1
|
Yangyanqiu W, Jian C, Yuqing Y, Zhanbo Q, Shuwen H. Gut microbes involvement in gastrointestinal cancers through redox regulation. Gut Pathog 2023; 15:35. [PMID: 37443096 DOI: 10.1186/s13099-023-00562-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Gastrointestinal (GI) cancers are among the most common and lethal cancers worldwide. GI microbes play an important role in the occurrence and development of GI cancers. The common mechanisms by which GI microbes may lead to the occurrence and development of cancer include the instability of the microbial internal environment, secretion of cancer-related metabolites, and destabilization of the GI mucosal barrier. In recent years, many studies have found that the relationship between GI microbes and the development of cancer is closely associated with the GI redox level. Redox instability associated with GI microbes may induce oxidative stress, DNA damage, cumulative gene mutation, protein dysfunction and abnormal lipid metabolism in GI cells. Redox-related metabolites of GI microbes, such as short-chain fatty acids, hydrogen sulfide and nitric oxide, which are involved in cancer, may also influence GI redox levels. This paper reviews the redox reactions of GI cells regulated by microorganisms and their metabolites, as well as redox reactions in the cancer-related GI microbes themselves. This study provides a new perspective for the prevention and treatment of GI cancers.
Collapse
Affiliation(s)
- Wang Yangyanqiu
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Graduate School of Medical College, Zhejiang University, No. 268 Kaixuan Road, Jianggan District, Hangzhou, 310029, Zhejiang Province, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, Republic of China
| | - Chu Jian
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, Republic of China
| | - Yang Yuqing
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, Republic of China
| | - Qu Zhanbo
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, Republic of China
| | - Han Shuwen
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, Republic of China.
| |
Collapse
|
2
|
Potential Role of ROS in Butyrate- and Dietary Fiber-Mediated Growth Inhibition and Modulation of Cell Cycle-, Apoptosis- and Antioxidant-Relevant Proteins in LT97 Colon Adenoma and HT29 Colon Carcinoma Cells. Cancers (Basel) 2023; 15:cancers15020440. [PMID: 36672389 PMCID: PMC9857069 DOI: 10.3390/cancers15020440] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
The aim of the present study was to examine whether reactive oxygen species (ROS) contribute to chemopreventive effects of fermentation supernatants (FS) of different dietary fibers (Synergy1®, oat-, barley-, yeast β-glucan, Curdlan) and butyrate as a fermentation metabolite. LT97 and HT29 cells were treated with butyrate and FS alone or with N-acetyl-cysteine (NAC) and their impact on ROS formation, cell growth, and protein expression (Cyclin D2, p21, PARP, Bid, GPx2) was investigated. Butyrate and FS significantly decreased cell growth. ROS levels were significantly increased, particularly in LT97 cells, while co-treatment with NAC decreased ROS formation and growth inhibitory effects in both cell lines. After treatment with butyrate and FS, Cyclin D2 expression was reduced in LT97 cells and p21 expression was increased in both cell lines. Levels of full-length PARP and Bid were decreased, while levels of cleaved PARP were enhanced. GPx2 expression was significantly reduced by fiber FS in HT29 cells. A notable effect of NAC on butyrate- and FS-modulated protein expression was observed exclusively for PARP and Bid in HT29 cells. From the present results, a contribution of ROS to growth inhibitory and apoptotic effects of butyrate and FS on LT97 and HT29 cells cannot be excluded.
Collapse
|
3
|
Boulahtouf Z, Virzì A, Baumert TF, Verrier ER, Lupberger J. Signaling Induced by Chronic Viral Hepatitis: Dependence and Consequences. Int J Mol Sci 2022; 23:ijms23052787. [PMID: 35269929 PMCID: PMC8911453 DOI: 10.3390/ijms23052787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic viral hepatitis is a main cause of liver disease and hepatocellular carcinoma. There are striking similarities in the pathological impact of hepatitis B, C, and D, although these diseases are caused by very different viruses. Paired with the conventional study of protein-host interactions, the rapid technological development of -omics and bioinformatics has allowed highlighting the important role of signaling networks in viral pathogenesis. In this review, we provide an integrated look on the three major viruses associated with chronic viral hepatitis in patients, summarizing similarities and differences in virus-induced cellular signaling relevant to the viral life cycles and liver disease progression.
Collapse
Affiliation(s)
- Zakaria Boulahtouf
- Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Université de Strasbourg, Inserm, F-67000 Strasbourg, France; (Z.B.); (A.V.); (T.F.B.); (E.R.V.)
| | - Alessia Virzì
- Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Université de Strasbourg, Inserm, F-67000 Strasbourg, France; (Z.B.); (A.V.); (T.F.B.); (E.R.V.)
| | - Thomas F. Baumert
- Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Université de Strasbourg, Inserm, F-67000 Strasbourg, France; (Z.B.); (A.V.); (T.F.B.); (E.R.V.)
- Service d’Hépato-Gastroentérologie, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France
- Institut Universitaire de France (IUF), F-75005 Paris, France
| | - Eloi R. Verrier
- Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Université de Strasbourg, Inserm, F-67000 Strasbourg, France; (Z.B.); (A.V.); (T.F.B.); (E.R.V.)
| | - Joachim Lupberger
- Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Université de Strasbourg, Inserm, F-67000 Strasbourg, France; (Z.B.); (A.V.); (T.F.B.); (E.R.V.)
- Correspondence:
| |
Collapse
|
4
|
Protocatechuic Acid, a Simple Plant Secondary Metabolite, Induced Apoptosis by Promoting Oxidative Stress through HO-1 Downregulation and p21 Upregulation in Colon Cancer Cells. Biomolecules 2021; 11:biom11101485. [PMID: 34680118 PMCID: PMC8533287 DOI: 10.3390/biom11101485] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal cancers, particularly colorectal cancer, are mainly influenced by the dietary factor. A diet rich in fruits and vegetables can help to reduce the incidence of colorectal cancer thanks to the phenolic compounds, which possess antimutagenic and anticarcinogenic properties. Polyphenols, alongside their well-known antioxidant properties, also show a pro-oxidative potential, which makes it possible to sensitize tumor cells to oxidative stress. HO-1 combined with antioxidant activity, when overexpressed in cancer cells, is involved in tumor progression, and its inhibition is considered a feasible therapeutic strategy in cancer treatment. In this study, the effects of protocatechuic acid (PCA) on the viability of colon cancer cells (CaCo-2), annexin V, LDH release, reactive oxygen species levels, total thiol content, HO-1, γ-glutamylcysteine synthetase, and p21 expression were evaluated. PCA induced, in a dose-dependent manner, a significantly reduced cell viability of CaCo-2 by oxidative/antioxidant imbalance. The phenolic acid induced modifications in levels of HO-1, non-proteic thiol groups, γ-glutamylcysteine synthetase, reactive oxygen species, and p21. PCA induced a pro-oxidant effect in cancer cells, and the in vitro pro-apoptotic effect on CaCo-2 cells is mediated by the modulation of redox balance and the inhibition of the HO-1 system that led to the activation of p21. Our results suggest that PCA may represent a useful tool in prevention and/or therapy of colon cancer.
