1
|
De Herdt MJ, van der Steen B, Baatenburg de Jong RJ, Looijenga LHJ, Koljenović S, Hardillo JA. The Occurrence of MET Ectodomain Shedding in Oral Cancer and Its Potential Impact on the Use of Targeted Therapies. Cancers (Basel) 2022; 14:cancers14061491. [PMID: 35326642 PMCID: PMC8946088 DOI: 10.3390/cancers14061491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/18/2022] [Accepted: 03/10/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Head and neck cancer is the sixth most common cancer type worldwide, comprising tumors of the upper aero/digestive tract. Approximately 50% of these cancers originate in the oral cavity. Depending on disease stage, oral cancer patients are treated with single-modality surgery, or in combination with radiotherapy with or without chemotherapy. Despite advances in these modalities, the 5-year survival rate is merely 50%. Therefore, implementation of targeted therapies, directed against signaling molecules, has gained attention. One potential target is the MET protein, which can be present on the surface of cancer cells, orchestrating aggressive behavior. As cancer cells can shed the extracellular part of MET from their surface, it is important to identify for MET positive patients whether they possess the entire and/or only the intracellular part of the receptor to assess whether targeted therapies directed against the extracellular, intracellular, or both parts of MET need to be implemented. Abstract The receptor tyrosine kinase MET has gained attention as a therapeutic target. Although MET immunoreactivity is associated with progressive disease, use of targeted therapies has not yet led to major survival benefits. A possible explanation is the lack of companion diagnostics (CDx) that account for proteolytic processing. During presenilin-regulated intramembrane proteolysis, MET’s ectodomain is shed into the extracellular space, which is followed by γ-secretase-mediated cleavage of the residual membranous C-terminal fragment. The resulting intracellular fragment is degraded by the proteasome, leading to downregulation of MET signaling. Conversely, a membrane-bound MET fragment lacking the ectodomain (MET-EC-) can confer malignant potential. Use of C- and N-terminal MET monoclonal antibodies (moAbs) has illustrated that MET-EC- occurs in transmembranous C-terminal MET-positive oral squamous cell carcinoma (OSCC). Here, we propose that ectodomain shedding, resulting from G-protein-coupled receptor transactivation of epidermal growth factor receptor signaling, and/or overexpression of ADAM10/17 and/or MET, stabilizes and possibly activates MET-EC- in OSCC. As MET-EC- is associated with poor prognosis in OSCC, it potentially has impact on the use of targeted therapies. Therefore, MET-EC- should be incorporated in the design of CDx to improve patient stratification and ultimately prolong survival. Hence, MET-EC- requires further investigation seen its oncogenic and predictive properties.
Collapse
Affiliation(s)
- Maria J. De Herdt
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC, Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (B.v.d.S.); (R.J.B.d.J.); (J.A.H.)
- Correspondence: ; Tel.: +31-10-7044490
| | - Berdine van der Steen
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC, Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (B.v.d.S.); (R.J.B.d.J.); (J.A.H.)
| | - Robert J. Baatenburg de Jong
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC, Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (B.v.d.S.); (R.J.B.d.J.); (J.A.H.)
| | - Leendert H. J. Looijenga
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands;
- Department of Pathology, Erasmus MC, Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Senada Koljenović
- Department of Pathology, Antwerp University Hospital, 2650 Edegem, Belgium;
| | - Jose A. Hardillo
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC, Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (B.v.d.S.); (R.J.B.d.J.); (J.A.H.)
| |
Collapse
|
2
|
Conserved roles for receptor tyrosine kinase extracellular regions in regulating receptor and pathway activity. Biochem J 2020; 477:4207-4220. [PMID: 33043983 DOI: 10.1042/bcj20200702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 11/17/2022]
Abstract
Receptor Tyrosine Kinases (RTKs) comprise a diverse group of cell-surface receptors that mediate key signaling events during animal development and are frequently activated in cancer. We show here that deletion of the extracellular regions of 10 RTKs representing 7 RTK classes or their substitution with the dimeric immunoglobulin Fc region results in constitutive receptor phosphorylation but fails to result in phosphorylation of downstream signaling effectors Erk or Akt. Conversely, substitution of RTK extracellular regions with the extracellular region of the Epidermal Growth Factor Receptor (EGFR) results in increases in effector phosphorylation in response to EGF. These results indicate that the activation signal generated by the EGFR extracellular region is capable of activating at least seven different RTK classes. Failure of phosphorylated Fc-RTK chimeras or RTKs with deleted extracellular regions to stimulate phosphorylation of downstream effectors indicates that either dimerization and receptor phosphorylation per se are insufficient to activate signaling or constitutive dimerization leads to pathway inhibition.
