1
|
Valipour M, Zakeri Khatir Z, Ayati A, Hosseini A, Sheibani M, Irannejad H. Advances in the selective c-MET kinase inhibitors: Application of fused [5,6]-Bicyclic nitrogen-containing cores for anticancer drug design. Eur J Med Chem 2025; 284:117177. [PMID: 39724725 DOI: 10.1016/j.ejmech.2024.117177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
Over the past two decades, small molecules bearing [5,6]-bicyclic nitrogen-containing cores have emerged as one of the most extensively studied structures for the development of selective c-MET kinase inhibitors. Structure-activity relationship (SAR) studies have demonstrated that modifying these cores can significantly impact the biological properties of c-MET inhibitors, including safety/toxicity, potency, and metabolic stability. For example, although c-MET kinase inhibitors containing the [1,2,4]triazolo[4,3-b][1,2,4]triazine scaffold (core P) exhibit high inhibitory potency, they often face challenges due to metabolic stability defects. Alternatively, compounds containing [1,2,3]triazolo[4,5-b]pyrazine (core K) and [1,2,4]triazolo[4,3-b]pyridazine (core I) scaffolds demonstrate lower potency but improved metabolic stability, allowing some of them to progress into clinical trials and even be approved as novel anticancer drugs. Fortunately, X-ray crystallography studies have well elucidated key interactions between [5,6]-bicyclic nitrogen-containing cores and crucial amino acid residues within the c-MET active site. These insights emphasize the significance of π-π stacking interactions with Tyr1230 and hydrogen bonding with Asp1222, providing valuable guidance for the targeted design and optimization of selective c-MET kinase inhibitors. Following the identification/introduction of sixteen distinct [5,6]-bicyclic nitrogen-containing cores (cores A-P) utilized in the design of selective c-MET kinase inhibitors over the past two decades, this manuscript offers a comprehensive review of their roles in drug development of anticancer agents, and describes the various synthesis methods employed. The insights presented herein can serve as a resource for better structural optimization of c-MET kinase inhibitors in the future research.
Collapse
Affiliation(s)
- Mehdi Valipour
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Zahra Zakeri Khatir
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Adileh Ayati
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Hamid Irannejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
2
|
Mohan CD, Shanmugam MK, Gowda SGS, Chinnathambi A, Rangappa KS, Sethi G. c-MET pathway in human malignancies and its targeting by natural compounds for cancer therapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155379. [PMID: 38503157 DOI: 10.1016/j.phymed.2024.155379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/03/2024] [Accepted: 01/17/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND c-MET is a receptor tyrosine kinase which is classically activated by HGF to activate its downstream signaling cascades such as MAPK, PI3K/Akt/mTOR, and STAT3. The c-MET modulates cell proliferation, epithelial-mesenchymal transition (EMT), immune response, morphogenesis, apoptosis, and angiogenesis. The c-MET has been shown to serve a prominent role in embryogenesis and early development. The c-MET pathway is deregulated in a broad range of malignancies, due to overexpression of ligands or receptors, genomic amplification, and MET mutations. The link between the deregulation of c-MET signaling and tumor progression has been well-documented. Overexpression or overactivation of c-MET is associated with dismal clinical outcomes and acquired resistance to targeted therapies. Since c-MET activation results in the triggering of oncogenic pathways, abrogating the c-MET pathway is considered to be a pivotal strategy in cancer therapeutics. Herein, an analysis of role of the c-MET pathway in human cancers and its relevance in bone metastasis and therapeutic resistance has been undertaken. Also, an attempt has been made to summarize the inhibitory activity of selected natural compounds towards c-MET signaling in cancers. METHODS The publications related to c-MET pathway in malignancies and its natural compound modulators were obtained from databases such as PubMed, Scopus, and Google Scholar and summarized based on PRISMA guidelines. Some of the keywords used for extracting relevant literature are c-MET, natural compound inhibitors of c-MET, c-MET in liver cancer, c-MET in breast cancer, c-MET in lung cancer, c-MET in pancreatic cancer, c-MET in head and neck cancer, c-MET in bone metastasis, c-MET in therapeutic resistance, and combination of c-MET inhibitors and chemotherapeutic agents. The chemical structure of natural compounds was verified in PubChem database. RESULTS The search yielded 3935 publications, of which 195 reference publications were used for our analysis. Clinical trials were referenced using ClinicalTrials.gov identifier. The c-MET pathway has been recognized as a prominent target to combat the growth, metastasis, and chemotherapeutic resistance in cancers. The key role of the c-MET in bone metastasis as well as therapeutic resistance has been elaborated. Also, suppressive effect of selected natural compounds on the c-MET pathway in clinical/preclinical studies has been discussed.