Collapse
|
5
|
Chang MC, Wang TM, Chien HH, Pan YH, Tsai YL, Jeng PY, Lin LD, Jeng JH. Effect of butyrate, a bacterial by-product, on the viability and ICAM-1 expression/production of human vascular endothelial cells: Role in infectious pulpal/periapical diseases. Int Endod J 2021; 55:38-53. [PMID: 34420220 DOI: 10.1111/iej.13614] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/19/2021] [Indexed: 01/21/2023]
Abstract
AIM To investigate the effects of butyric acid (BA), a metabolic product generated by pulp and root canal pathogens, on the viability and intercellular adhesion molecule-1 (ICAM-1) production of endothelial cells, which are crucial to angiogenesis and pulpal/periapical wound healing. METHODOLOGY Endothelial cells were exposed to butyrate with/without inhibitors. Cell viability, apoptosis and reactive oxygen species (ROS) were evaluated using an MTT assay, PI/annexin V and DCF fluorescence flow cytometry respectively. RNA and protein expression was determined using a polymerase chain reaction assay and Western blotting or immunofluorescent staining. Soluble ICAM-1 (sICAM-1) was measured using an enzyme-linked immunosorbent assay. The quantitative results were expressed as mean ± standard error (SE) of the mean. The data were analysed using a paired Student's t-test where necessary. A p-value ≤0.05 was considered to indicate a statistically significant difference between groups. RESULTS Butyrate (>4 mM) inhibited cell viability and induced cellular apoptosis and necrosis. It inhibited cyclin B1 but stimulated p21 and p27 expression. Butyrate stimulated ROS production and hemeoxygenase-1 (HO-1) expression as well as activated the Ac-H3, p-ATM, p-ATR, p-Chk1, p-Chk2, p-p38 and p-Akt expression of endothelial cells. Butyrate stimulated ICAM-1 mRNA/protein expression and significant sICAM-1 production (p < .05). Superoxide dismutase, 5z-7oxozeaenol, SB203580 and compound C (p < .05), but not ZnPP, CGK733, AZD7762 or LY294002, attenuated butyrate cytotoxicity to endothelial cells. Notably, little effect on butyrate-stimulated sICAM-1 secretion was found. Valproic acid, phenylbutyrate and trichostatin (three histone deacetylase inhibitors) significantly induced sICAM-1 production (p < .05). CONCLUSION Butyric acid inhibited proliferation, induced apoptosis, stimulated ROS and HO-1 production and increased ICAM-1 mRNA expression and protein synthesis in endothelial cells. Cell viability affected by BA was diminished by some inhibitors; however, the increased sICAM-1 secretion by BA was not affected by any of the tested inhibitors. These results facilitate understanding of the pathogenesis, prevention and treatment of pulpal/periapical diseases.
Collapse
Affiliation(s)
- Mei-Chi Chang
- Chang Gung University of Science and Technology, Taoyuan City, Taiwan.,Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Tong-Mei Wang
- School of Dentistry & Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan
| | - Hua-Hong Chien
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Yu-Hwa Pan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Yi-Ling Tsai
- School of Dentistry & Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan
| | - Po-Yuan Jeng
- School of Dentistry & Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Deh Lin
- School of Dentistry & Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan
| | - Jiiang-Huei Jeng
- School of Dentistry & Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan.,School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
| |
Collapse
|
6
|
Guo Y, Fan W, Xie Y, Cao S, Wan H, Jin B. SIRT1 Is the Target Gene for 2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-Glucoside Alleviating the HUVEC Senescence. Front Pharmacol 2020; 11:542902. [PMID: 33013385 PMCID: PMC7508177 DOI: 10.3389/fphar.2020.542902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 08/21/2020] [Indexed: 12/21/2022] Open
Abstract
This study aimed to explore the effects of 2,3,5,4'-tetrahydroxy-stilbene-2-O-β-d-glucoside (TSG) on the senescence of human umbilical vein cells (HUVEC) induced by hydrogen peroxide (H2O2) and to identify the potential targets mediating its protective action. HUVEC cells pre-treated with TSG for 24 h were exposed to H2O2 treatment. TSG significantly decreased H2O2-induced cellular senescence, as indicated by reduced senescence-associated β-galactosidase (SA-β-gal) positive staining, the proportion of cells in the G1 phase, cell apoptosis, p21, and plasminogen activator inhibitor-1 (PAI-1) expression. Moreover, TSG promoted Sirtuin 1 (SIRT1) expression. When SIRT1 was inhibited by EX527 or SIRT1 siRNA, the effect of TSG is diminished according to the increased proportion of cells in the G1 phase, cell apoptosis, p21, and PAI-1 expression. Overall, our study established TSG as an anti-senescence compound that exerts its protective action by regulating SIRT1 expression.
Collapse
Affiliation(s)
- Yan Guo
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China.,College of Basic Medicine and Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenxue Fan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuefeng Xie
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuyu Cao
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haitong Wan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Jin
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
7
|
Murray D, Mirzayans R. Nonlinearities in the cellular response to ionizing radiation and the role of p53 therein. Int J Radiat Biol 2020; 97:1088-1098. [PMID: 31986075 DOI: 10.1080/09553002.2020.1721602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/06/2019] [Accepted: 12/26/2019] [Indexed: 10/25/2022]
Abstract
Many aspects of the cellular response to agents such as ionizing radiation that cause genotoxic and/or oxidative stress exhibit a nonlinear relationship to the applied stress level. These include elements of the antioxidant response and of the damage-signaling pathways that determine cell fate decisions. The wild-type p53 protein, which is mutated in many cancers, coordinates these responses and is a key determinant of this nonlinearity. Indeed, p53 has been referred to as a 'cellular rheostat' that favors antioxidant/cytoprotective functions at low stress levels while switching to a pro-oxidant/cytotoxic role under high-stress conditions. For solid tumor-derived cell lines, moderate doses of radiation, typical of those used to generate clonogenic survival curves (i.e. ≤10 Gy), predominantly invoke a dose-dependent cytostatic response. For cancer cell lines with wild-type p53, cytostasis is primarily associated with features of senescence, whereas cancer cells with aberrant p53 primarily undergo endopolyploidization and enlargement. In line with a commentary by Meyn et al. [Int J Radiat Biol. 2009, 85:107-115] concluding that apoptosis is not the primary cause of radiation-induced loss of clonogenicity in solid tumor-derived cell lines, significant levels of apoptosis are typically seen only after higher doses (≥5 Gy) and this is almost all of the delayed (rather than primary) type. Nonlinearity of the oxidative/genotoxic stress response is already apparent in the early antioxidant events activated by transcription factors such as p53 and Nrf2 and the Ref1 transcription coactivator. These cytoprotective pathways serve to minimize damage to important cellular targets caused by reactive oxygen species (ROS) and other electrophiles. After high/supra-lethal levels of stress these inducible antioxidant pathways can be deactivated in a manner that would reinforce the establishment of the pro-oxidant state, resulting in elevated ROS levels and to cytostasis or apoptosis. Understanding the complex regulation of these damage-signaling pathways in relation to the stress levels is important for the optimal utilization of radiation therapy for cancer.
