1
|
Hagiyama M, Yoneshige A, Wada A, Kimura R, Ito S, Inoue T, Takeuchi F, Ito A. Efficient intracellular drug delivery by co-administration of two antibodies against cell adhesion molecule 1. J Control Release 2024; 371:603-618. [PMID: 38782061 DOI: 10.1016/j.jconrel.2024.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/02/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Cell adhesion molecule 1 (CADM1), a single-pass transmembrane protein, is involved in oncogenesis. We previously demonstrated the therapeutic efficacy of anti-CADM1 ectodomain monoclonal antibodies against mesothelioma; however, the underlying mechanism is unclear. In the present study, we explored the molecular behavior of anti-CADM1 antibodies in CADM1-expressing tumor cells. Sequencing analyses revealed that the anti-CADM1 chicken monoclonal antibodies 3E1 and 9D2 are IgY and IgM isotype antibodies, respectively. Co-administration of 3E1 and 9D2 altered the subcellular distribution of CADM1 from the detergent-soluble fraction to the detergent-resistant fraction in tumor cells. Using recombinant chicken-mouse chimeric antibodies that had been isotype-switched from IgG to IgM, we demonstrated that the combination of the variable region of 3E1 and the constant region of IgM was required for CADM1 relocation. Cytochemical studies showed that 3E1 colocalized with late endosomes/lysosomes after co-administration with 9D2, suggesting that the CADM1-antibody complex is internalized from the cell surface to intracellular compartments by lipid-raft mediated endocytosis. Finally, 3E1 was conjugated with the antimitotic agent monomethyl auristatin E (MMAE) via a cathepsin-cleavable linker. Co-administration of 3E1-monomethyl auristatin E and 9D2 suppressed the growth of multiple types of tumor cells, and this anti-tumor activity was confirmed in a syngeneic mouse model of melanoma. 3E1 and 9D2 are promising drug delivery vehicles for CADM1-expressing tumor cells.
Collapse
Affiliation(s)
- Man Hagiyama
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Azusa Yoneshige
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka, Japan.
| | - Akihiro Wada
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Ryuichiro Kimura
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Shinji Ito
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takao Inoue
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Fuka Takeuchi
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Akihiko Ito
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka, Japan.
| |
Collapse
|
2
|
Add-On Effect of Hemagglutinating Virus of Japan Envelope Combined with Chemotherapy or Immune Checkpoint Inhibitor against Malignant Pleural Mesothelioma: An In Vivo Study. Cancers (Basel) 2023; 15:cancers15030929. [PMID: 36765886 PMCID: PMC9913709 DOI: 10.3390/cancers15030929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a refractory tumor because most of the lesions are already disseminated at diagnosis. Previously, the main treatment for MPM was combination chemotherapy. However, recently, immune checkpoint inhibitors (ICIs) are also used. For better efficacy of MPM treatment, we focused on hemagglutinating virus of Japan envelope (HVJ-E), which activates antitumor immunity and induces tumor-specific cell death. In this paper, we aimed to determine whether HVJ-E as a single agent therapy or in combination with chemotherapy or ICIs is effective in MPM bearing mouse. We confirmed its antitumor efficacy in MPM-bearing mouse. HVJ-E significantly prolonged the survival of human MPM-bearing mouse compared to that of control mouse and when combined with CDDP. This efficacy was lost in NOD-SCID mouse, suggesting that activation of innate immunity by HVJ-E was related to the survival rate. HVJ-E also showed antitumor efficacy in murine MPM-bearing mouse. The combination of chemotherapy and HVJ-E caused a significant increase in cytotoxic T cells (CTLs) compared to chemotherapy alone, suggesting that not only innate immunity activated by HVJ-E but also the increase in CTLs contributed to improved survival. The combination of anti-PD-1 antibody and HVJ-E significantly prolonged the survival rate of murine MPM-bearing mouse. Further, HVJ-E might have exhibited antitumor effects by maintaining immunogenicity against tumors. We believe that HVJ-E may be a beneficial therapy to improve MPM treatment in the future.
Collapse
|
3
|
Hagiyama M, Mimae T, Wada A, Takeuchi F, Yoneshige A, Inoue T, Kotoku N, Hamada H, Sekido Y, Okada M, Ito A. Possible Therapeutic Utility of anti-Cell Adhesion Molecule 1 Antibodies for Malignant Pleural Mesothelioma. Front Cell Dev Biol 2022; 10:945007. [PMID: 35903548 PMCID: PMC9315061 DOI: 10.3389/fcell.2022.945007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/23/2022] [Indexed: 11/15/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a highly aggressive malignant tumor, and the effective therapeutic drugs are limited. Thus, the establishment of novel therapeutic method is desired. Considerable proportion of MPMs are shown to express cell adhesion molecule 1 (CADM1), and to use CADM1 to bind to and proliferate on the pleural mesothelial surface, suggesting that CADM1 is a possible therapeutic target. Here, anti-CADM1 ectodomain chicken monoclonal antibodies, 3E1 and 9D2, were examined for their possible therapeutic utility. The full-length form of CADM1 was expressed in eight out of twelve human MPM cell lines. MPM cell lines were cultured on a confluent monolayer of mesothelial MeT-5A cells in the presence of 9D2, the neutralizing antibody. 9D2 suppressed the cell growth of CADM1-positive MPM cells with the loss and aggregation of CADM1 molecules on the MPM cell membrane, but not of CADM1-negative MPM cells. Co-addition of 3E1, lacking the neutralizing action, enhanced the growth-suppressive effect of 9D2. The two antibodies were tested as drug delivery vectors. 3E1 was converted into a humanized antibody (h3E1) and conjugated with monomethyl auristatin E (MMAE), a tubulin polymerization inhibitor. When the resulting h3E1–MMAE antibody-drug conjugate (ADC) was added to the standard cultures of CADM1-positive MPM cells, it suppressed the cell growth in a dose-dependent manner. Co-addition of 9D2 enhanced the growth-suppressive effect of h3E1–MMAE ADC. Anti-CADM1 ectodomain antibodies were suggested to serve as both antibody drugs and drug vectors in the treatment of MPM.
Collapse
Affiliation(s)
- Man Hagiyama
- Department of Pathology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Takahiro Mimae
- Department of Surgical Oncology, Hiroshima University, Hiroshima, Japan
| | - Akihiro Wada
- Department of Pathology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Fuka Takeuchi
- Division of Molecular Pathology, Graduate School of Medical Science, Kindai University, Osaka, Japan
| | - Azusa Yoneshige
- Department of Pathology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Takao Inoue
- Department of Pathology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Naoyuki Kotoku
- College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Hironobu Hamada
- Department of Physical Analysis and Therapeutic Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoshitaka Sekido
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Morihito Okada
- Department of Surgical Oncology, Hiroshima University, Hiroshima, Japan
| | - Akihiko Ito
- Department of Pathology, Kindai University Faculty of Medicine, Osaka, Japan
- Division of Molecular Pathology, Graduate School of Medical Science, Kindai University, Osaka, Japan
- *Correspondence: Akihiko Ito,
| |
Collapse
|
4
|
Zhong B, Shingyoji M, Hanazono M, Nguyễn TT, Morinaga T, Tada Y, Shimada H, Hiroshima K, Tagawa M. Combination of a p53-activating CP-31398 and an MDM2 or a FAK inhibitor produces growth suppressive effects in mesothelioma with wild-type p53 genotype. Apoptosis 2021; 25:535-547. [PMID: 32468177 DOI: 10.1007/s10495-020-01612-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A majority of mesothelioma had the wild-type p53 genotype but was defective of p53 functions primarily due to a genetic defect in INK4A/ARF region. We examined a growth suppressive activity of CP-31398 which was developed to restore the p53 functions irrespective of the genotype in mesothelioma with wild-type or mutated p53. CP-31398 up-regulated p53 levels in cells with wild-type p53 genotype but induced cell growth suppression in a p53-independent manner. In contrasts, nutlin-3a, an MDM2 inhibitor, increased p53 and p21 levels in mesothelioma with the wild-type p53 genotype and produced growth suppressive effects. We investigated a combinatory effect of CP-31398 and nutlin-2a and found the combination produced synergistic growth inhibition in mesothelioma with the wild-type p53 but not with mutated p53. Western blot analysis showed that the combination increased p53 and the phosphorylation levels greater than treatments with the single agent, augmented cleavages of PARP and caspase-3, and decreased phosphorylated FAK levels. Combination of CP-31398 and defactinib, a FAK inhibitor, also achieved synergistic inhibitory effects and increased p53 with FAK dephosphorylation levels greater than the single treatment. These data indicated that a p53-activating CP-31398 achieved growth inhibitory effects in combination with a MDM2 or a FAK inhibitor and suggested a possible reciprocal pathway between p53 elevation and FAK inactivation.