Collapse
Affiliation(s)
- Chakrabhavi Dhananjaya Mohan
- FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226 001, India
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | | | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kanchugarakoppal S Rangappa
- Institution of Excellence, Vijnana Bhavan, University of Mysore, Manasagangotri, Mysore, Karnataka 570006, India.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| |
Collapse
|
3
|
Altintas DM, Gallo S, Basilico C, Cerqua M, Bocedi A, Vitacolonna A, Botti O, Casanova E, Rancati I, Milanese C, Notari S, Gambardella G, Ricci G, Mastroberardino PG, Boccaccio C, Crepaldi T, Comoglio PM. The PSI Domain of the MET Oncogene Encodes a Functional Disulfide Isomerase Essential for the Maturation of the Receptor Precursor. Int J Mol Sci 2022; 23:ijms232012427. [PMID: 36293286 PMCID: PMC9604360 DOI: 10.3390/ijms232012427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 11/29/2022] Open
Abstract
The tyrosine kinase receptor encoded by the MET oncogene has been extensively studied. Surprisingly, one extracellular domain, PSI, evolutionary conserved between plexins, semaphorins, and integrins, has no established function. The MET PSI sequence contains two CXXC motifs, usually found in protein disulfide isomerases (PDI). Using a scrambled oxidized RNAse enzymatic activity assay in vitro, we show, for the first time, that the MET extracellular domain displays disulfide isomerase activity, abolished by PSI domain antibodies. PSI domain deletion or mutations of CXXC sites to AXXA or SXXS result in a significant impairment of the cleavage of the MET 175 kDa precursor protein, abolishing the maturation of α and β chains, of, respectively, 50 kDa and 145 kDa, disulfide-linked. The uncleaved precursor is stuck in the Golgi apparatus and, interestingly, is constitutively phosphorylated. However, no signal transduction is observed as measured by AKT and MAPK phosphorylation. Consequently, biological responses to the MET ligand—hepatocyte growth factor (HGF)—such as growth and epithelial to mesenchymal transition, are hampered. These data show that the MET PSI domain is functional and is required for the maturation, surface expression, and biological functions of the MET oncogenic protein.
Collapse
Affiliation(s)
- Dogus Murat Altintas
- IFOM, FIRC Institute for Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
- Correspondence: (D.M.A.); (P.M.C.)
| | - Simona Gallo
- Department of Oncology, University of Turin, 10060 Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, Italy
| | | | - Marina Cerqua
- IFOM, FIRC Institute for Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Alessio Bocedi
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Annapia Vitacolonna
- Department of Oncology, University of Turin, 10060 Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, Italy
| | - Orsola Botti
- IFOM, FIRC Institute for Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Elena Casanova
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, Italy
| | - Ilaria Rancati
- IFOM, FIRC Institute for Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Chiara Milanese
- IFOM, FIRC Institute for Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Sara Notari
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Giorgia Gambardella
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Giorgio Ricci
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Pier Giorgio Mastroberardino
- IFOM, FIRC Institute for Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
- Department of Life, Health, and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Carla Boccaccio
- Department of Oncology, University of Turin, 10060 Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, Italy
| | - Tiziana Crepaldi
- Department of Oncology, University of Turin, 10060 Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, Italy
| | - Paolo Maria Comoglio
- IFOM, FIRC Institute for Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
- Correspondence: (D.M.A.); (P.M.C.)
| |
Collapse
|
4
|
Fu J, Su X, Li Z, Deng L, Liu X, Feng X, Peng J. HGF/c-MET pathway in cancer: from molecular characterization to clinical evidence. Oncogene 2021; 40:4625-4651. [PMID: 34145400 DOI: 10.1038/s41388-021-01863-w] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023]
Abstract
This review provides a comprehensive landscape of HGF/c-MET (hepatocyte growth factor (HGF) /mesenchymal-epithelial transition factor (c-MET)) signaling pathway in cancers. First, we generalize the compelling influence of HGF/c-MET pathway on multiple cellular processes. Then, we present the genomic characterization of HGF/c-MET pathway in carcinogenesis. Furthermore, we extensively illustrate the malignant biological behaviors of HGF/c-MET pathway in cancers, in which hyperactive HGF/c-MET signaling is considered as a hallmark. In addition, we investigate the current clinical trials of HGF/c-MET-targeted therapy in cancers. We find that although HGF/c-MET-targeted therapy has led to breakthroughs in certain cancers, monotherapy of targeting HGF/c-MET has failed to demonstrate significant clinical efficacy in most cancers. With the advantage of the combinations of HGF/c-MET-targeted therapy, the exploration of more options of combinational targeted therapy in cancers may be the major challenge in the future.
Collapse
Affiliation(s)
- Jianjiang Fu
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
| | - Xiaorui Su
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
| | - Zhihua Li
- The Third Clinical School of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
- Department of Fetal Medicine and Prenatal Diagnosis, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ling Deng
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiawei Liu
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
| | - Xuancheng Feng
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- The Third Clinical School of Guangzhou Medical University, Guangzhou, China.
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China.
| | - Juan Peng
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- The Third Clinical School of Guangzhou Medical University, Guangzhou, China.
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China.
| |
Collapse
|
5
|
MET targeting: time for a rematch. Oncogene 2020; 39:2845-2862. [PMID: 32034310 DOI: 10.1038/s41388-020-1193-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/16/2020] [Accepted: 01/24/2020] [Indexed: 12/21/2022]
Abstract
MET, the receptor tyrosine kinase (RTK) for hepatocyte growth factor, is a proto-oncogene involved in embryonic development and throughout life in homeostasis and tissue regeneration. Deregulation of MET signaling has been reported in numerous malignancies, prompting great interest in MET targeting for cancer therapy. The present review offers a summary of the biology of MET and its known functions in normal physiology and carcinogenesis, followed by an overview of the most relevant MET-targeting strategies and corresponding clinical trials, highlighting both past setbacks and promising future prospects. By placing their efforts on a more precise stratification strategy through the genetic analysis of tumors, modern trials such as the NCI-MATCH trial could revive the past enthusiasm for MET-targeted therapy.
