1
|
Jin Y, Xue J. Lipid kinases PIP5Ks and PIP4Ks: potential drug targets for breast cancer. Front Oncol 2023; 13:1323897. [PMID: 38156113 PMCID: PMC10753794 DOI: 10.3389/fonc.2023.1323897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023] Open
Abstract
Phosphoinositides, a small group of lipids found in all cellular membranes, have recently garnered heightened attention due to their crucial roles in diverse biological processes and different diseases. Among these, phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), the most abundant bis-phosphorylated phosphoinositide within the signaling system, stands notably connected to breast cancer. Not only does it serve as a key activator of the frequently altered phosphatidylinositol 3-kinase (PI3K) pathway in breast cancer, but also its conversion to phosphatidylinositol-3,4,5-triphosphate (PI(3,4,5)P3) is an important direction for breast cancer research. The generation and degradation of phosphoinositides intricately involve phosphoinositide kinases. PI(4,5)P2 generation emanates from the phosphorylation of PI4P or PI5P by two lipid kinase families: Type I phosphatidylinositol-4-phosphate 5-kinases (PIP5Ks) and Type II phosphatidylinositol-5-phosphate 4-kinases (PIP4Ks). In this comprehensive review, we focus on these two lipid kinases and delineate their compositions and respective cellular localization. Moreover, we shed light on the expression patterns and functions of distinct isoforms of these kinases in breast cancer. For a deeper understanding of their functional dynamics, we expound upon various mechanisms governing the regulation of PIP5Ks and PIP4Ks activities. A summary of effective and specific small molecule inhibitors designed for PIP5Ks or PIP4Ks are also provided. These growing evidences support PIP5Ks and PIP4Ks as promising drug targets for breast cancer.
Collapse
Affiliation(s)
- Yue Jin
- Department of Molecular Diagnosis, Northern Jiangsu People’s Hospital, Yangzhou University Clinical Medical College, Yangzhou, China
| | - Jian Xue
- Department of Emergency Medicine, Yizheng People’s Hospital, Yangzhou University Clinical Medical College, Yangzhou, China
| |
Collapse
|
2
|
Characterization of a PIP Binding Site in the N-Terminal Domain of V-ATPase a4 and Its Role in Plasma Membrane Association. Int J Mol Sci 2023; 24:ijms24054867. [PMID: 36902293 PMCID: PMC10002524 DOI: 10.3390/ijms24054867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Vacuolar ATPases (V-ATPases) are multi-subunit ATP-dependent proton pumps necessary for cellular functions, including pH regulation and membrane fusion. The evidence suggests that the V-ATPase a-subunit's interaction with the membrane signaling lipid phosphatidylinositol (PIPs) regulates the recruitment of V-ATPase complexes to specific membranes. We generated a homology model of the N-terminal domain of the human a4 isoform (a4NT) using Phyre2.0 and propose a lipid binding domain within the distal lobe of the a4NT. We identified a basic motif, K234IKK237, critical for interaction with phosphoinositides (PIP), and found similar basic residue motifs in all four mammalian and both yeast a-isoforms. We tested PIP binding of wildtype and mutant a4NT in vitro. In protein lipid overlay assays, the double mutation K234A/K237A and the autosomal recessive distal renal tubular-causing mutation K237del reduced both PIP binding and association with liposomes enriched with PI(4,5)P2, a PIP enriched within plasma membranes. Circular dichroism spectra of the mutant protein were comparable to wildtype, indicating that mutations affected lipid binding, not protein structure. When expressed in HEK293, wildtype a4NT localized to the plasma membrane in fluorescence microscopy and co-purified with the microsomal membrane fraction in cellular fractionation experiments. a4NT mutants showed reduced membrane association and decreased plasma membrane localization. Depletion of PI(4,5)P2 by ionomycin caused reduced membrane association of the WT a4NT protein. Our data suggest that information contained within the soluble a4NT is sufficient for membrane association and that PI(4,5)P2 binding capacity is involved in a4 V-ATPase plasma membrane retention.
Collapse
|
3
|
Wills RC, Hammond GRV. PI(4,5)P2: signaling the plasma membrane. Biochem J 2022; 479:2311-2325. [PMID: 36367756 PMCID: PMC9704524 DOI: 10.1042/bcj20220445] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/13/2022]
Abstract
In the almost 70 years since the first hints of its existence, the phosphoinositide, phosphatidyl-D-myo-inositol 4,5-bisphosphate has been found to be central in the biological regulation of plasma membrane (PM) function. Here, we provide an overview of the signaling, transport and structural roles the lipid plays at the cell surface in animal cells. These include being substrate for second messenger generation, direct modulation of receptors, control of membrane traffic, regulation of ion channels and transporters, and modulation of the cytoskeleton and cell polarity. We conclude by re-evaluating PI(4,5)P2's designation as a signaling molecule, instead proposing a cofactor role, enabling PM-selective function for many proteins.
Collapse
Affiliation(s)
- Rachel C. Wills
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Gerald R. V. Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| |
Collapse
|
4
|
Yin M, Wang Y. The role of PIP5K1A in cancer development and progression. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:151. [PMID: 35852640 DOI: 10.1007/s12032-022-01753-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023]
Abstract
Malignant tumors are formed via a pathological process of uncontrolled cell division that seriously endangers human physical and mental health. The PI3K/AKT signaling pathway plays an important role in the occurrence and development of various cancers. As a lipid kinase, PIP5K1A acts on the upstream of the PI3K/AKT signaling pathway and has a variety of biological functions, including cell differentiation, cell migration, and sperm development. An increasing number of studies have shown that the overexpression of PIP5K1A promotes the growth, invasion, and migration of cancer cells, and the inhibition of PIP5K1A can effectively hinder tumor progression. These findings imply that PIP5K1A are potential markers and targets for cancers. The aim of this study was to systemically review the structure and function of PIP5K1A, the relationship between PIP5K1A and tumors and the potential therapeutic value of PIP5K1A inhibitors in cancer. PIP5K1A affects the occurrence and progression of many tumors and will provide new strategies for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Man Yin
- Department of Clinical Medicine, Jining Medical University, Jining, 272000, Shandong, China
| | - Yunfei Wang
- Department of Gynecology, Affiliated Hospital of Jining Medical University, Gu Huai Road, No.89, Jining, 272029, Shandong, China.
| |
Collapse
|
5
|
Bindra GK, Williams SA, Lay FT, Baxter AA, Poon IKH, Hulett MD, Phan TK. Human β-Defensin 2 (HBD-2) Displays Oncolytic Activity but Does Not Affect Tumour Cell Migration. Biomolecules 2022; 12:biom12020264. [PMID: 35204765 PMCID: PMC8961614 DOI: 10.3390/biom12020264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 01/01/2023] Open
Abstract
Defensins form an integral part of the cationic host defence peptide (HDP) family, a key component of innate immunity. Apart from their antimicrobial and immunomodulatory activities, many HDPs exert multifaceted effects on tumour cells, notably direct oncolysis and/or inhibition of tumour cell migration. Therefore, HDPs have been explored as promising anticancer therapeutics. Human β-defensin 2 (HBD-2) represents a prominent member of human HDPs, being well-characterised for its potent pathogen-killing, wound-healing, cytokine-inducing and leukocyte-chemoattracting functions. However, its anticancer effects remain largely unknown. Recently, we demonstrated that HBD-2 binds strongly to phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), a key mediator of defensin-induced cell death and an instructional messenger during cell migration. Hence, in this study, we sought to investigate the lytic and anti-migratory effects of HBD-2 on tumour cells. Using various cell biological assays and confocal microscopy, we showed that HBD-2 killed tumour cells via acute lytic cell death rather than apoptosis. In addition, our data suggested that, despite the reported PI(4,5)P2 interaction, HBD-2 does not affect cytoskeletal-dependent tumour cell migration. Together, our findings provide further insights into defensin biology and informs future defensin-based drug development.