Collapse
Affiliation(s)
- Boya Zhong
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8670, Chiba, Japan
| | - Masato Shingyoji
- Division of Respirology, Chiba Cancer Center, 666-2 Nitona, Chuo-ku, 260-8717, Chiba, Japan
| | - Michiko Hanazono
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | - Thi Thanh Nguyễn
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8670, Chiba, Japan
| | - Takao Morinaga
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | - Yuji Tada
- Department of Pulmonary Medicine, International University of Health and Welfare, 852 Hatakeda, 286-8520, Narita, Japan
| | - Hideaki Shimada
- Department of Surgery, Graduate School of Medicine, Toho University, 6-11-1 Oomori-nishi, Oota-ku, 143-8541, Tokyo, Japan
| | - Kenzo Hiroshima
- Department of Pathology, Tokyo Women's Medical University Yachiyo Medical Center, 477-96, Ohwadashinden, Yachiyo, Chiba, 276-8524, Japan.,Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8717, Japan
| | - Masatoshi Tagawa
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan. .,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8670, Chiba, Japan. .,Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8717, Japan. .,Funabashi Orthopaedic Hospital, 1-833 Hazama, Funabashi, 274-0822, Japan.
| |
Collapse
|
5
|
Qin Y, Sekine I, Hanazono M, Morinaga T, Fan M, Takiguchi Y, Tada Y, Shingyoji M, Yamaguchi N, Tagawa M. AMPK activation induced in pemetrexed-treated cells is associated with development of drug resistance independently of target enzyme expression. Mol Oncol 2019; 13:1419-1432. [PMID: 31033201 PMCID: PMC6547620 DOI: 10.1002/1878-0261.12496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 02/13/2019] [Accepted: 04/26/2019] [Indexed: 12/29/2022] Open
Abstract
Pemetrexed (PEM) inhibits DNA and RNA synthesis and is currently one of the first‐line agents for mesothelioma. PEM suppresses the activities of several enzymes involved in purine and pyrimidine synthesis, and elevated activity of these enzymes in tumors is often linked with resistance to PEM. The agent also stimulates AMP‐activated protein kinase (AMPK) and consequently influences the mammalian target of rapamycin complex 1 (mTORC1) pathways. Nevertheless, it remains unclear whether PEM resistance is linked to the AMPK or mTORC1 pathways. Here, we established two independent PEM‐resistant mesothelioma cell lines in which expression of the PEM‐target enzymes was not elevated, and found that levels of phosphorylated AMPK and p70S6K and, to a lesser extent, levels of phosphorylated AKT and p53, were increased in these cells as compared with the respective parent cells. PEM stimulation also augmented phosphorylation of AMPK, p70S6K, AKT and p53 in most cases. An AMPK activator increased phosphorylation and PEM resistance in parental cells, and the inhibitor decreased the resistance of PEM‐resistant cells. In contrast, inhibitors for p70S6K and AKT did not influence PEM resistance; furthermore, increased levels of endogenous p53 did not affect PEM sensitivity. These data collectively indicate that constitutive activation of AMPK is associated with PEM resistance, and that this is unconnected with elevated DNA and RNA synthesis.
Collapse
Affiliation(s)
- Yiyang Qin
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Japan.,Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Japan
| | - Ikuo Sekine
- Department of Medical Oncology, Faculty of Medicine, University of Tsukuba, Japan
| | - Michiko Hanazono
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Japan.,Department of Respirology, Graduate School of Medicine, Chiba University, Japan
| | - Takao Morinaga
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Japan
| | - Mengmeng Fan
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Japan
| | - Yuichi Takiguchi
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Japan
| | - Yuji Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, Japan
| | | | - Naoto Yamaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Japan
| | - Masatoshi Tagawa
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Japan
| |
Collapse
|
6
|
Chai K, Ning X, Nguyễn TTT, Zhong B, Morinaga T, Li Z, Shingyoji M, Tada Y, Tatsumi K, Shimada H, Hiroshima K, Yamaguchi N, Tagawa M. Heat shock protein 90 inhibitors augment endogenous wild-type p53 expression but down-regulate the adenovirally-induced expression by inhibiting a proteasome activity. Oncotarget 2018; 9:26130-26143. [PMID: 29899847 PMCID: PMC5995238 DOI: 10.18632/oncotarget.25452] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 05/01/2018] [Indexed: 12/29/2022] Open
Abstract
Heat shock protein 90 (HSP90) inhibitors suppressed MDM4 functions which mediated p53 ubiquitination, and blocked a chaperon function which influenced expression of the client proteins. We examined cytotoxic effects of the inhibitors, 17-allylamino-17-demetheoxygeldanamycin (17-AAG) and 17-dimethylaminoethylamino-17-demethoxy-geldanamycin (17-DMAG), on mesothelioma and investigated combinatory effects of the inhibitors and adenoviruses expressing the wild-type p53 gene (Ad-p53). A majority of mesothelioma lacks p14 and p16 expression, which leads to defective p53 pathway despite bearing the wild-type p53 genotype. The HSP90 inhibitors up-regulated endogenous wild-type p53 expression and induced cell death. Furthermore, the inhibitors increased the endogenous p53 levels that were induced by cisplatin. Nevertheless, the HSP90 inhibitors suppressed Ad-p53-induced exogenous p53 expression primarily at a posttranscriptional level and inhibited the Ad-p53-mediated cell death. HSP90 inhibitors suppressed ubiquitination processes which were involved in p53 degradation, but a proteasome inhibitor, MG-132, prevented the HSP90 inhibitors-induced p53 down-regulation. In contrast, an inhibitor for HSP70 with a chaperon function, pifithrin-μ, did not produce the p53 down-regulation. The HSP90 inhibitors did not suppress expression of Ad receptor molecules but rather increased expression of green fluorescence protein transduced by the same Ad vector. These data collectively indicated that an HSP90 inhibitor possessed a divalent action on p53 expression, as an activator for endogenous wild-type p53 through inhibited ubiquitination and a negative regulator of exogenously over-expressed p53 through the proteasome pathway.
Collapse
Affiliation(s)
- Kuan Chai
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chuo-ku, Chiba 260-8717, Japan.,Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan
| | - Xuerao Ning
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chuo-ku, Chiba 260-8717, Japan.,Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan
| | - Thảo Thi Thanh Nguyễn
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chuo-ku, Chiba 260-8717, Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Boya Zhong
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chuo-ku, Chiba 260-8717, Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Takao Morinaga
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chuo-ku, Chiba 260-8717, Japan
| | - Zhihan Li
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chuo-ku, Chiba 260-8717, Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Masato Shingyoji
- Division of Respirology, Chiba Cancer Center, Chuo-ku, Chiba 260-8717, Japan
| | - Yuji Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Hideaki Shimada
- Department of Surgery, School of Medicine, Toho University, Tokyo 143-8540, Japan
| | - Kenzo Hiroshima
- Department of Pathology, Tokyo Women's Medical University Yachiyo Medical Center, Yachiyo 276-8524, Japan
| | - Naoto Yamaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan
| | - Masatoshi Tagawa
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chuo-ku, Chiba 260-8717, Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| |
Collapse
|
7
|
Otsuki T, Nakashima T, Hamada H, Takayama Y, Akita S, Masuda T, Horimasu Y, Miyamoto S, Iwamoto H, Fujitaka K, Miyata Y, Miyake M, Kohno N, Okada M, Hattori N. Aminopeptidase N/CD13 as a potential therapeutic target in malignant pleural mesothelioma. Eur Respir J 2018. [PMID: 29519924 DOI: 10.1183/13993003.01610-2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Angiogenesis is a crucial factor in the progression of malignant pleural mesothelioma (MPM) and antiangiogenic strategies might be effective against MPM. Aminopeptidase N (APN)/CD13 promotes tumour angiogenesis and is associated with poor prognosis; however, its clinical significance in MPM remains unclear.In 37 consecutive patients with surgically resected MPM, we evaluated the association between immunohistochemical APN/CD13 expression in resected tumours and survival. Additionally, the antitumour and antiangiogenic effects of MT95-4, a fully humanised anti-APN/CD13 monoclonal antibody, were evaluated in mice orthotopically implanted with EHMES-10 (abundantly expressing APN/CD13) and MSTO-211H (scarcely expressing APN/CD13) MPM cells.High tumour APN/CD13 expression was associated with poor prognosis in MPM patients (p=0.04), and MT95-4 treatment reduced tumour growth and angiogenesis in mice harbouring EHMES-10 but not MSTO-211H cells. Furthermore, in mice harbouring EHMES-10 cells, MT95-4 combined with cisplatin more effectively suppressed tumour progression than cisplatin alone.Taken together, these results suggest that APN/CD13 is implicated in the aggressiveness of MPM. Here, MT95-4 treatment reduced tumour progression likely by inhibiting angiogenesis, suggesting APN/CD13 as a potential molecular target for MPM treatment. Additionally, combination treatment with MT95-4 and cisplatin could represent a promising approach to treating MPM exhibiting high APN/CD13 expression.