Collapse
|
6
|
Shen M, Zhao X, Zhao L, Shi L, An S, Huang G, Liu J. Met is involved in TIGAR-regulated metastasis of non-small-cell lung cancer. Mol Cancer 2018; 17:88. [PMID: 29753331 PMCID: PMC5948872 DOI: 10.1186/s12943-018-0839-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 04/27/2018] [Indexed: 01/04/2023] Open
Abstract
TIGAR is a p53 target gene that is known to protect cells from ROS-induced apoptosis by promoting the pentose phosphate pathway. The role of TIGAR in tumor cell invasion and metastasis remains elusive. Here we found that downregulation of TIGAR reduced the invasion and metastasis of NSCLC cells in vitro and in vivo. Immunohistochemical analysis of 72 NSCLC patients showed that TIGAR and Met protein expression was positively correlated with late stages of lung cancer. Besides, patients with high co-expression of TIGAR and Met presented a significantly worse survival. In addition, we found that Met signaling pathway is involved in TIGAR-induced invasion and metastasis. Our study indicates that TIGAR/Met pathway may be a novel target for NSCLC therapy. It is necessary to evaluate the expression of TIGAR before Met inhibitors are used for NSCLC treatment.
Collapse
Affiliation(s)
- Mengqin Shen
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Institute of Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaoping Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Institute of Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Li Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Institute of Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Liang Shi
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Institute of Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Shuxian An
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Institute of Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Shanghai Key Laboratory for Molecular Imaging, Collaborative Scientific Research Center, Shanghai University of Medicine & Health Science, Shanghai, 200093, China. .,Institute of Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Institute of Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
7
|
Tsuji T, Sakamori Y, Ozasa H, Yagi Y, Ajimizu H, Yasuda Y, Funazo T, Nomizo T, Yoshida H, Nagai H, Maeno K, Oguri T, Hirai T, Kim YH. Clinical impact of high serum hepatocyte growth factor in advanced non-small cell lung cancer. Oncotarget 2017; 8:71805-71816. [PMID: 29069748 PMCID: PMC5641091 DOI: 10.18632/oncotarget.17895] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/29/2017] [Indexed: 12/17/2022] Open
Abstract
Activation of c-MET through hepatocyte growth factor (HGF) increases tumorigenesis, induces resistance, and is associated with poor prognosis in various solid tumors. However, the clinical value of serum HGF (sHGF) in patients with advanced non-small cell lung cancer (NSCLC), especially those receiving cytotoxic chemotherapy, remains unknown. Here, we show that sHGF may be useful to predict tumor response and progression-free survival (PFS) in patients with advanced NSCLC. A total of 81 patients with NSCLC were investigated. sHGF levels were evaluated using ELISA at 4 time-points: at pre-treatment, at response-evaluation (1-2 months after treatment initiation), at the best tumor response, and at disease progression. As a control biomarker, CEA was also evaluated in lung adenocarcinoma. Positive-sHGF at response-evaluation predicted poor PFS compared with Negative-sHGF in both first-line (median, 153.5 vs. 288.0; P < 0.05) and second-line treatment (87.0 vs. 219.5; P = 0.01). In 55 patients that received cytotoxic chemotherapy, multiple Cox proportional hazards models showed significant independent associations between poor PFS and Positive-sHGF at response-evaluation (hazard ratio, 4.24; 95% CI, 2.05 to 9.46; P < 0.01). Lung adenocarcinoma subgroup analysis showed that in patients receiving second cytotoxic chemotherapy, there were no significant differences in PFS between patients with low-CEA compared with those with high-CEA, but Positive-sHGF at pre-treatment or at response-evaluation predicted poor PFS (35.0 vs. 132.0; P < 0.01, 50.0 vs. 215.0; P < 0.01, respectively). These findings give a rationale for future research investigating the merit of sHGF as a potential clinical biomarker to evaluate HGF/c-MET activity, which would be useful to indicate administration of c-MET inhibitors.
Collapse
Affiliation(s)
- Takahiro Tsuji
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuichi Sakamori
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroaki Ozasa
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshitaka Yagi
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hitomi Ajimizu
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuto Yasuda
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomoko Funazo
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Nomizo
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hironori Yoshida
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroki Nagai
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ken Maeno
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tetsuya Oguri
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Young Hak Kim
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
8
|
梁 红, 王 孟. [Mechanism of c-MET in Non-small Cell Lung Cancer and Its Treatment and Testing]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2015; 18:745-51. [PMID: 26706951 PMCID: PMC6015186 DOI: 10.3779/j.issn.1009-3419.2015.12.06] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 08/20/2015] [Accepted: 08/23/2015] [Indexed: 02/01/2023]
Abstract
Hepatocyte growth factor/c-MET (HGF/c-MET) signaling pathway can be abnormal activated by many mechanisms such as c-MET mutation, amplification and the overexpression of HGF, and it plays an important role in the development of non-small cell lung cancer (NSCLC), as well as in the tolerance of epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) in NSCLC. Therefore, c-MET is a new molecular target for the therapy of NSCLC since EGFR and ALK. At present, although the c-MET inhibitors have shown a potential prospect in some clinical trials, its assessment of safety and effectiveness in clinical applications, and the choice of testing methods and standards still need a further discussion. In this paper, we summarized the mechanism of c-MET in NSCLC, as well as its treatment prospect and selection of testing methods.
