1
|
Bao Y, Ding G, Yu H, He Y, Wu J. Regulation of TGF-β2-induced epithelial-mesenchymal transition and autophagy in lens epithelial cells by the miR-492/ NPM1 axis. BIOMOLECULES & BIOMEDICINE 2024; 24:1273-1289. [PMID: 38662949 PMCID: PMC11378993 DOI: 10.17305/bb.2024.10249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 09/07/2024]
Abstract
A cataract is a clinically common blinding disease closely related to the ageing of the eye cells, which has become a major health killer in the elderly. Our research seeks to analyze the primary targets linked to the pathogenesis of cataracts during the ageing process. We performed bioinformatics analyses on the GSE101727 dataset to discover genes linked with ageing and cataracts. To explore the impacts of Nucleophosmin 1 (NPM1) on cell apoptosis, proliferation, as well as epithelial-mesenchymal transition (EMT) processes, in vitro tests such as western blotting, flow cytometry, and MTT were carried out. Additionally, the study incorporated transforming growth factor β2 (TGF-β2) to examine its function in cellular responses, chloroquine (CQ) to regulate autophagic flow, and H2O2 therapy to mimic oxidative stress. Our study discovered seven ageing-related genes, including NPM1, that had substantial relationships with cataracts. NPM1 overexpression was shown to boost cell proliferation and prevent apoptosis in SRA01/04 cells. Notably, NPM1 modulated the TGF-β signalling pathway, influencing cell proliferation and EMT processes. miR-429 was shown to be adversely regulating NPM1 and autophagy-related proteins, as demonstrated by changes in their expression in response to TGF-β2 treatment. Furthermore, NPM1 knockdown restored autophagy activity suppressed by miR-429 mimics, indicating a complex interaction of miR-429, NPM1, and TGF-β2 pathways in regulating autophagy and EMT. Lens epithelial cell proliferation and apoptosis were largely regulated by NPM1, as well as autophagy and EMT, which were significantly mediated by TGF-β2 and the miR-429/NPM1 axis. These results imply new possible targets for prognosis and therapy of cataracts.
Collapse
Affiliation(s)
- Yanqiong Bao
- Department of Ophthalmology, Zhenhai Longsai Hospital, Zhejiang, China
| | - Guangjie Ding
- Department of Ophthalmology, Zhenhai Longsai Hospital, Zhejiang, China
| | - Haiqing Yu
- Department of Ophthalmology, Zhenhai Longsai Hospital, Zhejiang, China
| | - Yawei He
- Department of Ophthalmology, Zhenhai Longsai Hospital, Zhejiang, China
| | - Jiayan Wu
- Department of Health Management Center, Zhenhai Longsai Hospital, Zhejiang, China
| |
Collapse
|
2
|
Wang D, Li Y, Liu Y, Cheng S, Liu F, Zuo R, Ding C, Shi S, Liu G. NPM1 promotes cell proliferation by targeting PRDX6 in colorectal cancer. Int J Biochem Cell Biol 2022; 147:106233. [PMID: 35659568 DOI: 10.1016/j.biocel.2022.106233] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/29/2022] [Accepted: 05/29/2022] [Indexed: 10/18/2022]
Abstract
Colorectal cancer is a malignant tumor that begins in the colorectal mucosal epithelium. NPM1 is a nucleolar phosphoprotein that has been linked to tumor progression in humans. NPM1 is significantly overexpressed in a variety of tumors, including colorectal cancer, but its role and mechanism in colorectal cancer remain unknown. Therefore, the purpose of this study was to discover the role of NPM1 in promoting colorectal cancer proliferation via PRDX6 and its molecular mechanism. NPM1 knockdown or overexpression inhibited or promoted the proliferation and cell cycle progression of HCT-116 and HT-29 colorectal cancer cells, respectively, according to our findings. Furthermore, NPM1 knockdown or overexpression increased or decreased intracellular ROS levels. Animal experiments revealed that NPM1 knockdown or overexpression inhibited or promoted the growth of colorectal cancer cells transplanted subcutaneously. NPM1 knockdown or overexpression reduced or increased PRDX6 expression and related enzyme activities, respectively, according to our findings. NPM1 formed a complex with CBX3 as evidenced by immunoprecipitation, and the double luciferase reporter gene assay confirmed that the CBX3-NPM1 complex promoted PRDX6 transcription. Our data support the role of NPM1 in promoting the proliferation of colorectal cancer, which may be accomplished by CBX3 promoting the expression of the antioxidant protein PRDX6 and thus inhibiting intracellular ROS levels. NPM1 and PRDX6 are potential colorectal cancer therapeutic targets.
Collapse
Affiliation(s)
- Dan Wang
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yin Li
- Department of Medical Examination, Xiamen International Travel Healthcare Center, Xiamen 361000, Fujian, China
| | - Yanling Liu
- School of Pharmaceutical Sciences Xiamen University, Xiamen, Fujian 361102, China
| | - Shuyu Cheng
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Fan Liu
- Department of Basic Medicine, Medical College of Xiamen University, Xiamen, Fujian 361002, China
| | - Renjie Zuo
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Chenchun Ding
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Songlin Shi
- Department of Basic Medicine, Medical College of Xiamen University, Xiamen, Fujian 361002, China.
| | - Guoyan Liu
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361002, China; Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Pharmaceutical Sciences Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
3
|
Morganti C, Ito K, Yanase C, Verma A, Teruya‐Feldstein J, Ito K. NPM1 ablation induces HSC aging and inflammation to develop myelodysplastic syndrome exacerbated by p53 loss. EMBO Rep 2022; 23:e54262. [PMID: 35229971 PMCID: PMC9066051 DOI: 10.15252/embr.202154262] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/28/2022] [Accepted: 02/11/2022] [Indexed: 11/09/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is characterized by ineffective hematopoiesis with morphologic dysplasia and a propensity to transform into overt acute myeloid leukemia (AML). Our analysis of two cohorts of 20 MDS and 49 AML with multi-lineage dysplasia patients shows a reduction in Nucleophosmin 1 (NPM1) expression in 70% and 90% of cases, respectively. A mouse model of Npm1 conditional knockout (cKO) in hematopoietic cells reveals that Npm1 loss causes premature aging of hematopoietic stem cells (HSCs). Mitochondrial activation in Npm1-deficient HSCs leads to aberrant activation of the NLRP3 inflammasome, which correlates with a developing MDS-like phenotype. Npm1 cKO mice exhibit shortened survival times, and expansion of both the intra- and extra-medullary myeloid populations, while evoking a p53-dependent response. After transfer into a p53 mutant background, the resulting Npm1/p53 double KO mice develop fatal leukemia within 6 months. Our findings identify NPM1 as a regulator of HSC aging and inflammation and highlight the role of p53 in MDS progression to leukemia.
Collapse
Affiliation(s)
- Claudia Morganti
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine ResearchAlbert Einstein College of MedicineBronxNYUSA,Departments of Cell Biology and Stem Cell InstituteAlbert Einstein College of MedicineBronxNYUSA,Department of MedicineMontefiore Medical CenterAlbert Einstein College of MedicineBronxNYUSA
| | - Kyoko Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine ResearchAlbert Einstein College of MedicineBronxNYUSA,Departments of Cell Biology and Stem Cell InstituteAlbert Einstein College of MedicineBronxNYUSA,Department of MedicineMontefiore Medical CenterAlbert Einstein College of MedicineBronxNYUSA
| | - Chie Yanase
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine ResearchAlbert Einstein College of MedicineBronxNYUSA,Departments of Cell Biology and Stem Cell InstituteAlbert Einstein College of MedicineBronxNYUSA,Department of MedicineMontefiore Medical CenterAlbert Einstein College of MedicineBronxNYUSA
| | - Amit Verma
- Department of MedicineMontefiore Medical CenterAlbert Einstein College of MedicineBronxNYUSA,Department of Developmental and Molecular BiologyAlbert Einstein College of MedicineBronxNYUSA,Albert Einstein Cancer Center and Diabetes Research CenterAlbert Einstein College of MedicineBronxNYUSA
| | - Julie Teruya‐Feldstein
- Department of PathologyIcahn School of MedicineMount SinaiNew YorkNYUSA,Department of PathologySloan‐Kettering InstituteMemorial Sloan‐Kettering Cancer CenterNew YorkNYUSA
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine ResearchAlbert Einstein College of MedicineBronxNYUSA,Departments of Cell Biology and Stem Cell InstituteAlbert Einstein College of MedicineBronxNYUSA,Department of MedicineMontefiore Medical CenterAlbert Einstein College of MedicineBronxNYUSA,Albert Einstein Cancer Center and Diabetes Research CenterAlbert Einstein College of MedicineBronxNYUSA
| |
Collapse
|
4
|
López DJ, Rodríguez JA, Bañuelos S. Nucleophosmin, a multifunctional nucleolar organizer with a role in DNA repair. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140532. [PMID: 32853771 DOI: 10.1016/j.bbapap.2020.140532] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
Abstract
Nucleophosmin (NPM1) is a mostly nucleolar protein with crucial functions in cell growth and homeostasis, including regulation of ribosome biogenesis and stress response. Such multiple activities rely on its ability to interact with nucleic acids and with hundreds of proteins, as well as on a dynamic subcellular distribution. NPM1 is thus regulated by a complex interplay between localization and interactions, further modulated by post-translational modifications. NPM1 is a homopentamer, with globular domains connected by long, intrinsically disordered linkers. This configuration allows NPM1 to engage in liquid-liquid phase separation phenomena, which could underlie a key role in nucleolar organization. Here, we will discuss NPM1 conformational and functional versatility, emphasizing its emerging, and still largely unexplored, role in DNA damage repair. Since NPM1 is altered in a subtype of acute myeloid leukaemia (AML), we will also present ongoing research on the molecular mechanisms underlying its pathogenic role and potential NPM1-targeting therapeutic strategies.
