and RNase protection assay (RPA), respectively. Expression of inhibitor-kappa Balpha, cellular IL-8, and cyclooxygenase-2 was analyzed by Western blot analysis. RESULTS Here we demonstrate that IFNgamma efficiently reduced IL-8 secretion under the influence of IL-1beta. Surprisingly, real-time PCR analysis and RPA revealed that the inhibitory effect of IFNgamma on IL-8 was not associated with significant changes in mRNA levels. These observations concurred with lack of a modulatory activity of IFNgamma on IL-1beta-induced NF-kappaB activation as assessed by cellular IkappaB levels. Moreover, analysis of intracellular IL-8 suggests that IFNgamma modulated IL-8 secretion by action on the posttranslational level. In contrast to IL-8, IL-1beta-induced cyclooxygenase-2 expression and release of IL-6 were not affected by IFNgamma indicating that modulation of IL-1beta action by this cytokine displays specificity. CONCLUSION Data presented herein agree with an angiostatic role of IFNgamma as seen in rodent models of solid tumors and suggest that increasing T helper type 1 (Th1)-like functions in lung cancer patients e.g. by local delivery of IFNgamma may mediate therapeutic benefit via mechanisms that potentially include modulation of pro-angiogenic IL-8.
Collapse
Affiliation(s)
- Kim A Boost
- Klinik für Anaesthesiologie, Ludwig-Maximilians-University Munich, Marchioninistr. 15, 81377 Munich, Germany.
| | | | | | | | | | | |
Collapse
|
45
|
Sitarz R, de Leng WWJ, Polak M, Morsink FHM, Bakker O, Polkowski WP, Maciejewski R, Offerhaus GJA, Milne AN. IL-1B −31T>C promoter polymorphism is associated with gastric stump cancer but not with early onset or conventional gastric cancers. Virchows Arch 2008; 453:249-55. [PMID: 18688641 DOI: 10.1007/s00428-008-0642-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 06/04/2008] [Accepted: 07/03/2008] [Indexed: 02/05/2023]
Affiliation(s)
- R Sitarz
- Department of Pathology, H04-312, University Medical Center Utrecht, Postbox 85500, 3508 GA Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ono M. Molecular links between tumor angiogenesis and inflammation: inflammatory stimuli of macrophages and cancer cells as targets for therapeutic strategy. Cancer Sci 2008; 99:1501-6. [PMID: 18754859 PMCID: PMC11158258 DOI: 10.1111/j.1349-7006.2008.00853.x] [Citation(s) in RCA: 315] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Both inflammation and angiogenesis are exacerbated by increased production of chemokines/cytokines, growth factors, proteolytic enzymes, proteoglycans, lipid mediators and prostaglandins. It has been reported that approximately 15-20% of all malignancies are initiated or exacerbated by inflammation. Initiation and progression of cancer are also closely linked to angiogenesis. Infiltration of macrophages is a dramatic and common feature of inflammation, angiogenesis and cancer, and has been recently highlighted in an attempt to develop novel strategies for treating cancer. The recruitment and infiltration of macrophages in the tumor microenvironment activates them to support the malignant progression of cancer cells, and these macrophages are called tumor-associated macrophages. In a model of experimental angiogenesis using mouse corneas, macrophages infiltrated tissue in response to inflammatory cytokines and produced chemokines and angiogenesis-promoting factors, such as vascular endothelial growth factor-A, interleukin-8, matrix metalloproteinases, prostanoids and reactive oxygen species. Moreover, in a cancer xenograft model, inflammatory stimuli by a representative inflammatory cytokine, interleukin-1beta, enhanced tumor growth and angiogenesis with infiltration and activation of macrophages. Co-culture of cancer cells with macrophages synergistically stimulated production of various angiogenesis-related factors when stimulated by the inflammatory cytokine. This inflammatory angiogenesis in both mouse cornea and a tumor model was mediated, in part, by activation of nuclear factor kappaB and activator protein 1 (Jun/Fos). Administration of either nuclear factor kappaB-targeting drugs or cyclooxygenase 2 inhibitors or depletion of macrophages could block both inflammatory angiogenesis and tumor angiogenesis. Thus, both inflammatory and angiogenic responses in tumor stroma could be targets for development of anticancer therapeutic drugs.