Collapse
Affiliation(s)
- 红格 梁
- />100730 北京,中国医学科学院中国协和医科大学北京协和医学院呼吸内科Chinese Academy of Medical Sciences, Chinese Peking Union Medical College, Peking Union Medical College Hospital, Beijing 100730, China
| | - 孟昭 王
- />100730 北京,中国医学科学院中国协和医科大学北京协和医学院呼吸内科Chinese Academy of Medical Sciences, Chinese Peking Union Medical College, Peking Union Medical College Hospital, Beijing 100730, China
| |
Collapse
|
9
|
Vigna E, Chiriaco C, Cignetto S, Fontani L, Basilico C, Petronzelli F, Comoglio PM. Inhibition of ligand-independent constitutive activation of the Met oncogenic receptor by the engineered chemically-modified antibody DN30. Mol Oncol 2015; 9:1760-72. [PMID: 26119717 DOI: 10.1016/j.molonc.2015.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/08/2015] [Accepted: 05/27/2015] [Indexed: 01/22/2023] Open
Abstract
An awesome number of experimental and clinical evidences indicate that constitutive activation of the Met oncogenic receptor plays a critical role in the progression of cancer toward metastasis and/or resistance to targeted therapies. While mutations are rare, the common mechanism of Met activation is overexpression, either by gene amplification ('addiction') or transcriptional activation ('expedience'). In the first instance ligand-independent kinase activation plays a major role in sustaining the transformed phenotype. Anti-Met antibodies directed against the receptor binding site behave essentially as ligand (Hepatocyte Growth Factor, HGF) antagonists and are ineffective to counteract ligand-independent activation. The monovalent chimeric MvDN30 antibody fragment, PEGylated to extend its half-life, binds the fourth IPT domain and induces 'shedding' of the Met extracellular domain, dramatically reducing both the number of receptors on the surface and their phosphorylation. Downstream signaling is thus inhibited, both in the absence or in the presence of the ligand. In vitro, MvDN30 is a strong inhibitor not only of ligand-dependent invasive growth, sustained by both paracrine and autocrine HGF, but notably, also of ligand-independent growth of 'Met-addicted' cells. In immunocompromised mice, lacking expression of Hepatocyte Growth Factor cross-reacting with the human receptor - thus providing, by definition, a model of 'ligand-independent' Met activation - PEGylated MvDN30 impairs growth of Met 'addicted' human gastric carcinoma cells. In a Met-amplified patient-derived colo-rectal tumor (xenopatient) MvDN30-PEG overcomes the resistance to EGFR targeted therapy (Cetuximab). The PEGylated MvDN30 is thus a strong candidate for targeting tumors sustained by ligand-independent Met oncogenic activation.
Collapse
Affiliation(s)
- Elisa Vigna
- Candiolo Cancer Institute, FPO-IRCCS, Str Prov 142, 10060 Candiolo, Italy; University of Turin, Department of Oncology, Str Prov 142, 10060 Candiolo, Italy.
| | - Cristina Chiriaco
- Candiolo Cancer Institute, FPO-IRCCS, Str Prov 142, 10060 Candiolo, Italy
| | - Simona Cignetto
- Candiolo Cancer Institute, FPO-IRCCS, Str Prov 142, 10060 Candiolo, Italy; University of Turin, Department of Oncology, Str Prov 142, 10060 Candiolo, Italy
| | - Lara Fontani
- Candiolo Cancer Institute, FPO-IRCCS, Str Prov 142, 10060 Candiolo, Italy
| | - Cristina Basilico
- Candiolo Cancer Institute, FPO-IRCCS, Str Prov 142, 10060 Candiolo, Italy
| | | | - Paolo M Comoglio
- Candiolo Cancer Institute, FPO-IRCCS, Str Prov 142, 10060 Candiolo, Italy; University of Turin, Department of Oncology, Str Prov 142, 10060 Candiolo, Italy.
| |
Collapse
|
10
|
Van Der Steen N, Pauwels P, Gil-Bazo I, Castañon E, Raez L, Cappuzzo F, Rolfo C. cMET in NSCLC: Can We Cut off the Head of the Hydra? From the Pathway to the Resistance. Cancers (Basel) 2015; 7:556-73. [PMID: 25815459 PMCID: PMC4491670 DOI: 10.3390/cancers7020556] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/19/2015] [Accepted: 03/05/2015] [Indexed: 01/05/2023] Open
Abstract
In the last decade, the tyrosine kinase receptor cMET, together with its ligand hepatocyte growth factor (HGF), has become a target in non-small cell lung cancer (NSCLC). Signalization via cMET stimulates several oncological processes amongst which are cell motility, invasion and metastasis. It also confers resistance against several currently used targeted therapies, e.g., epidermal growth factor receptor (EGFR) inhibitors. In this review, we will discuss the basic structure of cMET and the most important signaling pathways. We will also look into aberrations in the signaling and the effects thereof in cancer growth, with the focus on NSCLC. Finally, we will discuss the role of cMET as resistance mechanism.
Collapse
Affiliation(s)
- Nele Van Der Steen
- Center for Oncological Research Antwerp, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium; E-Mails: (N.V.D.S.); (P.P.)
| | - Patrick Pauwels
- Center for Oncological Research Antwerp, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium; E-Mails: (N.V.D.S.); (P.P.)
- Molecular Pathology Unit, Pathology Department, Antwerp University Hospital, Wilrijkstraat 10, Edegem 2650, Belgium
| | - Ignacio Gil-Bazo
- Department of Oncology, Clínica Universidad de Navarra, Pamplona 31008, Spain; E-Mails: (I.G.-B.); (E.C.)
| | - Eduardo Castañon
- Department of Oncology, Clínica Universidad de Navarra, Pamplona 31008, Spain; E-Mails: (I.G.-B.); (E.C.)
- Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital, Wilrijkstraat 10, Edegem 2650, Belgium
| | - Luis Raez
- Thoracic Oncology Program, Memorial Cancer Institute, Memorial Health Care System, Pembroke Pines, FL 33024, USA; E-Mail:
| | - Federico Cappuzzo
- Thoracic Oncology Program, Memorial Cancer Institute, Memorial Health Care System, Pembroke Pines, FL 33024, USA; E-Mail:
| | - Christian Rolfo
- Center for Oncological Research Antwerp, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium; E-Mails: (N.V.D.S.); (P.P.)
- Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital, Wilrijkstraat 10, Edegem 2650, Belgium
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +32-3-821-3646; Fax: +32-3-825-1592
| |
Collapse
|
11
|
Catenacci DVT, Henderson L, Xiao SY, Patel P, Yauch RL, Hegde P, Zha J, Pandita A, Peterson A, Salgia R. Durable complete response of metastatic gastric cancer with anti-Met therapy followed by resistance at recurrence. Cancer Discov 2012; 1:573-9. [PMID: 22389872 DOI: 10.1158/2159-8290.cd-11-0175] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
UNLABELLED A 48 year-old female with chemo-refractory metastatic gastric cancer to the liver was treated on a Phase I clinical trial with MetMAb, a monoclonal antibody targeting the Met tyrosine kinase receptor. The primary tumor had high MET gene polysomy and evidence for an autocrine production of HGF, the growth factor ligand of Met. A complete response was obtained lasting two years; the cancer recurred as a peritoneal deposit invading into the transverse colon and a gastrohepatic ligament node. Compassionate use of MetMAb therapy at recurrence achieved a mixed response--a partial response of the two initial lesions, but with development of multiple new foci of carcinomatosis. Tissue and serum studies evaluating the Met signaling pathway did correlate with MetMAb treatment response initially and at the time of recurrence. SIGNIFICANCE This research brief is the first to describe a durable complete response obtained with a molecularly targeted monoclonal antibody, MetMAb, to the receptor tyrosine kinase, Met, in a patient with chemorefractory metastatic gastric cancer. It is also the first to report biomarkers that predicted therapeutic response to Met inhibition.
Collapse
Affiliation(s)
- Daniel V T Catenacci
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
c-MET is a receptor tyrosine kinase that, after binding with its ligand, hepatocyte growth factor, activates a wide range of different cellular signaling pathways, including those involved in proliferation, motility, migration and invasion. Although c-MET is important in the control of tissue homeostasis under normal physiological conditions, it has also been found to be aberrantly activated in human cancers via mutation, amplification or protein overexpression. This paper provides an overview of the c-MET signaling pathway, including its role in the development of cancers, and provides a rationale for targeting the pathway as a possible treatment option.
Collapse
|
13
|
Henry C, Lopez-Chavez A, Stabile LP, Siegfried JM. HGF Airway Over-expression Leads to Enhanced Pulmonary Vascularization without Induction of VEGF. ACTA ACUST UNITED AC 2012; 1:52-63. [PMID: 33564620 DOI: 10.2174/2211552811201010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hepatocyte growth factor (HGF)/c-Met signaling pathway mediates angiogenesis. We have previously reported that airway expression of a human HGF transgene (HGF TG) produced mice that were more susceptible to lung tumorigenesis induced by 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone (NNK). Here we show untreated HGF TG mice display enhanced vascularization (40 wks) and enhanced lymph vessel formation (20 wks) in the lungs compared to wild-type (WT) littermates, as ascertained by microvessel density. We profiled mRNA expression from HGF TG and WT mice for genes involved in angiogenesis. We consistently found significant decreases in expression of the VEGF family of angiogenic genes, including Vegfa, Vegfb, Vegfc, and Vegfd / Figf. Decreases were confirmed in whole lung protein extracts by immunoblot. Similar patterns of down-regulation were observed at 10, 20, and 40 wks of age. Vandetanib, an inhibitor of VEGFR2 and VEGFR3, did not prevent the increase in microvessel density observed in HGF TG mice. Reduction in VEGF pathway genes was also detected in lung tumors derived from NNK-treated HGF TG mice. HGF TG lung tumors also showed increased expression of five Cxcl family genes including Cxcl1 and Cxcl2 (murine forms of IL8). These results suggest increased vascularization produced by airway over-expression of HGF occurs through direct activation of c-Met on endothelial cells, rather than induction of VEGF pathways. Elevated HGF may also increase expression of inflammatory mediators that contribute to lung tumor progression.
Collapse
Affiliation(s)
- Cassandra Henry
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ariel Lopez-Chavez
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Current Address: Division of Hematology and Medical Oncology, Oregon Health and Science University, Multnomah Pavillion Rm 3219, 3181 SW Sam Jackson Rd, Portland, OR 97239, USA
| | - Laura P Stabile
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jill M Siegfried
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA.,The Hillman Cancer Center, UPCI Research Pavilion, Suite 2.18, 5117 Centre Avenue, Pittsburgh, PA 15213-1863, USA
| |
Collapse
|
14
|
Tagne JB, Gupta S, Gower AC, Shen SS, Varma S, Lakshminarayanan M, Cao Y, Spira A, Volkert TL, Ramirez MI. Genome-wide analyses of Nkx2-1 binding to transcriptional target genes uncover novel regulatory patterns conserved in lung development and tumors. PLoS One 2012; 7:e29907. [PMID: 22242187 PMCID: PMC3252372 DOI: 10.1371/journal.pone.0029907] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 12/07/2011] [Indexed: 01/10/2023] Open
Abstract
The homeodomain transcription factor Nkx2-1 is essential for normal lung development and homeostasis. In lung tumors, it is considered a lineage survival oncogene and prognostic factor depending on its expression levels. The target genes directly bound by Nkx2-1, that could be the primary effectors of its functions in the different cellular contexts where it is expressed, are mostly unknown. In embryonic day 11.5 (E11.5) mouse lung, epithelial cells expressing Nkx2-1 are predominantly expanding, and in E19.5 prenatal lungs, Nkx2-1-expressing cells are predominantly differentiating in preparation for birth. To evaluate Nkx2-1 regulated networks in these two cell contexts, we analyzed genome-wide binding of Nkx2-1 to DNA regulatory regions by chromatin immunoprecipitation followed by tiling array analysis, and intersected these data to expression data sets. We further determined expression patterns of Nkx2-1 developmental target genes in human lung tumors and correlated their expression levels to that of endogenous NKX2-1. In these studies we uncovered differential Nkx2-1 regulated networks in early and late lung development, and a direct function of Nkx2-1 in regulation of the cell cycle by controlling the expression of proliferation-related genes. New targets, validated in Nkx2-1 shRNA transduced cell lines, include E2f3, Cyclin B1, Cyclin B2, and c-Met. Expression levels of Nkx2-1 direct target genes identified in mouse development significantly correlate or anti-correlate to the levels of endogenous NKX2-1 in a dosage-dependent manner in multiple human lung tumor expression data sets, supporting alternative roles for Nkx2-1 as a transcriptional activator or repressor, and direct regulator of cell cycle progression in development and tumors.