Collapse
Affiliation(s)
- David Murray
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Canada
| | - Razmik Mirzayans
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
8
|
Murray D, Mirzayans R, McBride WH. Defenses against Pro-oxidant Forces - Maintenance of Cellular and Genomic Integrity and Longevity. Radiat Res 2018; 190:331-349. [PMID: 30040046 PMCID: PMC6203329 DOI: 10.1667/rr15101.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
There has been enormous recent progress in understanding how human cells respond to oxidative stress, such as that caused by exposure to ionizing radiation. We have witnessed a significant deciphering of the events that underlie how antioxidant responses counter pro-oxidant damage to key biological targets in all cellular compartments, including the genome and mitochondria. These cytoprotective responses include: 1. The basal cellular repertoire of antioxidant capabilities and its supporting cast of facilitator enzymes; and 2. The inducible phase of the antioxidant response, notably that mediated by the Nrf2 transcription factor. There has also been frenetic progress in defining how reactive electrophilic species swamp existing protective mechanisms to augment DNA damage, events that are embodied in the cellular "DNA-damage response", including cell cycle checkpoint activation and DNA repair, which occur on a time scale of hours to days, as well as the implementation of cellular responses such as apoptosis, autophagy, senescence and reprograming that extend the time period of damage sensing and response into weeks, months and years. It has become apparent that, in addition to the initial oxidative insult, cells typically undergo further waves of secondary reactive oxygen/nitrogen species generation, DNA damage and signaling and that these may reemerge long after the initial events have subsided, probably being driven, at least in part, by persisting DNA damage. These reactive oxygen/nitrogen species are an integral part of the pathological consequences of radiation exposure and may persist across multiple cell divisions. Because of the pervasive nature of oxidative stress, a cell will manifest different responses in different subcellular compartments and to different levels of stress injury. Aspects of these compartmentalized responses can involve the same proteins (such as ATM, p53 and p21) but in different functional guises, e.g., in cytoplasmic versus nuclear responses or in early- versus late-phase events. Many of these responses involve gene activation and new protein synthesis as well as a plethora of post-translational modifications of both basal and induced response proteins. It is these responses that we focus on in this review.
Collapse
Affiliation(s)
- David Murray
- Department of Oncology, Division of Experimental Oncology, University of Alberta and Cross Cancer Institute, Edmonton, Canada
| | - Razmik Mirzayans
- Department of Oncology, Division of Experimental Oncology, University of Alberta and Cross Cancer Institute, Edmonton, Canada
| | - William H. McBride
- Department of Radiation Oncology, University of California, Los Angeles (UCLA), Los Angeles, California
| |
Collapse
|
9
|
Ouyang J, Zeng Z, Fang H, Li F, Zhang X, Tan W. SIRT3 Inactivation Promotes Acute Kidney Injury Through Elevated Acetylation of SOD2 and p53. J Surg Res 2018; 233:221-230. [PMID: 30502252 DOI: 10.1016/j.jss.2018.07.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 05/22/2018] [Accepted: 07/10/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND The deactivation of SIRT3, a novel deacetylase located in mitochondria, can aggravate multiple organ dysfunction. However, the role of SIRT3 and its downstream targets in ischemia/reperfusion (I/R)-induced acute kidney injury (AKI) remain unknown. MATERIALS AND METHODS I/R was reproduced in a rat model using a clamp placed on the left and right renal pedicles for 40 min. The rats were intraperitoneally injected with either the vehicle or a selective SIRT3 inhibitor (3-TYP) and scarified at different time points (4, 8, and 24 h after I/R). A portion of the renal tissue was extracted for histological analysis, and another portion was collected for the isolation of renal tubular epithelial cells for Western blotting, SOD2 and SIRT3 activity, cell apoptosis, and the determination of oxidative stress. RESULTS The I/R-induced AKI model was successfully reproduced and SIRT3 activity was considerably reduced than control (sham operated) group, accompanied by increased acetylation of SOD2 and p53, as well as their elevated physical interaction in extracted mitochondrial protein (all P values < 0.05). Moreover, SIRT3 suppression by 3-TYP treatment (comparing with the vehicle treatment group) aggravated AKI, as evidenced by increased indicators of oxidative stress (increased mitochondrial red fluorescence MitoSOX and decreased reduced glutathione/oxidized glutathione ratio, all P values < 0.01). CONCLUSIONS The elevation of SOD2 and p53 protein acetylation in the mitochondria of renal tubular epithelial cells is an important signaling event in the pathogenesis of I/R-induced AKI. Thus, deacetylase SIRT3 may be an upstream regulator of both SOD2 and p53, and the SIRT3 deactivation may aggravate AKI.
Collapse
Affiliation(s)
- Jie Ouyang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Southern Medical University, Guangzhou, Guangdong, China
| | - Haihong Fang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Southern Medical University, Guangzhou, Guangdong, China
| | - Fei Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinji Zhang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Hu XN, Wang JF, Huang YQ, Wang Z, Dong FY, Ma HF, Bao ZJ. Huperzine A attenuates nonalcoholic fatty liver disease by regulating hepatocyte senescence and apoptosis: an in vitro study. PeerJ 2018; 6:e5145. [PMID: 29967757 PMCID: PMC6025153 DOI: 10.7717/peerj.5145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 06/11/2018] [Indexed: 01/01/2023] Open
Abstract
Objective This study was undertaken to detect if free fatty acids (FFA) induce hepatocyte senescence in L-02 cells and if huperzine A has an anti-aging effect in fatty liver cells. Methods L-02 cells were treated with a FFA mixture (oleate/palmitate, at 3:0, 2:1, 1:1, 1:2 and 0:3 ratios) at different concentrations. Cell viability and fat accumulation rate were assessed by a Cell Counting Kit 8 and Nile Red staining, respectively. The mixture with the highest cell viability and fat accumulation rate was selected to continue with the following experiment. The L-02 cells were divided into five groups, including the control group, FFA group, FFA + 0.1 μmol/L huperzine A (LH) group, FFA + 1.0 μmol/L huperzine A (MH) group and FFA + 10 μmol/L huperzine A (HH) group, and were cultured for 24 h. The expression of senescence-associated β-galactosidase (SA-β-gal) was detected by an SA-β-gal staining kit. The expression levels of aging genes were measured by qRT-PCR. The expression levels of apoptosis proteins were detected by a Western blot. ELISA kits were used to detect inflammatory factors and oxidative stress products. The expression of nuclear factor (NF-κB) and IκBα were detected by immunofluorescence. Results The FFA mixture (oleate/palmitate, at a 2:1 ratio) of 0.5 mmol/L had the highest cell viability and fat accumulation rate, which was preferable for establishing an in vitro fatty liver model. The expression of inflammatory factors (TNF-α and IL-6) and oxidants Malonaldehyde (MDA), 4-hydroxynonenal (HNE) and reactive oxygen species (ROS) also increased in the L-02 fatty liver cells. The expression levels of aging markers and aging genes, such as SA-β-gal, p16, p21, p53 and pRb, increased more in the L-02 fatty liver cells than in the L-02 cells. The total levels of the apoptosis-associated proteins Bcl2, Bax, Bax/Bcl-2, CyCt and cleaved caspase 9 were also upregulated in the L-02 fatty liver cells. All of the above genes and proteins were downregulated in the huperzine A and FFA co-treatment group. In the L-02 fatty liver cells, the expression of IκBα decreased, while the expression of NF-κB increased. After the huperzine A and FFA co-treatment, the expression of IκBα increased, while the expression of NF-κB decreased. Conclusion Fatty liver cells showed an obvious senescence and apoptosis phenomenon. Huperzine A suppressed hepatocyte senescence, and it might exert its anti-aging effect via the NF-κB pathway.