Collapse
|
3
|
De Herdt MJ, Koljenović S, van der Steen B, Willems SM, Wieringa MH, Nieboer D, Hardillo JA, Gruver AM, Zeng W, Liu L, Baatenburg de Jong RJ, Looijenga LHJ. A novel immunohistochemical scoring system reveals associations of C-terminal MET, ectodomain shedding, and loss of E-cadherin with poor prognosis in oral squamous cell carcinoma. Hum Pathol 2020; 104:42-53. [PMID: 32702402 DOI: 10.1016/j.humpath.2020.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/13/2020] [Indexed: 01/02/2023]
Abstract
Using tissue microarrays, it was shown that membranous C-terminal MET immunoreactivity and ectodomain (ECD) shedding are associated with poor prognosis in oral cancer. Seen the potential diagnostic value, extrapolation of these results to whole-tissue sections was investigated. Because MET orchestrates epithelial-to-mesenchymal transition (EMT), the results were benchmarked to loss of E-cadherin, a readout for EMT known to be associated with poor prognosis. C-terminal MET, N-terminal MET, and E-cadherin immunoreactivities were examined on formalin-fixed paraffin-embedded parallel sections of 203 oral cancers using antibody clones D1C2, A2H2-3, and NCH-38. Interantibody and intra-antibody relations were examined using a novel scoring system, nonparametric distribution, and median tests. Survival analyses were used to examine the prognostic value of the observed immunoreactivities. Assessment of the three clones revealed MET protein status (no, decoy, transmembranous C-terminal positive), ECD shedding, and EMT. For C-terminal MET-positive cancers, D1C2 immunoreactivity is independently associated with poor overall survival (hazard ratio [HR] = 2.40; 95% confidence interval [CI] = 1.25 to 4.61; and P = 0.008) and disease-free survival (HR = 1.83; 95% CI = 1.07-3.14; P = 0.027). For both survival measures, this is also the case for ECD shedding (43.4%, with HR = 2.30; 95% CI = 1.38 to 3.83; and P = 0.001 versus HR = 1.87; 95% CI = 1.19-2.92; P = 0.006) and loss of E-cadherin (55.3%, with HR = 2.21; 95% CI = 1.30 to 3.77; and P = 0.004 versus HR = 1.90; 95% CI = 1.20-3.01; P = 0.007). The developed scoring system accounts for MET protein status, ECD shedding, and EMT and is prognostically informative. These findings may contribute to development of companion diagnostics for MET-based targeted therapy.
Collapse
Affiliation(s)
- Maria J De Herdt
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC, University Medical Center Rotterdam, Cancer Institute, 3015 GD, Rotterdam, the Netherlands.
| | - Senada Koljenović
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Cancer Institute, 3015 GD, Rotterdam, the Netherlands.
| | - Berdine van der Steen
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC, University Medical Center Rotterdam, Cancer Institute, 3015 GD, Rotterdam, the Netherlands.
| | - Stefan M Willems
- Department of Pathology, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands.
| | - Marjan H Wieringa
- Department of Education, Office of Science, Elisabeth TweeSteden Ziekenhuis, 5022 GC, Tilburg, the Netherlands.
| | - Daan Nieboer
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, 3015 GD, Rotterdam, the Netherlands.
| | - Jose A Hardillo
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC, University Medical Center Rotterdam, Cancer Institute, 3015 GD, Rotterdam, the Netherlands.
| | - Aaron M Gruver
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46225, USA.
| | - Wei Zeng
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46225, USA.
| | - Ling Liu
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46225, USA.
| | - Robert J Baatenburg de Jong
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC, University Medical Center Rotterdam, Cancer Institute, 3015 GD, Rotterdam, the Netherlands.
| | - Leendert H J Looijenga
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Cancer Institute, 3015 GD, Rotterdam, the Netherlands; Princess Maxima Center for Pediatric Oncology, 3584 CS, Utrecht, the Netherlands.
| |
Collapse
|
4
|
MET ectodomain shedding is associated with poor disease-free survival of patients diagnosed with oral squamous cell carcinoma. Mod Pathol 2020; 33:1015-1032. [PMID: 31857683 DOI: 10.1038/s41379-019-0426-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 01/07/2023]
Abstract
Ectodomain shedding unleashes the aggressive nature of the MET oncogene product. Using specific C- and N-terminal MET antibodies (D1C2 and A2H2-3), MET protein status (i.e., no MET, decoy MET, transmembranous C-terminal MET with or without the ectodomain) was investigated in oral squamous cell carcinoma. For the cancers showing transmembranous C-terminal MET, the impact of ectodomain shedding on prognosis was investigated. To examine ectodomain shedding, reduced lysates of oral squamous cell carcinoma cell lines were immunoblotted using D1C2 and an ELISA was performed on culture media using A2H2-3. In addition, reduced lysates of fresh frozen tissues of 30 oral squamous cell carcinoma were immunoblotted using D1C2 and immunohistochemistry was performed on corresponding formalin-fixed paraffin-embedded tissues using both antibodies on parallel sections. To examine MET protein status, differences between membranous D1C2 and A2H2-3 immunoreactivities were scored using parallel tissue microarray sections representing 156 oral squamous cell carcinoma. The prognostic value of ectodomain shedding was examined using Cox regression analysis for disease-free survival and overall survival. Ectodomain shedding was observed in all cell lines, 43% (n = 13) of fresh frozen and 50% (n = 15) of formalin-fixed paraffin-embedded cancers (27% overlap, n = 8). The tissue microarray showed no MET in 23% (n = 36), decoy MET in 9% (n = 14), and transmembranous C-terminal MET in 68% (n = 106) of examined cancers. Within the latter group, ectodomain shedding occurs in 36% (n = 38) of the cases and is independently associated with poor disease-free survival (HR = 2.41; 95% CI, 1.35-4.30 and P = 0.003)-though not overall survival (HR = 1.64; 95% CI, 0.92-2.94 and P = 0.095)-after correcting for factors known to influence survival. In conclusion, MET ectodomain shedding occurs in transmembranous C-terminal MET positive oral squamous cell carcinoma and is independently associated with disease-free survival. These findings might aid in designing companion diagnostics for targeted therapies directed against MET.