Collapse
Affiliation(s)
- David J López
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - José A Rodríguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Sonia Bañuelos
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
5
|
NPM1 upregulates the transcription of PD-L1 and suppresses T cell activity in triple-negative breast cancer. Nat Commun 2020; 11:1669. [PMID: 32245950 PMCID: PMC7125142 DOI: 10.1038/s41467-020-15364-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/28/2020] [Indexed: 12/31/2022] Open
Abstract
Programmed cell death protein-1 (PD-1)/programmed cell death ligand-1 (PD-L1) interaction plays a crucial role in tumor-associated immune escape. Here, we verify that triple-negative breast cancer (TNBC) has higher PD-L1 expression than other subtypes. We then discover that nucleophosmin (NPM1) binds to PD-L1 promoter specifically in TNBC cells and activates PD-L1 transcription, thus inhibiting T cell activity in vitro and in vivo. Furthermore, we demonstrate that PARP1 suppresses PD-L1 transcription through its interaction with the nucleic acid binding domain of NPM1, which is required for the binding of NPM1 at PD-L1 promoter. Consistently, the PARP1 inhibitor olaparib elevates PD-L1 expression in TNBC and exerts a better effect with anti-PD-L1 therapy. Together, our research has revealed NPM1 as a transcription regulator of PD-L1 in TNBC, which could lead to potential therapeutic strategies to enhance the efficacy of cancer immunotherapy. PD-L1 is highly expressed in triple-negative breast cancers (TNBC). Here, the authors show that nucleophosmin 1 (NPM1) transcriptionally activates PD-L1 expression and inhibits T cell activity in TNBC.
Collapse
|
6
|
Yan X, Fu X, Guo ZX, Liu XP, Liu TZ, Li S. Construction and validation of an eight-gene signature with great prognostic value in bladder cancer. J Cancer 2020; 11:1768-1779. [PMID: 32194788 PMCID: PMC7052873 DOI: 10.7150/jca.38741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/30/2019] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer (BC) is one of the most common malignancies in urinary system with a common malignancy in urinary system with a high mortality and recurrence rate, so we attempt to construct a gene signature to predict the prognosis of BCs. We initially established a co-expression network by performing WGCNA analysis and further identified magenta module as key module (P = 8e-05, R2 = 0.4). Subsequently, we screened 12 genes associated with survival from the key module, which were selected to construct an eight-gene signature by establishing a LASSO Cox model. Moreover, we reckoned the risk score (RS) of each sample, through which we could divide samples into two groups (the high-risk and low-risk groups) and verify the signature, in the training set and 3 validation sets (internal test set, GSE13507and E-MTAB-4321). This signature could distinguish between the high- and low- risk patients well (survival analysis: P = 0.015; AUC: 0.61 at 1 year, 0.61 at 3 years and 0.61 at 5 years). In the validation sets, this signature also showed good performance, which was consistent with the training test. Furthermore, we plotted a nomogram to predict the possibility of the overall survival (OS) and three calibration curves to predict the effectiveness of the nomogram, which suggested good value and clinical utility of the nomogram. In conclusion, we established an eight-gene signature, which was probably effective in the prediction of prognosis of patients with BC.
Collapse
Affiliation(s)
- Xin Yan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xun Fu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zi-Xin Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiao-Ping Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Tong-Zu Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Sheng Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan 430071, China
| |
Collapse
|
7
|
Rao C, Liu B, Huang D, Chen R, Huang K, Li F, Dong N. Nucleophosmin contributes to vascular inflammation and endothelial dysfunction in atherosclerosis progression. J Thorac Cardiovasc Surg 2019; 161:e377-e393. [PMID: 32007256 DOI: 10.1016/j.jtcvs.2019.10.152] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 01/27/2023]
Abstract
OBJECTIVE It is unclear whether nucleophosmin (NPM) participates in cardiovascular disease. The present study aimed to investigate the role and underlying mechanisms of NPM in atherosclerosis. METHODS Levels and location of NPM in human carotid atherosclerotic plaques and healthy controls were detected by real-time polymerase chain reaction, immunoblots, and immunofluorescence. Atherosclerotic prone ApoE-/- mice were fed with a Western diet for 16 weeks as an in vivo model. Human primary umbilical vein endothelial cells (HUVECs) were cultured as an in vitro model. RESULTS Compared with controls, we found that NPM levels in human carotid atherosclerotic plaques were more than twice as high as in normal arteries, which mainly localized in endothelial cells. In vivo, adenovirus-containing NPM small hairpin RNA attenuated atherosclerotic lesion and promoted plaque stabilization in ApoE-/- mice fed a Western diet by reducing vascular inflammation, maintaining endothelial function, and decreasing macrophage infiltration. Furthermore, NPM knockdown decreased nuclear factor-κB (NF-κB) p65 phosphorylation. In cultured HUVECs, palmitic acid increased the protein levels of NPM and induced the expression of inflammatory cytokines and monocyte adhesion, whereas NPM knockdown attenuated this effect. In HUVECs, NPM protein physically interacted with NF-κB p65 subunit and promoted its nuclear transposition. NPM also increased the transcriptional activity of NF-κB p65 promoter and enhance its binding to target genes, including interleukin-1β, interleukin-6, intercellular adhesion molecule-1, and E-selectin. CONCLUSIONS These data provide novel evidence that NPM promotes atherosclerosis by inducing vascular inflammation and endothelial dysfunction through the NF-κB signaling pathway and suggest that NPM may be a promising target for atherosclerosis prevention and treatment.
Collapse
Affiliation(s)
- Caijun Rao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Center for Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Baoqing Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dandan Huang
- Clinical Center for Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ru Chen
- Clinical Center for Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Huang
- Clinical Center for Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Fei Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Malfatti MC, Gerratana L, Dalla E, Isola M, Damante G, Di Loreto C, Puglisi F, Tell G. APE1 and NPM1 protect cancer cells from platinum compounds cytotoxicity and their expression pattern has a prognostic value in TNBC. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:309. [PMID: 31307523 PMCID: PMC6631760 DOI: 10.1186/s13046-019-1294-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023]
Abstract
Background Triple negative breast cancer (TNBC) is a breast cancer subgroup characterized by a lack of hormone receptors’ expression and no HER2 overexpression. These molecular features both drastically reduce treatment options and confer poor prognosis. Platinum (Pt)-salts are being investigated as a new therapeutic strategy. The base excision repair (BER) pathway is important for resistance to Pt-based therapies. Overexpression of APE1, a pivotal enzyme of the BER pathway, as well as the expression of NPM1, a functional regulator of APE1, are associated with poor outcome and resistance to Pt-based therapies. Methods We evaluated the role of NPM1, APE1 and altered NPM1/APE1 interaction in the response to Pt-salts treatment in different cell lines: APE1 knockout (KO) cells, NPM1 KO cells, cell line models having an altered APE1/NPM1 interaction and HCC70 and HCC1937 TNBC cell lines, having different levels of APE1/NPM1. We evaluated the TNBC cells response to new chemotherapeutic small molecules targeting the endonuclease activity of APE1 or the APE1/NPM1 interaction, in combination with Pt-salts treatments. Expression levels’ correlation between APE1 and NPM1 and their impact on prognosis was analyzed in a cohort of TNBC patients through immunohistochemistry. Bioinformatics analysis, using TCGA datasets, was performed to predict a molecular signature of cancers based on APE1 and NPM1 expression. Results APE1 and NPM1, and their interaction as well, protect from the cytotoxicity induced by Pt-salts treatment. HCC1937 cells, having higher levels of APE1/NPM1 proteins, are more resistant to Pt-salts treatment compared to the HCC70 cells. A sensitization effect by APE1 inhibitors to Pt-compounds was observed. The association of NPM1/APE1 with cancer gene signatures highlighted alterations concerning cell-cycle dependent proteins. Conclusions APE1 and NPM1 protect cancer cells from Pt-compounds cytotoxicity, suggesting a possible improvement of the activity of Pt-based therapy for TNBC, using the NPM1 and APE1 proteins as secondary therapeutic targets. Based on positive or negative correlation with APE1 and NPM1 gene expression levels, we finally propose several TNBC gene signatures that should deserve further attention for their potential impact on TNBC precision medicine approaches. Electronic supplementary material The online version of this article (10.1186/s13046-019-1294-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Lorenzo Gerratana
- Department of Medicine (DAME), University of Udine, Piazzale M. Kolbe 4, 33100, Udine, Italy.,Department of Oncology, ASUI Udine SMM University Hospital Udine, Udine, Italy
| | - Emiliano Dalla
- Department of Medicine (DAME), University of Udine, Piazzale M. Kolbe 4, 33100, Udine, Italy
| | - Miriam Isola
- Department of Medicine (DAME), University of Udine, Piazzale M. Kolbe 4, 33100, Udine, Italy
| | - Giuseppe Damante
- Department of Medicine (DAME), University of Udine, Piazzale M. Kolbe 4, 33100, Udine, Italy
| | - Carla Di Loreto
- Department of Medicine (DAME), University of Udine, Piazzale M. Kolbe 4, 33100, Udine, Italy.,Department of Pathology, ASUI Udine SMM University Hospital Udine, Udine, Italy
| | - Fabio Puglisi
- Department of Medicine (DAME), University of Udine, Piazzale M. Kolbe 4, 33100, Udine, Italy.,Department of Medical Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Gianluca Tell
- Department of Medicine (DAME), University of Udine, Piazzale M. Kolbe 4, 33100, Udine, Italy.
| |
Collapse
|
9
|
Turi Z, Lacey M, Mistrik M, Moudry P. Impaired ribosome biogenesis: mechanisms and relevance to cancer and aging. Aging (Albany NY) 2019; 11:2512-2540. [PMID: 31026227 PMCID: PMC6520011 DOI: 10.18632/aging.101922] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/04/2019] [Indexed: 02/06/2023]
Abstract
The biosynthesis of ribosomes is a complex process that requires the coordinated action of many factors and a huge energy investment from the cell. Ribosomes are essential for protein production, and thus for cellular survival, growth and proliferation. Ribosome biogenesis is initiated in the nucleolus and includes: the synthesis and processing of ribosomal RNAs, assembly of ribosomal proteins, transport to the cytoplasm and association of ribosomal subunits. The disruption of ribosome biogenesis at various steps, with either increased or decreased expression of different ribosomal components, can promote cell cycle arrest, senescence or apoptosis. Additionally, interference with ribosomal biogenesis is often associated with cancer, aging and age-related degenerative diseases. Here, we review current knowledge on impaired ribosome biogenesis, discuss the main factors involved in stress responses under such circumstances and focus on examples with clinical relevance.