Collapse
Affiliation(s)
- Xiao-Na Hu
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.,Department of Geriatrics, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Jiao-Feng Wang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.,Department of Geriatrics, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yi-Qin Huang
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
| | - Zheng Wang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.,Department of Geriatrics, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Fang-Yuan Dong
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.,Department of Geriatrics, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Hai-Fen Ma
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
| | - Zhi-Jun Bao
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.,Department of Geriatrics, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
11
|
Simabuco FM, Morale MG, Pavan IC, Morelli AP, Silva FR, Tamura RE. p53 and metabolism: from mechanism to therapeutics. Oncotarget 2018; 9:23780-23823. [PMID: 29805774 PMCID: PMC5955117 DOI: 10.18632/oncotarget.25267] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/06/2018] [Indexed: 11/25/2022] Open
Abstract
The tumor cell changes itself and its microenvironment to adapt to different situations, including action of drugs and other agents targeting tumor control. Therefore, metabolism plays an important role in the activation of survival mechanisms to keep the cell proliferative potential. The Warburg effect directs the cellular metabolism towards an aerobic glycolytic pathway, despite the fact that it generates less adenosine triphosphate than oxidative phosphorylation; because it creates the building blocks necessary for cell proliferation. The transcription factor p53 is the master tumor suppressor; it binds to more than 4,000 sites in the genome and regulates the expression of more than 500 genes. Among these genes are important regulators of metabolism, affecting glucose, lipids and amino acids metabolism, oxidative phosphorylation, reactive oxygen species (ROS) generation and growth factors signaling. Wild-type and mutant p53 may have opposing effects in the expression of these metabolic genes. Therefore, depending on the p53 status of the cell, drugs that target metabolism may have different outcomes and metabolism may modulate drug resistance. Conversely, induction of p53 expression may regulate differently the tumor cell metabolism, inducing senescence, autophagy and apoptosis, which are dependent on the regulation of the PI3K/AKT/mTOR pathway and/or ROS induction. The interplay between p53 and metabolism is essential in the decision of cell fate and for cancer therapeutics.
Collapse
Affiliation(s)
- Fernando M. Simabuco
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), Universidade de Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Mirian G. Morale
- Center for Translational Investigation in Oncology/LIM24, Instituto do Câncer do Estado de São Paulo (ICESP), São Paulo, Brazil
- Department of Radiology and Oncology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Isadora C.B. Pavan
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), Universidade de Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Ana P. Morelli
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), Universidade de Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Fernando R. Silva
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), Universidade de Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Rodrigo E. Tamura
- Center for Translational Investigation in Oncology/LIM24, Instituto do Câncer do Estado de São Paulo (ICESP), São Paulo, Brazil
- Department of Radiology and Oncology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Camptothecin induces G 2/M phase arrest through the ATM-Chk2-Cdc25C axis as a result of autophagy-induced cytoprotection: Implications of reactive oxygen species. Oncotarget 2018; 9:21744-21757. [PMID: 29774099 PMCID: PMC5955160 DOI: 10.18632/oncotarget.24934] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 02/28/2018] [Indexed: 11/25/2022] Open
Abstract
In the present study, we report that camptothecin (CPT) caused irreversible cell cycle arrest at the G2/M phase, and was associated with decreased levels of cell division cycle 25C (Cdc25C) and increased levels of cyclin B1, p21, and phospho-H3. Interestingly, the reactive oxygen species (ROS) inhibitor, glutathione, decreased CPT-induced G2/M phase arrest and moderately induced S phase arrest, indicating that the ROS is required for the regulation of CPT-induced G2/M phase arrest. Furthermore, transient knockdown of nuclear factor-erythroid 2-related factor 2 (Nrf2), in the presence of CPT, increased the ROS’ level and further shifted the cell cycle from early S phase to the G2/M phase, indicating that Nrf2 delayed the S phase in response to CPT. We also found that CPT-induced G2/M phase arrest increased, along with the ataxia telangiectasia-mutated (ATM)-checkpoint kinase 2 (Chk2)-Cdc25C axis. Additionally, the proteasome inhibitor, MG132, restored the decrease in Cdc25C levels in response to CPT, and significantly downregulated CPT-induced G2/M phase arrest, suggesting that CPT enhances G2/M phase arrest through proteasome-mediated Cdc25C degradation. Our data also indicated that inhibition of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) inhibited CPT-induced p21 and cyclin B1 levels; however, inhibition of ERK blocked CPT-induced G2/M phase arrest, and inhibition of JNK enhanced apoptosis in response to CPT. Finally, we found that CPT-induced G2/M phase arrest circumvented apoptosis by activating autophagy through ATM activation. These findings suggest that CPT-induced G2/M phase arrest through the ROS-ATM-Chk2-Cdc25C axis is accompanied by the activation of autophagy.
Collapse
|
13
|
Oxidative stress, a trigger of hepatitis C and B virus-induced liver carcinogenesis. Oncotarget 2018; 8:3895-3932. [PMID: 27965466 PMCID: PMC5354803 DOI: 10.18632/oncotarget.13904] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/05/2016] [Indexed: 12/11/2022] Open
Abstract
Virally induced liver cancer usually evolves over long periods of time in the context of a strongly oxidative microenvironment, characterized by chronic liver inflammation and regeneration processes. They ultimately lead to oncogenic mutations in many cellular signaling cascades that drive cell growth and proliferation. Oxidative stress, induced by hepatitis viruses, therefore is one of the factors that drives the neoplastic transformation process in the liver. This review summarizes current knowledge on oxidative stress and oxidative stress responses induced by human hepatitis B and C viruses. It focuses on the molecular mechanisms by which these viruses activate cellular enzymes/systems that generate or scavenge reactive oxygen species (ROS) and control cellular redox homeostasis. The impact of an altered cellular redox homeostasis on the initiation and establishment of chronic viral infection, as well as on the course and outcome of liver fibrosis and hepatocarcinogenesis will be discussed The review neither discusses reactive nitrogen species, although their metabolism is interferes with that of ROS, nor antioxidants as potential therapeutic remedies against viral infections, both subjects meriting an independent review.