Collapse
Affiliation(s)
- Takahiko Otsuki
- Dept of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Taku Nakashima
- Dept of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hironobu Hamada
- Dept of Physical Analysis and Therapeutic Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yusuke Takayama
- Dept of Hematology and Respiratory Medicine, Kochi University, Kochi, Japan
| | - Shin Akita
- Dept of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Dept of Respiratory Medicine, Chugoku Rosai Hospital, Hiroshima, Japan
| | - Takeshi Masuda
- Dept of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasushi Horimasu
- Dept of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shintaro Miyamoto
- Dept of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Iwamoto
- Dept of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazunori Fujitaka
- Dept of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoshihiro Miyata
- Dept of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Masayuki Miyake
- Dept of Thoracic Surgery, Koseikai Takeda Hospital, Kyoto, Japan
| | | | - Morihito Okada
- Dept of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Noboru Hattori
- Dept of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
8
|
Qin Y, Sekine I, Fan M, Takiguchi Y, Tada Y, Shingyoji M, Hanazono M, Yamaguchi N, Tagawa M. Augmented expression of cardiac ankyrin repeat protein is induced by pemetrexed and a possible marker for the pemetrexed resistance in mesothelioma cells. Cancer Cell Int 2017; 17:120. [PMID: 29238267 PMCID: PMC5725641 DOI: 10.1186/s12935-017-0493-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 12/04/2017] [Indexed: 12/29/2022] Open
Abstract
Background Pemetrexed (PEM) is an anti-cancer agent targeting DNA and RNA synthesis, and clinically in use for mesothelioma and non-small cell lung carcinoma. A mechanism of resistance to PEM is associated with elevated activities of several enzymes involved in nucleic acid metabolism. Methods We established two kinds of PEM-resistant mesothelioma cells which did not show any increase of the relevant enzyme activities. We screened genes enhanced in the PEM-resistant cells with a microarray analysis and confirmed the expression levels with Western blot analysis. A possible involvement of the candidates in the PEM-resistance was examined with a WST assay after knocking down the expression with si-RNA. We also analyzed a mechanism of the up-regulated expression with agents influencing AMP-activated protein kinase (AMPK) and p53. Results We found that expression of cardiac ankyrin repeat protein (CARP) was elevated in the PEM-resistant cells with a microarray and Western blot analysis. Down-regulation of CARP expression with si-RNA did not however influence the PEM resistance. Parent and PEM-resistant cells treated with PEM increased expression of CARP, AMPK, p53 and histone H2AX. The CARP up-regulation was however irrelevant to the p53 genotypes and not induced by an AMPK activator. Augmented p53 levels with nutlin-3a, an inhibitor for p53 degradation, and DNA damages were not always associated with the enhanced CARP expression. Conclusions These data collectively suggest that up-regulated CARP expression is a potential marker for development of PEM-resistance in mesothelioma and that the PEM-mediated enhanced expression is not directly linked with immediate cellular responses to PEM. Electronic supplementary material The online version of this article (10.1186/s12935-017-0493-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yiyang Qin
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717 Japan.,Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Ikuo Sekine
- Department of Medical Oncology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Mengmeng Fan
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuichi Takiguchi
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuji Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | - Michiko Hanazono
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717 Japan.,Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoto Yamaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Masatoshi Tagawa
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717 Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
9
|
In vitro and in vivo anti-tumor activity of alectinib in tumor cells with NCOA4-RET. Oncotarget 2017; 8:73766-73773. [PMID: 29088743 PMCID: PMC5650298 DOI: 10.18632/oncotarget.17900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/19/2017] [Indexed: 11/25/2022] Open
Abstract
Rearranged during transfection (RET) fusion-positive non-small cell lung cancer (NSCLC) accounts for approximately 1–2% of all NSCLCs. To date, RET fusions that involve at least six fusion partners in NSCLC, such as KIF5B, CCDC6, NCOA4, TRIM33, CLIP1, and ERC1, have been identified. Recent clinical trials for RET fusion-positive NSCLC using vandetanib or cabozantinib demonstrated positive clinical response and considerable differential activities for RET inhibitors among fusion partners. Alectinib, an approved ALK inhibitor, is reported to inhibit KIF5B-RET and CCDC6-RET. However, the activity of alectinib with respect to RET with other fusion partners is unknown. In the present study, we investigated the effects of alectinib on NCOA4-RET fusion-positive tumor cells in vitro and in vivo. Alectinib inhibited the viability of NCOA4-RET-positive EHMES-10 cells, as well as CCDC6-RET-positive LC-2/ad and TPC-1 cells. This was achieved via inhibition of the phosphorylation of RET and induction of apoptosis. Moreover, alectinib suppressed the production of thoracic tumors and pleural effusions in an orthotopic intrathoracic inoculation model of EHMES-10 cells. In vivo imaging of an orthotopically inoculated EHMES-10 cell model also revealed that alectinib could rescue pleural carcinomatosis. These results suggest that alectinib may be a promising RET inhibitor against tumors positive for not only KIF5B-RET and CCDC6-RET, but also NCOA4-RET.
Collapse
|
10
|
Shimazu K, Tada Y, Morinaga T, Shingyoji M, Sekine I, Shimada H, Hiroshima K, Namiki T, Tatsumi K, Tagawa M. Metformin produces growth inhibitory effects in combination with nutlin-3a on malignant mesothelioma through a cross-talk between mTOR and p53 pathways. BMC Cancer 2017; 17:309. [PMID: 28464864 PMCID: PMC5414226 DOI: 10.1186/s12885-017-3300-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 04/25/2017] [Indexed: 12/29/2022] Open
Abstract
Background Mesothelioma is resistant to conventional treatments and is often defective in p53 pathways. We then examined anti-tumor effects of metformin, an agent for type 2 diabetes, and combinatory effects of metformin and nutlin-3a, an inhibitor for ubiquitin-mediated p53 degradation, on human mesothelioma. Methods We examined the effects with a colorimetric assay and cell cycle analyses, and investigated molecular events in cells treated with metformin and/or nutlin-3a with Western blot analyses. An involvement of p53 was tested with siRNA for p53. Results Metformin suppressed cell growth of 9 kinds of mesothelioma including immortalized cells of mesothelium origin irrespective of the p53 functional status, whereas susceptibility to nutlin-3a was partly dependent on the p53 genotype. We investigated combinatory effects of metformin and nutlin-3a on, nutlin-3a sensitive MSTO-211H and NCI-H28 cells and insensitive EHMES-10 cells, all of which had the wild-type p53 gene. Knockdown of p53 expression with the siRNA demonstrated that susceptibility of MSTO-211H and NCI-H28 cells to nutlin-3a was p53-dependent, whereas that of EHMES-10 cells was not. Nevertheless, all the cells treated with both agents produced additive or synergistic growth inhibitory effects. Cell cycle analyses also showed that the combination increased sub-G1 fractions greater than metformin or nutlin-3a alone in MSTO-211H and EHMES-10 cells. Western blot analyses showed that metformin inhibited downstream pathways of the mammalian target of rapamycin (mTOR) but did not activate the p53 pathways, whereas nutlin-3a phosphorylated p53 and suppressed mTOR pathways. Cleaved caspase-3 and conversion of LC3A/B were also detected but it was dependent on cells and treatments. The combination of both agents in MSTO-211H cells rather suppressed the p53 pathways that were activated by nutrin-3a treatments, whereas the combination rather augmented the p53 actions in NCI-H28 and EHMES-10 cells. Conclusion These data collectively indicated a possible interactions between mTOR and p53 pathways, and the combinatory effects were attributable to differential mechanisms induced by a cross-talk between the pathways. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3300-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kengo Shimazu
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.,Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan.,Department of Japanese-Oriental Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Yuji Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Takao Morinaga
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | - Masato Shingyoji
- Division of Respirology, Chiba Cancer Center, 666-2 Nitona, Chuo-ku, Chiba, Chiba, 260-8717, Japan
| | - Ikuo Sekine
- Department of Medical Oncology, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Ibaragi, Tsukuba, 305-8575, Japan
| | - Hideaki Shimada
- Department of Surgery, School of Medicine, Toho University, 6-11-1 Oomori-nishi, Oota-ku, Tokyo, 143-8541, Japan
| | - Kenzo Hiroshima
- Department of Pathology, Tokyo Women's Medical University Yachiyo Medical Center, 477-96 Ohwadashinden, Yachiyo, Chiba, 276-8524, Japan
| | - Takao Namiki
- Department of Japanese-Oriental Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Masatoshi Tagawa
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan. .,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| |
Collapse
|
11
|
Taniguchi H, Takeuchi S, Fukuda K, Nakagawa T, Arai S, Nanjo S, Yamada T, Yamaguchi H, Mukae H, Yano S. Amphiregulin triggered epidermal growth factor receptor activation confers in vivo crizotinib-resistance of EML4-ALK lung cancer and circumvention by epidermal growth factor receptor inhibitors. Cancer Sci 2017; 108:53-60. [PMID: 27783866 PMCID: PMC5276841 DOI: 10.1111/cas.13111] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/17/2016] [Accepted: 10/22/2016] [Indexed: 12/30/2022] Open
Abstract
Crizotinib, a first-generation anaplastic lymphoma kinase (ALK) tyrosine-kinase inhibitor, is known to be effective against echinoderm microtubule-associated protein-like 4 (EML4)-ALK-positive non-small cell lung cancers. Nonetheless, the tumors subsequently become resistant to crizotinib and recur in almost every case. The mechanism of the acquired resistance needs to be deciphered. In this study, we established crizotinib-resistant cells (A925LPE3-CR) via long-term administration of crizotinib to a mouse model of pleural carcinomatous effusions; this model involved implantation of the A925LPE3 cell line, which harbors the EML4-ALK gene rearrangement. The resistant cells did not have the secondary ALK mutations frequently occurring in crizotinib-resistant cells, and these cells were cross-resistant to alectinib and ceritinib as well. In cell clone #2, which is one of the clones of A925LPE3-CR, crizotinib sensitivity was restored via the inhibition of epidermal growth factor receptor (EGFR) by means of an EGFR tyrosine-kinase inhibitor (erlotinib) or an anti-EGFR antibody (cetuximab) in vitro and in the murine xenograft model. Cell clone #2 did not have an EGFR mutation, but the expression of amphiregulin (AREG), one of EGFR ligands, was significantly increased. A knockdown of AREG with small interfering RNAs restored the sensitivity to crizotinib. These data suggest that overexpression of EGFR ligands such as AREG can cause resistance to crizotinib, and that inhibition of EGFR signaling may be a promising strategy to overcome crizotinib resistance in EML4-ALK lung cancer.