Collapse
Affiliation(s)
- Zsofia Turi
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Matthew Lacey
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Martin Mistrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Pavel Moudry
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| |
Collapse
|
10
|
Qiu SW, Wan YL, Wang M, Wang JX. [Effects of NPM1 gene expression on acute myeloid leukemia cell lines and its mechanism]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2019; 38:940-944. [PMID: 29224316 PMCID: PMC7342777 DOI: 10.3760/cma.j.issn.0253-2727.2017.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
目的 探讨NPM1基因表达对急性髓系白血病(AML)细胞系的影响及其机制。 方法 选取AML细胞系U937和HL-60细胞,转染NPM1质粒至细胞系构建稳定克隆,采用Western blot法鉴定高表达NPM1蛋白的单克隆细胞。MTT法检测细胞增殖活性,流式细胞术检测细胞周期分布和细胞凋亡率,显微镜下计数检测集落形成能力,Western blot法检测细胞周期相关信号通路蛋白表达,实时荧光定量PCR(RQ-PCR)法检测初诊AML患者骨髓单个核细胞NPM1基因表达水平。 结果 ①U937和HL-60细胞中NPM1高表达组相对细胞增殖率与对照组相比,差异无统计学意义(4.68±1.28对3.89±0.81,3.34±0.37对2.68±0.29,P值均>0.05)。②U937和HL-60细胞中NPM1高表达组S期细胞比例均明显高于对照组[(50.22±3.42)%对(39.78±3.80)%,(59.01±3.27)%对(43.94±2.08)%,P值均<0.05]。③U937细胞NPM1高表达组和对照组相比具有更强的抗凋亡能力[(48.67±3.22)%和(68.77±10.21)%,P<0.05]和集落形成能力(772.7±24.0和652.3±16.5,P<0.05),而HL-60细胞相应的两组细胞上述能力均相似。④NPM1高表达组细胞中CDK4、Cyclin D1、Cyclin D2及Cyclin E表达明显高于对照组,而Cyclin D3表达明显低于对照组。⑤细胞遗传学预后良好组AML患者NPM1定量水平低于预后中等组。 结论 NPM1蛋白能够促进更多的细胞进入S期,增强抗凋亡和细胞集落形成能力。NPM1定量水平可能预示细胞遗传学的危险度。
Collapse
Affiliation(s)
- S W Qiu
- Institute of Hematology & Blood Disease Hospital, CAMS & PUMC, Tianjin 300020, China
| | | | | | | |
Collapse
|
11
|
Wiesmann N, Gieringer R, Grus F, Brieger J. Phosphoproteome Profiling Reveals Multifunctional Protein NPM1 as part of the Irradiation Response of Tumor Cells. Transl Oncol 2018; 12:308-319. [PMID: 30453269 PMCID: PMC6240713 DOI: 10.1016/j.tranon.2018.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 12/27/2022] Open
Abstract
To fight resistances to radiotherapy, the understanding of escape mechanisms of tumor cells is crucial. The aim of this study was to identify phosphoproteins that are regulated upon irradiation. The comparative analysis of the phosphoproteome before and after irradiation brought nucleophosmin (NPM1) into focus as a versatile phosphoprotein that has already been associated with tumorigenesis. We could show that knockdown of NPM1 significantly reduces tumor cell survival after irradiation. NPM1 is dephosphorylated stepwise within 1 hour after irradiation at two of its major phosphorylation sites: threonine-199 and threonine-234/237. This dephosphorylation is not the result of a fast cell cycle arrest, and we found a heterogenous intracellular distribution of NPM1 between the nucleoli, the nucleoplasm, and the cytoplasm after irradiation. We hypothesize that the dephosphorylation of NPM1 at threonine-199 and threonine-234/237 is part of the immediate response to irradiation and of importance for tumor cell survival. These findings could make NPM1 an attractive pharmaceutical target to radiosensitize tumor cells and improve the outcome of radiotherapy by inhibiting the pathways that help tumor cells to escape cell death after gamma irradiation.
Collapse
Affiliation(s)
- Nadine Wiesmann
- Molecular Tumor Biology, Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Centre of the Johannes Gutenberg University, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Rita Gieringer
- Molecular Tumor Biology, Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Centre of the Johannes Gutenberg University, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Franz Grus
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Juergen Brieger
- Molecular Tumor Biology, Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Centre of the Johannes Gutenberg University, Langenbeckstraße 1, 55131 Mainz, Germany.
| |
Collapse
|
12
|
Kunchala P, Kuravi S, Jensen R, McGuirk J, Balusu R. When the good go bad: Mutant NPM1 in acute myeloid leukemia. Blood Rev 2018; 32:167-183. [DOI: 10.1016/j.blre.2017.11.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 10/19/2017] [Accepted: 11/02/2017] [Indexed: 12/26/2022]
|
13
|
Sakashita G, Kiyoi H, Naoe T, Urano T. Analysis of the oligomeric states of nucleophosmin using size exclusion chromatography. Sci Rep 2018; 8:4008. [PMID: 29507312 PMCID: PMC5838202 DOI: 10.1038/s41598-018-22359-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/21/2018] [Indexed: 12/18/2022] Open
Abstract
Nucleophosmin (NPM1) is a multifunctional phosphoprotein which plays important roles in diverse biological processes. NPM1 can form homo- or hetero-oligomers through its N-terminal region, and bind DNA and RNA through its C-terminal region. However, the monomer-oligomer distribution of NPM1, and the extent of NPM1 binding and unbinding to RNA in living cells, are not fully understood. In this work, we analysed molecular complexes of NPM1 using size exclusion chromatography. We found that a substantial fraction of NPM1 behaves as an oligomer in HeLa cells. Furthermore, we identified three distinct oligomeric states of NPM1 using molecular characterization techniques such as subcellular localization and RNA binding. Finally, we found that heterozygous expression of a leukemia-associated NPM1 mutant significantly decreases the RNA binding level. Our data demonstrate that size exclusion chromatography provides a powerful tool for analysing NPM1 oligomers.
Collapse
Affiliation(s)
- Gyosuke Sakashita
- Department of Biochemistry, Shimane University School of Medicine, Izumo, 693-8501, Japan.
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Tomoki Naoe
- National Hospital Organization Nagoya Medical Centre, Nagoya, 460-0001, Japan
| | - Takeshi Urano
- Department of Biochemistry, Shimane University School of Medicine, Izumo, 693-8501, Japan
| |
Collapse
|
14
|
Kumar D, Mehta A, Panigrahi MK, Nath S, Saikia KK. NPM1 Mutation Analysis in Acute Myeloid Leukemia: Comparison of Three Techniques - Sanger Sequencing, Pyrosequencing, and Real-Time Polymerase Chain Reaction. Turk J Haematol 2017; 35:49-53. [PMID: 29129825 PMCID: PMC5843774 DOI: 10.4274/tjh.2017.0095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE Nucleophosmin-1 (NPM1) mutations have prognostic importance in acute myeloid leukemia (AML) patients with intermediate-risk karyotype at diagnosis. Approximately 30% of newly diagnosed cytogenetically normal AML (CN-AML) patients harbor the NPM1 mutation in India. In this study we compared the efficiency of three molecular techniques in detecting NPM1 mutation in peripheral blood and bone marrow samples. MATERIALS AND METHODS In a single-center cohort we analyzed 165 CN-AML bone marrow/peripheral blood samples for NPM1 mutation analysis. About 30% of the CN-AML samples revealed NPM1 mutations. For the detection, three methods were compared: Sanger sequencing, pyrosequencing, and real-time polymerase chain reaction (PCR). RESULTS NPM1 exon 12 mutations were observed in 52 (31.51%) of all CN-AML cases. The sensitivity of Sanger sequencing, pyrosequencing, and real-time PCR was 80%, 90%, and 95%, whereas specificity was 95%, 100%, and 100%, respectively. The minimum limit of mutation detection was 20%-30% for Sanger sequencing, 1%-5% for pyrosequencing, and 0.1%-1% for real-time PCR. CONCLUSION The sequencing method, which is the reference method, has the lowest sensitivity and is sometimes difficult to interpret. Real-time PCR is a highly sensitive method for mutation detection but is limited for specific mutation types. In our study, pyrosequencing emerged as the most suitable technique for the detection of NPM1 mutations on the basis of its easy interpretation and less time-consuming processes than Sanger sequencing.
Collapse
Affiliation(s)
- Dushyant Kumar
- Gauhati University Faculty of Medicine, Department of Bioengineering and Technology, Guwahati, India
| | - Anurag Mehta
- Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Manoj Kumar Panigrahi
- Gauhati University Faculty of Medicine, Department of Bioengineering and Technology, Guwahati, India
| | - Sukanta Nath
- Gauhati University Faculty of Medicine, Department of Bioengineering and Technology, Guwahati, India
| | - Kandarpa Kumar Saikia
- Gauhati University Faculty of Medicine, Department of Bioengineering and Technology, Guwahati, India
| |
Collapse
|
15
|
Thangaretnam KP, Gopisetty G, Ramanathan P, Rajkumar T. A polypeptide from the junction region sequence of EWS-FLI1 inhibits Ewing's sarcoma cells, interacts with the EWS-FLI1 and partner proteins. Sci Rep 2017; 7:7172. [PMID: 28775288 PMCID: PMC5543137 DOI: 10.1038/s41598-017-07482-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/27/2017] [Indexed: 11/25/2022] Open
Abstract
The EWS-FLI1 chimeric protein uniquely expressed in Ewing’s sarcoma has an obligate role in its aetiology. In our previous report we showed that ectopic expression of the DNA sequences form the junction region (a.a 251–280) can inhibit Ewing’s sarcoma cell growth. In the present report, we introduced a peptide (TAT/NLS/EWS-PEP) comprising of thirty amino acids spanning the junction in conjunction with HIV-1-trans-activating (TAT) and nuclear localization signal sequence (NLS). Peptide uptake and localization studies revealed presence of peptide in ~99% of transduced cells and in the nucleus. Peptide transfection induced cytotoxicity relative to untreated and TAT-NLS peptide treated Ewing’s sarcoma cells. The peptide inhibited clonogenicity, cell cycle, bromo-deoxy uridine (BrdU) uptake and invasion capacity of treated cells. The treatment also affected epithelial to mesenchymal transition (EMT) markers and EWS-FLI1 target gene expression levels. Co-immunoprecipitation experiments involving ectopically expressed full-length EWS-FLI1 protein and the peptide revealed an interaction. Additionally, we found that peptide interaction also occurs with the protein-GGAA microsatellite sequences complex known to contain EWS-FLI1. Further, in the pull-down assay, the peptide was found to interact with proteins known to potentially interact with EWS-FLI1. Based on these results we conclude that peptide could be applied in targeting EWS-FLI1 protein.