Collapse
|
14
|
Kim YY, Jee HJ, Um JH, Kim YM, Bae SS, Yun J. Cooperation between p21 and Akt is required for p53-dependent cellular senescence. Aging Cell 2017; 16:1094-1103. [PMID: 28691365 PMCID: PMC5595696 DOI: 10.1111/acel.12639] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2017] [Indexed: 12/30/2022] Open
Abstract
Cellular senescence has been implicated in normal aging, tissue homeostasis, and tumor suppression. Although p53 has been shown to be a central mediator of cellular senescence, the signaling pathway by which it induces senescence remains incompletely understood. In this study, we have shown that both Akt and p21 are required to induce cellular senescence in response to p53 expression. In a p53-induced senescence model, we found that Akt activation was essential for inducing a cellular senescence phenotype. Surprisingly, Akt inhibition did not abolish p53-induced cell cycle arrest, but it suppressed the increase in intracellular reactive oxygen species (ROS) levels. The results of the cell cycle and morphological analysis suggest that p53 induced quiescence, not senescence, following Akt inhibition. Conversely, the inhibition of p21 induction abolished cell cycle arrest but did not affect the p53-induced increase in ROS levels. Additionally, p21 and Akt separately controlled cell cycle arrest and ROS levels, respectively, during H-Ras-induced senescence in human normal fibroblasts. The mechanistic analysis revealed that Akt increased ROS levels through NOX4 induction, and increased Akt-dependent NF-κB binding to the NOX4 promoter is responsible for NOX4 induction upon p53 expression. We further showed that Akt activation upon p53 expression is mediated by mammalian target of rapamycin complex 2. In addition, p53-mediated IL6 and IL8 induction was abrogated by Akt inhibition, suggesting that Akt activation is also required for the senescence-associated secretory phenotype. Collectively, these results suggest that p53 simultaneously controls multiple pathways to induce cellular senescence through p21 and Akt.
Collapse
Affiliation(s)
- Young Yeon Kim
- Peripheral Neuropathy Research Center; College of Medicine; Dong-A University; Busan 49201 Korea
- Department of Biochemistry; College of Medicine; Dong-A University; Busan 49201 Korea
| | - Hye Jin Jee
- Peripheral Neuropathy Research Center; College of Medicine; Dong-A University; Busan 49201 Korea
- Department of Biochemistry; College of Medicine; Dong-A University; Busan 49201 Korea
| | - Jee-Hyun Um
- Peripheral Neuropathy Research Center; College of Medicine; Dong-A University; Busan 49201 Korea
- Department of Biochemistry; College of Medicine; Dong-A University; Busan 49201 Korea
| | - Young Mi Kim
- Peripheral Neuropathy Research Center; College of Medicine; Dong-A University; Busan 49201 Korea
- Department of Biochemistry; College of Medicine; Dong-A University; Busan 49201 Korea
| | - Sun Sik Bae
- Department of Pharmacology; School of Medicine; Pusan National University; Yangsan-si 602-739 Korea
| | - Jeanho Yun
- Peripheral Neuropathy Research Center; College of Medicine; Dong-A University; Busan 49201 Korea
- Department of Biochemistry; College of Medicine; Dong-A University; Busan 49201 Korea
| |
Collapse
|
15
|
Kim JE, Shin JS, Moon JH, Hong SW, Jung DJ, Kim JH, Hwang IY, Shin YJ, Gong EY, Lee DH, Kim SM, Lee EY, Kim YS, Kim D, Hur D, Kim TW, Kim KP, Jin DH, Lee WJ. Foxp3 is a key downstream regulator of p53-mediated cellular senescence. Oncogene 2016; 36:219-230. [DOI: 10.1038/onc.2016.193] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 04/18/2016] [Accepted: 04/26/2016] [Indexed: 11/09/2022]
|
16
|
p16(INK4A) mediates age-related changes in mesenchymal stem cells derived from human dental pulp through the DNA damage and stress response. Mech Ageing Dev 2014; 141-142:46-55. [PMID: 25304494 DOI: 10.1016/j.mad.2014.09.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 09/21/2014] [Accepted: 09/26/2014] [Indexed: 12/22/2022]
Abstract
Mesenchymal stem cells derived from human dental pulp (DP-MSCs) are characterized by self-renewal and multi-lineage differentiation, which play important roles in regenerative medicine. Autologous transfers, as non-immunogenic, constitute the safest approach in cellular transplantations. However, their use may be limited by age-related changes. In the study, we compared DP-MSCs isolated from human in five age groups: 5-12 y, 12-20 y, 20-35 y, 35-50 y, and >50 y. We tested the effect of age on proliferation, differentiation, senescence-associated β-galactosidase (SA-β-gal), cell cycle and programmed cell death. DP-MSCs showed characteristics of senescence as a function of age. Meanwhile, the expression of p16(INK4A) and γ-H2A.X significantly increased with age, whereas heat shock protein 60 (HSP60) was decreased in the senescent DP-MSCs. Reactive oxygen species (ROS) staining showed the number of ROS-stained cells and the DCFH fluorescent level were higher in the aged group. Further we examined the senescence of DP-MSCs after modulating p16(INK4A) signaling. The results indicated the dysfunction of DP-MSCs was reversed by p16(INK4A) siRNA. In summary, our study indicated p16(INK4A) pathway may play a critical role in DP-MSCs age-related changes and the DNA damage response (DDR) and stress response may be the main mediators of DP-MSCs senescence induced by excessive activation of p16(INK4A) signaling.
Collapse
|
17
|
Li F, Li Y, Tang Y, Lin B, Kong X, Oladele OA, Yin Y. Protective effect of myokine IL-15 against H2O2-mediated oxidative stress in skeletal muscle cells. Mol Biol Rep 2014; 41:7715-22. [PMID: 25103021 DOI: 10.1007/s11033-014-3665-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/27/2014] [Indexed: 11/26/2022]
Abstract
The production of reactive oxygen species (ROS) during oxidative stress may cause cellular injury. Interleukin-15 (IL-15) is one of the skeletal muscle secreted myokines, and there is no information that reported its anti-oxidative capability in skeletal muscle. The aim of this study therefore is to investigate the protective effects of myokine IL-15 against H2O2-mediated oxidative stress in C2C12 myoblasts. The results showed that IL-15 pre-incubation reduced the intracellular creatine kinase and lactate dehydrogenase activities, decreased the ROS overload, and protect the mitochondrial network via up-regulated mRNA expression levels of IL-15 and uncoupling protein 3. It also down-regulated the levels of IL-6 and p21 of the myoblasts compared to the cells treated only with H2O2. Meanwhile, apurinic/aprimidinic endonuclease 1 expression and the Akt signaling pathway were stimulated. These effects could contribute to the resumption of cell viability and act as protective mechanism. In conclusion, myokine IL-15 could be a novel endogenous regulator to control intracellular ROS production and attenuate oxidative stress in skeletal muscle cells.