Collapse
Affiliation(s)
- Jean-Bosco Tagne
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Sumeet Gupta
- Center for Microarray Technology, Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Adam C. Gower
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - Steven S. Shen
- Clinical and Translational Science Institute (CTSI), Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Saaket Varma
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | | | - Yuxia Cao
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Avrum Spira
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
- Clinical and Translational Science Institute (CTSI), Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Thomas L. Volkert
- Center for Microarray Technology, Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Maria I. Ramirez
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
15
|
HGF/c-Met overexpressions, but not met mutation, correlates with progression of non-small cell lung cancer. Pathol Oncol Res 2011; 18:209-18. [PMID: 21779788 DOI: 10.1007/s12253-011-9430-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 06/22/2011] [Indexed: 10/18/2022]
Abstract
Hepatocyte Growth Factor (HGF) and its receptor c-Met are suggested to play an important role in progression of solid organ tumors by mediating cell motility, invasion and metastasis. Overexpression of HGF and c-Met have been shown in non-small-cell lung cancer (NSCLC). However, their role in tumor progression is not clearly defined. The aim of this study is to determine the role of HGF/c-Met pathway and its association with invasion related markers and clinicopathologic parameters in NSCLC. Immunohistochemical analysis was performed on 63 paraffin-embedded NSCLC tumor sections. The expressions of invasion related markers such as Matrix Metalloproteinases (MMPs) 2 and 9, Tissue Inhibitor Metalloproteinase (TIMP) 1 and 3 and RhoA were also examined. Co-expression of HGF/c-Met was significantly associated with lymph node invasion and TIMP-3 and RhoA overexpressions. There were positive correlation between TIMP-3 overexpression and advanced stage and negative correlation between RhoA overexpression and survival. DNA sequencing for Met mutations in both nonkinase and tyrosine kinase (TK) domain was established. A single nucleotide polymorphism (SNP) in sema domain and two SNPs in TK domain of c-Met were found. There was no statistically significant correlation between the presence of c-Met alterations and clinicopathologic parameters except shorter survival time in cases with two SNPs in TK domain. These results suggest that HGF/c-Met might exert their effects in tumor progression in association with RhoA and probably with TIMP-3. The blockade of the HGF/c-Met pathway with RhoA and/or TIMP-3 inhibitors may be an effective therapeutic target for NSCLC treatment.
Collapse
|
16
|
Ligand-independent activation of c-Met by fibronectin and α(5)β(1)-integrin regulates ovarian cancer invasion and metastasis. Oncogene 2010; 30:1566-76. [PMID: 21119598 PMCID: PMC3069218 DOI: 10.1038/onc.2010.532] [Citation(s) in RCA: 212] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The role of the fibronectin receptor, α5β1-integrin, as an adhesion receptor and in angiogenesis, is well established. However, its role in cancer cell invasion and metastasis is less clear. We describe a novel mechanism by which fibronectin regulates ovarian cancer cell signaling and promotes metastasis. Fibronectin binding to α5β1-integrin led to a direct association of α5-integrin with the receptor tyrosine kinase, c-Met, activating it in a hepatocyte growth factor/scatter factor (HGF/SF) independent manner. Subsequently, c-Met associated with Src and activated Src and focal adhesion kinase (FAK). Inhibition of α5β1-integrin decreased the phosphorylation of c-Met, FAK and Src, both in vitro and in vivo. Independent activation of c-Met by its native ligand, HGF/SF, or overexpression of a constitutively active FAK in HeyA8 cells could overcome the effect of α5β1-integrin inhibition on tumor cell invasion, indicating that α5β1-integrin is upstream of c-Met, Src and FAK. Inhibition of α5β1-integrin on cancer cells in two xenograft models of ovarian cancer metastasis resulted in a significant decrease of tumor burden, which was independent of the effect of α5β1-integrin on angiogenesis. These data suggest that fibronectin promotes ovarian cancer invasion and metastasis through an α5β1-integrin/c-Met/FAK/Src dependent signaling pathway, transducing signals through c-Met in a HGF/SF independent manner.