Collapse
|
6
|
Kliza KW, Liu Q, Roosenboom LWM, Jansen PWTC, Filippov DV, Vermeulen M. Reading ADP-ribosylation signaling using chemical biology and interaction proteomics. Mol Cell 2021; 81:4552-4567.e8. [PMID: 34551281 DOI: 10.1016/j.molcel.2021.08.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/23/2021] [Accepted: 08/26/2021] [Indexed: 01/12/2023]
Abstract
ADP-ribose (ADPr) readers are essential components of ADP-ribosylation signaling, which regulates genome maintenance and immunity. The identification and discrimination between monoADPr (MAR) and polyADPr (PAR) readers is difficult because of a lack of suitable affinity-enrichment reagents. We synthesized well-defined ADPr probes and used these for affinity purifications combined with relative and absolute quantitative mass spectrometry to generate proteome-wide MAR and PAR interactomes, including determination of apparent binding affinities. Among the main findings, MAR and PAR readers regulate various common and distinct processes, such as the DNA-damage response, cellular metabolism, RNA trafficking, and transcription. We monitored the dynamics of PAR interactions upon induction of oxidative DNA damage and uncovered the mechanistic connections between ubiquitin signaling and ADP-ribosylation. Taken together, chemical biology enables exploration of MAR and PAR readers using interaction proteomics. Furthermore, the generated MAR and PAR interaction maps significantly expand our current understanding of ADPr signaling.
Collapse
Affiliation(s)
- Katarzyna W Kliza
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands.
| | - Qiang Liu
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, Netherlands
| | - Laura W M Roosenboom
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
| | - Pascal W T C Jansen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
| | - Dmitri V Filippov
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, Netherlands.
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands.
| |
Collapse
|
7
|
PI(3,4)P 2-mediated membrane tubulation promotes integrin trafficking and invasive cell migration. Proc Natl Acad Sci U S A 2021; 118:2017645118. [PMID: 33947811 PMCID: PMC8126793 DOI: 10.1073/pnas.2017645118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Invadopodia are integrin-mediated adhesions with abundant PI(3,4)P2 However, the functional role of PI(3,4)P2 in adhesion signaling remains unclear. Here, we find that the PI(3,4)P2 biogenesis regulates the integrin endocytosis at invadopodia. PI(3,4)P2 is locally produced by PIK3CA and SHIP2 and is concentrated at the trailing edge of the invadopodium arc. The PI(3,4)P2-rich compartment locally forms small puncta (membrane buds) in a SNX9-dependent manner, recruits dynein activator Hook1 through AKTIP, and rearranges into micrometer-long tubular invaginations (membrane tubes). The uncurving membrane tube extends rapidly, follows the retrograde movement of dynein along microtubule tracks, and disconnects from the plasma membrane. Activated integrin-beta3 is locally internalized through the pathway of PI(3,4)P2-mediated membrane invagination and is then actively recycled. Blockages of PI3K, SHIP2, and SNX9 suppress integrin-beta3 endocytosis, delay adhesion turnover, and impede transwell invasion of MEF-Src and MDA-MB-231 cells. Thus, the production of PI(3,4)P2 promotes invasive cell migration by stimulating the trafficking of integrin receptor at the invadopodium.
Collapse
|
8
|
Shapovalov G, Gordienko D, Prevarskaya N. Store operated calcium channels in cancer progression. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 363:123-168. [PMID: 34392928 DOI: 10.1016/bs.ircmb.2021.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent decades cancer emerged as one of the leading causes of death in the developed countries, with some types of cancer contributing to the top 10 causes of death on the list of the World Health Organization. Carcinogenesis, a malignant transformation causing formation of tumors in normal tissues, is associated with changes in the cell cycle caused by suppression of signaling pathways leading to cell death and facilitation of those enhancing proliferation. Further progression of cancer, during which benign tumors acquire more aggressive phenotypes, is characterized by metastatic dissemination through the body driven by augmented motility and invasiveness of cancer cells. All these processes are associated with alterations in calcium homeostasis in cancer cells, which promote their proliferation, motility and invasion, and dissuade cell death or cell cycle arrest. Remodeling of store-operated calcium entry (SOCE), one of the major pathways regulating intracellular Ca2+ concentration ([Ca2+]i), manifests a key event in many of these processes. This review systematizes current knowledge on the mechanisms recruiting SOCE-related proteins in carcinogenesis and cancer progression.
Collapse
Affiliation(s)
- George Shapovalov
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologiesa, University of Lille, Villeneuve d'Ascq, France.
| | - Dmitri Gordienko
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologiesa, University of Lille, Villeneuve d'Ascq, France
| | - Natalia Prevarskaya
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologiesa, University of Lille, Villeneuve d'Ascq, France
| |
Collapse
|
9
|
Kim JH, Hanlon CD, Vohra S, Devreotes PN, Andrew DJ. Hedgehog signaling and Tre1 regulate actin dynamics through PI(4,5)P 2 to direct migration of Drosophila embryonic germ cells. Cell Rep 2021; 34:108799. [PMID: 33657369 PMCID: PMC8023404 DOI: 10.1016/j.celrep.2021.108799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 12/21/2020] [Accepted: 02/05/2021] [Indexed: 01/09/2023] Open
Abstract
The Tre1 G-protein coupled receptor (GPCR) was discovered to be required for Drosophila germ cell (GC) coalescence almost two decades ago, yet the molecular events both upstream and downstream of Tre1 activation remain poorly understood. To gain insight into these events, we describe a bona fide null allele and both untagged and tagged versions of Tre1. We find that the primary defect with complete Tre1 loss is the failure of GCs to properly navigate, with GC mis-migration occurring from early stages. We find that Tre1 localizes with F-actin at the migration front, along with PI(4,5)P2; dPIP5K, an enzyme that generates PI(4,5)P2; and dWIP, a protein that binds activated Wiskott-Aldrich syndrome protein (WASP), which stimulates F-actin polymerization. We show that Tre1 is required for polarized accumulation of F-actin, PI(4,5)P2, and dPIP5K. Smoothened also localizes with F-actin at the migration front, and Hh, through Smo, increases levels of Tre1 at the plasma membrane and Tre1’s association with dPIP5K. Kim et al. uncover molecular and cellular events upstream and downstream of the Tre1 G-protein coupled receptor (GPCR), which is required for germ cell navigation in Drosophila. Hedgehog signaling through Smoothened localizes Tre1 to activate F-actin assembly through dPIP5K, PI(4,5)P2, and WASP.
Collapse
Affiliation(s)
- Ji Hoon Kim
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Caitlin D Hanlon
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sunaina Vohra
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter N Devreotes
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Deborah J Andrew
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
Strätker K, Haidar S, Dubiel M, Estévez-Braun A, Jose J. Autodisplay of human PIP5K1α lipid kinase on Escherichia coli and inhibitor testing. Enzyme Microb Technol 2020; 143:109717. [PMID: 33375977 DOI: 10.1016/j.enzmictec.2020.109717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022]
Abstract
The human phosphatidylinositol 4-phosphate 5-kinase type I α (hPIP5K1α) plays a major role in the PI3K/AKT/mTOR signaling pathway. As it has been shown before that hPIP5K1α is involved in the development of different types of cancer in particular prostate cancer, inhibitors of the enzyme might be a new option for the treatment of this disease. Here we report on the expression of hPIP5K1α on the surface of E. coli using Autodisplay. Autodisplay is defined as the surface display of a recombinant protein on a gramnegative bacterium by the autotransporter secretion pathway. After verification of surface expression, enzyme activity of whole cells displaying hPIP5K1α was determined by a capillary electrophoresis based assay. When using cells at an OD578 of 2.5, the artificial substrate phosphatidylinositol4-phosphate (PI(4)P) fluorescein was converted by a rate of 10.7 ± 0.2 fmol/min. Using this substrate inhibition of three pyranobenzoquinone type compounds was tested. The most active compound was 4-(2-amino-3-cyano-6-hydroxy-5,8-dioxo-7-undecyl-5,8-dihydro-4H-chromen-4-yl) benzoic acid with an IC50 value of 8.6 μM. Because until now, all attempts to purify hPIP5K1α failed, we suggest the use of whole cells of E. coli displaying the enzyme as a convenient tool for inhibitor identification.