Collapse
|
5
|
MET receptor variant R970C favors calpain-dependent generation of a fragment promoting epithelial cell scattering. Oncotarget 2017; 8:11268-11283. [PMID: 28061464 PMCID: PMC5355264 DOI: 10.18632/oncotarget.14499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/26/2016] [Indexed: 12/20/2022] Open
Abstract
The receptor tyrosine kinase MET and its ligand, the hepatocyte growth factor, are essential to embryonic development, whereas deregulation of MET signaling is associated with tumorigenesis leading to various cancers, including lung carcinoma. Mutations in the MET kinase domain lead to constitutive kinase activity and are associated with tumorigenesis. In lung cancer, however, some mutations are found in the juxtamembrane domain, and their functional consequences are unknown. Because the juxtamembrane domain of MET is targeted by several proteolytic cleavages, involved in its degradation during cell death or under steady-state conditions, we evaluated the influence of these mutations on the MET proteolytic cleavages. In stably transfected epithelial cells expressing MET, the juxtamembrane mutations R970C, P991S, and T992I were found not to modify the known caspase or presenilin-dependent regulated intramembrane proteolysis. Yet when overexpressed, the R970C variant caused generation of an as yet undescribed 45-kDa fragment (p45 MET). This fragment was found in the confluent lung cancer cell line NCI-H1437 carrying the R970C mutation and at a lesser extent in cell lines expressing WT MET, suggesting that R970C mutation favors this cleavage. Generation of p45 MET required the activity of the calpain proteases, confirming the involvement of proteolysis. Ectopic expression of reconstituted p45 MET in epithelial cell lines favored cell scattering and invasion indicating active role of this fragment in HGF/SF induced responses. Hence, although the juxtamembrane mutations of MET do not affect its known proteolytic cleavages, the R970C MET variant favors calpain dependent proteolytic cleavage in lung cancer cells.
Collapse
|
6
|
Pal K, Bandyopadhyay A, Zhou XE, Xu Q, Marciano DP, Brunzelle JS, Yerrum S, Griffin PR, Vande Woude G, Melcher K, Xu HE. Structural Basis of TPR-Mediated Oligomerization and Activation of Oncogenic Fusion Kinases. Structure 2017; 25:867-877.e3. [PMID: 28528776 DOI: 10.1016/j.str.2017.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/22/2017] [Accepted: 04/28/2017] [Indexed: 01/01/2023]
Abstract
The nuclear pore complex subunit TPR is found in at least five different oncogenic fusion kinases, including TPR-MET, yet how TPR fusions promote activation of kinases and their oncogenic activities remains poorly understood. Here we report the crystal structure of TPR(2-142), the MET fusion partner of oncogenic TPR-MET. TPR(2-142) contains a continuous 124-residue α helix that forms an antiparallel tetramer from two leucine zipper-containing parallel coiled coils. Remarkably, single mutations cause strikingly different conformations of the coiled coil, indicating its highly dynamic nature. We further show that fusion of TPR(2-142) to the MET intracellular domain strongly and selectively stabilizes the αG helix of the MET kinase domain, and mutations of only the TPR leucine zipper residues at the junction to MET, but not other leucine zipper residues, abolish kinase activation. Together, these results provide critical insight into the TPR structure and its ability to induce dimerization and activation of fusion kinases.
Collapse
Affiliation(s)
- Kuntal Pal
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Abhishek Bandyopadhyay
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - X Edward Zhou
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Qingping Xu
- GMCA at Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - David P Marciano
- Department of Molecular Medicine, Translational Research Institute, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Joseph S Brunzelle
- Department of Molecular Pharmacology & Biological Chemistry, Life Sciences Collaborative Access Team, Synchrotron Research Center, Northwestern University, Argonne, IL 60439, USA
| | - Smitha Yerrum
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Patrick R Griffin
- Department of Molecular Medicine, Translational Research Institute, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - George Vande Woude
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Karsten Melcher
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| | - H Eric Xu
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA; VARI-SIMM Center for Structure and Function of Drug Targets and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
7
|
Hass R, Jennek S, Yang Y, Friedrich K. c-Met expression and activity in urogenital cancers - novel aspects of signal transduction and medical implications. Cell Commun Signal 2017; 15:10. [PMID: 28212658 PMCID: PMC5316205 DOI: 10.1186/s12964-017-0165-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/13/2017] [Indexed: 11/10/2022] Open
Abstract
C-Met is a receptor tyrosine kinase with multiple functions throughout embryonic development, organogenesis and wound healing and is expressed in various epithelia. The ligand of c-Met is Hepatocyte Growth Factor (HGF) which is secreted among others by mesenchymal stroma/stem (MSC) cells. Physiological c-Met functions are centred around processes that underly cellular motility and invasive growth. Aberrant c-Met expression and activity is observed in numerous cancers and makes major contributions to cell malignancy. Importantly, HGF/c-Met signaling is crucial in the context of communication between cancer cells and the the tumor stroma. Here, we review recent findings on roles of dysregulated c-Met in urogenital tumors such as cancers of the urinary bladder, prostate, and ovary. We put emphasis on novel aspects of cancer-associated c-Met expression regulation on both, HGF-dependent and HGF-independent non-canonical mechanisms. Moreover, this review focusses on c-Met-triggered signalling with potential relevance for urogenital oncogenesis, and on strategies to specifically inhibit c-Met activity.