Collapse
Affiliation(s)
- Fengna Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China,
| | | | | | | | | | | | | |
Collapse
|
18
|
Karasawa S, Azuma M, Kasama T, Sakamoto S, Kabe Y, Imai T, Yamaguchi Y, Miyazawa K, Handa H. Vitamin K2 covalently binds to Bak and induces Bak-mediated apoptosis. Mol Pharmacol 2012; 83:613-20. [PMID: 23229512 DOI: 10.1124/mol.112.082602] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Vitamin K2 (VK2, menaquinone) is known to have anticancer activity in vitro and in vivo. Although its effect is thought to be mediated, at least in part, by the induction of apoptosis, the underlying molecular mechanism remains elusive. Here, we identified Bcl-2 antagonist killer 1 (Bak) as a molecular target of VK2-induced apoptosis. VK2 directly interacts with Bak and induces mitochondrial-mediated apoptosis. Although Bak and Bcl-2-associated X protein (Bax), another member of the Bcl-2 family, are generally thought to be functionally redundant, only Bak is necessary and sufficient for VK2-induced cytochrome c (cyt c) release and cell death. Moreover, VK2-2,3 epoxide, an intracellular metabolite of VK2, was shown to covalently bind to the cysteine-166 residue of Bak. Several lines of evidence suggested that the covalent attachment of VK2 is critical for apoptosis induction. Thus this study reveals a specific role for Bak in mitochondria-mediated apoptosis. This study also provides insight into the anticancer effects of VK2 and suggests that Bak may be a potential target of cancer therapy.
Collapse
Affiliation(s)
- Satoki Karasawa
- Department of Biological Information, Graduate School of Bioscience and Biotechnology Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wnt/β-catenin signaling induces the aging of mesenchymal stem cells through promoting the ROS production. Mol Cell Biochem 2012; 374:13-20. [PMID: 23124852 DOI: 10.1007/s11010-012-1498-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 10/25/2012] [Indexed: 01/17/2023]
Abstract
Recent studies have demonstrated that the Wnt/β-catenin signaling plays an important role in stem cell aging. However, the mechanisms of cell senescence induced by Wnt/β-catenin signaling are still poorly understood. Our preliminary study has indicated that activated Wnt/β-catenin signaling can induce MSC aging. In this study, we reported that the Wnt/β-catenin signaling was a potent activator of reactive oxygen species (ROS) generation in MSCs. After scavenging ROS with N-acetylcysteine, Wnt/β-catenin signaling-induced MSC aging was significantly attenuated and the DNA damage and the expression of p16(INK4A), p53, and p21 were reduced in MSCs. These results indicated that the Wnt/β-catenin signaling could induce MSC aging through promoting the intracellular production of ROS, and ROS may be the main mediators of MSC aging induced by excessive activation of Wnt/β-catenin signaling.
Collapse
|
20
|
Kim J, Lee SD, Chang B, Jin DH, Jung SI, Park MY, Han Y, Yang Y, Il Kim K, Lim JS, Kang YS, Lee MS. Enhanced antitumor activity of vitamin C via p53 in cancer cells. Free Radic Biol Med 2012; 53:1607-15. [PMID: 22892142 DOI: 10.1016/j.freeradbiomed.2012.07.079] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 07/10/2012] [Accepted: 07/30/2012] [Indexed: 11/19/2022]
Abstract
Ascorbate is an important natural antioxidant that can selectively kill cancer cells at pharmacological concentrations. Despite its benefit, it is quite difficult to predict the antitumor effects of ascorbate, because the relative cytotoxicity of ascorbate differs between cancer cell lines. Therefore, it is essential to examine the basis for this fundamental disagreement. Because p53 is activated by DNA-damaging stress and then regulates various cellular conditions, we hypothesized that p53 can sensitize cancer cells to ascorbate. Using isogenic cancer cells, we observed that the presence of p53 can affect ascorbate cytotoxicity, and also reactivation of p53 can make cancer cells sensitive to ascorbate. p53-dependent enhancement of ascorbate cytotoxicity is caused by increased reactive oxygen species generation via a differentially regulated p53 transcriptional network. We also found that transcriptionally activated p53 was derived from MDM2 ubiquitination by ascorbate and subsequently its signaling network renders cancer cells more susceptible to oxidative stress. Similar to the p53 effect on in vitro ascorbate cytotoxicity, inhibition of tumor growth is also stronger in p53-expressing tumors than in p53-deficient ones in vivo. This is the first observation that ascorbate cytotoxicity is positively related to p53 expression, activating its transcriptional network to worsen intracellular oxidative stress and consequently enhancing its cytotoxicity. Based on our study, reactivation of p53 may help to achieve more consistent cytotoxic effects of ascorbate in cancer therapies.
Collapse
Affiliation(s)
- Jinsun Kim
- Research Center for Women's Diseases, Department of Biological Sciences, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Inhibition of Mcl-1 promotes senescence in cancer cells: implications for preventing tumor growth and chemotherapy resistance. Mol Cell Biol 2012; 32:1879-92. [PMID: 22451485 DOI: 10.1128/mcb.06214-11] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although senescence in oncogenesis has been widely studied, little is known regarding the role of this process in chemotherapy resistance. Thus, from the standpoint of enhancing and improving cancer therapy, a better understanding of the molecular machinery involved in chemotherapy-related senescence is paramount. We show for the first time that Mcl-1, a Bcl-2 family member, plays an important role in preventing chemotherapy-induced senescence (CIS). Overexpression of Mcl-1 in p53⁺ cell lines inhibits CIS. Conversely, downregulation of Mcl-1 makes cells sensitive to CIS. Surprisingly, downregulation of Mcl-1 in p53⁻ cells restored CIS to similar levels as p53⁺ cells. In all cases where senescence can be induced, we observed increased p21 expression. Moreover, we show that the domain of Mcl-1 responsible for its antisenescent effects is distinct from that known to confer its antiapoptotic qualities. In vivo we observe that downregulation of Mcl-1 can almost retard tumor growth regardless of p53 status, while overexpression of Mcl-1 in p53⁺ cells conferred resistance to CIS and promoted tumor outgrowth. In summary, our data reveal that Mcl-1 can inhibit CIS in both a p53-dependent and -independent manner in vitro and in vivo and that this Mcl-1-mediated inhibition can enhance tumor growth in vivo.
Collapse
|
22
|
Masgras I, Carrera S, de Verdier PJ, Brennan P, Majid A, Makhtar W, Tulchinsky E, Jones GDD, Roninson IB, Macip S. Reactive oxygen species and mitochondrial sensitivity to oxidative stress determine induction of cancer cell death by p21. J Biol Chem 2012; 287:9845-9854. [PMID: 22311974 DOI: 10.1074/jbc.m111.250357] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
p21(Waf1/Cip1/Sdi1) is a cyclin-dependent kinase inhibitor that mediates cell cycle arrest. Prolonged p21 up-regulation induces a senescent phenotype in normal and cancer cells, accompanied by an increase in intracellular reactive oxygen species (ROS). However, it has been shown recently that p21 expression can also lead to cell death in certain models. The mechanisms involved in this process are not fully understood. Here, we describe an induction of apoptosis by p21 in sarcoma cell lines that is p53-independent and can be ameliorated with antioxidants. Similar levels of p21 and ROS caused senescence in the absence of significant death in other cancer cell lines, suggesting a cell-specific response. We also found that cells undergoing p21-dependent cell death had higher sensitivity to oxidants and a specific pattern of mitochondrial polarization changes. Consistent with this, apoptosis could be blocked with targeted expression of catalase in the mitochondria of these cells. We propose that the balance between cancer cell death and arrest after p21 up-regulation depends on the specific effects of p21-induced ROS on the mitochondria. This suggests that selective up-regulation of p21 in cancer cells could be a successful therapeutic intervention for sarcomas and tumors with lower resistance to mitochondrial oxidative damage, regardless of p53 status.