Collapse
Affiliation(s)
| | - Gopal Gopisetty
- Department of Molecular Oncology, Cancer Institute (WIA), Chennai, India.
| | - Priya Ramanathan
- Department of Molecular Oncology, Cancer Institute (WIA), Chennai, India
| | | |
Collapse
|
16
|
Kikuma T, Nakamachi Y, Noguchi Y, Okazaki Y, Shimomura D, Yakushijin K, Yamamoto K, Matsuoka H, Minami H, Itoh T, Kawano S. A new transcriptional variant and small azurophilic granules in an acute promyelocytic leukemia case with NPM1/RARA fusion gene. Int J Hematol 2015; 102:713-8. [PMID: 26342691 DOI: 10.1007/s12185-015-1857-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 08/12/2015] [Accepted: 08/24/2015] [Indexed: 12/18/2022]
Abstract
We report here the first case of NPM1/RARA-positive acute promyelocytic leukemia (APL) preceded by myeloid sarcoma (MS) in the vertebra. A 52-year-old man was diagnosed with MS, as the tumor cells were positive for myeloperoxidase and CD68 but negative for CD163. After treatment with steroids and radiation, the size of the tumor was markedly reduced and peripheral blood count was normal. Bone marrow examination showed 89.2% consisted of unclassified promyelocytes characterized by round nuclei and abundant small azurophilic granules but no Auer rods. The results of chromosome analysis showed 46,XY,t(5;17)(q35;q12). Reverse-transcription polymerase chain reaction amplified the NPM1/RARA fusion transcripts derived from a combination of NPM1 exon 4 and RARA exon 5, or of NPM1 exon 1 and RARA exon 5; the latter of these has not been reported previously. Electron microscopic examination of the promyelocyte nuclei showed they were oval with mild nuclear chromatin condensation and small- to medium-sized nucleoli. Hematological and molecular complete remission was attained after induction therapy including all-trans retinoic acid. As MS was also diagnosed in two of the seven other reported cases of APL with NPM1/RARA, MS may occur more frequently in APL with NPM1/RARA than APL with PML/RARA.
Collapse
Affiliation(s)
- Tomoe Kikuma
- Department of Clinical Laboratory, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Yuji Nakamachi
- Department of Clinical Laboratory, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan.
| | - Yoriko Noguchi
- Department of Clinical Laboratory, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Yoko Okazaki
- Department of Clinical Laboratory, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Daisuke Shimomura
- Department of Clinical Pathology, Tenri Hospital, Tenri, Nara, Japan
| | - Kimikazu Yakushijin
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Katsuya Yamamoto
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Hiroshi Matsuoka
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Hironobu Minami
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Tomoo Itoh
- Division of Diagnostic Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Seiji Kawano
- Division of Laboratory Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
17
|
Coexpression Pattern Analysis of NPM1-Associated Genes in Chronic Myelogenous Leukemia. BIOMED RESEARCH INTERNATIONAL 2015; 2015:610595. [PMID: 25961029 PMCID: PMC4413041 DOI: 10.1155/2015/610595] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/29/2014] [Accepted: 01/07/2015] [Indexed: 02/03/2023]
Abstract
Background. Nucleophosmin 1 (NPM1) plays an important role in ribosomal synthesis and malignancies, but NPM1 mutations occur rarely in the blast-crisis and chronic-phase chronic myelogenous leukemia (CML) patients. The NPM1-associated gene set (GCM_NPM1), in total 116 genes including NPM1, was chosen as the candidate gene set for the coexpression analysis. We wonder if NPM1-associated genes can affect the ribosomal synthesis and translation process in CML. Results. We presented a distribution-based approach for gene pair classification by identifying a disease-specific cutoff point that classified the coexpressed gene pairs into strong and weak coexpression structures. The differences in the coexpression patterns between the normal and the CML groups were reflected from the overall structure by performing two-sample Kolmogorov-Smirnov test. Our developed method effectively identified the coexpression pattern differences from the overall structure: P value = 1.71 × 10−22 < 0.05 for the maximum deviation D = 0.109. Moreover, we found that genes involved in the ribosomal synthesis and translation process tended to be coexpressed in the CML group. Conclusion. Our developed method can identify the coexpression difference between two different groups. Dysregulation of ribosomal synthesis and translation process may be related to the CML disease. Our significant findings may provide useful information for the novel CML mechanism exploration and cancer treatment.
Collapse
|
18
|
Matynia AP, Szankasi P, Shen W, Kelley TW. Molecular genetic biomarkers in myeloid malignancies. Arch Pathol Lab Med 2014; 139:594-601. [PMID: 25152312 DOI: 10.5858/arpa.2014-0096-ra] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Recent studies using massively parallel sequencing technologies, so-called next-generation sequencing, have uncovered numerous recurrent, single-gene variants or mutations across the spectrum of myeloid malignancies. OBJECTIVES To review the recent advances in the understanding of the molecular basis of myeloid neoplasms, including their significance for diagnostic and prognostic purposes and the possible implications for the development of novel therapeutic strategies. DATA SOURCES Literature review. CONCLUSIONS The recurrent mutations found in myeloid malignancies fall into distinct functional categories. These include (1) cell signaling factors, (2) transcription factors, (3) regulators of the cell cycle, (4) regulators of DNA methylation, (5) regulators of histone modification, (6) RNA-splicing factors, and (7) components of the cohesin complex. As the clinical significance of these mutations and mutation combinations is established, testing for their presence is likely to become a routine part of the diagnostic workup. This review will attempt to establish a framework for understanding these mutations in the context of myeloproliferative neoplasms, myelodysplastic syndromes, and acute myeloid leukemia.
Collapse
Affiliation(s)
- Anna P Matynia
- From the Department of Pathology, University of Utah, Salt Lake City (Drs Matynia and Kelley); and Research and Development, ARUP Laboratories, Salt Lake City, Utah (Drs Szankasi and Shen)
| | | | | | | |
Collapse
|
19
|
Leal MF, Mazzotti TKF, Calcagno DQ, Cirilo PDR, Martinez MC, Demachki S, Assumpção PP, Chammas R, Burbano RR, Smith MC. Deregulated expression of Nucleophosmin 1 in gastric cancer and its clinicopathological implications. BMC Gastroenterol 2014; 14:9. [PMID: 24410879 PMCID: PMC3893589 DOI: 10.1186/1471-230x-14-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 12/31/2013] [Indexed: 11/19/2022] Open
Abstract
Background The process of gastric carcinogenesis still remains to be elucidated. The identification of genes related to this process may help to reduce mortality rates through early diagnosis and the development of new anticancer therapies. Nucleophosmin 1 (NPM1) acts in ribosome biogenesis, centrosome duplication, maintenance of genomic stability, and embryonic development. Recently, NPM1 has been implicated in the tumorigenesis processes. Here, we evaluated NPM1 gene and protein expression in gastric tumors and in corresponding non-neoplastic gastric samples. Methods NPM1 protein expression was determined by Western blot in 17 pairs of gastric tumors and corresponding non-neoplastic gastric tissue. The protein immunoreactivity was observed in 12 tumor samples. mRNA expression was evaluated by reverse transcription quantitative polymerase chain reaction (RT-qPCR) in 22 pairs of gastric tumors and in matched non-neoplastic gastric tissue. Results NPM1 protein expression was significantly reduced in gastric cancer samples compared to matched non-neoplastic gastric samples (P = 0.019). The protein level of NPM1 was reduced at least 1.5-fold in 35% of tumors compared to paired non-neoplastic gastric tissue. However, NPM1 immunoreactivity was detected in neoplastic and non-neoplastic cells, including in intestinal metaplastic, gastritis and inflammatory cells. NPM1 was mainly expressed in nucleus and nucleolus subcellular compartments. The staining intensity and the percentage of immunoreactive cells varied among the studied cases. The NPM1 mRNA level was reduced at least 1.5-fold in 45.5% of samples and increased in 27.3% of samples. An inverse correlation between protein and mRNA expression was detected (r = -0.509, P = 0.037). Intestinal-type gastric cancer presented higher mRNA levels than diffuse-type (P = 0.026). However, reduced NPM1 protein expression was associated with intestinal-type gastric cancer compared to matched non-neoplastic gastric samples (P = 0.018). In addition, tumors from patients with known distant metastasis presented reduced NPM1 protein levels compared to tumors from patients without distant metastasis (P < 0.001). Conclusion Although the expression of NPM1 is heterogeneous in gastric tumors, our results suggest that NPM1 down-regulation may have a role in gastric carcinogenesis and may help in the selection of anticancer treatment strategies.
Collapse
Affiliation(s)
- Mariana Ferreira Leal
- Genetics Division, Department of Morphology and Genetic, Federal University of São Paulo, R, Botucatu, 740, São Paulo, SP CEP 04023-900, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Liu Y, He P, Liu F, Shi L, Zhu H, Zhao J, Wang Y, Cheng X, Zhang M. Prognostic significance of NPM1 mutations in acute myeloid leukemia: A meta-analysis. Mol Clin Oncol 2013; 2:275-281. [PMID: 24649346 DOI: 10.3892/mco.2013.222] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/04/2013] [Indexed: 01/14/2023] Open
Abstract
Nucleophosmin 1 (NPM1) mutations have been identified in a substantial number of patients with acute myeloid leukemia (AML). Favorable outcomes in AML cases with NPM1 mutations have been previously reported. However, widely differing survival estimates have been indicated. Therefore, a meta-analysis of nine studies including a total of 4509 subjects was performed. The frequency of NPM1 mutations was found to be 6.45-56.08%. NPM1-mutation type (NPM1-mt) patients had >2-fold higher odds of achieving complete remission compared with NPM1-wild-type (NPM1-wt). The summary hazard ratio (HR) of NPM1-mt/NPM1-wt for disease-free survival (DFS) and OS was 0.67 and 0.63, respectively. In conclusion, these findings suggest that the NPM1 mutation has a favorable effect on the outcome for AML. The present meta-analysis was based on data abstracted from observational studies. However, the results obtained may justify the risk-adapted therapeutic strategies for AML according to the NPM1 status.
Collapse
Affiliation(s)
- Yanfeng Liu
- Department of Hematology, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Pengcheng He
- Department of Hematology, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Feng Liu
- Department of Hematology, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Lili Shi
- Department of Hematology, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Huachao Zhu
- Department of Hematology, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jing Zhao
- Department of Hematology, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yuan Wang
- Department of Hematology, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaoyan Cheng
- Department of Hematology, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Mei Zhang
- Department of Hematology, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
21
|
Rau R, Magoon D, Greenblatt S, Li L, Annesley C, Duffield AS, Huso D, McIntyre E, Clohessy JG, Reschke M, Pandolfi PP, Small D, Brown P. NPMc+ cooperates with Flt3/ITD mutations to cause acute leukemia recapitulating human disease. Exp Hematol 2013; 42:101-13.e5. [PMID: 24184354 DOI: 10.1016/j.exphem.2013.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 10/18/2013] [Accepted: 10/22/2013] [Indexed: 11/30/2022]
Abstract
Cytoplasmic nucleophosmin (NPMc(+)) mutations and FMS-like tyrosine kinase 3 (FLT3) internal tandem duplication (ITD) mutations are two of the most common known molecular alterations in acute myeloid leukemia (AML); they frequently occur together, suggesting cooperative leukemogenesis. To explore the specific relationship between NPMc+ and FLT3/ITD in vivo, we crossed Flt3/ITD knock-in mice with transgenic NPMc+ mice. Mice with both mutations develop a transplantable leukemia of either myeloid or lymphoid lineage, definitively demonstrating cooperation between Flt3/ITD and NPMc+. In mice with myeloid leukemia, functionally significant loss of heterozygosity of the wild-type Flt3 allele is common, similar to what is observed in human FLT3/ITD+ AML, providing further in vivo evidence of the importance of loss of wild-type FLT3 in leukemic initiation and progression. Additionally, in vitro clonogenic assays reveal that the combination of Flt3/ITD and NPMc+ mutations causes a profound monocytic expansion, in excess of that seen with either mutation alone consistent with the predominance of myelomonocytic phenotype in human FLT3/ITD+/NPMc+ AML. This in vivo model of Flt3/ITD+/NPMc+ leukemia closely recapitulates human disease and will therefore serve as a tool for the investigation of the biology of this common disease entity.