Collapse
Affiliation(s)
- Katja Strätker
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, 48149, Münster, Germany
| | - Samer Haidar
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, 48149, Münster, Germany; Faculty of Pharmacy, 17 April Street, Damascus University, Syria
| | - Mariam Dubiel
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, 48149, Münster, Germany
| | - Ana Estévez-Braun
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de QuímicaOrgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez Nº 2, 38206, La Laguna, Tenerife, Spain
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, 48149, Münster, Germany.
| |
Collapse
|
11
|
Wu PF, Bhore N, Lee YL, Chou JY, Chen YW, Wu PY, Hsu WM, Lee H, Huang YS, Lu PJ, Liao YF. Phosphatidylinositol-4-phosphate 5-kinase type 1α attenuates Aβ production by promoting non-amyloidogenic processing of amyloid precursor protein. FASEB J 2020; 34:12127-12146. [PMID: 32686865 DOI: 10.1096/fj.202000113r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/17/2020] [Accepted: 06/29/2020] [Indexed: 11/11/2022]
Abstract
Alzheimer's disease (AD) is characterized by a chronic decline in cognitive function and is pathologically typified by cerebral deposition of amyloid-β peptide (Aβ). The production of Aβ is mediated by sequential proteolysis of amyloid precursor protein (APP) by β- and γ-secretases, and has been implicated as the essential determinant of AD pathology. Previous studies have demonstrated that the level of phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] in the membrane may potentially modulate Aβ production. Given that PI(4,5)P2 is produced by type 1 phosphatidylinositol-4-phosphate 5-kinases (PIP5Ks), we sought to determine whether the level of PIP5K type Iα (PIP5K1A) can affect production of Aβ by modulating the lipid composition of the membrane. Using a HEK-derived cell line that constitutively expresses yellow fluorescent protein-tagged APP (APP-YFP), we demonstrated that overexpression of PIP5K1A results in significant enhancement of non-amyloidogenic APP processing and a concomitant suppression of the amyloidogenic pathway, leading to a marked decrease in secreted Aβ. Consistently, cells overexpressing PIP5K1A exhibited a significant redistribution of APP-YFP from endosomal compartments to the cell surface. Our findings suggest that PIP5K1A may play a critical role in governing Aβ production by modulating membrane distribution of APP, and as such, the pathway may be a valuable therapeutic target for AD.
Collapse
Affiliation(s)
- Po-Fan Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.,TIGP in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan
| | - Noopur Bhore
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.,TIGP in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Yen-Lurk Lee
- TIGP in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ju-Yun Chou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yun-Wen Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Pei-Yi Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Wen-Ming Hsu
- Department of Surgery, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsinyu Lee
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yi-Shuian Huang
- TIGP in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan.,TIGP in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,TIGP in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Pei-Jung Lu
- TIGP in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Feng Liao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.,TIGP in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan.,TIGP in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
12
|
Fatunmbi O, Bradley RP, Kandy SK, Bucki R, Janmey PA, Radhakrishnan R. A multiscale biophysical model for the recruitment of actin nucleating proteins at the membrane interface. SOFT MATTER 2020; 16:4941-4954. [PMID: 32436537 PMCID: PMC7373224 DOI: 10.1039/d0sm00267d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The dynamics and organization of the actin cytoskeleton are crucial to many cellular events such as motility, polarization, cell shaping, and cell division. The intracellular and extracellular signaling associated with this cytoskeletal network is communicated through cell membranes. Hence the organization of membrane macromolecules and actin filament assembly are highly interdependent. Although the actin-membrane linkage is known to happen through many routes, the major class of interactions is through the direct interaction of actin-binding proteins with the lipid class containing poly-phosphatidylinositols (PPIs). Among the PPIs, phosphatidylinositol bisphosphate (PI(4,5)P2) acts as a significant factor controlling actin polymerization in the proximity of the membrane by binding to actin-associated proteins. The molecular interactions between these actin-binding proteins and the membrane lipids remain elusive. Here, using molecular modeling, analytical theory, and experimental methods, we investigate the binding of three different actin-binding proteins, mDia2, NWASP, and gelsolin, to membranes containing PI(4,5)P2 lipids. We perform molecular dynamics simulations on the protein-bilayer system and analyze the membrane binding in the form of hydrogen bonds and salt bridges at various PI(4,5)P2 and cholesterol concentrations. Our experimental study with PI(4,5)P2-containing large unilamellar vesicles mimics the computational experiments. Using the multivalencies of the proteins obtained in molecular simulations and the cooperative binding mechanisms of the proteins, we also propose a multivalent binding model that predicts the actin filament distributions at various PI(4,5)P2 and protein concentrations.
Collapse
Affiliation(s)
- Ololade Fatunmbi
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Phan TK, Bindra GK, Williams SA, Poon IK, Hulett MD. Combating Human Pathogens and Cancer by Targeting Phosphoinositides and Their Metabolism. Trends Pharmacol Sci 2019; 40:866-882. [DOI: 10.1016/j.tips.2019.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 12/19/2022]
|
14
|
Dynamic Podosome-Like Structures in Nascent Phagosomes Are Coordinated by Phosphoinositides. Dev Cell 2019; 50:397-410.e3. [DOI: 10.1016/j.devcel.2019.05.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 03/10/2019] [Accepted: 05/10/2019] [Indexed: 12/21/2022]
|
15
|
Cao S, Chung S, Kim S, Li Z, Manor D, Buck M. K-Ras G-domain binding with signaling lipid phosphatidylinositol (4,5)-phosphate (PIP2): membrane association, protein orientation, and function. J Biol Chem 2019; 294:7068-7084. [PMID: 30792310 DOI: 10.1074/jbc.ra118.004021] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 12/12/2018] [Indexed: 12/14/2022] Open
Abstract
Ras genes potently drive human cancers, with mutated proto-oncogene GTPase KRAS4B (K-Ras4B) being the most abundant isoform. Targeted inhibition of oncogenic gene products is considered the "holy grail" of present-day cancer therapy, and recent discoveries of small-molecule KRas4B inhibitors were made thanks to a deeper understanding of the structure and dynamics of this GTPase. Because interactions with biological membranes are key for Ras function, Ras-lipid interactions have become a major focus, especially because such interactions evidently involve both the Ras C terminus for lipid anchoring and its G-protein domain. Here, using NMR spectroscopy and molecular dynamics simulations complemented by biophysical- and cell-biology assays, we investigated the interaction between K-Ras4B with the signaling lipid phosphatidylinositol (4,5)-phosphate (PIP2). We discovered that the β2 and β3 strands as well as helices 4 and 5 of the GTPase G-domain bind to PIP2 and identified the specific residues in these structural elements employed in these interactions, likely occurring in two K-Ras4B orientation states relative to the membrane. Importantly, we found that some of these residues known to be oncogenic when mutated (D47K, D92N, K104M, and D126N) are critical for K-Ras-mediated transformation of fibroblast cells, but do not substantially affect basal and assisted nucleotide hydrolysis and exchange. Moreover, the K104M substitution abolished localization of K-Ras to the plasma membrane. The findings suggest that specific G-domain residues can critically regulate Ras function by mediating interactions with membrane-associated PIP2 lipids; these insights that may inform the future design of therapeutic reagents targeting Ras activity.