Collapse
Affiliation(s)
- Mayumi Ono
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
47
|
Kimura YN, Watari K, Fotovati A, Hosoi F, Yasumoto K, Izumi H, Kohno K, Umezawa K, Iguchi H, Shirouzu K, Takamori S, Kuwano M, Ono M. Inflammatory stimuli from macrophages and cancer cells synergistically promote tumor growth and angiogenesis. Cancer Sci 2007; 98:2009-18. [PMID: 17924976 PMCID: PMC11159678 DOI: 10.1111/j.1349-7006.2007.00633.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 08/28/2007] [Accepted: 08/31/2007] [Indexed: 11/29/2022] Open
Abstract
The focus of the present study was whether and how infiltrating macrophages play a role in angiogenesis and the growth of cancer cells in response to the inflammatory cytokine interleukin (IL)-1beta. Lewis lung carcinoma cells overexpressing IL-1beta grew faster and induced greater neovascularization than a low IL-1beta-expressing counterpart in vivo. When macrophages were depleted using clodronate liposomes, both neovascularization and tumor growth were reduced in the IL-1beta-expressing tumors. Co-cultivation of IL-1beta-expressing cancer cells with macrophages synergistically augmented neovascularization and the migration of vascular endothelial cells. In these co-cultures, production of the angiogenic factors vascular endothelial growth factor-A and IL-8, monocyte chemoattractant protein-1, and matrix metalloproteinase-9 were increased markedly. The production of these factors, induced by IL-1beta-stimulated lung cancer cells, was blocked by a nuclear factor (NF)-kappaB inhibitor, and also by the knockdown of p65 (NF-kappaB) and c-Jun using small interference RNA, suggesting involvement of the transcription factors NF-kappaB and AP-1. These results demonstrated that macrophages recruited into tumors by monocyte chemoattractant protein-1 and other chemokines could play a critical role in promoting tumor growth and angiogenesis, through interactions with cancer cells mediated by inflammatory stimuli.
Collapse
Affiliation(s)
- Yusuke N Kimura
- Research Center for Innovative Cancer Therapy and Department of Surgery, Kurume University, Kurume 830-0011, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Yang Y, Park H, Yang Y, Kim TS, Bang SI, Cho D. Enhancement of cell migration by corticotropin-releasing hormone through ERK1/2 pathway in murine melanoma cell line, B16F10. Exp Dermatol 2007; 16:22-7. [PMID: 17181633 DOI: 10.1111/j.1600-0625.2006.00511.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Melanoma is a malignant skin cancer that displays a high rate of tumor cell migration and metastasis. This study examined how corticotropin-releasing hormone (CRH) affects the migration of melanoma cells in order to further understand the relationship between stress and tumor cell migration. The migration assay data showed that CRH treatment increased the level of B16F10 cell migration in a dose- and time-dependent manner. To determine whether the extracellular signal-regulated protein kinase 1/2 (ERK1/2) signaling pathway is involved in the upregulation of melanoma migration, cells were pretreated with an inhibitor of ERK1/2 (PD098059). The pretreatment of PD098059 blocked the increase in cell migration. Furthermore, CRH induced the phosphorylation of ERK1/2. The maximum activation of ERK1/2 by CRH was observed at 15 min. Taken together, these results suggest that CRH is an important mediator that regulates the migration of melanoma cells in the skin during stress through the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Yoolhee Yang
- Department of Life Science, Sookmyung Women's University, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
49
|