Collapse
Affiliation(s)
- Hirokazu Taniguchi
- Division of Medical OncologyCancer Research InstituteKanazawa UniversityKanazawaJapan
- Department of Respiratory MedicineNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Shinji Takeuchi
- Division of Medical OncologyCancer Research InstituteKanazawa UniversityKanazawaJapan
| | - Koji Fukuda
- Division of Medical OncologyCancer Research InstituteKanazawa UniversityKanazawaJapan
| | - Takayuki Nakagawa
- Division of Medical OncologyCancer Research InstituteKanazawa UniversityKanazawaJapan
- Tsukuba LaboratoryEisai Co., LtdTsukubaJapan
| | - Sachiko Arai
- Division of Medical OncologyCancer Research InstituteKanazawa UniversityKanazawaJapan
| | - Shigeki Nanjo
- Division of Medical OncologyCancer Research InstituteKanazawa UniversityKanazawaJapan
| | - Tadaaki Yamada
- Division of Medical OncologyCancer Research InstituteKanazawa UniversityKanazawaJapan
| | - Hiroyuki Yamaguchi
- Department of Respiratory MedicineNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Hiroshi Mukae
- Department of Respiratory MedicineNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Seiji Yano
- Division of Medical OncologyCancer Research InstituteKanazawa UniversityKanazawaJapan
| |
Collapse
|
12
|
Abe S, Kaneko MK, Tsuchihashi Y, Izumi T, Ogasawara S, Okada N, Sato C, Tobiume M, Otsuka K, Miyamoto L, Tsuchiya K, Kawazoe K, Kato Y, Nishioka Y. Antitumor effect of novel anti-podoplanin antibody NZ-12 against malignant pleural mesothelioma in an orthotopic xenograft model. Cancer Sci 2016; 107:1198-205. [PMID: 27294401 PMCID: PMC5021042 DOI: 10.1111/cas.12985] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/07/2016] [Accepted: 06/10/2016] [Indexed: 12/29/2022] Open
Abstract
Podoplanin (aggrus) is highly expressed in several types of cancers, including malignant pleural mesothelioma (MPM). Previously, we developed a rat anti-human podoplanin mAb, NZ-1, and a rat-human chimeric anti-human podoplanin antibody, NZ-8, derived from NZ-1, which induced antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity against podoplanin-positive MPM cell lines. In this study, we showed the antitumor effect of NZ-1, NZ-8, and NZ-12, a novel rat-human chimeric anti-human podoplanin antibody derived from NZ-1, in an MPM orthotopic xenograft SCID mouse model. Treatment with NZ-1 and rat NK (CD161a(+) ) cells inhibited the growth of tumors and the production of pleural effusion in NCI-H290/PDPN or NCI-H226 orthotopic xenograft mouse models. NZ-8 and human natural killer (NK) (CD56(+) ) cells also inhibited tumor growth and pleural effusion in MPM orthotopic xenograft mice. Furthermore, NZ-12 induced potent ADCC mediated by human MNC, compared with either NZ-1 or NZ-8. Antitumor effects were observed following treatment with NZ-12 and human NK (CD56(+) ) cells in MPM orthotopic xenograft mice. In addition, combined immunotherapy using the ADCC activity of NZ-12 mediated by human NK (CD56(+) ) cells with pemetrexed, led to enhanced antitumor effects in MPM orthotopic xenograft mice. These results strongly suggest that combination therapy with podoplanin-targeting immunotherapy using both NZ-12 and pemetrexed might provide an efficacious therapeutic strategy for the treatment of MPM.
Collapse
Affiliation(s)
- Shinji Abe
- Department of Clinical Pharmacy Practice Pedagogy, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.,Department of Respiratory Medicine and Rheumatology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Mika Kato Kaneko
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuki Tsuchihashi
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Toshihiro Izumi
- Department of Clinical Pharmacy Practice Pedagogy, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Satoshi Ogasawara
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoto Okada
- Department of Clinical Pharmacy Practice Pedagogy, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Chiemi Sato
- Department of Clinical Pharmacy Practice Pedagogy, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Makoto Tobiume
- Department of Respiratory Medicine and Rheumatology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kenji Otsuka
- Department of Respiratory Medicine and Rheumatology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Licht Miyamoto
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Koichiro Tsuchiya
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kazuyoshi Kawazoe
- Department of Clinical Pharmacy Practice Pedagogy, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yukinari Kato
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| |
Collapse
|
13
|
Jiang Y, Zhong B, Kawamura K, Morinaga T, Shingyoji M, Sekine I, Tada Y, Tatsumi K, Shimada H, Hiroshima K, Tagawa M. Combination of a third generation bisphosphonate and replication-competent adenoviruses augments the cytotoxicity on mesothelioma. BMC Cancer 2016; 16:455. [PMID: 27405588 PMCID: PMC4942884 DOI: 10.1186/s12885-016-2483-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 07/04/2016] [Indexed: 02/07/2023] Open
Abstract
Background Approximately 80 % of mesothelioma specimens have the wild-type p53 gene, whereas they contain homozygous deletions in the INK4A/ARF locus that encodes p14ARF and the 16INK4A genes. Consequently, the majority of mesothelioma is defective of the p53 pathways. We examined whether zoledronic acid (ZOL), a third generation bisphosphonate, and adenoviruses with a deletion of the E1B-55kD gene (Ad-delE1B55), which augments p53 levels in the infected tumors, could produce combinatory anti-tumor effects on human mesothelioma cells bearing the wild-type p53 gene. Methods Cytotoxicity of ZOL and Ad-delE1B55 was assessed with a WST assay. Cell cycle changes were tested with flow cytometry. Expression levels of relevant molecules were examined with western blot analysis to investigate a possible mechanism of cytotoxicity. Furthermore, the expressions of Ad receptors on target cells and infectivity were estimated with flow cytometry. Viral replication was assayed with the tissue culture infection dose method. Results A combinatory use of ZOL and Ad-delE1B55 suppressed cell growth and increased sub-G1 or S-phase populations compared with a single agent, depending on cells tested. The combinatory treatment up-regulated p53 levels and subsequently enhanced the cleavage of caspase-3, 8, 9 and poly (ADP-ribose) polymerase, but expression of molecules involved in autophagy pathways were inconsistent. ZOL-treated cells also increased Ad infectivity with a dose-dependent manner and augmented Ad replication although the expression levels of integrin molecules, one of the Ad receptors, were down-regulated. Conclusions These findings indicated that ZOL and Ad-delE1B55 achieved combinatory anti-tumor effects through augmented apoptotic pathways or increased viral replication. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2483-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Boya Zhong
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kiyoko Kawamura
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | - Takao Morinaga
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | | | - Ikuo Sekine
- Department of Medical Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuji Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideaki Shimada
- Department of Surgery, School of Medicine, Toho University, Tokyo, Japan
| | - Kenzo Hiroshima
- Department of Pathology, Tokyo Women's Medical University Yachiyo Medical Center, Yachiyo, Japan
| | - Masatoshi Tagawa
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan. .,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|
14
|
Takayama Y, Hattori N, Hamada H, Masuda T, Omori K, Akita S, Iwamoto H, Fujitaka K, Kohno N. Inhibition of PAI-1 Limits Tumor Angiogenesis Regardless of Angiogenic Stimuli in Malignant Pleural Mesothelioma. Cancer Res 2016; 76:3285-94. [DOI: 10.1158/0008-5472.can-15-1796] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 03/08/2016] [Indexed: 11/16/2022]
|
15
|
Fibrocyte-like cells mediate acquired resistance to anti-angiogenic therapy with bevacizumab. Nat Commun 2015; 6:8792. [PMID: 26635184 PMCID: PMC4686833 DOI: 10.1038/ncomms9792] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/02/2015] [Indexed: 12/19/2022] Open
Abstract
Bevacizumab exerts anti-angiogenic effects in cancer patients by inhibiting vascular endothelial growth factor (VEGF). However, its use is still limited due to the development of resistance to the treatment. Such resistance can be regulated by various factors, although the underlying mechanisms remain incompletely understood. Here we show that bone marrow-derived fibrocyte-like cells, defined as alpha-1 type I collagen-positive and CXCR4-positive cells, contribute to the acquired resistance to bevacizumab. In mouse models of malignant pleural mesothelioma and lung cancer, fibrocyte-like cells mediate the resistance to bevacizumab as the main producer of fibroblast growth factor 2. In clinical specimens of lung cancer, the number of fibrocyte-like cells is significantly increased in bevacizumab-treated tumours, and correlates with the number of treatment cycles, as well as CD31-positive vessels. Our results identify fibrocyte-like cells as a promising cell biomarker and a potential therapeutic target to overcome resistance to anti-VEGF therapy.
Collapse
|
16
|
Yamada T, Amann JM, Fukuda K, Takeuchi S, Fujita N, Uehara H, Iwakiri S, Itoi K, Shilo K, Yano S, Carbone DP. Akt Kinase-Interacting Protein 1 Signals through CREB to Drive Diffuse Malignant Mesothelioma. Cancer Res 2015; 75:4188-97. [PMID: 26294214 DOI: 10.1158/0008-5472.can-15-0858] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/26/2015] [Indexed: 12/12/2022]
Abstract
Diffuse malignant mesothelioma (DMM) is a tumor of serosal membranes with propensity for progressive local disease. Because current treatment options are largely ineffective, novel therapeutic strategies based on molecular mechanisms and the disease characteristics are needed to improve the outcomes of patients with this disease. Akt kinase interacting protein 1 (Aki1; Freud-1/CC2D1A) is a scaffold protein for the PI3K-PDK1-Akt signaling module that helps determine receptor signal selectivity for EGFR. Aki1 has been suggested as a therapeutic target, but its potential has yet to be evaluated in a tumor setting. Here, we report evidence supporting its definition as a therapeutic target in DMM. In cell-based assays, Aki1 silencing decreased cell viability and caused cell-cycle arrest of multiple DMM cell lines via effects on the PKA-CREB1 signaling pathway. Blocking CREB activity phenocopied Aki1 silencing. Clinically, Aki1 was expressed in most human DMM specimens where its expression correlated with phosphorylated CREB1. Notably, Aki1 siRNA potently blocked tumor growth in an orthotopic implantation model of DMM when administered directly into the pleural cavity of tumor-bearing mice. Our findings suggest an important role for the Aki1-CREB axis in DMM pathogenesis and provide a preclinical rationale to target Aki1 by intrathoracic therapy in locally advanced tumors.