Collapse
Affiliation(s)
- Ralf Hass
- Biochemistry and Tumor Biology Lab, Department of Gynecology, Hannover Medical School, Hannover, Germany
| | - Susanne Jennek
- Institute of Biochemistry II, University Hospital Jena, Nonnenplan 2-4, D-07743, Jena, Germany
| | - Yuanyuan Yang
- Biochemistry and Tumor Biology Lab, Department of Gynecology, Hannover Medical School, Hannover, Germany
| | - Karlheinz Friedrich
- Institute of Biochemistry II, University Hospital Jena, Nonnenplan 2-4, D-07743, Jena, Germany.
| |
Collapse
|
8
|
Cho YA, Kim EK, Heo SJ, Cho BC, Kim HR, Chung JM, Yoon SO. Alteration status and prognostic value of MET in head and neck squamous cell carcinoma. J Cancer 2016; 7:2197-2206. [PMID: 27994655 PMCID: PMC5166528 DOI: 10.7150/jca.16686] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 09/18/2016] [Indexed: 12/17/2022] Open
Abstract
The MET pathway plays a key role in various cancers, and its inhibition represents a potential treatment target. However, appropriate biomarkers are needed to facilitate the selection of patients who would benefit from MET inhibiting therapy. We herein conducted a robust confirmatory evaluation of the MET copy number alteration status and prognostic significance of c-Met expression in a large series of patients (n = 396) who underwent standard surgical resection and adjuvant chemoradiotherapy for head and neck squamous cell carcinoma (HNSCC). Surgically resected HNSCC samples were subjected to immunohistochemical and H-score analysis of c-Met expression and silver in situ hybridization analysis of MET amplification and copy number gains. c-Met expression varied, with mean and median H-scores (scale: 0-300 scale) of 61.2 and 60.0, respectively. The lowest and highest expression levels were observed in SCC of the larynx and oral cavity, respectively. MET copy number gains were observed in 16.9% of cases (67/339) and were associated with c-Met protein expression. High c-Met expression, determined according to MET gain status, was associated with an inferior overall survival rate, especially among completely resected cases. In conclusion, our robust analysis revealed that c-Met expression in HNSCCs varied according to anatomical site, correlated with MET copy number gains, and was associated with poor prognosis. This c-Met expression analysis method, which is based on the MET gain status, appears to appropriately predict high-risk HNSCC patients in the context of anti-MET therapeutic decisions.
Collapse
Affiliation(s)
- Yoon Ah Cho
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Kyung Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Su Jin Heo
- Yonsei Cancer Center, Division of Medical Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Byoung Chul Cho
- Yonsei Cancer Center, Division of Medical Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Ryun Kim
- Yonsei Cancer Center, Division of Medical Oncology, Yonsei University College of Medicine, Seoul, Korea
| | | | - Sun Och Yoon
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Abstract
Short-form Ron (sfRon) is an understudied, alternative isoform of the full-length Ron receptor tyrosine kinase. In contrast to Ron, which has been shown to be an important player in many cancers, little is known about the role of sfRon in cancer pathogenesis. Here we report the striking discovery that sfRon expression is required for development of carcinogen-induced malignant ovarian tumors in mice. We also show that sfRon is expressed in several subtypes of human ovarian cancer including high-grade serous carcinomas, which is in contrast to no detectable expression in healthy ovaries. In addition, we report that introduction of sfRon into OVCAR3 cells resulted in epithelial-to-mesenchymal transition, activation of the PI3K and PDK1 pathway, and inhibition of the MAPK pathway. We demonstrated that sfRon confers an aggressive cancer phenotype in vitro characterized by increased proliferation and migration, and decreased adhesion of ovarian cancer cells. Moreover, the in vivo studies show that OVCAR3 tumors expressing sfRon exhibit significantly more robust growth and spreading to the abdominal cavity when compared with the parental sfRon negative OVCAR3 cells. These data suggest that sfRon plays a significant role in ovarian cancer initiation and progression, and may represent a promising therapeutic target for ovarian cancer treatment.
Collapse
|
10
|
Te Boekhorst V, Friedl P. Plasticity of Cancer Cell Invasion-Mechanisms and Implications for Therapy. Adv Cancer Res 2016; 132:209-64. [PMID: 27613134 DOI: 10.1016/bs.acr.2016.07.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer cell migration is a plastic and adaptive process integrating cytoskeletal dynamics, cell-extracellular matrix and cell-cell adhesion, as well as tissue remodeling. In response to molecular and physical microenvironmental cues during metastatic dissemination, cancer cells exploit a versatile repertoire of invasion and dissemination strategies, including collective and single-cell migration programs. This diversity generates molecular and physical heterogeneity of migration mechanisms and metastatic routes, and provides a basis for adaptation in response to microenvironmental and therapeutic challenge. We here summarize how cytoskeletal dynamics, protease systems, cell-matrix and cell-cell adhesion pathways control cancer cell invasion programs, and how reciprocal interaction of tumor cells with the microenvironment contributes to plasticity of invasion and dissemination strategies. We discuss the potential and future implications of predicted "antimigration" therapies that target cytoskeletal dynamics, adhesion, and protease systems to interfere with metastatic dissemination, and the options for integrating antimigration therapy into the spectrum of targeted molecular therapies.
Collapse
Affiliation(s)
- V Te Boekhorst
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - P Friedl
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Radboud University Medical Centre, Nijmegen, The Netherlands; Cancer Genomics Center (CGC.nl), Utrecht, The Netherlands.