Collapse
|
17
|
Inhibition of c-Met downregulates TIGAR expression and reduces NADPH production leading to cell death. Oncogene 2010; 30:1127-34. [PMID: 21057531 DOI: 10.1038/onc.2010.490] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
c-Met represents an important emerging therapeutic target in cancer. In this study, we demonstrate the mechanism by which c-Met tyrosine kinase inhibition inhibits tumor growth in a highly invasive Asian-prevalent head and neck cancer, nasopharyngeal cancer (NPC). c-Met tyrosine kinase inhibitors (TKIs; AM7 and c-Met TKI tool compound SU11274) downregulated c-Met phosphorylation, resulting in marked inhibition of NPC cell growth and invasion. Strikingly, inhibition of c-Met resulted in significant downregulation of TP53-induced Glycolysis and Apoptosis Regulator (TIGAR) and subsequent depletion of intracellular NADPH. Importantly, overexpression of TIGAR ameliorated the effects of c-Met kinase inhibition, confirming the importance of TIGAR downregulation in the growth inhibitory activity of c-Met TKI. The effects of c-Met inhibition on TIGAR and NADPH levels were observed with two different c-Met TKIs (AM7 and SU11274) and with multiple cell lines. As NADPH provides a crucial reducing power required for cell survival and proliferation, our findings reveal a novel mechanistic action of c-Met TKI, which may represent a key effect of c-Met kinase inhibition. Our data provide the first evidence linking c-Met, TIGAR and NADPH regulation in human cancer cells suggesting that inhibition of a tyrosine kinase/TIGAR/NADPH cascade may have therapeutic applicability in human cancers.
Collapse
|
18
|
Machida K, Eschrich S, Li J, Bai Y, Koomen J, Mayer BJ, Haura EB. Characterizing tyrosine phosphorylation signaling in lung cancer using SH2 profiling. PLoS One 2010; 5:e13470. [PMID: 20976048 PMCID: PMC2957407 DOI: 10.1371/journal.pone.0013470] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 09/23/2010] [Indexed: 11/18/2022] Open
Abstract
Background Tyrosine kinases drive the proliferation and survival of many human cancers. Thus profiling the global state of tyrosine phosphorylation of a tumor is likely to provide a wealth of information that can be used to classify tumors for prognosis and prediction. However, the comprehensive analysis of tyrosine phosphorylation of large numbers of human cancer specimens is technically challenging using current methods. Methodology/Principal Findings We used a phosphoproteomic method termed SH2 profiling to characterize the global state of phosphotyrosine (pTyr) signaling in human lung cancer cell lines. This method quantifies the phosphorylated binding sites for SH2 domains, which are used by cells to respond to changes in pTyr during signaling. Cells could be grouped based on SH2 binding patterns, with some clusters correlated with EGF receptor (EGFR) or K-RAS mutation status. Binding of specific SH2 domains, most prominently RAS pathway activators Grb2 and ShcA, correlated with EGFR mutation and sensitivity to the EGFR inhibitor erlotinib. SH2 binding patterns also reflected MET activation and could identify cells driven by multiple kinases. The pTyr responses of cells treated with kinase inhibitors provided evidence of distinct mechanisms of inhibition. Conclusions/Significance This study illustrates the potential of modular protein domains and their proteomic binding profiles as powerful molecular diagnostic tools for tumor classification and biomarker identification.
Collapse
Affiliation(s)
- Kazuya Machida
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Steven Eschrich
- Departments of Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Jiannong Li
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Yun Bai
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - John Koomen
- Deparment of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Bruce J. Mayer
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- * E-mail: (BJM); (EBH)
| | - Eric B. Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
- * E-mail: (BJM); (EBH)
| |
Collapse
|
19
|
Matsubara D, Ishikawa S, Sachiko O, Aburatani H, Fukayama M, Niki T. Co-activation of epidermal growth factor receptor and c-MET defines a distinct subset of lung adenocarcinomas. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2191-204. [PMID: 20934974 DOI: 10.2353/ajpath.2010.100217] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epidermal growth factor receptor (EGFR) and MET are molecular targets for lung cancer treatment. The relationships between expression, activation, and gene abnormalities of these two targets are currently unclear. Here, we demonstrate that a panel of 40 lung cancer cell lines could be classified into two groups. Group I was characterized by (1) high phosphorylations of MET and EGFR, (2) frequent mutation or amplification of EGFR, MET, and human epidermal growth factor receptor-2 (HER2), (3) high expressions of bronchial epithelial markers (thyroid transcription factor-1 (TTF-1), MUC1, and Cytokeratin 7 (CK7)); and (4) high expressions of MET, human epidermal growth factor receptor-3, E-cadherin, cyclooxygenase-2, and laminin gamma2. In contrast, Group II exhibited little or no phosphorylation of MET and EGFR; no mutation or amplification of EGFR, MET, and HER2; were triple-negative for TTF-1, MUC1, and CK7; and showed high expressions of vimentin, fibroblast growth factor receptor-1, and transcription factor 8. Importantly, Group I was more sensitive to gefitinib and more resistant to cisplatin and paclitaxel than Group II. The clinical relevance was confirmed in publicly available data on 442 primary lung adenocarcinoma patients; survival benefits by postoperative chemotherapy were seen in only patients with tumors corresponding to Group II. Overall, co-activation of EGFR and MET defines a distinct subgroup of lung carcinoma with characteristic genetic abnormalities, gene expression pattern, and response to chemotherapeutic reagents.