Collapse
Affiliation(s)
- Tadaaki Yamada
- Department of Internal Medicine, The Ohio State University Medical Center, Columbus, Ohio. Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Joseph M Amann
- Department of Internal Medicine, The Ohio State University Medical Center, Columbus, Ohio
| | - Koji Fukuda
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Shinji Takeuchi
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Naoya Fujita
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hisanori Uehara
- Department of Molecular and Environmental Pathology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Shotaro Iwakiri
- Department of Respiratory Surgery, Hyogo Prefectural Amagasaki Hospital, Amagasaki, Japan
| | - Kazumi Itoi
- Department of Respiratory Surgery, Hyogo Prefectural Amagasaki Hospital, Amagasaki, Japan
| | - Konstantin Shilo
- Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio
| | - Seiji Yano
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.
| | - David P Carbone
- Department of Internal Medicine, The Ohio State University Medical Center, Columbus, Ohio.
| |
Collapse
|
17
|
Nanjo S, Nakagawa T, Takeuchi S, Kita K, Fukuda K, Nakada M, Uehara H, Nishihara H, Hara E, Uramoto H, Tanaka F, Yano S. In vivo imaging models of bone and brain metastases and pleural carcinomatosis with a novel human EML4-ALK lung cancer cell line. Cancer Sci 2015; 106:244-52. [PMID: 25581823 PMCID: PMC4376432 DOI: 10.1111/cas.12600] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 12/17/2014] [Accepted: 12/22/2014] [Indexed: 12/13/2022] Open
Abstract
EML4-ALK lung cancer accounts for approximately 3–7% of non-small-cell lung cancer cases. To investigate the molecular mechanism underlying tumor progression and targeted drug sensitivity/resistance in EML4-ALK lung cancer, clinically relevant animal models are indispensable. In this study, we found that the lung adenocarcinoma cell line A925L expresses an EML4-ALK gene fusion (variant 5a, E2:A20) and is sensitive to the ALK inhibitors crizotinib and alectinib. We further established highly tumorigenic A925LPE3 cells, which also have the EML4-ALK gene fusion (variant 5a) and are sensitive to ALK inhibitors. By using A925LPE3 cells with luciferase gene transfection, we established in vivo imaging models for pleural carcinomatosis, bone metastasis, and brain metastasis, all of which are significant clinical concerns of advanced EML4-ALK lung cancer. Interestingly, crizotinib caused tumors to shrink in the pleural carcinomatosis model, but not in bone and brain metastasis models, whereas alectinib showed remarkable efficacy in all three models, indicative of the clinical efficacy of these ALK inhibitors. Our in vivo imaging models of multiple organ sites may provide useful resources to analyze further the pathogenesis of EML4-ALK lung cancer and its response and resistance to ALK inhibitors in various organ microenvironments.
Collapse
Affiliation(s)
- Shigeki Nanjo
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Li Q, Wang W, Machino Y, Yamada T, Kita K, Oshima M, Sekido Y, Tsuchiya M, Suzuki Y, Nan-Ya KI, Iida S, Nakamura K, Iwakiri S, Itoi K, Yano S. Therapeutic activity of glycoengineered anti-GM2 antibodies against malignant pleural mesothelioma. Cancer Sci 2014; 106:102-7. [PMID: 25421609 PMCID: PMC4317781 DOI: 10.1111/cas.12575] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 11/11/2014] [Accepted: 11/14/2014] [Indexed: 12/29/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare and highly aggressive neoplasm that arises from the pleural, pericardial, or peritoneal lining. Although surgery, chemotherapy, radiotherapy, and combinations of these therapies are used to treat MPM, the median survival of such patients is dismal. Therefore, there is a compelling need to develop novel therapeutics with different modes of action. Ganglioside GM2 is a glycolipid that has been shown to be overexpressed in various types of cancer. However, there are no published reports regarding the use of GM2 as a potential therapeutic target in cases of MPM. In this study, we evaluated the efficacy of the anti-GM2 antibody BIW-8962 as an anti-MPM therapeutic using in vitro and in vivo assays. Consequently, the GM2 expression in the MPM cell lines was confirmed using flow cytometry. In addition, eight of 11 cell lines were GM2-positive (73%), although the GM2 expression was variable. BIW-8962 showed a significant antibody-dependent cellular cytotoxicity activity against the GM2-expressing MPM cell line MSTO-211H, the effect of which depended on the antibody concentration and effector/target ratio. In an in vivo orthotropic mouse model using MSTO-211H cells, BIW-8962 significantly decreased the incidence and size of tumors. Additionally, the GM2 expression was confirmed in the MPM clinical specimens. Fifty-eight percent of the MPM tumors were positive for GM2, with individual variation in the intensity and frequency of staining. These data suggest that anti-GM2 antibodies may become a therapeutic option for MPM patients.
Collapse
Affiliation(s)
- Qi Li
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Robinson C, Solin JN, Lee YCG, Lake RA, Lesterhuis WJ. Mouse models of mesothelioma: strengths, limitations and clinical translation. Lung Cancer Manag 2014. [DOI: 10.2217/lmt.14.27] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY Mouse models of cancer are invaluable for obtaining detailed knowledge about tumor development and for screening therapeutic and preventive approaches. Mesothelioma is an unusual cancer because the same carcinogen, asbestos, causes a similar disease in both humans and animals. Unlike most other cancers, murine mesothelioma can therefore be regarded as a disease homolog, rather than a model as such. However, because asbestos-induced cancer has low penetrance and a long lag time, most translational studies have utilized more efficient models such as tumor transplantation. In consequence, many promising results have not translated into positive findings in patients. Here, we describe the widely used murine mesothelioma models and critically discuss their relative advantages and disadvantages. We emphasize the use of the appropriate model for the specific research question and the need to use multiple models in order to obtain robust and translatable data.
Collapse
Affiliation(s)
- Cleo Robinson
- National Centre for Asbestos Related Diseases, School of Medicine & Pharmacology, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Jessica N Solin
- National Centre for Asbestos Related Diseases, School of Medicine & Pharmacology, The University of Western Australia, Nedlands, WA 6009, Australia
| | - YC Gary Lee
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
| | - Richard A Lake
- National Centre for Asbestos Related Diseases, School of Medicine & Pharmacology, The University of Western Australia, Nedlands, WA 6009, Australia
| | - W Joost Lesterhuis
- National Centre for Asbestos Related Diseases, School of Medicine & Pharmacology, The University of Western Australia, Nedlands, WA 6009, Australia
| |
Collapse
|
20
|
Okamoto S, Jiang Y, Kawamura K, Shingyoji M, Fukamachi T, Tada Y, Takiguchi Y, Tatsumi K, Shimada H, Hiroshima K, Kobayashi H, Tagawa M. Zoledronic acid produces combinatory anti-tumor effects with cisplatin on mesothelioma by increasing p53 expression levels. PLoS One 2013; 8:e60297. [PMID: 23555949 PMCID: PMC3610651 DOI: 10.1371/journal.pone.0060297] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 02/26/2013] [Indexed: 12/29/2022] Open
Abstract
We examined anti-tumor effects of zoledronic acid (ZOL), one of the bisphosphonates agents clinically used for preventing loss of bone mass, on human mesothelioma cells bearing the wild-type p53 gene. ZOL-treated cells showed activation of caspase-3/7, -8 and -9, and increased sub-G1 phase fractions. A combinatory use of ZOL and cisplatin (CDDP), one of the first-line anti-cancer agents for mesothelioma, synergistically or additively produced the cytotoxicity on mesothelioma cells. Moreover, the combination achieved greater anti-tumor effects on mesothelioma developed in the pleural cavity than administration of either ZOL or CDDP alone. ZOL-treated cells as well as CDDP-treated cells induced p53 phosphorylation at Ser 15, a marker of p53 activation, and up-regulated p53 protein expression levels. Down-regulation of p53 levels with siRNA however did not influence the ZOL-mediated cytotoxicity but negated the combinatory effects by ZOL and CDDP. In addition, ZOL treatments augmented cytotoxicity of adenoviruses expressing the p53 gene on mesothelioma. These data demonstrated that ZOL-mediated augmentation of p53, which was not linked with ZOL-induced cytotoxicity, played a role in the combinatory effects with a p53 up-regulating agent, and suggests a possible clinical use of ZOL to mesothelioma with anti-cancer agents.
Collapse
Affiliation(s)
- Shinya Okamoto
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Yuanyuan Jiang
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan
- Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kiyoko Kawamura
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Masato Shingyoji
- Department of Thoracic Disease, Chiba Cancer Center, Chiba, Japan
| | - Toshihiko Fukamachi
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Yuji Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuichi Takiguchi
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideaki Shimada
- Department of Surgery, School of Medicine, Toho University, Tokyo, Japan
| | - Kenzo Hiroshima
- Department of Pathology, Tokyo Women's Medical University Yachiyo Medical Center, Yachiyo, Japan
| | - Hiroshi Kobayashi
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Masatoshi Tagawa
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan
- Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
- * E-mail:
| |
Collapse
|
21
|
Satoh M, Takemura Y, Hamada H, Sekido Y, Kubota S. EGCG induces human mesothelioma cell death by inducing reactive oxygen species and autophagy. Cancer Cell Int 2013; 13:19. [PMID: 23432995 PMCID: PMC3605250 DOI: 10.1186/1475-2867-13-19] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/15/2013] [Indexed: 01/12/2023] Open
Abstract
Malignant mesothelioma is an asbestos-related fatal disease with no effective cure. We studied whether a green tea polyphenol, epigallocathechin-3-gallate (EGCG), could induce cell death in five human mesothelioma cell lines. We found that EGCG induced apoptosis in all five mesothelioma cell lines in a dose-dependent manner. We further clarified the cell killing mechanism. EGCG induced reactive oxygen species (ROS), and impaired the mitochondrial membrane potential. As treatment with ROS scavengers, catalase and tempol, significantly inhibited the EGCG-induced apoptosis, ROS is considered to be responsible for the EGCG-induced apoptosis. Further, we found that EGCG induced autophagy, and that when autophagy was suppressed by chloroquine, the EGCG-induced cell death was enhanced. Taken together, these results suggest that EGCG has a great potential for the treatment of mesothelioma by inducing apoptosis and autophagy.