Zheng M, Lu R, Che X, Li J, Zhou C, Wang L, Xu Q, Cao H, Li Q, Yao Z. Tyroservatide Therapy for Tumor Growth, Invasion and Metastasis of Lewis Lung Carcinoma and Human Lung Carcinoma A549. Oncology 2007; 70:418-26. [PMID: 17245103 DOI: 10.1159/000098954] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Accepted: 09/14/2006] [Indexed: 11/19/2022]
Abstract
OBJECTIVES The tripeptide tyroservatide (tyrosyl-seryl-valine, p-Tyr-Ser-Val-NH(2), YSV) has been shown to have anti-tumor effects on experimental hepatocarcinoma. The study was conducted to evaluate the therapeutic effects of YSV on tumor growth, invasion and metastasis of lung cancers. METHODS Anti-tumor and anti-metastatic effects of YSV were evaluated in three experimental systems. In C57BL/6 mice, a spontaneous metastasis model of Lewis lung cancer was used to study the anti-tumor and anti-metastasis effects of YSV. A549 human lung carcinoma was used to create an orthotopic model in nude mice to investigate the anti-metastasis effect of YSV. Finally, an in vitro model using the B16F10 melanoma cell line was selected to observe the effect of YSV on adhesion and invasion, and to use immunocytochemistry to assay the expression of ICAM-1. RESULTS YSV inhibited subcutaneous tumor growth of Lewis lung carcinoma (p < 0.05) and markedly decreased lung metastases in the spontaneous metastasis model of Lewis lung cancer and the orthotopic model of A549 human lung carcinoma. In vitro, YSV reduced adhesion and invasion as well as the expression of ICAM-1 in tumor cells. CONCLUSION YSV was able to inhibit tumor growth and metastasis in lung cancer.
Collapse
Affiliation(s)
- Minna Zheng
- Department of Immunology, Tianjin Medical University, Tianjin, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Solà-Villà D, Camacho M, Solà R, Soler M, Diaz JM, Vila L. IL-1beta induces VEGF, independently of PGE2 induction, mainly through the PI3-K/mTOR pathway in renal mesangial cells. Kidney Int 2006; 70:1935-41. [PMID: 17035941 DOI: 10.1038/sj.ki.5001948] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Vascular endothelial growth factor (VEGF) could play a relevant role in angiogenesis associated with chronic allograft nephropathy. Interleukin-1beta (IL-1beta) has a key role in inflammatory response. It induces prostaglandin (PG) E2, which is involved in VEGF release by some normal and tumor cells. In the present work, we studied the effect of IL-1beta on VEGF release by rat mesangial cells, the transduction signal, and whether or not PGE2 is involved in this effect. IL-1beta induced a time-dependent formation of VEGF (analyzed by enzyme-linked immunosorbent assay) and PGE2 (analyzed by enzyme immunoassay). The latter correlated with microsomal-PGE-synthase (mPGES)-1 expression rather than with cyclooxygenase (COX)-2 in terms of protein, determined by Western blotting. No effect of IL-1beta on COX-1, cytosolic PGES, or mPGES-2 expression was observed. Indomethacin exerted a nonsignificant effect on IL-1beta-induced VEGF, and exogenously added PGE2 exhibited a nonsignificant stimulatory effect on VEGF formation. SB 203580, a p38 mitogen-activated protein kinase inhibitor, weakly inhibited the induction of VEGF by IL-1beta in a concentration-dependent manner, whereas LY 294002, a phosphoinoside 3-kinase (PI3-K) inhibitor, and rapamycin, a mammalian target of rapamycin (mTOR) inhibitor, strongly inhibited both IL-1beta- and tumor necrosis factor-alpha-induced VEGF formation in a concentration-dependent manner. Rapamycin also decreased glomerular VEGF levels in the anti-Thy1.1 model of experimental glomerulonephritis. In conclusion, the PI3-K-mTOR pathway seems to be essential in cytokine-induced release of VEGF in mesangial cells.
Collapse
Affiliation(s)
- D Solà-Villà
- Inflammation Mediators Laboratory, Institute of Research of Hospital Santa Creu i Sant Pau, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|