Collapse
Affiliation(s)
- Ionica Masgras
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Samantha Carrera
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Petra J de Verdier
- Department of Molecular Medicine and Surgery, Urology Laboratory, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Paul Brennan
- Department of Infection, Immunity, and Biochemistry, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom, and
| | - Aneela Majid
- Medical Research Council (MRC) Toxicology Unit, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Wan Makhtar
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Eugene Tulchinsky
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - George D D Jones
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Igor B Roninson
- Translational Cancer Therapeutics Program Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208
| | - Salvador Macip
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, United Kingdom.
| |
Collapse
|
23
|
Skinner HD, Sandulache VC, Ow TJ, Meyn RE, Yordy JS, Beadle BM, Fitzgerald AL, Giri U, Ang KK, Myers JN. TP53 disruptive mutations lead to head and neck cancer treatment failure through inhibition of radiation-induced senescence. Clin Cancer Res 2011; 18:290-300. [PMID: 22090360 DOI: 10.1158/1078-0432.ccr-11-2260] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE Mortality of patients with head and neck squamous cell carcinoma (HNSCC) is primarily driven by tumor cell radioresistance leading to locoregional recurrence (LRR). In this study, we use a classification of TP53 mutation (disruptive vs. nondisruptive) and examine impact on clinical outcomes and radiation sensitivity. EXPERIMENTAL DESIGN Seventy-four patients with HNSCC treated with surgery and postoperative radiation and 38 HNSCC cell lines were assembled; for each, TP53 was sequenced and the in vitro radioresistance measured using clonogenic assays. p53 protein expression was inhibited using short hairpin RNA (shRNA) and overexpressed using a retrovirus. Radiation-induced apoptosis, mitotic cell death, senescence, and reactive oxygen species (ROS) assays were carried out. The effect of the drug metformin on overcoming mutant p53-associated radiation resistance was examined in vitro as well as in vivo, using an orthotopic xenograft model. RESULTS Mutant TP53 alone was not predictive of LRR; however, disruptive TP53 mutation strongly predicted LRR (P = 0.03). Cell lines with disruptive mutations were significantly more radioresistant (P < 0.05). Expression of disruptive TP53 mutations significantly decreased radiation-induced senescence, as measured by SA-β-gal staining, p21 expression, and release of ROS. The mitochondrial agent metformin potentiated the effects of radiation in the presence of a disruptive TP53 mutation partially via senescence. Examination of our patient cohort showed that LRR was decreased in patients taking metformin. CONCLUSIONS Disruptive TP53 mutations in HNSCC tumors predicts for LRR, because of increased radioresistance via the inhibition of senescence. Metformin can serve as a radiosensitizer for HNSCC with disruptive TP53, presaging the possibility of personalizing HNSCC treatment.
Collapse
Affiliation(s)
- Heath D Skinner
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ladelfa MF, Toledo MF, Laiseca JE, Monte M. Interaction of p53 with tumor suppressive and oncogenic signaling pathways to control cellular reactive oxygen species production. Antioxid Redox Signal 2011; 15:1749-61. [PMID: 20919943 DOI: 10.1089/ars.2010.3652] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
p53 is a crucial transcription factor with tumor suppressive properties that elicits its function through specific target genes. It constitutes a pivotal system that integrates information received by many signaling pathways and subsequently orchestrates cell fate decisions, namely, growth-arrest, senescence, or apoptosis. Reactive oxygen species (ROS) production in cells can play a key role in signal transduction, being able to trigger different processes as cell death or cell proliferation. Sustained oxidative stress can induce genomic instability and collaborates with cancer development, whereas acute enhancement of high ROS levels leads to toxic oxidative cell damage and cell death. Here, it has been considered p53 broad potential contribution through its ability to regulate selected key cancer signaling pathways, where ROS participate as inductors or effectors of the final biological outcome. Further, we have discussed how p53 could play a role in preventing potentially harmful oxidative state and cell proliferation by pro-oncogenic pathways such as PI3K/AKT/mTOR and WNT/β-catenin or under hypoxia state. In addition, we have considered potential mechanisms by which p53 could collaborate with signal transduction pathways such as transforming growth factor-β (TGF-β) and stress-activated protein kinases (SAPK) that produce ROS, to stop or eliminate uncontrolled proliferating cells.
Collapse
Affiliation(s)
- María Fátima Ladelfa
- Laboratorio de Biología Celular y Molecular, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Buenos Aires, Argentina
| | | | | | | |
Collapse
|
25
|
Kato K, Kuhara A, Yoneda T, Inoue T, Takao T, Ohgami T, Dan L, Kuboyama A, Kusunoki S, Takeda S, Wake N. Sodium butyrate inhibits the self-renewal capacity of endometrial tumor side-population cells by inducing a DNA damage response. Mol Cancer Ther 2011; 10:1430-9. [PMID: 21632462 DOI: 10.1158/1535-7163.mct-10-1062] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We previously isolated side-population (SP) cells from a human endometrial cancer cell line, Hec1, and determined that Hec1-SP cells have cancer stem-like cell features. In this study, we isolated SP cells and non-SP (NSP) cells derived from a rat endometrial cell line expressing human [(12)Val] KRAS (RK12V cells) and determined the SP phenotype. RK12V-SP cells showed self-renewal capacity, the potential to develop into stromal cells, reduced expression levels of differentiation markers, long-term proliferating capacity in cultures, and enhanced tumorigenicity, indicating that RK12V-SP cells have cancer stem-like cell features. RK12V-SP cells also display higher resistance to conventional chemotherapeutic drugs. In contrast, treatment with a histone deacetylases (HDAC) inhibitor, sodium butyrate (NaB), reduced self-renewal capacity and completely suppressed colony formation of RK12V-SP cells in a soft agar. The levels of intracellular reactive oxygen species (ROS) and the number of γH2AX foci were increased by NaB treatment of both RK12V-SP cells and RK12V-NSP cells. The expression levels of γH2AX, p21, p27, and phospho-p38 mitogen-activated protein kinase were enhanced in RK12V-SP cells compared with RK12V-NSP cells. These results imply that treatment with NaB induced production of intracellular ROS and DNA damage in both RK12V-SP and RK12V-NSP cells. Following NaB treatment, DNA damage response signals were enhanced more in RK12V-SP cells than in RK12V-NSP cells. This is the first article on an inhibitory effect of NaB on proliferation of endometrial cancer stem-like cells. HDAC inhibitors may represent an attractive antitumor therapy based upon their inhibitory effects on cancer stem-like cells.