Collapse
Affiliation(s)
- Motohiko Satoh
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| | | | | | | | | |
Collapse
|
22
|
Goudarzi H, Hida Y, Takano H, Teramae H, Iizasa H, Hamada JI. Hypoxia affects in vitro growth of newly established cell lines from patients with malignant pleural mesothelioma. Biomed Res 2013; 34:13-21. [DOI: 10.2220/biomedres.34.13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Zoledronic acid produces antitumor effects on mesothelioma through apoptosis and S-phase arrest in p53-independent and Ras prenylation-independent manners. J Thorac Oncol 2012; 7:873-82. [PMID: 22481236 DOI: 10.1097/jto.0b013e31824c7d43] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION We examined whether zoledronic acid (ZOL), the third generation of bisphosphonates, produced cytotoxic effects on human mesothelioma cells in vitro and in vivo, and investigated a possible involvement of p53, Ras, and extracellular signal-regulated kinase1/2 (ERK1/2) pathways. METHODS Cytotoxicity and cell cycles were assessed with a colorimetric assay and flow cytometry, respectively. Expression levels of apoptosis-linked proteins and prenylation of small guanine-nucleotide-binding regulatory proteins were tested with p53-small interfering RNA, an ERK kinase1/2-inhibitor, and prenyl alcohols. The antitumor activity was examined in an orthotopic animal model. RESULTS ZOL treatments suppressed growth of mesothelioma cells bearing the wild-type p53 gene through apoptosis induction accompanied by activation of caspases, or S-phase arrest by up-regulated cyclin A and B1. ZOL induced p53 phosphorylation and subsequent activation of the downstream pathways. Down-regulated p53 expression with the small interfering RNA, however, showed that both apoptosis and S-phase arrest were irrelevant to the p53 activation. Geranylgeranyl but not farnesyl pyrophosphate inhibited ZOL-induced apoptosis and S-phase arrest, and the geranylgeraniol supplement decreased ZOL-mediated Rap1A but not Ras unprenylation. Inhibition of ERK1/2 pathways suppressed ZOL-induced apoptosis but not S-phase arrest. We further demonstrated that ZOL, administrated intrapleurally, inhibited the tumor growth in the pleural cavity. CONCLUSIONS These data indicate that ZOL induces apoptosis or S-phase arrest, both of which are independent of p53 activation and Ras unprenylation, and suggest that ZOL is a possible therapeutic agent to mesothelioma partly through non-Ras- and ERK1/2-mediated pathways.
Collapse
|
24
|
Kurai J, Chikumi H, Hashimoto K, Takata M, Sako T, Yamaguchi K, Kinoshita N, Watanabe M, Touge H, Makino H, Igishi T, Hamada H, Yano S, Shimizu E. Therapeutic antitumor efficacy of anti-epidermal growth factor receptor antibody, cetuximab, against malignant pleural mesothelioma. Int J Oncol 2012; 41:1610-8. [PMID: 22922885 PMCID: PMC3583649 DOI: 10.3892/ijo.2012.1607] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 07/24/2012] [Indexed: 12/29/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) is commonly overexpressed in malignant pleural mesothelioma (MPM). Cetuximab is a chimeric mouse-human antibody targeted against EGFR and induces potent antibody-dependent cellular cytotoxicity (ADCC). The action of cetuximab against MPM cells has not been well studied. Therefore, in this study, we investigated the antitumor activity of cetuximab against MPM cell lines, particularly with respect to ADCC activity in vitro and in vivo. EGFR expression of MPM cells was measured by a quantitative flow cytometric analysis and immunohistochemistry. The effect of cetuximab on growth inhibition was assessed using a modified MTT assay. The ADCC activity was measured by a 4-h 51Cr release assay using fresh or IL-2-activated peripheral blood mononuclear cells. In vivo antitumor activity of cetuximab was evaluated using an orthotopic implantation mouse model. Cetuximab-mediated ADCC activity against MPM cells was observed at low concentration (0.25 mg/ml) and was enhanced by IL-2, whereas no direct effect on growth inhibition was detected. A logarithmic correlation was observed between the number of EGFRs on MPM cells and ADCC activity. Low EGFR expression on the MPM cells, which was weakly detectable by immunohistochemistry, was sufficient for maximum ADCC activity. In the mouse model, cetuximab treatment with or without IL-2 significantly inhibited intrathoracic tumor growth and prolonged their survival. Our study shows that cetuximab has potent anti-MPM activity both in vitro and in vivo, mainly through the immunologic mechanism of ADCC. Cetuximab has the potential to be used as a novel therapy for MPM patients.
Collapse
Affiliation(s)
- Jun Kurai
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago-shi, Tottori-ken 683-8504, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhou L, El-Deiry W, Wang W, Ingram ME, Katz SI. Extracellular protease imaging for cell mass tracking of xenografted human malignant pleural mesothelioma. Oncol Rep 2012; 28:883-8. [PMID: 22751990 DOI: 10.3892/or.2012.1888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 02/20/2012] [Indexed: 11/06/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is locally aggressive and challenging to quantitate non-invasively in vivo, particularly in orthotopic models of disease. We describe imaging of extracellular protease activity, typically elevated in locally aggressive tumors, as a novel method for tracking MPM in vivo. Mice bearing human MPM subcutaneous flank xenografted tumors were imaged with ProSense 680, an optical imaging agent of extracellular cysteine protease activity. The relative contribution of extracellular cysteine proteases to the ProSense tumor signal was estimated using RT-PCR quantitation of cysteine protease RNA expression of the MPM cell lines and compared to ArrayExpress microarray RNA expression data from human MPM tumors. Feasibility of orthotopic intraperitoneal MPM cell mass tracking with fluorescence signal was evaluated using CellVue Maroon-coated MSTO-211H and compared to bioluminescent signal using luciferase-transfected MSTO-211H cells. ProSense 680 yielded a robust tumor signal in MPM subcutaneous grafts, primarily resulting from MPM secretion of cathepsin L demonstrated not only by RT-PCR data on MPM cell lines but also by microarray expression data from resected human patient tumors. CellVue Maroon intraperitoneal tumor signal was robust and durable indicating feasibility of intraperitoneal cell mass tracking of orthotopically-xenografted MPM. Optical imaging of extracellular cysteine protease activity is useful for tracking MPM tumor cell mass in vivo. Intraperitoneal MPM cell mass tracking of fluorescently labeled tumor is feasible.
Collapse
Affiliation(s)
- Lanlan Zhou
- Department of Medicine (Hematology/Oncology), Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Penn State College of Medicine, Penn State Hershey Cancer Institute, Penn State Hershey Medical Center, Hershey, PA, USA
| | | | | | | | | |
Collapse
|
26
|
Miyoshi S, Hamada H, Hamaguchi N, Kato A, Katayama H, Irifune K, Ito R, Miyazaki T, Okura T, Higaki J. Antitumor activity of MEK and PI3K inhibitors against malignant pleural mesothelioma cells in vitro and in vivo. Int J Oncol 2012; 41:449-56. [PMID: 22580933 PMCID: PMC3582904 DOI: 10.3892/ijo.2012.1462] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 04/17/2012] [Indexed: 12/29/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive malignancy for which there is no approved targeted therapy. We examined the therapeutic efficacy of the mitogen-activated protein kinase kinase (MEK) and phosphatidylinositol 3-kinase (PI3K) inhibitors against human MPM cell lines both in vitro and orthotopically inoculated into severe combined immunodeficient (SCID) mice. In addition, the molecular mechanisms of these agents were confirmed in vitro and in vivo. The MEK or the PI3K inhibitor suppressed MPM cell growth in vitro in a dose-dependent manner via induction of G1 cell cycle arrest and apoptosis. In addition, combined use of the MEK and PI3K inhibitors showed an additive or synergistic inhibitory effect on MPM cell growth compared to treatment with either individual drug. Treatment with MEK or PI3K inhibitor suppressed the production of thoracic tumors and pleural effusion and prolonged the survival time of EHMES-10 cell-bearing SCID mice. The combination therapy more effectively prolonged the survival time compared to treatment with either individual drug. Immunohistochemical and western blot analysis of thoracic tumors suggested that these agents induced cell cycle arrest, apoptosis and inhibition of tumor angiogenesis. Our results suggest that a combination of MEK and PI3K inhibitors is a promising therapeutic strategy for MPM.
Collapse
Affiliation(s)
- Seigo Miyoshi
- Department of Integrated Medicine and Informatics, Ehime University Graduate School of Medicine, Ehime, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Pleural mesothelioma instigates tumor-associated fibroblasts to promote progression via a malignant cytokine network. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1483-93. [PMID: 21763682 DOI: 10.1016/j.ajpath.2011.05.060] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 04/25/2011] [Accepted: 05/23/2011] [Indexed: 12/17/2022]
Abstract
The tumor microenvironment is crucial to the progression of various malignancies. Malignant pleural mesothelioma (MPM), which originates from the pleura, grows aggressively in the thoracic cavity. Here we describe an orthotopic implantation SCID mouse model of MPM and demonstrate that α-SMA-positive fibroblast-like cells accumulate in the tumors produced by the human MPM cell lines MSTO-211H and Y-Meso-14. We assessed the interaction between MPM cells and their microenvironments, focusing on tumor-associated fibroblasts. MSTO-211H and Y-Meso-14 cells produced fibroblast growth factor-2 (FGF-2) and/or platelet-derived growth factor-AA (PDGF-AA); they also enhanced growth, migration, and production of hepatocyte growth factor (HGF) by human lung fibroblast MRC-5 cells. MRC-5 cells stimulated HGF-mediated growth and migration of MSTO-211H and Y-Meso-14 cells in an in vitro coculture system. In the orthotopic model, tumor formation by MSTO-211H and Y-Meso-14 cells was significantly inhibited by TSU-68, an inhibitor of FGF, VEGF, and PDGF receptors; imatinib, an inhibitor of PDGF receptors; and NK4, an antagonist of HGF. Histological analyses of clinical specimens from 51 MPM patients revealed considerable tumor-associated fibroblasts infiltration and expression of HGF, together with FGF-2 or PDGF-AA, in tumors. These findings indicate that MPM instigates tumor-associated fibroblasts, promoting tumor progression via a malignant cytokine network. Regulation of this cytokine network may be therapeutically useful for controlling MPM.