Collapse
Affiliation(s)
- Rachel Rau
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| | - Daniel Magoon
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah Greenblatt
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Li Li
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Colleen Annesley
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amy S Duffield
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David Huso
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emily McIntyre
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John G Clohessy
- Cancer Genetics Program, Beth Israel Deaconess Cancer Center and Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Markus Reschke
- Cancer Genetics Program, Beth Israel Deaconess Cancer Center and Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Pier Paolo Pandolfi
- Cancer Genetics Program, Beth Israel Deaconess Cancer Center and Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Donald Small
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patrick Brown
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Raiser DM, Narla A, Ebert BL. The emerging importance of ribosomal dysfunction in the pathogenesis of hematologic disorders. Leuk Lymphoma 2013; 55:491-500. [DOI: 10.3109/10428194.2013.812786] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
23
|
Lo SJ, Fan LC, Tsai YF, Lin KY, Huang HL, Wang TH, Liu H, Chen TC, Huang SF, Chang CJ, Lin YJ, Yung BYM, Hsieh SY. A novel interaction of nucleophosmin with BCL2-associated X protein regulating death evasion and drug sensitivity in human hepatoma cells. Hepatology 2013; 57:1893-905. [PMID: 23258611 DOI: 10.1002/hep.26209] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 12/06/2012] [Indexed: 12/07/2022]
Abstract
UNLABELLED Death evasion is crucial for both carcinogenesis and resistance to anticancer therapies. Recently, we identified nucleophosmin (NPM) as a key factor counteracting death stimuli in human hepatocellular carcinoma (HCC) cells. Here we report the identification of a novel NPM-BCL2-associated X protein (BAX) pathway orchestrating death evasion in human HCC cells. Silencing of NPM expression significantly sensitized HCC cells-particularly those bearing inactivated p53 gene (Huh7, Hep3B, and Mahlavu)-to ultraviolet irradiation, mitomycin C, doxorubicin, cisplatin, sorafenib, and lapatinib. This sensitizing effect was not changed further, as p53 expression had been simultaneously silenced. Following cell stress, NPM and BAX were induced and exported out of the nucleoli and nucleus, respectively. BAX was translocated to cytoplasm in cells with relatively high NPM level, or accumulated in the mitochondria in cells with relatively low NPM level and undergoing apoptosis. Subcellular fractionation revealed that silencing of NPM expression greatly enhanced mitochondrial translocation and oligomerization of BAX in Huh7 and Mahlavu cells. In situ proximity ligation assays and reciprocal co-immunoprecipitation revealed a direct interaction between NPM and BAX in the cytoplasm. Silencing of BAX expression abolished the sensitization effect exerted by silencing of NPM in HCC cells. Clinically, up-regulation of NPM was significantly associated with advanced tumor stage and poor prognosis. CONCLUSION By directly blockading BAX mitochondrial translocation and activation, NPM helps human HCC cells evade death induction independently of p53-mediated cell death. Silencing of NPM significantly sensitized HCC cells to anticancer therapies. NPM is a potential cotarget in combination with other therapies for HCC, particularly those that harbor inactivated p53 gene. Our findings are of clinical significance because NPM up-regulation and p53 mutations are usually found in advanced human cancers, including HCC.
Collapse
Affiliation(s)
- Shao-Jung Lo
- Liver Research Unit, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Korashy L, El-Zawahry H, Abdou S, Shahin D, Sherif F, Farrag W, Abdel-Khalik O, Salem H, El-Sebaaie A. Clinical Significance of ALK-1 Gene Abnormalities in Diffuse Large Cell Lymphoma. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2012; 6:395-405. [PMID: 23239932 PMCID: PMC3516130 DOI: 10.4137/cmo.s9920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Objectives To detect relative frequency of anaplastic lymphoma kinase (ALK-1) gene abnormality in diffuse large cell lymphoma (DLCL) using fluorescence in situ hybridization (FISH), and correlate its presence with clinicopathological features which may be useful for choice of therapy and predict survival in newly diagnosed cases. Patients and methods A prospective study was done between March 2004 and October 2009. Fifty patients newly diagnosed with DLCL were enrolled into the study. Immunophenotyping was done and detection of ALK-1 gene abnormalities were carried out by immunohistochemically (IHC) and FISH. Patients that proved to be ALK-1 positive were treated with standard cyclophosphamide –hydroxy-daunorubicin- oncovin-prednisone (CHOP) protocol. Results All ALK +ve patients achieved complete remission (CR) vs. 93.5% CR and 6.5% partial remission (PR) for ALK −ve patients respectively. Disease free survival (DFS) at 24 months was 81.8% in the CHOP-14 group (ALK-1−) vs. 100% for the CHOP-21 group (ALK-1+). Overall survival (OS) at 30 months was 80.4% in the CHOP-14 group vs. 100% for the CHOP-21 group.
Collapse
Affiliation(s)
- L Korashy
- Department of Clinical Oncology, Faculty of Medicine, Tanta University
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Khanna-Gupta A, Abayasekara N, Levine M, Sun H, Virgilio M, Nia N, Halene S, Sportoletti P, Jeong JY, Pandolfi PP, Berliner N. Up-regulation of translation eukaryotic initiation factor 4E in nucleophosmin 1 haploinsufficient cells results in changes in CCAAT enhancer-binding protein α activity: implications in myelodysplastic syndrome and acute myeloid leukemia. J Biol Chem 2012; 287:32728-37. [PMID: 22851180 DOI: 10.1074/jbc.m112.373274] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
NPM1 is a ubiquitously expressed nucleolar phosphoprotein, the gene for which maps to chromosome 5q35 in close proximity to a commonly deleted region associated with (del)5q, a type of myelodysplastic syndrome (MDS). This region is also a frequent target of deletions in de novo and therapy-related MDS/acute myeloid leukemia. Previous studies have shown that Npm1(+/-) mice develop an MDS-like disease that transforms to acute myeloid leukemia over time. To better understand the mechanism by which NPM1 haploinsufficiency causes an MDS phenotype, we generated factor-dependent myeloid cell lines from the bone marrow of Npm1(+/+) and Npm1(+/-) mice and demonstrated compromised neutrophil-specific gene expression in the MNPM1(+/-) cells. We attribute these observations to increased levels of the shorter, dominant negative leukemogenic isoform (p30) of CCAAT enhancer-binding protein α (C/EBPα). We show that this increase is caused, in part, by elevated levels of the activated translation initiation factor eIF4E, overexpression of which also increases translation of C/EBPαp30 in HEK293 cells. In a positive feedback loop, eIF4E expression is further elevated both at the mRNA and protein levels by C/EBPαp30 but not by the full-length C/EBPαp42. Re-expression of C/EBPαp42 or NPM1 but not C/EBPαp30 in MNPM1(+/-) cells partially rescues the myeloid phenotype. Our observations suggest that the aberrant feed-forward pathway that keeps eIF4E and C/EBPαp30 elevated in NPM1(+/-) cells contributes to the MDS phenotype associated with NPM1 deficiency.
Collapse
Affiliation(s)
- Arati Khanna-Gupta
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
M-CSF-driven differentiation of peripheral blood monocytes is one of the sources of tissue macrophages. In humans and mice, the differentiation process involves the activation of caspases that cleave a limited number of proteins. One of these proteins is nucleophosmin (NPM1), a multifunctional and ubiquitous protein. Here, we show that caspases activated in monocytes exposed to M-CSF cleave NPM1 at D213 to generate a 30-kDa N-terminal fragment. The protein is further cleaved into a 20-kDa fragment, which involves cathepsin B. NPM1 fragments contribute to the limited motility, migration, and phagocytosis capabilities of resting macrophages. Their activation with lipopolysaccharides inhibits proteolytic processes and restores expression of the full-length protein that negatively regulates the transcription of genes encoding inflammatory cytokines (eg, NPM1 is recruited with NF-κB on the MCP1 gene promoter to decrease its transcription). In mice with heterozygous npm gene deletion, cytokine production in response to lipopolysaccharides, including CXCL1 (KC), MCP1, and MIP2, is dramatically enhanced. These results indicate a dual function of NPM1 in M-CSF-differentiated macrophages. Proteolysis of the protein participates in the establishment of a mature macrophage phenotype. In response to inflammatory stimuli, the full-length protein negatively regulates inflammatory cytokine production.
Collapse
|
27
|
p16INK4A and p14ARF tumor suppressor pathways are deregulated in malignant rhabdoid tumors. J Neuropathol Exp Neurol 2011; 70:596-609. [PMID: 21666498 DOI: 10.1097/nen.0b013e31822146ca] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Malignant rhabdoid tumors (MRTs) are aggressive tumors associated with mutations in the SMARCB1 gene. In experimental systems, the loss of SMARCB1 is hypothesized to alter p16(INK4A) pathways resulting in the repression of tumor suppressors. To determine whether these pathways are deregulated in human MRT, we used immunohistochemistry on tissue microarrays to evaluate p16(INK4A)/E2F1/RB and p14(ARF)/MDM2/p53 pathways in 25 atypical teratoid/rhabdoid tumors (AT/RT) and 11 non-CNS MRT. p16(INK4A) was negative or showed focal weak expression. p16(INK4A) downstream targets CDK4/cyclin D1/ppRB were variably expressed at moderate to low levels; E2F1 was negative. Unexpectedly, p14(ARF) expression was seen in many cases, which correlated positively with p53 and inversely with MDM2 immunostaining in AT/RT. TP53 mutational analysis in 19 of 25 AT/RT and in 8 of 11 non-CNS MRT cases showed point mutations in only 3 AT/RT cases, suggesting that p53 expression was driven mainly by p14(ARF). Finally, nucleophosmin, a protein that stabilizes p53, was positive in most cases and colocalized with p53. Together, these data suggest that, in MRT, there is deregulation not only of p16(INK4A) but also of the p14(ARF) pathway. These results provide insights into cell cycle deregulation in the pathogenesis of human MRT and may aid in the design and evaluation of potential therapies for these tumors.