Collapse
Affiliation(s)
- Shufen Cao
- From the Departments of Physiology and Biophysics
| | | | | | - Zhenlu Li
- From the Departments of Physiology and Biophysics
| | - Danny Manor
- Nutrition, .,Pharmacology, and.,the Case Comprehensive Cancer Center and
| | - Matthias Buck
- From the Departments of Physiology and Biophysics, .,the Case Comprehensive Cancer Center and.,Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106 and.,Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106
| |
Collapse
|
16
|
Sarwar M, Syed Khaja AS, Aleskandarany M, Karlsson R, Althobiti M, Ødum N, Mongan NP, Dizeyi N, Johnson H, Green AR, Ellis IO, Rakha EA, Persson JL. The role of PIP5K1α/pAKT and targeted inhibition of growth of subtypes of breast cancer using PIP5K1α inhibitor. Oncogene 2018; 38:375-389. [PMID: 30104711 PMCID: PMC6336681 DOI: 10.1038/s41388-018-0438-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/22/2018] [Accepted: 07/14/2018] [Indexed: 02/08/2023]
Abstract
Despite recent improvement in adjuvant therapies, triple-negative, and ER+ subtypes of breast cancer (BC) with metastatic potentials remain the leading cause of BC-related deaths. We investigated the role of phosphatidylinositol-4-phosphate 5-kinase alpha (PIP5Kα), a key upstream factor of PI3K/AKT, and the therapeutic effect of PIP5Kα inhibitor on subtypes of BC. The clinical importance of PIP5K1α and its association with survivals were analyzed using three BC cohorts from Nottingham (n = 913), KM plotter (n = 112) and TCGA (n = 817). Targeted overexpression or knockdown of PIP5K1α were introduced into BC cell lines. The effects of PIP5K1α and its inhibitor on growth and invasion of BC were confirmed by using in vitro assays including proliferation, migration, apoptosis and luciferase reporter assays and in vivo xenograft mouse models. All statistical tests were two-sided. PIP5K1α was associated with poor patient outcome in triple-negative BC (for PIP5K1α protein, p = 0.011 and for mRNA expression, p = 0.028, log-rank test). 29% of triple-negative BC had PIP5K1A gene amplification. Elevated level of PIP5K1α increased expression of pSer-473 AKT (p < 0.001) and invasiveness of triple-negative MDA-MB-231 cells (p < 0.001). Conversely, inhibition of PIP5K1α using its inhibitor ISA-2011B, or via knockdown suppressed growth and invasiveness of MDA-MB-231 xenografts (mean vehicle-treated controls = 2160 mm3, and mean ISA-2011B-treated = 600 mm3, p < 0.001). ISA-2011B-treatment reduced expression of pSer-473 AKT (p < 0.001) and its downstream effectors including cyclin D1, VEGF and its receptors, VEGFR1 and VEGFR2 (p < 0.001) in xenograft tumors. In ER+ cancer cells, PIP5K1α acted on pSer-473 AKT, and was in complexes with VEGFR2, serving as co-factor of ER-alpha to regulate activities of target genes including cyclin D1 and CDK1. Our study suggests that our developed PIP5K1α inhibitor has a great potential on refining targeted therapeutics for treatment of triple-negative and ER+ BC with abnormal PI3K/AKT pathways.
Collapse
Affiliation(s)
- Martuza Sarwar
- Division of Experimental Cancer Research, Department of Translational Medicine, Lund University, Clinical Research Centre, Malmö, Sweden
| | | | - Mohammed Aleskandarany
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Richard Karlsson
- Division of Basal Tumor Biology, Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Maryam Althobiti
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Niels Ødum
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Nigel P Mongan
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom.,Department of Pharmacology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Nisthman Dizeyi
- Division of reproductive research, Department of Translational Medicine, Lund University, Clinical Research Centre, Malmö, Sweden
| | - Heather Johnson
- Department of Bio-Diagnosis, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Andrew R Green
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Ian O Ellis
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Emad A Rakha
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Jenny L Persson
- Division of Experimental Cancer Research, Department of Translational Medicine, Lund University, Clinical Research Centre, Malmö, Sweden. .,Division of Basal Tumor Biology, Department of Molecular Biology, Umeå University, Umeå, Sweden.
| |
Collapse
|
17
|
Tran MH, Seo E, Min S, Nguyen QAT, Choi J, Lee UJ, Hong SS, Kang H, Mansukhani A, Jou I, Lee SY. NEDD4-induced degradative ubiquitination of phosphatidylinositol 4-phosphate 5-kinase α and its implication in breast cancer cell proliferation. J Cell Mol Med 2018; 22:4117-4129. [PMID: 29851245 PMCID: PMC6111810 DOI: 10.1111/jcmm.13689] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/21/2018] [Indexed: 12/15/2022] Open
Abstract
Phosphatidylinositol 4‐phosphate 5‐kinase (PIP5K) family members generate phosphatidylinositol 4,5‐bisphosphate (PIP2), a critical lipid regulator of diverse physiological processes. The PIP5K‐dependent PIP2 generation can also act upstream of the oncogenic phosphatidylinositol 3‐kinase (PI3K)/Akt pathway. Many studies have demonstrated various mechanisms of spatiotemporal regulation of PIP5K catalytic activity. However, there are few studies on regulation of PIP5K protein stability. Here, we examined potential regulation of PIP5Kα, a PIP5K isoform, via ubiquitin‐proteasome system, and its implication for breast cancer. Our results showed that the ubiquitin ligase NEDD4 (neural precursor cell expressed, developmentally down‐regulated gene 4) mediated ubiquitination and proteasomal degradation of PIP5Kα, consequently reducing plasma membrane PIP2 level. NEDD4 interacted with the C‐terminal region and ubiquitinated the N‐terminal lysine 88 in PIP5Kα. In addition, PIP5Kα gene disruption inhibited epidermal growth factor (EGF)‐induced Akt activation and caused significant proliferation defect in breast cancer cells. Notably, PIP5Kα K88R mutant that was resistant to NEDD4‐mediated ubiquitination and degradation showed more potentiating effects on Akt activation by EGF and cell proliferation than wild‐type PIP5Kα. Collectively, these results suggest that PIP5Kα is a novel degradative substrate of NEDD4 and that the PIP5Kα‐dependent PIP2 pool contributing to breast cancer cell proliferation through PI3K/Akt activation is negatively controlled by NEDD4.
Collapse
Affiliation(s)
- Mai Hoang Tran
- Department of Biomedical Sciences, Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea
| | - Eunjeong Seo
- Department of Biomedical Sciences, Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea
| | - Soohong Min
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | - Quynh-Anh T Nguyen
- Department of Biomedical Sciences, Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea
| | - Juyong Choi
- Department of Biomedical Sciences, Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea
| | - Uk-Jin Lee
- Department of Biomedical Sciences, Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea
| | - Soon-Sun Hong
- Department of Biomedical Sciences, Inha University College of Medicine, Incheon, Korea
| | - Hyuk Kang
- Department of Chemistry, Ajou University, Suwon, Korea
| | - Alka Mansukhani
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Ilo Jou
- Department of Biomedical Sciences, Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea
| | - Sang Yoon Lee
- Department of Biomedical Sciences, Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
18
|
Mo P, Yang S. The store-operated calcium channels in cancer metastasis: from cell migration, invasion to metastatic colonization. Front Biosci (Landmark Ed) 2018; 23:1241-1256. [PMID: 28930597 DOI: 10.2741/4641] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Store-operated calcium entry (SOCE) is the predominant calcium entry mechanism in most cancer cells. SOCE is mediated by the endoplasmic reticulum calcium sensor STIMs (STIM1 and 2) and plasma membrane channel forming unit Orais (Orai 1-3). In recent years there is increasing evidence indicating that SOCE in cancer cells is dysregulated to promote cancer cell migration, invasion and metastasis. The overexpression of STIM and Orai proteins has been reported to correlate with the metastatic progression of various cancers. The hyperactive SOCE may promote metastatic dissemination and colonization by reorganizing the actin cytoskeleton, degrading the extracellular matrix and remodeling the tumor microenvironment. Here we discuss how these recent progresses provide novel insights to our understanding of tumor metastasis.