Collapse
|
28
|
Sato A, Torii I, Tao LH, Song M, Kondo N, Yoshikawa Y, Hashimoto-Tamaoki T, Hasegawa S, Nakano T, Tsujimura T. Establishment of a cell line from a Japanese patient useful for generating an in vivo model of malignant pleural mesothelioma. Cancer Sci 2011; 102:648-55. [PMID: 21205078 PMCID: PMC11158380 DOI: 10.1111/j.1349-7006.2010.01827.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Malignant pleural mesothelioma is a refractory tumor with increasing incidence. In the present study, we established six mesothelioma cell lines possessing two allele deletions of the p16(INK4A) gene and one allele deletion of the neurofibromatosis type 2 gene, MM16, MM21, MM26, MM35, MM46 and MM56, from pleural effusion fluids or surgically resected tumors of Japanese patients. MM21, MM26 and MM46 cells failed to develop tumors in BALB/c-nude mice following subcutaneous inoculation. MM16 and MM35 cells slowly generated tumors at the site of subcutaneous inoculation in BALB/c-nude mice, but lost the expression of mesothelioma-related markers such as calretinin, D2-40 and Wilms' tumor 1 in the subcutaneous tumors. On the other hand, MM56 cells rapidly generated tumors with the expression of calretinin and D2-40 in BALB/c-nude mice following subcutaneous inoculation. In addition, orthotopic implantation of MM56 cells into BALB/c-nude mice developed diffusely growing thoracic tumors by 3 weeks after implantation. Pleural effusions were observed in these mice 4 weeks after implantation. Thoracic tumors invaded aggressively into the chest wall 5 weeks after implantation and often metastasized into the lung, rib, peritoneum and pericardial cavity. On the pleural surface, MM56 cells were growing as single or multiple cell layers with the reactive mesothelium of recipient mice. These results indicate that MM56 cells can behave in a manner characteristic of human malignant pleural mesothelioma in the thoracic cavity of BALB/c-nude mice. The in vivo model using MM56 cells may be useful for studying the biological behavior of malignant pleural mesothelioma and developing its diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Ayuko Sato
- Department of Pathology, Hyogo College of Medicine, Hyogo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Van TT, Hanibuchi M, Kakiuchi S, Sato S, Kuramoto T, Goto H, Mitsuhashi A, Nishioka Y, Akiyama SI, Sone S. The therapeutic efficacy of S-1 against orthotopically implanted human pleural mesothelioma cells in severe combined immunodeficient mice. Cancer Chemother Pharmacol 2010; 68:497-504. [PMID: 21079960 PMCID: PMC3143341 DOI: 10.1007/s00280-010-1503-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 10/26/2010] [Indexed: 12/12/2022]
Abstract
Purpose Malignant pleural mesothelioma (MPM) is a highly lethal neoplasm. S-1 has been developed as a novel oral antineoplastic agent based on the modulation of 5-fluorouracil (5-FU) bioactivity. This study was conducted to investigate the preclinical therapeutic effect of S-1 on MPM. Methods We used three human MPM cell lines, Y-MESO-14, NCI-H290 and MSTO-211H. In vitro proliferation of human MPM cells was determined by MTT assay. Human MPM cells were orthotopically implanted into thoracic cavity of SCID mice. Tumor-bearing mice were treated with S-1 or vehicle. Results The combination of 5-FU and 5-chloro-2,4-dihydroxypyridine (CDHP) was more effective than 5-FU alone in inhibiting MPM cell proliferation in vitro. This combination was most effective in Y-MESO-14 cells, which co-expressed high protein level of dihydropyrimidine dehydrogenase (DPD) and thymidine phosphorylase (TP). In vivo data showed that treatment with S-1 significantly reduced thoracic tumors and pleural effusion produced by Y-MESO-14 cells. Moreover, treatment with S-1 prolonged the survival of Y-MESO-14 cell-bearing SCID mice. Conclusions We demonstrated that S-1 was effective for inhibiting the proliferation of MPM cells, particularly with both DPD and TP expressions, suggesting that S-1 might be therapeutically effective for control of MPM.
Collapse
Affiliation(s)
- Trung The Van
- Department of Medical Oncology, University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hamaguchi N, Hamada H, Miyoshi S, Irifune K, Ito R, Miyazaki T, Higaki J. In vitro and in vivo therapeutic efficacy of the PPAR-γ agonist troglitazone in combination with cisplatin against malignant pleural mesothelioma cell growth. Cancer Sci 2010; 101:1955-64. [PMID: 20608936 PMCID: PMC11159348 DOI: 10.1111/j.1349-7006.2010.01632.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Malignant pleural mesothelioma (MPM), an aggressive and refractory tumor type, is increasing in frequency throughout the world. Peroxisome proliferator activated receptor-γ (PPAR-γ) agonists have anticancer activity against several cancer cell lines in vitro and in vivo. However, there have been no reports that PPAR-γ agonists induce growth inhibition of MPM cell lines. In this study, we investigated the inhibitory effect of a PPAR-γ agonist in combination with an anticancer agent on MPM cell growth in vitro and in vivo. We examined the therapeutic efficacy of the PPAR-γ agonist troglitazone (TGZ) in combination with cisplatin against a human MPM cell line, both in vitro and orthotopically inoculated into severe combined immunodeficient (SCID) mice. Troglitazone (TGZ) alone inhibited MPM cell growth in vitro in a dose-dependent manner via induction of G1 cell cycle arrest and apoptosis. The combination of TGZ and cisplatin showed an additive inhibitory effect on MPM cell growth compared to treatment with either individual drug. Treatment with 500 mg/kg or 1000 mg/kg TGZ effectively inhibited the production of thoracic tumors and pleural effusion in EHMES-10 cell-bearing SCID mice. Moreover, treatment with 500 mg/kg TGZ in combination with 3 mg/kg cisplatin more effectively prolonged survival compared to treatment with either individual drug. These results suggest that TGZ in combination with cisplatin may become a novel therapy for MPM.
Collapse
Affiliation(s)
- Naohiko Hamaguchi
- Department of Integrated Medicine, Ehime University Graduate School of Medicine, Ehime, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Yanagihara K, Tsumuraya M, Takigahira M, Mihara K, Kubo T, Ohuchi K, Seyama T. An orthotopic implantation mouse model of human malignant pleural mesothelioma for in vivo photon counting analysis and evaluation of the effect of S-1 therapy. Int J Cancer 2010; 126:2835-46. [PMID: 19876922 DOI: 10.1002/ijc.25002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Human malignant pleural mesothelioma (HMPM) is an aggressive neoplasm that is highly resistant to conventional therapies. We established 3 HMPM cell lines (TCC-MESO-1, TCC-MESO-2 and TCC-MESO-3) from Japanese patients; the first 2 from the primary and metastatic tumors of a patient with the epithelioid type of HMPM, and the third from a patient with biphasic characteristics of the tumor (epithelioid and sarcomatous phenotypes). The 3 cell lines resembled the original HMPMs in their morphological and biological features, including the genetic alterations such as lack of p16 expression and mutation of p53. Their tumorigenicity was determined in SCID mice by orthotopic implantation (20-46%). The tumorigenicity of the HMPM cell lines, which was relatively low, was enhanced by repeated subcultures and orthotopic implantations, and 3 competent tumorigenic sublines were produced (Me1Tu, Me2Tu and Me3Tu sublines from the TCC-MESO-1, TCC-MESO-2 and TCC-MESO-3 cell lines, respectively). The resultant HMPM sublines efficiently generated tumors in the SCID mice (100%) following orthotopic implantation. SCID mice implanted with the competent sublines, into one of which the luciferase gene was introduced, displayed quantitative fluctuation of the bioluminescence for the tumor volume in vivo. Oral administration of S-1, an anticancer agent, suppressed the proliferation of the luciferase gene-expressing Me1Tu subline in the mouse models in vivo, with a treated-to-control ratio of the mean tumor volume of 0.2. The orthotopic implantation mouse model proved to be useful for quantitative evaluation of the efficacy of novel anticancer drugs and also for studying the biology of HMPMs in vivo.
Collapse
Affiliation(s)
- Kazuyoshi Yanagihara
- Laboratory of Health Sciences, Department of Life Sciences, Yasuda Women's University Faculty of Pharmacy, Hiroshima, Japan.
| | | | | | | | | | | | | |
Collapse
|
32
|
High dose of ascorbic acid induces cell death in mesothelioma cells. Biochem Biophys Res Commun 2010; 394:249-53. [PMID: 20171954 DOI: 10.1016/j.bbrc.2010.02.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 02/03/2010] [Indexed: 11/20/2022]
Abstract
Malignant mesothelioma is an asbestos-related fatal disease with no effective cure. Recently, high dose of ascorbate in cancer treatment has been reexamined. We studied whether high dose of ascorbic acid induced cell death of four human mesothelioma cell lines. High dose of ascorbic acid induced cell death of all mesothelioma cell lines in a dose-dependent manner. We further clarified the cell killing mechanism that ascorbic acid induced reactive oxygen species and impaired mitochondrial membrane potential. In vivo experiment, intravenous administration of ascorbic acid significantly decreased the growth rate of mesothelioma tumor inoculated in mice. These data suggest that ascorbic acid may have benefits for patients with mesothelioma.
Collapse
|
33
|
Ikuta K, Yano S, Trung VT, Hanibuchi M, Goto H, Li Q, Wang W, Yamada T, Ogino H, Kakiuchi S, Uehara H, Sekido Y, Uenaka T, Nishioka Y, Sone S. E7080, a multi-tyrosine kinase inhibitor, suppresses the progression of malignant pleural mesothelioma with different proangiogenic cytokine production profiles. Clin Cancer Res 2009; 15:7229-37. [PMID: 19934291 DOI: 10.1158/1078-0432.ccr-09-1980] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Malignant pleural mesothelioma (MPM) is a biologically heterogeneous malignant disease with a poor prognosis. We reported previously that the anti-vascular endothelial growth factor (VEGF) antibody, bevacizumab, effectively inhibited the progression of VEGF-high-producing (but not VEGF-low-producing) MPM cells in orthotopic implantation models, indicating the need for novel therapeutic strategies to improve the poor prognosis of this disease. Therefore, we focused on the multi-tyrosine kinase inhibitor E7080 and assessed its therapeutic efficacy against MPM cells with different proangiogenic cytokine production profiles. EXPERIMENTAL DESIGN The efficacy of E7080 was assayed in orthotopic implantation of severe combined immunodeficient mouse models with three human MPM cell lines (MSTO-211H, NCI-H290, and Y-MESO-14). RESULTS With regard to proangiogenic cytokine production profiles, MSTO-211H and Y-MESO-14 cells were MPM cells producing high levels of fibroblast growth factor-2 and VEGF, respectively. NCI-H290 cells produced low levels of fibroblast growth factor-2 and VEGF compared with the other two cell lines. E7080 potently suppressed the phosphorylation of VEGF receptor-2 and FGF receptor 1 and, thus, inhibited proliferation of endothelial cells, but not that of the MPM cell lines, in vitro. Orthotopically inoculated MSTO-211H cells produced only thoracic tumors, whereas NCI-H290 and Y-MESO-14 cells also developed pleural effusions. Treatment with E7080 potently inhibited the progression of these three MPM cell lines and markedly prolonged mouse survival, which was associated with decreased numbers of tumor-associated vessels and proliferating MPM cells in the tumor. CONCLUSIONS These results strongly suggest broad-spectrum activity of E7080 against MPM with different proangiogenic cytokine production profiles in humans.