Collapse
|
28
|
Targeting levels or oligomerization of nucleophosmin 1 induces differentiation and loss of survival of human AML cells with mutant NPM1. Blood 2011; 118:3096-106. [PMID: 21719597 DOI: 10.1182/blood-2010-09-309674] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nucleophosmin 1 (NPM1) is an oligomeric, nucleolar phosphoprotein that functions as a molecular chaperone for both proteins and nucleic acids. NPM1 is mutated in approximately one-third of patients with AML. The mutant NPM1c+ contains a 4-base insert that results in extra C-terminal residues encoding a nuclear export signal, which causes NPM1c+ to be localized in the cytoplasm. Here, we determined the effects of targeting NPM1 in cultured and primary AML cells. Treatment with siRNA to NPM1 induced p53 and p21, decreased the percentage of cells in S-phase of the cell cycle, as well as induced differentiation of the AML OCI-AML3 cells that express both NPMc+ and unmutated NPM1. Notably, knockdown of NPM1 by shRNA abolished lethal AML phenotype induced by OCI-AML3 cells in NOD/SCID mice. Knockdown of NPM1 also sensitized OCI-AML3 to all-trans retinoic acid (ATRA) and cytarabine. Inhibition of NPM1 oligomerization by NSC348884 induced apoptosis and sensitized OCI-AML3 and primary AML cells expressing NPM1c+ to ATRA. This effect was significantly less in AML cells coexpressing FLT3-ITD, or in AML or normal CD34+ progenitor cells expressing wild-type NPM1. Thus, attenuating levels or oligomerization of NPM1 selectively induces apoptosis and sensitizes NPM1c+ expressing AML cells to treatment with ATRA and cytarabine.
Collapse
|
29
|
Colombo E, Alcalay M, Pelicci PG. Nucleophosmin and its complex network: a possible therapeutic target in hematological diseases. Oncogene 2011; 30:2595-609. [PMID: 21278791 DOI: 10.1038/onc.2010.646] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nucleophosmin (NPM, also known as B23, numatrin or NO38) is a ubiquitously expressed phosphoprotein belonging to the nucleoplasmin family of chaperones. NPM is mainly localized in the nucleolus where it exerts many of its functions, but a proportion of the protein continuously shuttles between the nucleus and the cytoplasm. A growing number of cellular proteins have been described as physical interactors of NPM, and consequently, NPM is thought to have a relevant role in diverse cellular functions, including ribosome biogenesis, centrosome duplication, DNA repair and response to stress. NPM has been implicated in the pathogenesis of several human malignancies and intriguingly, it has been described both as an activating oncogene and a tumor suppressor, depending on cell type and protein levels. In fact, increased NPM expression is associated with different types of solid tumors whereas an impairment of NPM function is characteristic of a subgroup of hematolologic malignancies. A large body of experimental evidence links the deregulation of specific NPM functions to cellular transformation, yet the molecular mechanisms through which NPM contributes to tumorigenesis remain elusive. In this review, we have summarized current knowledge concerning NPM functions, and attempted to interpret its multifaceted and sometimes apparently contradictory activities in the context of both normal cellular homeostasis and neoplastic transformation.
Collapse
Affiliation(s)
- E Colombo
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy.
| | | | | |
Collapse
|
30
|
The Multifunctional Nucleolar Protein Nucleophosmin/NPM/B23 and the Nucleoplasmin Family of Proteins. THE NUCLEOLUS 2011. [PMCID: PMC7121557 DOI: 10.1007/978-1-4614-0514-6_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nucleophosmin (NPM)/nucleoplasmin family of nuclear chaperones has three members: NPM1, NPM2, and NPM3. Nuclear chaperones serve to ensure proper assembly of nucleosomes and proper formation of higher order structures of chromatin. In fact, this family of proteins has such diverse functions in cellular processes such as chromatin remodeling, ribosome biogenesis, genome stability, centrosome replication, cell cycle, transcriptional regulation, apoptosis, and tumor suppression. Of the members of this family, NPM1 is the most studied and is the main focus of this review. NPM2 and NPM3 are less well characterized, and are also discussed wherever appropriate. The structure–function relationship of NPM proteins has largely been worked out. Other than the many processes in which NPM1 takes part, the major interest comes from its involvement in human cancers, particularly acute myeloid leukemia (AML). Its significance stems from the fact that AML with mutated NPM1 accounts for ∼30% of all AML cases and usually has good prognosis. Its clinical importance also comes from its involvement in virus replication, particularly in the era of outbreaks of infectious diseases.
Collapse
|
31
|
NPM1/B23: A Multifunctional Chaperone in Ribosome Biogenesis and Chromatin Remodeling. Biochem Res Int 2010; 2011:195209. [PMID: 21152184 PMCID: PMC2989734 DOI: 10.1155/2011/195209] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 08/29/2010] [Indexed: 12/21/2022] Open
Abstract
At a first glance, ribosome biogenesis and chromatin remodeling are quite different processes, but they share a common problem involving interactions between charged nucleic acids and small basic proteins that may result in unwanted intracellular aggregations. The multifunctional nuclear acidic chaperone NPM1 (B23/nucleophosmin) is active in several stages of ribosome biogenesis, chromatin remodeling, and mitosis as well as in DNA repair, replication and transcription. In addition, NPM1 plays an important role in the Myc-ARF-p53 pathway as well as in SUMO regulation. However, the relative importance of NPM1 in these processes remains unclear. Provided herein is an update on the expanding list of the diverse activities and interacting partners of NPM1. Mechanisms of NPM1 nuclear export functions of NPM1 in the nucleolus and at the mitotic spindle are discussed in relation to tumor development. It is argued that the suggested function of NPM1 as a histone chaperone could explain several, but not all, of the effects observed in cells following changes in NPM1 expression. A future challenge is to understand how NPM1 is activated, recruited, and controlled to carry out its functions.
Collapse
|
32
|
Swoboda RK, Somasundaram R, Caputo L, Berencsi K, von Franzke P, Taylor DD, Marincola FM, Meropol NJ, Sigurdson E, Miller E, Herlyn D. Nucleophosmin is recognized by a cytotoxic T cell line derived from a rectal carcinoma patient. Int J Cancer 2010; 127:1124-30. [PMID: 20027629 DOI: 10.1002/ijc.25133] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunotherapy of colorectal carcinoma (CRC) has great promise as the presence of T lymphocytes in CRC tissues in situ is correlated with reduced recurrence and increased survival. Thus, identification of the antigens recognized by T cells of CRC patients may permit development of vaccines with potential benefit for these patients. Using expression cloning, we identified the antigen, nucleophosmin (Npm), recognized by an HLA-A1 restricted cytotoxic T lymphocyte (CTL) line derived from the peripheral blood mononuclear cells (PBMC) of a rectal cancer patient. A decamer peptide derived from the Npm sequence sensitized peptide-pulsed HLA-A1 positive cells to lysis by the CTL line. The peptide also induced proliferative and cytotoxic T lymphocytes in the PBMC of 4 of 6 CRC patients, which lysed HLA-A1 positive peptide-pulsed target cells and CRC cells endogenously expressing Npm. Overexpression of Npm by tumors of various histological types, recognition of the antigen by T cells derived from different CRC patients and association of the antigen with poor prognostic outcome make it a promising target for immunotherapeutic intervention in cancer patients.
Collapse
Affiliation(s)
- Rolf K Swoboda
- The Wistar Institute, 3601 Spruce Street, Philadelphia PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Li QF, Tang J, Liu QR, Shi SL, Chen XF. Localization and altered expression of nucleophosmin in the nuclear matrix during the differentiation of human hepatocarcinoma SMMC-7721 cells induced by HMBA. Cancer Invest 2010; 28:1004-12. [PMID: 20690796 DOI: 10.3109/07357900902918452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nucleophosmin (NPM1) is frequently upregulated and mutated in various tumor cells. To investigate the mechanism of induced differentiation of tumor cells, the nuclear matrix of human hepatocarcinoma SMMC-7721 cells induced by hexamethylene bisacetamide (HMBA) was selectively extracted and subjected to proteomic methodologies. We confirmed that NPM1 existed in nuclear matrix proteins and downregulated after HMBA treatment. By using immunogold electromicroscopy, we found that NPM1 was localized on nuclear matrix-intermediate filaments. Our study also revealed the colocalization between NPM1 and products of oncogenes or tumor suppressor genes including c-Fos, c-Myc, p53, and Rb by using laser scanning confocal microscopy in SMMC-7721 cells.
Collapse
Affiliation(s)
- Qi-Fu Li
- The Key Laboratory of Ministry of Education for Cell Biology & Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, PR China.
| | | | | | | | | |
Collapse
|
34
|
Vladimirova NM, Lobanova NV, Potapenko NA. State of oncomarker protein B23/nucleophosmin in HeLa cells. BIOCHEMISTRY (MOSCOW) 2010; 75:851-60. [PMID: 20673208 DOI: 10.1134/s0006297910070060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Western blot after SDS-PAGE for protein separation showed two immunoreactive bands corresponding to monomers (38-40 kDa) and oligomers (210-230 kDa) of nucleophosmin in HeLa cell lysates. Decreasing the buffer ionic strength during the incubation of cells and nuclei destabilized these oligomers. We also showed the existence of two B23/nucleophosmin pools in nuclei of HeLa cells with different sensitivity to hypotonic buffer treatment: one extractable from the nucleus and the other non-extractable and tightly bound to the nucleus. A detailed structural analysis of the extractable B23 pool was carried out: two closely related nucleophosmin isoforms (B23.1 and B23.2) were identified as a result of analysis of C-terminal amino acid sequences using carboxypeptidase hydrolysis; the N-termini of both isoforms are blocked by an acetyl group. As a result of sequencing of the deacetylated proteins, it has been established that the N-terminal amino acid sequence of nucleophosmin in these preparations is truncated by nine amino acid residues and the acetylated residue is Ser. The truncated monomer of nucleophosmin (represented only by the extractable part of the protein) on addition of magnesium ions to low ionic strength buffer or increase in buffer ionic strength was shown to form oligomers with molecular weights (210-230 kDa) similar to those revealed in the total cell lysate. It should be noted that the set of oligomers in this case differs from the one in total cell lysate. Our strategy of characterization of B23 forms for HeLa cells can be applied for other tumor cells.