Collapse
Affiliation(s)
- Kiyoko Kato
- Department of Obstetrics and Gynecology, Faculty of Medicine, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Westin ER, Aykin-Burns N, Buckingham EM, Spitz DR, Goldman FD, Klingelhutz AJ. The p53/p21(WAF/CIP) pathway mediates oxidative stress and senescence in dyskeratosis congenita cells with telomerase insufficiency. Antioxid Redox Signal 2011; 14:985-97. [PMID: 21087144 PMCID: PMC3043957 DOI: 10.1089/ars.2010.3444] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Telomere attrition is a natural process that occurs due to inadequate telomere maintenance. Once at a critically short threshold, telomeres signal growth arrest, leading to senescence. Telomeres can be elongated by the enzyme telomerase, which adds de novo telomere repeats to the ends of chromosomes. Mutations in genes for telomere binding proteins or components of telomerase give rise to the premature aging disorder dyskeratosis congenita (DC), which is characterized by extremely short telomeres and an aging phenotype. The current study demonstrates that DC cells signal a DNA damage response through p53 and its downstream mediator, p21(WAF/CIP), which is accompanied by an elevation in steady-state levels of superoxide and percent glutathione disulfide, both indicators of oxidative stress. Poor proliferation of DC cells can be partially overcome by reducing O(2) tension from 21% to 4%. Further, restoring telomerase activity or inhibiting p53 or p21(WAF/CIP) significantly mitigated growth inhibition as well as caused a significant decrease in steady-state levels of superoxide. Our results support a model in which telomerase insufficiency in DC leads to p21(WAF/CIP) signaling, via p53, to cause increased steady-state levels of superoxide, metabolic oxidative stress, and senescence.
Collapse
Affiliation(s)
- Erik R Westin
- Interdisciplinary Program in Genetics, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Eukaryotic organisms evolved under aerobic conditions subjecting nuclear DNA to damage provoked by reactive oxygen species (ROS). Although ROS are thought to be a major cause of DNA damage, little is known about the molecular mechanisms protecting nuclear DNA from oxidative stress. Here we show that protection of nuclear DNA in plants requires a coordinated function of ROS-scavenging pathways residing in the cytosol and peroxisomes, demonstrating that nuclear ROS scavengers such as peroxiredoxin and glutathione are insufficient to safeguard DNA integrity. Both catalase (CAT2) and cytosolic ascorbate peroxidase (APX1) play a key role in protecting the plant genome against photorespiratory-dependent H(2)O(2)-induced DNA damage. In apx1/cat2 double-mutant plants, a DNA damage response is activated, suppressing growth via a WEE1 kinase-dependent cell-cycle checkpoint. This response is correlated with enhanced tolerance to oxidative stress, DNA stress-causing agents, and inhibited programmed cell death.
Collapse
|
28
|
Mizutani H, Hiraku Y, Tada-Oikawa S, Murata M, Ikemura K, Iwamoto T, Kagawa Y, Okuda M, Kawanishi S. Romidepsin (FK228), a potent histone deacetylase inhibitor, induces apoptosis through the generation of hydrogen peroxide. Cancer Sci 2010; 101:2214-9. [PMID: 20624163 PMCID: PMC11159834 DOI: 10.1111/j.1349-7006.2010.01645.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Romidepsin (FK228) is a potent histone deacetylase (HDAC) inhibitor, which has a potent anticancer activity, but its molecular mechanism is unknown. We investigated the mechanism of FK228-induced apoptosis in the human leukemia cell line HL-60 and its hydrogen peroxide (H(2)O(2))-resistant sub-clone, HP100, and the human colon cancer cell line Caco-2. Cytotoxicity and DNA ladder formation induced by FK228 could be detected in HL-60 cells after a 24-h incubation, whereas they could not be detected in HP100 cells. Trichostatin A (TSA), an HDAC inhibitor, induced DNA ladder formation in both HL-60 and HP100 cells. In contrast, FK228 inhibited HDAC activity in both HL-60 and HP100 cells to a similar extent. These findings suggest that FK228-induced apoptosis involves H(2)O(2)-mediated pathways and that TSA-induced apoptosis does not. Flow cytometry revealed H(2)O(2) formation and a change in mitochondrial membrane potential (Δψm) in FK228-treated cells. FK228 also induced apoptosis in Caco-2 cells, which was prevented by N-acetyl-cysteine, suggesting that reactive oxygen species participate in apoptosis in various types of tumor cells. Interestingly, in a cell-free system, FK228 generated superoxide (O(2)(-)) in the presence of glutathione, suggesting that H(2)O(2) is derived from dismutation of O(2)(-) produced through redox-cycle of FK228. Therefore, in addition to HDAC inhibition, H(2)O(2) generated from FK228 may participate in its apoptotic effect.
Collapse
|
29
|
Roy J, Pallepati P, Bettaieb A, Averill-Bates DA. Acrolein induces apoptosis through the death receptor pathway in A549 lung cells: role of p53. Can J Physiol Pharmacol 2010; 88:353-68. [PMID: 20393600 DOI: 10.1139/y09-134] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Acrolein, a highly reactive alpha,beta-unsaturated aldehyde, is an omnipresent environmental pollutant. Chronic and acute human exposures occur through exogenous and endogenous sources, including food, vapors of overheated cooking oil, house and forest fires, cigarette smoke, and automobile exhaust. Acrolein is a toxic byproduct of lipid peroxidation, which has been implicated in pulmonary, cardiac, and neurodegenerative diseases. This study shows that p53 is an initiating factor in acrolein-induced death receptor activation during apoptosis in A549 human lung cells. Exposure of cells to acrolein (0-50 micromol/L) mainly caused apoptosis, which was manifested by execution phase events such as condensation of nuclear chromatin, phosphatidylserine externalization, and poly(ADP-ribose) polymerase (PARP) cleavage. Levels of necrosis (approximately 5%) were low. Acrolein triggered the death receptor pathway of apoptosis, causing elevation of Fas ligand (FasL) and translocation of adaptor protein Fas-associated death domain to the plasma membrane. Acrolein caused activation of caspase-8, caspase-2, caspase-7, and the cross-talk pathway mediated by Bid cleavage. Activation of p53 and increased expression of p53-upregulated modulator of apoptosis (PUMA) occurred in response to acrolein. FasL upregulation and caspase-8 activation were decreased by p53 inhibitor pifithrin-alpha and antioxidant polyethylene glycol catalase. These findings increase our knowledge about the induction of cell death pathways by acrolein, which has important implications for human health.
Collapse
Affiliation(s)
- Julie Roy
- Département des Sciences Biologiques, TOXEN, Université du Québec à Montréal, CP 8888, Succursale Centre Ville, Montréal, QC H3C 3P8, Canada
| | | | | | | |
Collapse
|