| |
Collapse
|
11
|
Koschut D, Richert L, Pace G, Niemann HH, Mély Y, Orian-Rousseau V. Live cell imaging shows hepatocyte growth factor-induced Met dimerization. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:1552-8. [PMID: 27094128 DOI: 10.1016/j.bbamcr.2016.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/01/2016] [Accepted: 04/15/2016] [Indexed: 12/24/2022]
Abstract
The canonical model of receptor tyrosine kinase (RTK) activation assumes that ligand-induced dimerization of inactive receptor monomers is a prerequisite for autophosphorylation. For several RTK families, recent results of fluorescence microscopy provided evidence for preformed receptor dimers that may or may not require ligand binding for kinase activity. Here we report, for the first time, the application of advanced quantitative fluorescence microscopy techniques to study changes in the oligomerization state of the RTK Met in response to stimulation by its endogenous ligand hepatocyte growth factor (HGF). We used inducible C-terminal fusions between Met and enhanced green fluorescent protein (EGFP) or red fluorescent protein (RFP) in combination with fluorescence resonance energy transfer (FRET)-based fluorescence-lifetime imaging microscopy (FLIM) and fluorescence correlation spectroscopy (FCS). A small fraction of HGF-independent Met dimers appeared to be present in cells even at low receptor density. At high receptor density, both the fraction of Met dimers and the level of Met autophosphorylation increased in the absence of HGF. Stimulation with HGF at low receptor density significantly increased the fraction of Met dimers on live cells. We found no indications of Met oligomers larger than dimers. Our findings thus confirm a model of Met activation through HGF-induced dimerization and at the same time they support previous reports of Met dimers in unstimulated cells. The tools established in this work will be useful to further characterize the mechanism of Met activation and to define the contribution of co-receptors.
Collapse
Affiliation(s)
- David Koschut
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), Postfach 3640, 76021 Karlsruhe, Germany
| | - Ludovic Richert
- UMR 7213 CNRS, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie 74 route du Rhin, 67401 Illkirch, France
| | - Giuseppina Pace
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), Postfach 3640, 76021 Karlsruhe, Germany
| | - Hartmut H Niemann
- Department of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Yves Mély
- UMR 7213 CNRS, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie 74 route du Rhin, 67401 Illkirch, France
| | - Véronique Orian-Rousseau
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), Postfach 3640, 76021 Karlsruhe, Germany.
| |
Collapse
|
12
|
Viticchiè G, Muller PAJ. c-Met and Other Cell Surface Molecules: Interaction, Activation and Functional Consequences. Biomedicines 2015; 3:46-70. [PMID: 28536399 PMCID: PMC5344229 DOI: 10.3390/biomedicines3010046] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/08/2015] [Indexed: 12/18/2022] Open
Abstract
The c-Met receptor, also known as the HGF receptor, is one of the most studied tyrosine kinase receptors, yet its biological functions and activation mechanisms are still not fully understood. c-Met has been implicated in embryonic development and organogenesis, in tissue remodelling homeostasis and repair and in cancer metastasis. These functions are indicative of the many cellular processes in which the receptor plays a role, including cell motility, scattering, survival and proliferation. In the context of malignancy, sustained activation of c-Met leads to a signalling cascade involving a multitude of kinases that initiate an invasive and metastatic program. Many proteins can affect the activation of c-Met, including a variety of other cell surface and membrane-spanning molecules or receptors. Some cell surface molecules share structural homology with the c-Met extracellular domain and can activate c-Met via clustering through this domain (e.g., plexins), whereas other receptor tyrosine kinases can enhance c-Met activation and signalling through intracellular signalling cascades (e.g., EGFR). In this review, we provide an overview of c-Met interactions and crosstalk with partner molecules and the functional consequences of these interactions on c-Met activation and downstream signalling, c-Met intracellular localization/recycling and c-Met degradation.
Collapse
Affiliation(s)
- Giuditta Viticchiè
- MRC (Medical Research Council) Toxicology Unit, Lancaster Road, Leicester LE1 9HN, UK.
| | - Patricia A J Muller
- MRC (Medical Research Council) Toxicology Unit, Lancaster Road, Leicester LE1 9HN, UK.
| |
Collapse
|
13
|
Baldanzi G, Graziani A. Physiological Signaling and Structure of the HGF Receptor MET. Biomedicines 2014; 3:1-31. [PMID: 28536396 PMCID: PMC5344233 DOI: 10.3390/biomedicines3010001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/09/2014] [Indexed: 12/13/2022] Open
Abstract
The "hepatocyte growth factor" also known as "scatter factor", is a multifunctional cytokine with the peculiar ability of simultaneously triggering epithelial cell proliferation, movement and survival. The combination of those proprieties results in the induction of an epithelial to mesenchymal transition in target cells, fundamental for embryogenesis but also exploited by tumor cells during metastatization. The hepatocyte growth factor receptor, MET, is a proto-oncogene and a prototypical transmembrane tyrosine kinase receptor. Inhere we discuss the MET molecular structure and the hepatocyte growth factor driven physiological signaling which coordinates epithelial proliferation, motility and morphogenesis.
Collapse
Affiliation(s)
- Gianluca Baldanzi
- Department Translational Medicine, University Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy.
| | - Andrea Graziani
- Department Translational Medicine, University Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy.
- Università Vita-Salute San Raffaele, via Olgettina 58, 20132 Milano, Italy.