Collapse
Affiliation(s)
- N M Vladimirova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| | | | | |
Collapse
|
35
|
Lessard F, Morin F, Ivanchuk S, Langlois F, Stefanovsky V, Rutka J, Moss T. The ARF Tumor Suppressor Controls Ribosome Biogenesis by Regulating the RNA Polymerase I Transcription Factor TTF-I. Mol Cell 2010; 38:539-50. [DOI: 10.1016/j.molcel.2010.03.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 02/24/2010] [Accepted: 03/25/2010] [Indexed: 11/29/2022]
|
36
|
Shi SL, Liang Y, Li QF, Liu QR, Jing GJ, Wang SY, Zhang XY, Wu FY. Localization of nucleophosmin in nuclear matrix and changes in its expression during the differentiation of human neuroblastoma induced by retinoic acid. J Cell Biochem 2010; 111:67-74. [DOI: 10.1002/jcb.22663] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
37
|
Abstract
Ribosomopathies compose a collection of disorders in which genetic abnormalities cause impaired ribosome biogenesis and function, resulting in specific clinical phenotypes. Congenital mutations in RPS19 and other genes encoding ribosomal proteins cause Diamond-Blackfan anemia, a disorder characterized by hypoplastic, macrocytic anemia. Mutations in other genes required for normal ribosome biogenesis have been implicated in other rare congenital syndromes, Schwachman-Diamond syndrome, dyskeratosis congenita, cartilage hair hypoplasia, and Treacher Collins syndrome. In addition, the 5q- syndrome, a subtype of myelodysplastic syndrome, is caused by a somatically acquired deletion of chromosome 5q, which leads to haploinsufficiency of the ribosomal protein RPS14 and an erythroid phenotype highly similar to Diamond-Blackfan anemia. Acquired abnormalities in ribosome function have been implicated more broadly in human malignancies. The p53 pathway provides a surveillance mechanism for protein translation as well as genome integrity and is activated by defects in ribosome biogenesis; this pathway appears to be a critical mediator of many of the clinical features of ribosomopathies. Elucidation of the mechanisms whereby selective abnormalities in ribosome biogenesis cause specific clinical syndromes will hopefully lead to novel therapeutic strategies for these diseases.
Collapse
|
38
|
Meani N, Alcalay M. Role of nucleophosmin in acute myeloid leukemia. Expert Rev Anticancer Ther 2009; 9:1283-94. [PMID: 19761432 DOI: 10.1586/era.09.84] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nucleophosmin (NPM) is a nucleolar phosphoprotein implicated in the regulation of multiple cellular functions, which possesses both oncogenic and tumor-suppressor properties. Mutations of the NPM1 gene leading to the expression of a cytoplasmic mutant protein, NPMc+, are the most frequent genetic abnormalities found in acute myeloid leukemias. Acute myeloid leukemias with mutated NPM1 have distinct characteristics, including a significant association with a normal karyotype, involvement of different hematopoietic lineages, a specific gene-expression profile and clinically, a better response to induction therapy and a favorable prognosis. NPMc+ maintains the capacity of wild-type NPM to interact with a variety of cellular proteins, and impairs their activity by delocalizing them to the cytoplasm. In this review we summarize recent discoveries concerning NPM function, and discuss their possible impact on the pathogenesis of acute myeloid leukemias with mutated NPM1.
Collapse
Affiliation(s)
- Natalia Meani
- Istituto Europeo di Oncologia, IFOM-IEO Campus, Via Adamello 16, 20139 Milan, Italy.
| | | |
Collapse
|
39
|
Komeno Y, Kitaura J, Kitamura T. Molecular bases of myelodysplastic syndromes: lessons from animal models. J Cell Physiol 2009; 219:529-34. [PMID: 19259975 DOI: 10.1002/jcp.21739] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Myelodysplastic syndrome (MDS) is a clonal disorder of hematopietic stem cells characterized by ineffective hematopoiesis, peripheral blood cytopenia, morphologic dysplasia, and susceptibility to acute myeloid leukemia. Several mechanisms have been suggested as causes of MDS: unbalanced chromosomal abnormalities reflecting a gain or loss of chromosomal material, point mutations of transcription factors, and inactivation of p53. However, appropriate animal models that mimic MDS have long been lacking. We recently reported a novel murine model of MDS that recapitulates trilineage dysplasia and transformation to AML. In this review, we summarize the animal models of MDS and discuss the molecular bases of MDS as well as those of leukemia and myeloproliferative disorders (MPD). J. Cell. Physiol. 219: 529-534, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Yukiko Komeno
- Division of Cellular Therapy, Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
40
|
Shay T, Lambiv WL, Reiner-Benaim A, Hegi ME, Domany E. Combining chromosomal arm status and significantly aberrant genomic locations reveals new cancer subtypes. Cancer Inform 2009; 7:91-104. [PMID: 19352461 PMCID: PMC2664703 DOI: 10.4137/cin.s2144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Many types of tumors exhibit characteristic chromosomal losses or gains, as well as local amplifications and deletions. Within any given tumor type, sample specific amplifications and deletions are also observed. Typically, a region that is aberrant in more tumors, or whose copy number change is stronger, would be considered as a more promising candidate to be biologically relevant to cancer. We sought for an intuitive method to define such aberrations and prioritize them. We define V, the "volume" associated with an aberration, as the product of three factors: (a) fraction of patients with the aberration, (b) the aberration's length and (c) its amplitude. Our algorithm compares the values of V derived from the real data to a null distribution obtained by permutations, and yields the statistical significance (p-value) of the measured value of V. We detected genetic locations that were significantly aberrant, and combine them with chromosomal arm status (gain/loss) to create a succinct fingerprint of the tumor genome. This genomic fingerprint is used to visualize the tumors, highlighting events that are co-occurring or mutually exclusive. We apply the method on three different public array CGH datasets of Medulloblastoma and Neuroblastoma, and demonstrate its ability to detect chromosomal regions that were known to be altered in the tested cancer types, as well as to suggest new genomic locations to be tested. We identified a potential new subtype of Medulloblastoma, which is analogous to Neuroblastoma type 1.
Collapse
Affiliation(s)
- Tal Shay
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Wanyu L. Lambiv
- Laboratory of Brain Tumor Biology and Genetics, Neurosurgery, University Hospital Lausanne (CHUV), Lausanne, Switzerland
| | - Anat Reiner-Benaim
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
- Department of Statistics, University of Haifa, Haifa, Israel
| | - Monika E. Hegi
- Laboratory of Brain Tumor Biology and Genetics, Neurosurgery, University Hospital Lausanne (CHUV), Lausanne, Switzerland
- National Center for Competence Research Molecular Oncology, ISREC, Epalinges, Switzerland
| | - Eytan Domany
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
41
|
Ishikawa Y, Xu J, Sakashita G, Urano T, Suzuki T, Tomita A, Kiyoi H, Nakamura S, Naoe T. Abnormal cytoplasmic dyslocalisation and/or reduction of nucleophosmin protein level rarely occurs in myelodysplastic syndromes. Leuk Lymphoma 2009; 49:2359-64. [PMID: 19052985 DOI: 10.1080/10428190802541815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The Nucleophosmin1 (NPM1) gene located in chromosome 5q35 is affected by chromosomal translocation, mutation and deletion in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). NPM1 haploinsufficiency reportedly causes MDS-like disorders in knockout mice. Here, we studied mRNA and protein expression in bone marrow (BM) samples from 36 patients with MDS. The NPM1 expression levels of mRNA and protein were not related to chromosome 5 abnormalities and were almost the same as those in normal BM and AML cells. However, the protein levels in AML cells with NPM1 mutations were slightly lower than in those without mutation. Immunochemical studies showed no difference in the staining intensity and subcellular localisation between MDS and normal BM cells. It was concluded that abnormal cytoplasmic localisation and/or significant reduction of NPM1 protein level rarely occurs in MDS. The increase in the number of nuclear NPM1-positive cells may be related to the progression of MDS.
Collapse
Affiliation(s)
- Yuichi Ishikawa
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, and Department of Infectious Diseases, Nagoya University Hospital, Showa-ku, Nagoya, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Huang W, Li X, Yao X, Lu Y, Li B, Sheng W, Lu H, Jin A, Zhou X. Expression of ALK protein, mRNA and fusion transcripts in anaplastic large cell lymphoma. Exp Mol Pathol 2009; 86:121-6. [PMID: 19135051 DOI: 10.1016/j.yexmp.2008.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 11/27/2008] [Indexed: 10/21/2022]
Abstract
Systemic anaplastic large cell lymphoma (ALCL) can be divided into two subgroups, anaplastic lymphoma kinase (ALK)-positive and ALK-negative, based on the expression of ALK protein. Expression of this protein is due to genetic alterations of ALK at 2p23. Overall, observations on ALK protein, ALK mRNA, ALK-associated genetic alterations and their relationships, to one another are not often reported in the literature. In this study, we investigated the expression of ALK protein, mRNA and fusion transcripts involving ALK and their relationships in ALCL and analyzed formalin-fixed, paraffin-embedded tissues. Forty-five human cases were analyzed with immunohistochemistry for the ALK protein and RT-PCR for ALK mRNA and seven kinds of ALK involved fusion transcripts. Our results showed that the expression of ALK protein, ALK mRNA and ALK fusion transcripts were significantly related to one another (P<0.01). Consistent with the expression of ALK protein, patients presenting with ALK mRNA or ALK involved fusion transcripts were significantly younger than those lacking ALK gene alteration (P<0.01). This study demonstrates expression of both ALK protein and ALK mRNA are positively correlated with expression of ALK-associated fusion transcripts. Combined detection of ALK protein, ALK mRNA and ALK fusion transcripts can complement each other to aid in the diagnosis of ALCL.