Collapse
Affiliation(s)
- Pingli Mo
- School of Life Sciences, Xiamen University, Xiamen, Fujian China
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, College of Medicine, The Pennsylvania State University, Hershey, PA 17033,
| |
Collapse
|
19
|
Yamaguchi H, Ito Y, Miura N, Nagamura Y, Nakabo A, Fukami K, Honda K, Sakai R. Actinin-1 and actinin-4 play essential but distinct roles in invadopodia formation by carcinoma cells. Eur J Cell Biol 2017; 96:685-694. [PMID: 28797528 DOI: 10.1016/j.ejcb.2017.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 10/25/2022] Open
Abstract
Invadopodia are ventral membrane protrusions formed by cancer cells that degrade the extracellular matrix (ECM) during tumor invasion and metastasis. Formation of invadopodia is initiated by the assembly of actin filaments (F-actin) that results from the coordinated activation of several actin regulatory proteins. Actinin-1 and actinin-4 are actin bundling proteins expressed in non-muscle cells and actinin-4 is preferentially associated with malignant phenotypes of carcinoma cells. In this study, we investigated the role of actinin-1 and -4 in invadopodia formation. Expression of both actinin-1 and -4 tended to be higher in invasive and metastatic breast carcinoma cell lines than in non-invasive ones. Immunofluorescence analysis revealed that actinin-1 and -4 colocalized at core actin structures of invadopodia. Time-lapse imaging showed that appearance of both actinins at invadopodia is concomitant with the assembly of F-actin. Knockdown of either actinin-1 or actinin-4 suppressed the formation of invadopodia and degradation of the ECM by carcinoma cells. Interestingly, overexpression of actinin-4, but not actinin-1, significantly promoted the formation of invadopodia and this activity required the actin binding domains and the unique N-terminal motif that exists only in actinin-4. These results demonstrate that both actinin-1 and actinin-4 participate in the assembly of F-actin at invadopodia. Additionally, actinin-4 may have a selective advantage in accelerating invadopodia-mediated invasion of carcinoma cells.
Collapse
Affiliation(s)
- Hideki Yamaguchi
- Department of Cancer Cell Research, Sasaki Institute, Sasaki Foundation, 2-2 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan; Division of Refractory and Advanced Cancer, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045,Japan.
| | - Yuumi Ito
- Division of Refractory and Advanced Cancer, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045,Japan; Laboratory of Genome and Biosignal, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-shi, Tokyo 192-0392, Japan
| | - Nami Miura
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yuko Nagamura
- Department of Cancer Cell Research, Sasaki Institute, Sasaki Foundation, 2-2 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan; Division of Refractory and Advanced Cancer, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045,Japan
| | - Ayaka Nakabo
- Department of Cancer Cell Research, Sasaki Institute, Sasaki Foundation, 2-2 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan; Division of Refractory and Advanced Cancer, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045,Japan; Laboratory of Genome and Biosignal, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-shi, Tokyo 192-0392, Japan
| | - Kiyoko Fukami
- Laboratory of Genome and Biosignal, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-shi, Tokyo 192-0392, Japan
| | - Kazufumi Honda
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Ryuichi Sakai
- Division of Refractory and Advanced Cancer, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045,Japan; Department of Biochemistry, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan.
| |
Collapse
|
20
|
Phan TK, Lay FT, Poon IKH, Hinds MG, Kvansakul M, Hulett MD. Human β-defensin 3 contains an oncolytic motif that binds PI(4,5)P2 to mediate tumour cell permeabilisation. Oncotarget 2016; 7:2054-69. [PMID: 26657293 PMCID: PMC4811302 DOI: 10.18632/oncotarget.6520] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 11/24/2015] [Indexed: 11/25/2022] Open
Abstract
Cationic antimicrobial peptides (CAPs), including taxonomically diverse defensins, are innate defense molecules that display potent antimicrobial and immunomodulatory activities. Specific CAPs have also been shown to possess anticancer activities; however, their mechanisms of action are not well defined. Recently, the plant defensin NaD1 was shown to induce tumour cell lysis by directly binding to the plasma membrane phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). The NaD1–lipid interaction was structurally defined by X-ray crystallography, with the defensin forming a dimer that binds PI(4,5)P2 via its cationic β2-β3 loops in a ‘cationic grip’ conformation. In this study, we show that human β-defensin 3 (HBD-3) contains a homologous β2-β3 loop that binds phosphoinositides. The binding of HBD-3 to PI(4,5)P2 was shown to be critical for mediating cytolysis of tumour cells, suggesting a conserved mechanism of action for defensins across diverse species. These data not only identify an evolutionary conservation of CAP structure and function for lipid binding, but also suggest that PIP-binding CAPs could be exploited for novel multifunction therapeutics.
Collapse
Affiliation(s)
- Thanh Kha Phan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Fung T Lay
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Ivan K H Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Mark G Hinds
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Marc Kvansakul
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Mark D Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| |
Collapse
|
21
|
Significance of kinase activity in the dynamic invadosome. Eur J Cell Biol 2016; 95:483-492. [PMID: 27465307 DOI: 10.1016/j.ejcb.2016.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/08/2016] [Accepted: 07/13/2016] [Indexed: 12/19/2022] Open
Abstract
Invadosomes are actin rich protrusive structures that facilitate invasive migration in multiple cell types. Comprised of invadopodia and podosomes, these highly dynamic structures adhere to and degrade the extracellular matrix, and are also thought to play a role in mechanosensing. Many extracellular signals have been implicated in invadosome stimulation, activating complex signalling cascades to drive the formation, activity and turnover of invadosomes. While the structural components of invadosomes have been well studied, the regulation of invadosome dynamics is still poorly understood. Protein kinases are essential to this regulation, affecting all stages of invadosome dynamics and allowing tight spatiotemporal control of their activity. Invadosome organisation and function have been linked to pathophysiological states such as cancer invasion and metastasis; therapeutic targeting of invadosome regulatory components is thus warranted. In this review, we discuss the involvement of kinase signalling in every stage of the invadosome life cycle and evaluate its significance.
Collapse
|
22
|
Hastie EL, Sherwood DR. A new front in cell invasion: The invadopodial membrane. Eur J Cell Biol 2016; 95:441-448. [PMID: 27402208 DOI: 10.1016/j.ejcb.2016.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 06/18/2016] [Accepted: 06/20/2016] [Indexed: 01/16/2023] Open
Abstract
Invadopodia are F-actin-rich membrane protrusions that breach basement membrane barriers during cell invasion. Since their discovery more than 30 years ago, invadopodia have been extensively investigated in cancer cells in vitro, where great advances in understanding their composition, formation, cytoskeletal regulation, and control of the matrix metalloproteinase MT1-MMP trafficking have been made. In contrast, few studies examining invadopodia have been conducted in vivo, leaving their physiological regulation unclear. Recent live-cell imaging and gene perturbation studies in C. elegans have revealed that invadopodia are formed with a unique invadopodial membrane, defined by its specialized lipid and associated protein composition, which is rapidly recycled through the endolysosome. Here, we provide evidence that the invadopodial membrane is conserved and discuss its possible functions in traversing basement membrane barriers. Discovery and examination of the invadopodial membrane has important implications in understanding the regulation, assembly, and function of invadopodia in both normal and disease settings.