| |
Collapse
|
14
|
Zamperone A, Pietronave S, Merlin S, Colangelo D, Ranaldo G, Medico E, Di Scipio F, Berta GN, Follenzi A, Prat M. Isolation and characterization of a spontaneously immortalized multipotent mesenchymal cell line derived from mouse subcutaneous adipose tissue. Stem Cells Dev 2013; 22:2873-84. [PMID: 23777308 DOI: 10.1089/scd.2012.0718] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The emerging field of tissue engineering and regenerative medicine is a multidisciplinary science that is based on the combination of a reliable source of stem cells, biomaterial scaffolds, and cytokine growth factors. Adult mesenchymal stem cells are considered important cells for applications in this field, and adipose tissue has revealed to be an excellent source of them. Indeed, adipose-derived stem cells (ASCs) can be easily isolated from the stromal vascular fraction (SVF) of adipose tissue. During the isolation and propagation of murine ASCs, we observed the appearance of a spontaneously immortalized cell clone, named m17.ASC. This clone has been propagated for more than 180 passages and stably expresses a variety of stemness markers, such as Sca-1, c-kit/CD117, CD44, CD106, islet-1, nestin, and nucleostemin. Furthermore, these cells can be induced to differentiate toward osteogenic, chondrogenic, adipogenic, and cardiogenic phenotypes. m17.ASC clone displays a normal karyotype and stable telomeres; it neither proliferates when plated in soft agar nor gives rise to tumors when injected subcutaneously in NOD/SCID-γ (null) mice. The analysis of gene expression highlighted transcriptional traits of SVF cells. m17.ASCs were genetically modified by lentiviral vectors carrying green fluorescent protein (GFP) as a marker transgene and efficiently engrafted in the liver, when injected in the spleen of NOD/SCID-γ (null) monocrotaline-treated mice. These results suggest that this non-tumorigenic spontaneously immortalized ASC line may represent a useful tool (cell model) for studying the differentiation mechanisms involved in tissue repair as well as a model for pharmacological/toxicological studies.
Collapse
Affiliation(s)
- Andrea Zamperone
- 1 Dipartimento di Scienze della Salute, Università del Piemonte Orientale , Novara, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Dietz MS, Haße D, Ferraris DM, Göhler A, Niemann HH, Heilemann M. Single-molecule photobleaching reveals increased MET receptor dimerization upon ligand binding in intact cells. BMC BIOPHYSICS 2013; 6:6. [PMID: 23731667 PMCID: PMC3674922 DOI: 10.1186/2046-1682-6-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/23/2013] [Indexed: 12/14/2022]
Abstract
Background The human receptor tyrosine kinase MET and its ligand hepatocyte growth factor/scatter factor are essential during embryonic development and play an important role during cancer metastasis and tissue regeneration. In addition, it was found that MET is also relevant for infectious diseases and is the target of different bacteria, amongst them Listeria monocytogenes that induces bacterial uptake through the surface protein internalin B. Binding of ligand to the MET receptor is proposed to lead to receptor dimerization. However, it is also discussed whether preformed MET dimers exist on the cell membrane. Results To address these issues we used single-molecule fluorescence microscopy techniques. Our photobleaching experiments show that MET exists in dimers on the membrane of cells in the absence of ligand and that the proportion of MET dimers increases significantly upon ligand binding. Conclusions Our results indicate that partially preformed MET dimers may play a role in ligand binding or MET signaling. The addition of the bacterial ligand internalin B leads to an increase of MET dimers which is in agreement with the model of ligand-induced dimerization of receptor tyrosine kinases.
Collapse
Affiliation(s)
- Marina S Dietz
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str, 7, 60438 Frankfurt, Germany.
| | | | | | | | | | | |
Collapse
|
16
|
The decreased metastatic potential of rhabdomyosarcoma cells obtained through MET receptor downregulation and the induction of differentiation. Cell Death Dis 2013; 4:e459. [PMID: 23328666 PMCID: PMC3563987 DOI: 10.1038/cddis.2012.199] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Rhabdomyosarcoma (RMS) is the most common type of pediatric soft tissue sarcoma. The MET receptor has an important role in the biology of RMS, and its overexpression and hyperactivation correlate with the metastatic ability of RMS. Consequently, interfering with MET expression or functionality may constitute a sound strategy for reducing the progression and metastatic potential of RMS. Our study reveals that downregulation of the MET receptor leads to changes in the morphology of ARMS cell in vivo. Tumors acquire a spindle shape that is characteristic of muscle fibers. Inhibition of MET expression or function leads to (i) a decreased expression of the early myogenic marker MyoD, (ii) a decreased ability of ARMS cells to metastasize to bone marrow cavities, (iii) downregulation of CXCR4 receptor expression and (iv) a decreased migration of MET-depleted cells towards gradients of HGF and SDF-1. Finally, we demonstrate that in vitro differentiation of alveolar RMS cells decreases their metastatic behavior by reducing both the expression of the MET and CXCR4 receptors and their migratory response to HGF and SDF-1. These findings suggest that blockers of MET receptor function and inducers of RMS cells differentiation may be clinically useful for reducing the aggressiveness and metastatic potential of RMS and may have significant implications for its treatment.
Collapse
|
17
|
Niemann HH. Structural basis of MET receptor dimerization by the bacterial invasion protein InlB and the HGF/SF splice variant NK1. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:2195-204. [PMID: 23123275 DOI: 10.1016/j.bbapap.2012.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/19/2012] [Accepted: 10/23/2012] [Indexed: 01/03/2023]
Abstract
The structural basis of ligand-induced dimerization of the receptor tyrosine kinase MET by its natural ligand hepatocyte growth factor/scatter factor (HGF/SF) is not well understood. However, interesting insight into the molecular mechanism of MET dimerization has emerged from crystal structures of MET in complex with a bacterial agonist, the invasion protein internalin B (InlB) from pathogenic Listeria monocytogenes. MET activation by InlB promotes uptake of bacteria into host cells. Structural and biophysical data suggest that InlB is monomeric on its own but dimerizes upon binding to the membrane-anchored MET receptor promoting the formation of a signaling active 2:2 complex. The dimerization interface is small and unusually located on the convex side of the curved InlB leucine-rich repeat (LRR) domain. As InlB does not dimerize in solution, the dimerization site could only be identified by studying packing contacts of InlB in various crystal forms and had to be proven by scrutinizing its biological relevance in cellular assays. InlB dimerization is thus an example of a low-affinity contact that appears irrelevant in solution but becomes physiologically significant in the context of 2-dimensional diffusion restricted to the membrane plane. The resulting 2:2 InlB:MET complex has an InlB dimer at its center with one MET molecule bound peripherally to each InlB. This model of ligand-mediated MET dimerization may serve as a blue-print to understand MET activation by NK1, a naturally occurring HGF/SF splice variant and MET agonist. Crystal structures of NK1 repeatedly show a NK1 dimer, in which residues implicated in MET-binding are located on the outside. Thus, MET dimerization by NK1 may also be ligand-mediated with a NK1 dimer at the center of the 2:2 complex with one MET molecule bound peripherally to each NK1. This article is part of a Special Issue entitled: Emerging recognition and activation mechanisms of receptor tyrosine kinases.