Collapse
Affiliation(s)
- Kenji Ikuta
- Department of Respiratory Medicine and Rheumatology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Yamada T, Yano S, Ogino H, Ikuta K, Kakiuchi S, Hanibuchi M, Kanematsu T, Taniguchi T, Sekido Y, Sone S. Lysophosphatidic acid stimulates the proliferation and motility of malignant pleural mesothelioma cells through lysophosphatidic acid receptors, LPA1 and LPA2. Cancer Sci 2008; 99:1603-10. [PMID: 18754873 PMCID: PMC11158356 DOI: 10.1111/j.1349-7006.2008.00848.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Lysophosphatidic acid (LPA) is one of the simplest natural phospholipids. This phospholipid is recognized as an extracellular potent lipid mediator with diverse effects on various cells. Although LPA is shown to stimulate proliferation and motility via LPA receptors, LPA(1) and LPA(2), in several cancer cell lines, the role of LPA and LPA receptors for malignant pleural mesothelioma (MPM) has been unknown. MPM is an aggressive malignancy with a poor prognosis and the incidence is increasing and is expected to increase further for another 10-20 years worldwide. Therefore, the development of novel effective therapies is needed urgently. In this study, we investigated the effect of LPA on the proliferation and motility of MPM cells. We found that all 12 cell lines and four clinical samples of MPM expressed LPA(1), and some of them expressed LPA(2), LPA(3), LPA(4) and LPA(5). LPA stimulated the proliferation and motility of MPM cells in a dose-dependent manner. Moreover, LPA-induced proliferation was inhibited by Ki16425, an inhibitor of LPA(1), and small interfering RNA against LPA(1), but not LPA(2). Interestingly, LPA-induced motility was inhibited by small interfering RNA against LPA(2), but not LPA(1), unlike a number of previous reports. These results indicate that LPA is a critical factor on proliferation though LPA(1), and on motility though LPA(2) in MPM cells. Therefore, LPA and LPA receptors, LPA(2) as well as LPA(1), represent potential therapeutic targets for patients with MPM.
Collapse
Affiliation(s)
- Tadaaki Yamada
- Department of Internal Medicine and Molecular Therapeutics, Institute of Health Biosciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ogino H, Yano S, Kakiuchi S, Yamada T, Ikuta K, Nakataki E, Goto H, Hanibuchi M, Nishioka Y, Ryan A, Sone S. Novel dual targeting strategy with vandetanib induces tumor cell apoptosis and inhibits angiogenesis in malignant pleural mesothelioma cells expressing RET oncogenic rearrangement. Cancer Lett 2008; 265:55-66. [PMID: 18364248 DOI: 10.1016/j.canlet.2008.02.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 01/28/2008] [Accepted: 02/03/2008] [Indexed: 12/01/2022]
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive malignancy with a poor prognosis, therefore development of novel effective therapies is urgent. In the present study, we investigated the therapeutic efficacy of vandetanib (ZD6474), an inhibitor of VEGFR-2, EGFR and RET tyrosine kinases, in an orthotopic model of MPM. We found that a human MPM cell line, EHMES-10, expressed RET/PTC3 oncogenic rearrangement and a large amount of VEGF. Vandetanib induced the apoptosis and inhibited the proliferation of EHMES-10 cells in vitro (IC(50)=0.3 microM). Once-daily oral treatment with vandetanib inhibited tumor angiogenesis, and reduced significantly the growth of thoracic tumors and the production of pleural effusions, resulting in the prolonged survival of mice in EHMES-10 orthograft model. In contrast, the selective EGFR tyrosine kinase inhibitor, gefitinib, had no effect against EHMES-10 cells both in vitro and in vivo. Our results suggest that using vandetanib to target RET-dependent tumor cell proliferation and survival and VEGFR-2-dependent tumor angiogenesis may be promising against MPM expressing RET oncogenic rearrangement and VEGF.
Collapse
Affiliation(s)
- Hirokazu Ogino
- Department of Internal Medicine and Molecular Therapeutics, Institute of Health Biosciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Li Q, Yano S, Ogino H, Wang W, Uehara H, Nishioka Y, Sone S. The therapeutic efficacy of anti vascular endothelial growth factor antibody, bevacizumab, and pemetrexed against orthotopically implanted human pleural mesothelioma cells in severe combined immunodeficient mice. Clin Cancer Res 2007; 13:5918-25. [PMID: 17908988 DOI: 10.1158/1078-0432.ccr-07-0501] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Malignant pleural mesothelioma (MPM) is an aggressive malignancy, which has a poor prognosis with a median survival of less than 1 year. The vascular endothelial growth factor (VEGF) has been reported to be an ideal therapeutic target, and a multitargeted antifolate, pemetrexed, has been clinically used for the treatment of MPM. EXPERIMENTAL DESIGN We examined the therapeutic efficacy of the antihuman VEGF neutralizing antibody, bevacizumab, in combination with pemetrexed against two different human MPM cells, EHMES-10 and MSTO-211H, orthotopically inoculated into severe combined immunodeficient mice. RESULTS Bevacizumab inhibited a VEGF-induced proliferation of the human endothelial cells in a dose-dependent manner, but it had no effect on the proliferation of the two MPM cell lines in vitro. The orthotopically inoculated EHMES-10 cells (VEGF high expressing) produced thoracic tumors and a large volume of bloody pleural effusion, whereas the MSTO-211H cells (VEGF low expressing) produced thoracic tumors and a small volume of bloody effusions. Treatment with bevacizumab effectively inhibited the production of thoracic tumors and dramatically prevented the production of pleural effusion by the EHMES-10 cells but not the MSTO-211H cells. Treatment with bevacizumab reduced the number of enlarged tumor-associated vessels and proliferating tumor cells. Moreover, treatment with bevacizumab in combination with pemetrexed more effectively suppressed the formation of the pleural effusion and prolonged the survival compared with the control and monotherapy in the EHMES-10 cell-bearing severe combined immunodeficient mice. CONCLUSIONS These results suggest that the combined use of bevacizumab and pemetrexed may therefore be promising for controlling the progression of MPM highly expressing VEGF.
Collapse
Affiliation(s)
- Qi Li
- Department of Internal Medicine and Molecular Therapeutics, The University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Martarelli D, Catalano A, Procopio A, Orecchia S, Libener R, Santoni G. Characterization of human malignant mesothelioma cell lines orthotopically implanted in the pleural cavity of immunodeficient mice for their ability to grow and form metastasis. BMC Cancer 2006; 6:130. [PMID: 16704740 PMCID: PMC1483896 DOI: 10.1186/1471-2407-6-130] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Accepted: 05/17/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malignant pleural mesothelioma (MPM) is a tumor known to be resistant to conventional therapies. Thus, an in vivo model can represent an important tool for assessing the efficacy of novel approaches in the treatment of MPM.Presently, human MPM cells have been grown orthotopically in mice upon transplantation of tumor masses or tumor cell suspensions following surgery. In these models however, surgery can interfere with the tumor growth and the early stages of tumor development cannot be easily explored. Finally, results may not be so accurate due to implantation of potentially different tumor samples in different experimental groups.Our work aimed at establishing a nude mouse model xenotransplanted with human MPM cell lines in which tumor progression exhibits some features of the human disease. METHODS Three distinct human MPM cell lines previously established from MPM patients displaying two different phenotypes, biphasic (MM-B1 and IST-Mes3) and epithelioid (IST-Mes2), were directly injected into the pleural cavity of nude mice. At different times, mice were sacrificed for autopsy, tumor nodules were counted and then removed for histology. Presence of metastases in visceral organs was also monitored. RESULTS IST-Mes2 cells were unable to grow in nude mice. MM-B1 and IST-Mes3 cells were capable of growing in nude mice and formed tumor nodules in the pleura. Post-mortem examination showed that MPM cells progressively colonized the parietal and visceral pleura, the diaphragm, the mediastinum and, lastly the lung parenchyma. No pneumo-thorax was evidenced in the mice. Pleural effusions as well as lymph node metastases were observed only at later times. CONCLUSION This model mimics the progression of human malignant mesothelioma and it is easy to perform and reproducible; therefore it can be useful to study human MPM biology and evaluate the efficacy of novel therapies.
Collapse
Affiliation(s)
- Daniele Martarelli
- Department of Experimental Medicine and Public Health, University of Camerino, 62032 Camerino, Italy
| | - Alfonso Catalano
- Department of Molecular Pathology and Innovative Therapies, Polytechnic University of Marche, 60100, Ancona, Italy and Center of Cytology, Italian National Research Centers on Aging (INRCA – IRCCS), Ancona, Italy
| | - Antonio Procopio
- Department of Molecular Pathology and Innovative Therapies, Polytechnic University of Marche, 60100, Ancona, Italy and Center of Cytology, Italian National Research Centers on Aging (INRCA – IRCCS), Ancona, Italy
| | - Sara Orecchia
- Pathology Unit, Dept. Of Oncology, A.S.O. Alessandria, Italy
| | - Roberta Libener
- Pathology Unit, Dept. Of Oncology, A.S.O. Alessandria, Italy
| | - Giorgio Santoni
- Department of Experimental Medicine and Public Health, University of Camerino, 62032 Camerino, Italy
| |
Collapse
|