Collapse
Affiliation(s)
- Eric L Hastie
- Department of Biology, Duke University, 124 Science Drive, Box 90388, Durham, NC 27708, USA
| | - David R Sherwood
- Department of Biology, Duke University, 124 Science Drive, Box 90388, Durham, NC 27708, USA.
| |
Collapse
|
23
|
Lauzier A, Lavoie RR, Charbonneau M, Gouin-Boisvert B, Harper K, Dubois CM. Snail Is a Critical Mediator of Invadosome Formation and Joint Degradation in Arthritis. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 186:359-74. [PMID: 26704941 DOI: 10.1016/j.ajpath.2015.10.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 08/31/2015] [Accepted: 10/07/2015] [Indexed: 01/08/2023]
Abstract
Progressive cartilage destruction, mediated by invasive fibroblast-like synoviocytes, is a central feature in the pathogenesis of rheumatoid arthritis (RA). Members of the Snail family of transcription factors are required for cell migration and invasion, but their role in joint destruction remains unknown. Herein, we demonstrate that Snail is essential for the formation of extracellular matrix-degrading invadosomal structures by synovial cells from collagen-induced arthritis (CIA) rats and RA patients. Mechanistically, Snail induces extracellular matrix degradation in synovial cells by repressing PTEN, resulting in increased phosphorylation of platelet-derived growth factor receptor and activation of the phosphatidylinositol 3-kinase/AKT pathway. Of significance, Snail is overexpressed in synovial cells and tissues of CIA rats and RA patients, whereas knockdown of Snail in CIA joints prevents cartilage invasion and joint damage. Furthermore, Snail expression is associated with an epithelial-mesenchymal transition gene signature characteristic of transglutaminase 2/transforming growth factor-β activation. Transforming growth factor-β and transglutaminase 2 stimulate Snail-dependent invadosome formation in rat and human synoviocytes. Our results identify the Snail-PTEN platelet-derived growth factor receptor/phosphatidylinositol 3-kinase axis as a novel regulator of the prodestructive invadosome-forming phenotype of synovial cells. New therapies for RA target inflammation, and are only partly effective in preventing joint damage. Blocking Snail and/or its associated gene expression program may provide an additional tool to improve the efficacy of treatments to prevent joint destruction.
Collapse
Affiliation(s)
- Annie Lauzier
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Roxane R Lavoie
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Martine Charbonneau
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Béatrice Gouin-Boisvert
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Kelly Harper
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Claire M Dubois
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
24
|
Sekino S, Kashiwagi Y, Kanazawa H, Takada K, Baba T, Sato S, Inoue H, Kojima M, Tani K. The NESH/Abi-3-based WAVE2 complex is functionally distinct from the Abi-1-based WAVE2 complex. Cell Commun Signal 2015; 13:41. [PMID: 26428302 PMCID: PMC4589964 DOI: 10.1186/s12964-015-0119-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 09/24/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Abl interactor (Abi) family proteins play significant roles in actin cytoskeleton organization through participation in the WAVE complex. Mammals possess three Abi proteins: Abi-1, Abi-2, and NESH/Abi-3. Abi-1 and Abi-2 were originally identified as Abl tyrosine kinase-binding proteins. It has been disclosed that Abi-1 acts as a bridge between c-Abl and WAVE2, and c-Abl-mediated WAVE2 phosphorylation promotes actin remodeling. We showed previously that NESH/Abi-3 is present in the WAVE2 complex, but neither binds to c-Abl nor promotes c-Abl-mediated phosphorylation of WAVE2. RESULTS In this study, we characterized NESH/Abi-3 in more detail, and compared its properties with those of Abi-1 and Abi-2. NESH/Abi-3 was ectopically expressed in NIH3T3 cells, in which Abi-1, but not NESH/Abi-3, is expressed. The expression of NESH/Abi-3 caused degradation of endogenous Abi-1, which led to the formation of a NESH/Abi-3-based WAVE2 complex. When these cells were plated on fibronectin-coated dishes, the translocation of WAVE2 to the plasma membrane was significantly reduced and the formation of peripheral lamellipodial structures was disturbed, suggesting that the NESH/Abi-3-based WAVE2 complex was unable to help produce lamellipodial protrusions. Next, Abi-1, Abi-2, or NESH/Abi-3 was expressed in v-src-transformed NIH3T3 cells. Only in NESH/Abi-3-expressed cells did treatment with an Abl kinase inhibitor, imatinib mesylate, or siRNA-mediated knockdown of c-Abl promote the formation of invadopodia, which are ventral membrane protrusions with extracellular matrix degradation activity. Structural studies showed that a linker region between the proline-rich regions and the Src homology 3 (SH3) domain of Abi-1 is crucial for its interaction with c-Abl and c-Abl-mediated phosphorylation of WAVE2. CONCLUSIONS The NESH/Abi-3-based WAVE2 complex is functionally distinct from the Abi-1-based one, and NESH/Abi-3 may be involved in the formation of ventral protrusions under certain conditions.
Collapse
Affiliation(s)
- Saki Sekino
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Yuriko Kashiwagi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Hitoshi Kanazawa
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Kazuki Takada
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Takashi Baba
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Seiichi Sato
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Hiroki Inoue
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Masaki Kojima
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Katsuko Tani
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| |
Collapse
|
25
|
Lohmer LL, Kelley LC, Hagedorn EJ, Sherwood DR. Invadopodia and basement membrane invasion in vivo. Cell Adh Migr 2015; 8:246-55. [PMID: 24717190 DOI: 10.4161/cam.28406] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Over 20 years ago, protrusive, F-actin-based membrane structures, termed invadopodia, were identified in highly metastatic cancer cell lines. Invadopodia penetrate artificial or explanted extracellular matrices in 2D culture conditions and have been hypothesized to facilitate the migration of cancer cells through basement membrane, a thin, dense, barrier-like matrix surrounding most tissues. Despite intensive study, the identification of invadopodia in vivo has remained elusive and until now their possible roles during invasion or even existence have remained unclear. Studies in remarkably different cellular contexts-mouse tumor models, zebrafish intestinal epithelia, and C. elegans organogenesis-have recently identified invadopodia structures associated with basement membrane invasion. These studies are providing the first in vivo insight into the regulation, function, and role of these fascinating subcellular devices with critical importance to both development and human disease.
Collapse
|
26
|
Waugh MG. Amplification of Chromosome 1q Genes Encoding the Phosphoinositide Signalling Enzymes PI4KB, AKT3, PIP5K1A and PI3KC2B in Breast Cancer. J Cancer 2014; 5:790-6. [PMID: 25368680 PMCID: PMC4216804 DOI: 10.7150/jca.9794] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/11/2014] [Indexed: 01/08/2023] Open
Abstract
Little is known about the possible oncogenic roles of genes encoding for the phosphatidylinositol 4-kinases, a family of enzymes that regulate an early step in phosphoinositide signalling. To address this issue, the mutational status of all four human phosphatidylinositol 4-kinases genes was analyzed across 852 breast cancer samples using the COSMIC data resource. Point mutations in the phosphatidylinositol 4-kinase genes were uncommon and appeared in less than 1% of the patient samples however, 62% of the tumours had increases in gene copy number for PI4KB which encodes the phosphatidylinositol 4-kinase IIIbeta isozyme. Extending this analysis to subsequent enzymes in the phosphoinositide signalling cascades revealed that the only PIP5K1A, PI3KC2B and AKT3 genes exhibited similar patterns of gene copy number variation. By comparison, gene copy number increases for established oncogenes such as EGFR and HER2/Neu were only evident in 20% of the samples. The PI4KB, PIP5K1A, PI3KC2B and AKT3 genes are related in that they all localize to chromosome 1q which is often structurally and numerically abnormal in breast cancer. These results demonstrate that a gene quartet encoding a potential phosphoinositide signalling pathway is amplified in a subset of breast cancers.