Collapse
Affiliation(s)
- Daisuke Matsubara
- Department of Integrative Pathology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Rho O, Kim DJ, Kiguchi K, Digiovanni J. Growth factor signaling pathways as targets for prevention of epithelial carcinogenesis. Mol Carcinog 2010; 50:264-79. [PMID: 20648549 DOI: 10.1002/mc.20665] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 06/09/2010] [Accepted: 06/10/2010] [Indexed: 10/24/2022]
Abstract
Growth factor receptor (GFR) signaling controls epithelial cell growth by responding to various endogenous or exogenous stimuli and subsequently activating downstream signaling pathways including Stat3, PI3K/Akt/mTOR, MAPK, and c-Src. Environmental chemical toxicants and UVB irradiation cause enhanced and prolonged activation of GFR signaling and downstream pathways that contributes to epithelial cancer development including skin cancer. Recent studies, especially those with tissue-specific transgenic mouse models, have demonstrated that GFRs and their downstream signaling pathways contribute to all three stages of epithelial carcinogenesis by regulating a wide variety of biological functions including proliferation, apoptosis, angiogenesis, cell adhesion, and migration. Inhibiting these signaling pathways early in the carcinogenic process results in reduced cell proliferation and survival, leading to decreased tumor formation. Collectively, these studies suggest that GFR signaling and subsequent downstream signaling pathways are potential targets for the prevention of epithelial cancers including skin cancer.
Collapse
Affiliation(s)
- Okkyung Rho
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78723-3092, USA
| | | | | | | |
Collapse
|
21
|
Wang X, Li K, Chen H, Wang D, Zhang Y, Bai C. Does hepatocyte growth factor/c-Met signal play synergetic role in lung cancer? J Cell Mol Med 2010; 14:833-9. [PMID: 20178463 PMCID: PMC3823115 DOI: 10.1111/j.1582-4934.2010.01040.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
There is growing evidence that the signal pathway between hepatocyte growth factor (HGF) and its receptor c-Met plays an important role in the development of lung cancer, although the specificity of such role is to be clarified. It seems clear that the HGF/c-Met signal contributes to the metastasis of cancer cells to the lung by stimulating the hyperproduction and overactivation of cytokines and enzymes, e.g. HGF, vascular endothelial growth factor and matrix metalloproteases. The HGF/c-Met signal may act as the candidate responsible for the development of epidermal growth factor receptor (EGFR) kinase inhibitor resistance. Experimental evidence showed that the combination of both EGFR and c-Met inhibitors had synergetic or additive therapeutic effects on lung cancer. Although the mechanism of interaction between HGF/c-Met and transforming growth factor-a/EGFR remains unclear, the cross-talk and balance between those two signal pathways are critical and necessary in the development of new therapies for lung cancer.
Collapse
Affiliation(s)
- Xiangdong Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
| | | | | | | | | | | |
Collapse
|
22
|
NK4, an HGF antagonist, prevents hematogenous pulmonary metastasis by inhibiting adhesion of CT26 cells to endothelial cells. Clin Exp Metastasis 2009; 26:447-56. [PMID: 19234748 DOI: 10.1007/s10585-009-9244-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 01/29/2009] [Indexed: 01/12/2023]
Abstract
Hepatocyte growth factor (HGF) plays a definitive role in invasive, angiogenic, and metastatic activities of tumor cells by binding to the c-Met receptor. NK4, a competitive antagonist for HGF and the c-Met receptor, prevents tumor cell growth and metastasis via its bifunctional properties to act as an HGF antagonist and angiogenesis inhibitor. In the present study, we investigated the inhibitory effectiveness of NK4 on hematogenous pulmonary metastasis of the CT26 murine colon cancer cell line, focusing on tumor cell adhesion to endothelial cells. In an in vitro adhesion assay, HGF facilitated adhesion of CT26 cells to a murine endothelial cell line (F-2) in a dose-dependent manner. Furthermore, the enhancing effect of HGF on CT26-F-2 cell interaction was blocked by NK4 as well as by anti-HGF antibody. Similarly, HGF-induced phosphorylation of focal adhesion kinase (FAK), downstream of integrin signaling, was reduced by NK4 and by anti-HGF antibody. However, distinct integrin expression on the surface of CT26 cells was not altered by HGF. In an in vivo experimental pulmonary metastasis assay, stable NK4 expression potently decreased the number of pulmonary metastatic foci. The NK4-induced suppression of pulmonary metastasis was partially reversed when HGF was intraperitoneally administered in an adhesive phase. These results suggest that NK4 could act on tumor cells to inhibit CT26 adhesion to endothelial cells by reducing FAK phosphorylation, which is regulated by inside-out HGF/c-Met signaling, and thereby suppress hematogenous pulmonary metastasis.
Collapse
|
23
|
Bead-based profiling of tyrosine kinase phosphorylation identifies SRC as a potential target for glioblastoma therapy. Nat Biotechnol 2008; 27:77-83. [PMID: 19098899 DOI: 10.1038/nbt.1513] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 11/22/2008] [Indexed: 11/08/2022]
Abstract
The aberrant activation of tyrosine kinases represents an important oncogenic mechanism, and yet the majority of such events remain undiscovered. Here we describe a bead-based method for detecting phosphorylation of both wild-type and mutant tyrosine kinases in a multiplexed, high-throughput and low-cost manner. With the aim of establishing a tyrosine kinase-activation catalog, we used this method to profile 130 human cancer lines. Follow-up experiments on the finding that SRC is frequently phosphorylated in glioblastoma cell lines showed that SRC is also activated in primary glioblastoma patient samples and that the SRC inhibitor dasatinib (Sprycel) inhibits viability and cell migration in vitro and tumor growth in vivo. Testing of dasatinib-resistant tyrosine kinase alleles confirmed that SRC is indeed the relevant target of dasatinib, which inhibits many tyrosine kinases. These studies establish the feasibility of tyrosine kinome-wide phosphorylation profiling and point to SRC as a possible therapeutic target in glioblastoma.
Collapse
|