Collapse
Affiliation(s)
- Hartmut H Niemann
- Department of Chemistry and Center for Biotechnology (CeBiTec), Bielefeld University, 33501 Bielefeld, Germany.
| |
Collapse
|
18
|
Wader KF, Fagerli UM, Holt RU, Børset M, Sundan A, Waage A. Soluble c-Met in serum of patients with multiple myeloma: correlation with clinical parameters. Eur J Haematol 2011; 87:394-9. [PMID: 21466586 DOI: 10.1111/j.1600-0609.2011.01622.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVES The receptor tyrosine kinase c-Met and its ligand, hepatocyte growth factor (HGF), play key roles in tumour genesis and metastasis and contribute in multiple myeloma pathogenesis. Substantial data support that a soluble extracellular fragment of c-Met may function as a decoy receptor that downregulates the biological effects of HGF and c-Met. We examined serum levels of soluble c-Met in patients with myeloma and healthy individuals and investigated a possible relationship with clinical disease parameters and survival. METHODS The concentration of c-Met and HGF was measured by enzyme-linked immunosorbent assay in serum (n=49) and bone marrow plasma (n=16) from patients with multiple myeloma and in serum from healthy controls (n=26). RESULTS The median serum concentration of soluble c-Met was 186 ng/mL (range 22-562) in patients with multiple myeloma and 189 ng/mL (range 124-397) in healthy individuals. There was a significant negative correlation between serum c-Met levels and disease stage, bone marrow plasma cell percentage and serum concentration of M-protein. CONCLUSION We have for the first time examined the concentration of soluble c-Met in serum from patients with myeloma and found equal median levels in patients with myeloma as a group and healthy individuals. Still, serum levels of soluble c-Met correlated negatively with parameters of disease burden in patients with myeloma. We suggest that a possible role for the c-Met ectodomain as a negative regulator of HGF/c-Met activity should be examined in multiple myeloma.
Collapse
Affiliation(s)
- Karin F Wader
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim.
| | | | | | | | | | | |
Collapse
|
19
|
Grzelakowska-Sztabert B, Dudkowska M. Paradoxical action of growth factors: antiproliferative and proapoptotic signaling by HGF/c-MET. Growth Factors 2011; 29:105-18. [PMID: 21631393 DOI: 10.3109/08977194.2011.585609] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Hepatocyte growth factor (HGF)/mesenchymal-epithelial transition factor (c-MET) signaling is usually associated with the promotion of cellular growth and often with progression of tumors. Nevertheless, under certain conditions HGF can also act as an antiproliferative and proapoptotic factor and can sensitize various cancer cells, treated with anticancer drugs, to apoptosis. Not only HGF but also its various truncated forms as well as intracellular fragments of its membrane receptor, c-MET, may act as antiproliferative and proapoptotic factors toward various cells. This review focuses on different mechanisms responsible for such paradoxical action of the known typical growth factor. It also points toward the possibilities of usage of this information in anticancer therapy.
Collapse
|
20
|
Sun S, Wang Z. Head neck squamous cell carcinoma c-Met⁺ cells display cancer stem cell properties and are responsible for cisplatin-resistance and metastasis. Int J Cancer 2011; 129:2337-48. [PMID: 21225626 DOI: 10.1002/ijc.25927] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 12/02/2010] [Indexed: 01/18/2023]
Abstract
c-Met, the tyrosine kinase receptor for hepatocyte growth factor, is overexpressed in a variety of tumors in which it plays a central role in malignant transformation. Although c-Met has also been determined to be a critical signaling molecule in normal stem cell function, the potential role of c-Met as a single marker for cancer stem cells (CSCs) has not been previously examined. In our study, we reported that human head neck squamous cell carcinoma (HNSCC) cells expressing c-Met were capable of self-renewal and of generating tumors that recapitulate the heterogeneity of the parental tumors, and isolation of HNSCC cells using a second marker CD44 could further enhance upon the in-vivo tumorigenicity. We also reported that c-Met(+) HNSCC cells could readily make spherical colonies in nonadherent culture conditions, in contrast, c-Met(-) population did not; these spherical colonies could be passaged multiple times without loss of colony-forming capability. Furthermore, we showed that c-Met(+) HNSCC cells have increased expression of self-renewal pathways are spared by cisplatin treatment and are responsible for mediating metastasis. These results indicated that c-Met could serve as a novel marker for CSCs at least in HNSCC, and the highly chemoresistant and metastatic capabilities of c-Met(+) HNSCC population make them an important cell type to better define and understand their function.