Collapse
Affiliation(s)
- Wentao Huang
- Department of Pathology, Cancer Hospital, Department of Oncology, Shanghai Medical Collage, Fudan University, Shanghai, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Calvo KL, Ojeda MJ, Ammatuna E, Lavorgna S, Ottone T, Targovnik HM, Lo-Coco F, Noguera NI. Detection of the nucleophosmin gene mutations in acute myelogenous leukemia through RT-PCR and polyacrylamide gel electrophoresis. Eur J Haematol 2009; 82:69-72. [PMID: 18801061 DOI: 10.1111/j.1600-0609.2008.01155.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Mutations in the C-terminal region of the nucleophosmin (NPM1) gene occur in approximately 60% of acute myeloid leukemia (AML) cases with normal karyotype and represent the most common genetic lesion presently known in this disease. Because of their frequency and favorable impact on prognostic outcome, screening for this aberration is currently recommended in routine diagnostic characterization of AML. Several techniques enabling to detect NPM1 mutation have been reported, but all require sophisticated equipment, which represent an obstacle particularly in countries with limited resources. METHODS We designed an RT-PCR strategy to amplify NPM1 exon 12 followed by electrophoresis and fragment visualization on polyacrylamide gels to discriminate a 4-5 bp size difference resulting from mutations in this gene. A hemi-nested method was designed to increase sensitivity for the study of minimal residual disease (MRD). RESULTS The assay enabled specific detection of NPM1 mutations in 12/36 patients. A 10(-2) sensitivity level was obtained using one amplification round, while the hemi-nested PCR approach yielded a 10(-5) sensitivity level, therefore proving useful to assess MRD in patients carrying the mutation. The results were independently validated in 24 AML cases by sequencing analysis. CONCLUSIONS This simple and low-cost assay may integrate diagnostic work-up of AML and could be used for assessment of response to therapy in patients with NPM1 mutations.
Collapse
Affiliation(s)
- Karina Lucrecia Calvo
- Department of Chemical Biochemistry (Hematology), Facultad de Ciencias Bioquimicas y Farmaceuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Nucleophosmin interacts directly with c-Myc and controls c-Myc-induced hyperproliferation and transformation. Proc Natl Acad Sci U S A 2008; 105:18794-9. [PMID: 19033198 DOI: 10.1073/pnas.0806879105] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The transcription factor c-Myc is essential for cellular proliferation and is one of the most frequently activated oncogenes, but the molecular mechanism mediating its critical role in transformation is unclear. Like c-Myc, multifunctional nucleophosmin (NPM) is tightly regulated during proliferation and is overexpressed in several different types of cancer. Overexpression of NPM enhances proliferation and oncogene-mediated transformation, but the mechanism mediating these effects is unknown. We examined whether NPM stimulates proliferation and transformation by affecting c-Myc. Here, we show that NPM is essential for the activities of oncogenic c-Myc and that overexpressed NPM dramatically stimulates c-Myc-induced hyperproliferation and transformation. Endogenous and exogenous NPM directly interact with c-Myc and regulate the expression of endogenous c-Myc target genes at the promoter. Therefore, NPM is a key cofactor for the transforming activity of c-Myc and the interaction with c-Myc may mediate the enhancement of proliferation and transformation induced by NPM overexppression.
Collapse
|
45
|
Ma H, Pederson T. Nucleophosmin is a binding partner of nucleostemin in human osteosarcoma cells. Mol Biol Cell 2008; 19:2870-5. [PMID: 18448670 DOI: 10.1091/mbc.e08-02-0128] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Nucleostemin (NS) is expressed in the nucleoli of adult and embryonic stem cells and in many tumors and tumor-derived cell lines. In coimmunoprecipitation experiments, nucleostemin is recovered with the tumor suppressor p53, and more recently we have demonstrated that nucleostemin exerts its role in cell cycle progression via a p53-dependent pathway. Here, we report that in human osteosarcoma cells, nucleostemin interacts with nucleophosmin, a nucleolar protein believed to possess oncogenic potential. Nucleostemin (NS) and nucleophosmin (NPM) displayed an extremely high degree of colocalization in the granular component of the nucleolus during interphase, and both proteins associated with prenucleolar bodies in late mitosis before the reformation of nucleoli. Coimmunoprecipitation experiments revealed that NS and NPM co-reside in complexes, and yeast two-hybrid experiments confirmed that they are interactive proteins, revealing the NPM-interactive region to be the 46-amino acid N-terminal domain of NS. In bimolecular fluorescence complementation studies, bright nucleolar signals were observed, indicating that these two proteins directly interact in the nucleolus in vivo. These results support the notion that cell cycle regulatory proteins congress and interact in the nucleolus, adding to the emerging concept that this nuclear domain has functions beyond ribosome production.
Collapse
Affiliation(s)
- Hanhui Ma
- Program in Cell Dynamics, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
46
|
NSC348884, a nucleophosmin inhibitor disrupts oligomer formation and induces apoptosis in human cancer cells. Oncogene 2008; 27:4210-20. [DOI: 10.1038/onc.2008.54] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
47
|
Shu W, Chen Y, Wu Q, Li R, Cui G. Deguelin Represses Both the Expression of Nucleophosmin and some Nucleoporins: Nup88 and Nup214 in Jurkat Cells. Biol Pharm Bull 2008; 31:27-32. [DOI: 10.1248/bpb.31.27] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Wenxiu Shu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Yan Chen
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Qing Wu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Rui Li
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Guohui Cui
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| |
Collapse
|
48
|
Wulff JE, Siegrist R, Myers AG. The natural product avrainvillamide binds to the oncoprotein nucleophosmin. J Am Chem Soc 2007; 129:14444-51. [PMID: 17958425 DOI: 10.1021/ja075327f] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Here we present evidence that (+)-avrainvillamide, a naturally occurring alkaloid with antiproliferative effects, binds to the nuclear chaperone nucleophosmin, a proposed oncogenic protein that is overexpressed in many different human tumors. Among other effects, nucleophosmin is known to regulate the tumor suppressor protein p53. A synthetic biotin-avrainvillamide conjugate, nearly equipotent to the natural product in inhibiting the growth of cultured T-47D cells, was used for affinity-isolation of a protein identified as nucleophosmin by MS sequencing and Western-blotting. Affinity-isolation of nucleophosmin was inhibited in the presence of iodoacetamide (10 mM), free (+)-avrainvillamide (100 microM), and a series of closely related structural analogues of (+)-avrainvillamide, the latter with inhibitory effects that appear to correlate with measured growth-inhibitory potencies. Using fluorescence microscopy, a synthetic dansyl-avrainvillamide conjugate was observed to localize within the nucleoli and the cytosol of treated cancer cells. Site-directed mutagenesis of each of the three cysteine residues of a truncated nucleophosmin coexpressed with native nucleophosmin in COS-7 cells revealed that the mutation cys275 --> ala275 effectively and uniquely reduced affinity-isolation of the truncated protein, suggesting that avrainvillamide targets cys275 of nucleophosmin. Finally, we show that treatment of adhered LNCaP or T-47D cells with (+)-avrainvillamide leads to an increase in cellular p53 concentrations, and that siRNA-promoted depletion of nucleophosmin in a population of HeLa S3 cells leads to increased sensitivity of that population toward apoptotic death upon treatment with (+)-avrainvillamide. Although potentially desirable as lead compounds for the development of novel anticancer therapies, nonpeptidic, synthetic small molecules that bind to nucleophosmin have not been described, prior to this report.
Collapse
Affiliation(s)
- Jeremy E Wulff
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | |
Collapse
|
49
|
Khan NI, Bradstock KF, Bendall LJ. Activation of Wnt/beta-catenin pathway mediates growth and survival in B-cell progenitor acute lymphoblastic leukaemia. Br J Haematol 2007; 138:338-48. [PMID: 17614820 DOI: 10.1111/j.1365-2141.2007.06667.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study investigated the response of acute lymphoblastic leukaemia (ALL) cells to Wnt proteins. Accumulation of beta-catenin was measured by Western blotting and immunofluorescence microscopy. Reverse transcription polymerase chain reaction (RT-PCR) analysis of B-cell progenitor acute lymphoblastic leukaemia (ALL) cells revealed expression of Wnt genes, including WNT2B in 33%, WNT5A in 42%, WNT10B in 58% and WNT16B in 25% of cases. The Wnt receptors, (Frizzled) FZD7 and FZD8 were also expressed in most cases while FZD3, FZD4 and FZD9 were occasionally detected. Stimulation of ALL cells with Wnt-3a activated canonical Wnt signalling with increased expression and nuclear translocation of beta-catenin. This resulted in a 1.7- to 5.3-fold increase in cell proliferation, which was associated with enhanced cell cycle entry. A significant increase in the survival of ALL cells under conditions of serum deprivation was also observed. Microarray analysis and quantitative RT-PCR revealed that activation of the Wnt/beta-catenin pathway led to altered expression of genes involved in cell cycle regulation and apoptosis in normal and leukaemic B-cell progenitors. Our results demonstrate that Wnt-3a provides proliferative and survival cues in ALL cells. This data suggests that targeting the Wnt signalling pathway may be a useful therapeutic strategy in ALL.
Collapse
Affiliation(s)
- Naveed I Khan
- Westmead Institute for Cancer Research, Westmead Millennium Institute, University of Sydney, Sydney, SW, Australia
| | | | | |
Collapse
|
50
|
Boisvert FM, van Koningsbruggen S, Navascués J, Lamond AI. The multifunctional nucleolus. Nat Rev Mol Cell Biol 2007; 8:574-85. [PMID: 17519961 DOI: 10.1038/nrm2184] [Citation(s) in RCA: 1158] [Impact Index Per Article: 68.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The nucleolus is a distinct subnuclear compartment that was first observed more than 200 years ago. Nucleoli assemble around the tandemly repeated ribosomal DNA gene clusters and 28S, 18S and 5.8S ribosomal RNAs (rRNAs) are transcribed as a single precursor, which is processed and assembled with the 5S rRNA into ribosome subunits. Although the nucleolus is primarily associated with ribosome biogenesis, several lines of evidence now show that it has additional functions. Some of these functions, such as regulation of mitosis, cell-cycle progression and proliferation, many forms of stress response and biogenesis of multiple ribonucleoprotein particles, will be discussed, as will the relation of the nucleolus to human diseases.
Collapse
MESH Headings
- Animals
- Cell Nucleolus/chemistry
- Cell Nucleolus/genetics
- Cell Nucleolus/metabolism
- Cell Nucleolus/physiology
- Cell Nucleolus/ultrastructure
- DNA, Ribosomal/analysis
- DNA, Ribosomal/biosynthesis
- Fluorescent Dyes
- Humans
- Indoles
- Microscopy, Fluorescence
- Mitosis
- Models, Biological
- Nucleolus Organizer Region/physiology
- Nucleolus Organizer Region/ultrastructure
- RNA Precursors/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/metabolism
- RNA, Ribosomal, 28S/genetics
- RNA, Ribosomal, 28S/metabolism
- RNA, Ribosomal, 5.8S/genetics
- RNA, Ribosomal, 5.8S/metabolism
- RNA, Ribosomal, 5S/biosynthesis
- RNA, Ribosomal, 5S/genetics
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Ribonucleoproteins/genetics
- Ribonucleoproteins/metabolism
- Ribosomes/genetics
- Ribosomes/metabolism
Collapse
|