Collapse
Affiliation(s)
- Mark G Waugh
- Lipid and Membrane Biology Group, Institute for Liver and Digestive Health, UCL, Royal Free Campus, Rowland Hill Street, London, NW3 2PF United Kingdom
| |
Collapse
|
27
|
The role of PI3K/AKT-related PIP5K1α and the discovery of its selective inhibitor for treatment of advanced prostate cancer. Proc Natl Acad Sci U S A 2014; 111:E3689-98. [PMID: 25071204 DOI: 10.1073/pnas.1405801111] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Nitrogen-containing heterocyclic compounds are an important class of molecules that are commonly used for the synthesis of candidate drugs. Phosphatidylinositol-4-phosphate 5-kinase-α (PIP5Kα) is a lipid kinase, similar to PI3K. However, the role of PIP5K1α in oncogenic processes and the development of inhibitors that selectively target PIP5K1α have not been reported. In the present study we report that overexpression of PIP5K1α is associated with poor prognosis in prostate cancer and correlates with an elevated level of the androgen receptor. Overexpression of PIP5K1α in PNT1A nonmalignant cells results in an increased AKT activity and an increased survival, as well as invasive malignant phenotype, whereas siRNA-mediated knockdown of PIP5K1α in aggressive PC-3 cells leads to a reduced AKT activity and an inhibition in tumor growth in xenograft mice. We further report a previously unidentified role for PIP5K1α as a druggable target for our newly developed compound ISA-2011B using a high-throughput KINOMEscan platform. ISA-2011B was discovered during our synthetic studies of C-1 indol-3-yl substituted 1,2,3,4-tetrahydroisoquinolines via a Pictet-Spengler approach. ISA-2011B significantly inhibits growth of tumor cells in xenograft mice, and we show that this is mediated by targeting PIP5K1α-associated PI3K/AKT and the downstream survival, proliferation, and invasion pathways. Further, siRNA-mediated knockdown of PIP5K1α exerts similar effects on PC3 cells as ISA-2011B treatment, significantly inhibiting AKT activity, increasing apoptosis and reducing invasion. Thus, PIP5K1α has high potential as a drug target, and compound ISA-2011B is interesting for further development of targeted cancer therapy.
Collapse
|
28
|
Ouderkirk JL, Krendel M. Myosin 1e is a component of the invadosome core that contributes to regulation of invadosome dynamics. Exp Cell Res 2014; 322:265-76. [PMID: 24462457 DOI: 10.1016/j.yexcr.2014.01.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 01/09/2014] [Accepted: 01/15/2014] [Indexed: 01/07/2023]
Abstract
Myosin 1e (myo1e) is an actin-based motor protein that has been implicated in cell adhesion and migration. We examined the role of myo1e in invadosomes, actin-rich adhesion structures that are important for degradation and invasion of the extracellular matrix. RSV-transformed BHK-21 cells, which readily form invadosomes and invadosome rosettes, were used as the experimental model. Myo1e localization to the actin-rich core of invadosomes required the proline-rich Tail Homology 2 (TH2) domain. During invadosome rosette expansion, we observed myo1e recruitment to newly forming invadosomes via Tail Homology 1 (TH1)-dependent interactions with the plasma membrane, where it preceded actin and paxillin. Dominant-negative inhibition of myo1e resulted in mislocalized invadosome formation, usually at the center of the rosette. We propose that TH2 domain of myo1e provides the key signal for localization to invadosomes, while TH1 domain interactions facilitate myo1e targeting to the plasma membrane-proximal locations within the rosettes. Myo1e may then act as a scaffold, linking the plasma membrane with the actin cytoskeleton and helping direct new invadosome formation to the periphery of the rosette.
Collapse
Affiliation(s)
- Jessica L Ouderkirk
- Cell and Developmental Biology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, United States
| | - Mira Krendel
- Cell and Developmental Biology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, United States.
| |
Collapse
|
29
|
Baranov M, Ter Beest M, Reinieren-Beeren I, Cambi A, Figdor CG, van den Bogaart G. Podosomes of dendritic cells facilitate antigen sampling. J Cell Sci 2014; 127:1052-1064. [PMID: 24424029 DOI: 10.1242/jcs.141226] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells sample the environment for antigens and play an important role in establishing the link between innate and acquired immunity. Dendritic cells contain mechanosensitive adhesive structures called podosomes that consist of an actin-rich core surrounded by integrins, adaptor proteins and actin network filaments. They facilitate cell migration via localized degradation of extracellular matrix. Here, we show that podosomes of human dendritic cells locate to spots of low physical resistance in the substrate (soft spots) where they can evolve into protrusive structures. Pathogen recognition receptors locate to these protrusive structures where they can trigger localized antigen uptake, processing and presentation to activate T-cells. Our data demonstrate a novel role in antigen sampling for the podosomes of dendritic cells.
Collapse
Affiliation(s)
- Maksim Baranov
- Department of Tumor Immunology Radboud University Medical Centre Radboud Centre for Molecular Life Sciences Geert Grooteplein 28 6525GA Nijmegen The Netherlands
| | - Martin Ter Beest
- Department of Tumor Immunology Radboud University Medical Centre Radboud Centre for Molecular Life Sciences Geert Grooteplein 28 6525GA Nijmegen The Netherlands
| | - Inge Reinieren-Beeren
- Department of Tumor Immunology Radboud University Medical Centre Radboud Centre for Molecular Life Sciences Geert Grooteplein 28 6525GA Nijmegen The Netherlands
| | - Alessandra Cambi
- Department of Tumor Immunology Radboud University Medical Centre Radboud Centre for Molecular Life Sciences Geert Grooteplein 28 6525GA Nijmegen The Netherlands
| | - Carl G Figdor
- Department of Tumor Immunology Radboud University Medical Centre Radboud Centre for Molecular Life Sciences Geert Grooteplein 28 6525GA Nijmegen The Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology Radboud University Medical Centre Radboud Centre for Molecular Life Sciences Geert Grooteplein 28 6525GA Nijmegen The Netherlands
| |
Collapse
|
30
|
Sharma VP, Eddy R, Entenberg D, Kai M, Gertler FB, Condeelis J. Tks5 and SHIP2 regulate invadopodium maturation, but not initiation, in breast carcinoma cells. Curr Biol 2013; 23:2079-89. [PMID: 24206842 DOI: 10.1016/j.cub.2013.08.044] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 07/17/2013] [Accepted: 08/14/2013] [Indexed: 01/31/2023]
Abstract
BACKGROUND Tks5 regulates invadopodium formation, but the precise timing during invadopodium lifetime (initiation, stabilization, maturation) when Tks5 plays a role is not known. RESULTS We report new findings based on high-resolution spatiotemporal live-cell imaging of invadopodium precursor assembly. Cortactin, N-WASP, cofilin, and actin arrive together to form the invadopodium precursor, followed by Tks5 recruitment. Tks5 is not required for precursor initiation but is needed for precursor stabilization, which requires the interaction of the phox homology (PX) domain of Tks5 with PI(3,4)P2. During precursor formation, PI(3,4)P2 is uniformly distributed but subsequently starts accumulating at the precursor core 3-4 min after core initiation, and conversely, PI(3,4,5)P3 gets enriched in a ring around the precursor core. SHIP2, a 5'-inositol phosphatase, localizes at the invadopodium core and regulates PI(3,4)P2 levels locally at the invadopodium. The timing of SHIP2 arrival at the invadopodium precursor coincides with the onset of PI(3,4)P2 accumulation. Consistent with its late arrival, we found that SHIP2 inhibition does not affect precursor formation but does cause decreases in mature invadopodia and matrix degradation, whereas SHIP2 overexpression increases matrix degradation. CONCLUSIONS Together, these findings lead us to propose a new sequential model that provides novel insights into molecular mechanisms underlying invadopodium precursor initiation, stabilization, and maturation into a functional invadopodium.