Collapse
Affiliation(s)
- Shuyang Sun
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Tongji University, Shanghai, China
| | | |
Collapse
|
21
|
Niemann HH. Structural insights into Met receptor activation. Eur J Cell Biol 2011; 90:972-81. [PMID: 21242015 DOI: 10.1016/j.ejcb.2010.11.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 11/24/2010] [Accepted: 11/25/2010] [Indexed: 11/25/2022] Open
Abstract
The receptor tyrosine kinase Met plays a pivotal role in vertebrate development and tissue regeneration, its deregulation contributes to cancer. Met is also targeted during the infection by the facultative intracellular bacterium Listeria monocytogenes. The mechanistic basis for Met activation by its natural ligand hepatocyte growth factor/scatter factor (HGF/SF) is only beginning to be understood at a structural level. Crystal structures of Met in complex with L. monocytogenes InlB suggest that Met dimerization by this bacterial invasion protein is mediated by a dimer contact of the ligand. Here, I review the structural basis of Met activation by InlB and highlight parallels and differences to the physiological Met ligand HGF/SF and its splice variant NK1.
Collapse
Affiliation(s)
- Hartmut H Niemann
- Department of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany.
| |
Collapse
|
22
|
Ma Q, Zhang K, Guin S, Zhou YQ, Wang MH. Deletion or insertion in the first immunoglobulin-plexin-transcription (IPT) domain differentially regulates expression and tumorigenic activities of RON receptor Tyrosine Kinase. Mol Cancer 2010; 9:307. [PMID: 21114864 PMCID: PMC3001714 DOI: 10.1186/1476-4598-9-307] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 11/29/2010] [Indexed: 12/28/2022] Open
Abstract
Background Activation of the RON receptor tyrosine kinase, a member of the c-MET family, regulates tumorigenic phenotypes. The RON extracellular domains are critical in regulating these activities. The objective of this study was to determine the role of the first IPT domain in regulating RON-mediated tumorigenic activities and the underlying mechanisms. Results Two RON variants, RON160 and RONE5/6in with deletion and insertion in the first IPT domain, respectively, were molecularly cloned. RON160 was a splicing variant generated by deletion of 109 amino acids encoded by exons 5 and 6. In contrast, RONE5/6in was derived from a transcript with an insertion of 20 amino acids between exons 5 and 6. Both RON160 and RONE5/6in were proteolytically matured into two-chain receptor and expressed on the cell surface. RON160 was constitutively active with tyrosine phosphorylation. However, activation of RONE5/6in required ligand stimulation. Deletion resulted in the resistance of RON160 to proteolytic digestion by cell associated trypsin-like enzymes. RON160 also resisted anti-RON antibody-induced receptor internalization. These features contributed to sustained intracellular signaling cascades. On the other hand, RONE5/6in was highly susceptible to protease digestion, which led to formation of a truncated variant known as RONp110. RONE5/6in also underwent rapid internalization upon anti-RON antibody treatment, which led to signaling attenuation. Although ligand-induced activation of RONE5/6in partially caused epithelial to mesenchymal transition (EMT), it was RON160 that showed cell-transforming activities in cell focus formation and anchorage-independent growth. RON160-mediated EMT is also associated with increased motile/invasive activity. Conclusions Alterations in the first IPT domain in extracellular region differentially regulate RON mediated tumorigenic activities. Deletion of the first IPT results in formation of oncogenic variant RON160. Enhanced degradation and internalization with attenuated signaling cascades could be the mechanisms underlying non-tumorigenic features of RONE5/6in.
Collapse
Affiliation(s)
- Qi Ma
- Laboratory of Cancer Biology in State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P, R, China
| | | | | | | | | |
Collapse
|
23
|
Liu J, Mani S, Schwartz R, Richman L, Tabor DE. Cloning and assessment of tumorigenicity and oncogenicity of a Madin–Darby canine kidney (MDCK) cell line for influenza vaccine production. Vaccine 2010; 28:1285-93. [DOI: 10.1016/j.vaccine.2009.11.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Revised: 11/03/2009] [Accepted: 11/06/2009] [Indexed: 12/28/2022]
|
24
|
Hanna JA, Bordeaux J, Rimm DL, Agarwal S. The function, proteolytic processing, and histopathology of Met in cancer. Adv Cancer Res 2009; 103:1-23. [PMID: 19854350 DOI: 10.1016/s0065-230x(09)03001-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The hepatocyte growth factor (HGF) and its receptor, the Met receptor tyrosine kinase, form a signaling network promoting cell proliferation, invasion, and survival in normal and cancer cells. Improper regulation of this pathway is attributed to many cancer types through overexpression, activating mutations, or autocrine loop formation. Many studies describe the localization of Met as membranous/cytoplasmic, but some studies using antibodies targeted to the C-terminal domain of Met report nuclear localization. This chapter seeks to highlight the histopathology and expression of Met in cancer and its association with clinicopathological characteristics. We also discuss recent studies of the proteolytic processing of Met and effects of the processing on the subcellular localization of Met. Finally, we comment on Met as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Jason A Hanna
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
25
|
Lai AZ, Abella JV, Park M. Crosstalk in Met receptor oncogenesis. Trends Cell Biol 2009; 19:542-51. [PMID: 19758803 DOI: 10.1016/j.tcb.2009.07.002] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 07/16/2009] [Accepted: 07/17/2009] [Indexed: 11/25/2022]
Abstract
The Met receptor tyrosine kinase (RTK) regulates several distinct biological processes, including cell scatter, cell invasion, cell survival and epithelial remodeling. MET is genetically altered through several mechanisms in multiple human cancers; these events are causally related to cancer initiation and progression, identifying Met as a potential therapeutic target. Recent evidence highlights additional roles for Met in cancer through crosstalk with other receptors and cell surface proteins. In this review, we discuss recent progress in our understanding of mechanisms of interaction between Met, the epidermal growth factor receptor family and other cell surface protein families, and how these contribute to signal crosstalk, oncogenesis and drug resistance.
Collapse
Affiliation(s)
- Andrea Z Lai
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|