Collapse
Affiliation(s)
- Ved P Sharma
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Tahtamouni LH, Shaw AE, Hasan MH, Yasin SR, Bamburg JR. Non-overlapping activities of ADF and cofilin-1 during the migration of metastatic breast tumor cells. BMC Cell Biol 2013; 14:45. [PMID: 24093776 PMCID: PMC3850953 DOI: 10.1186/1471-2121-14-45] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/01/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND ADF/cofilin proteins are key modulators of actin dynamics in metastasis and invasion of cancer cells. Here we focused on the roles of ADF and cofilin-1 individually in the development of polarized migration of rat mammary adenocarcinoma (MTLn3) cells, which express nearly equal amounts of each protein. Small interference RNA (siRNA) technology was used to knockdown (KD) the expression of ADF and cofilin-1 independently. RESULTS Either ADF KD or cofilin KD caused cell elongation, a reduction in cell area, a decreased ability to form invadopodia, and a decreased percentage of polarized cells after 180 s of epidermal growth factor stimulation. Moreover, ADF KD or cofilin KD increased the rate of cell migration and the time of lamellipodia protrusion but through different mechanisms: lamellipodia protrude more frequently in ADF KD cells and are more persistent in cofilin KD cells. ADF KD cells showed a significant increase in F-actin aggregates, whereas cofilin KD cells showed a significant increase in prominent F-actin bundles and increased cell adhesion. Focal adhesion area and cell adhesion in cofilin KD cells were returned to control levels by expressing exogenous cofilin but not ADF. Return to control rates of cell migration in ADF KD cells was achieved by expression of exogenous ADF but not cofilin, whereas in cofilin KD cells, expression of cofilin efficiently rescued control migration rates. CONCLUSION Although ADF and cofilin have many redundant functions, each of these isoforms has functional differences that affect F-actin structures, cell adhesion and lamellipodial dynamics, all of which are important determinants of cell migration.
Collapse
Affiliation(s)
- Lubna H Tahtamouni
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa 13115, Jordan
| | - Alisa E Shaw
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Maram H Hasan
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa 13115, Jordan
| | - Salem R Yasin
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa 13115, Jordan
| | - James R Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
32
|
Antelmi E, Cardone RA, Greco MR, Rubino R, Di Sole F, Martino NA, Casavola V, Carcangiu M, Moro L, Reshkin SJ. ß1 integrin binding phosphorylates ezrin at T567 to activate a lipid raft signalsome driving invadopodia activity and invasion. PLoS One 2013; 8:e75113. [PMID: 24086451 PMCID: PMC3782503 DOI: 10.1371/journal.pone.0075113] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 08/09/2013] [Indexed: 01/11/2023] Open
Abstract
Extracellular matrix (ECM) degradation is a critical process in tumor cell invasion and requires matrix degrading protrusions called invadopodia. The Na+/H+ exchanger (NHE1) has recently been shown to be fundamental in the regulation of invadopodia actin cytoskeleton dynamics and activity. However, the structural link between the invadopodia cytoskeleton and NHE1 is still unknown. A candidate could be ezrin, a linker between the NHE1 and the actin cytoskeleton known to play a pivotal role in invasion and metastasis. However, the mechanistic basis for its role remains unknown. Here, we demonstrate that ezrin phosphorylated at T567 is highly overexpressed in the membrane of human breast tumors and positively associated with invasive growth and HER2 overexpression. Further, in the metastatic cell line, MDA-MB-231, p-ezrin was almost exclusively expressed in invadopodia lipid rafts where it co-localized in a functional complex with NHE1, EGFR, ß1-integrin and phosphorylated-NHERF1. Manipulation by mutation of ezrins T567 phosphorylation state and/or PIP2 binding capacity or of NHE1s binding to ezrin or PIP2 demonstrated that p-ezrin expression and binding to PIP2 are required for invadopodia-mediated ECM degradation and invasion and identified NHE1 as the membrane protein that p-ezrin regulates to induce invadopodia formation and activity.
Collapse
Affiliation(s)
- Ester Antelmi
- Department of Bioscience, Biotechnology and Biopharmacologics, University of Bari, Bari, Italy
- Department of Pathology, Anatomic Pathology A Unit, Istituto Nazionale Tumori, Milan, Italy
| | - Rosa A. Cardone
- Department of Bioscience, Biotechnology and Biopharmacologics, University of Bari, Bari, Italy
| | - Maria R. Greco
- Department of Bioscience, Biotechnology and Biopharmacologics, University of Bari, Bari, Italy
| | - Rosa Rubino
- Department of Bioscience, Biotechnology and Biopharmacologics, University of Bari, Bari, Italy
| | - Francesca Di Sole
- Department of Medicine, University of Maryland School of Medicine and the Medical Service, Department of Veterans Affairs Medical Center, Baltimore, Maryland, United States of America
| | - Nicola A. Martino
- Department of Animal Production, Faculty of Biotechnological Sciences, University of Bari, Bari, Italy
| | - Valeria Casavola
- Department of Bioscience, Biotechnology and Biopharmacologics, University of Bari, Bari, Italy
| | - MariaLuisa Carcangiu
- Department of Pathology, Anatomic Pathology A Unit, Istituto Nazionale Tumori, Milan, Italy
| | - Loredana Moro
- Institute of Biomembranes and Bioenergetics (IBBE), CNR, Bari, Italy
| | - Stephan J. Reshkin
- Department of Bioscience, Biotechnology and Biopharmacologics, University of Bari, Bari, Italy
- * E-mail:
| |
Collapse
|
33
|
Morrissey MA, Hagedorn EJ, Sherwood DR. Cell invasion through basement membrane: The netrin receptor DCC guides the way. WORM 2013; 2:e26169. [PMID: 24778942 PMCID: PMC3875654 DOI: 10.4161/worm.26169] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 08/14/2013] [Accepted: 08/15/2013] [Indexed: 01/23/2023]
Abstract
Cell invasion through basement membrane is an essential part of normal development and physiology, and occurs during the pathological progression of human inflammatory diseases and cancer. F-actin-rich membrane protrusions, called invadopodia, have been hypothesized to be the “drill bits” of invasive cells, mediating invasion through the dense, highly cross-linked basement membrane matrix. Though studied in vitro for over 30 y, invadopodia function in vivo has remained elusive. We have recently discovered that invadopodia breach basement membrane during anchor cell invasion in C. elegans, a genetically and visually tractable in vivo invasion event. Further, we found that the netrin receptor DCC localizes to the initial site of basement membrane breach and directs invasion through a single gap in the matrix. In this commentary, we examine how the dynamics and structure of AC-invadopodia compare with in vitro invadopodia and how the netrin receptor guides invasion through a single basement membrane breach. We end with a discussion of our surprising result that the anchor cell pushes the basement membrane aside, instead of completely dissolving it through proteolysis, and provide some ideas for how proteases and physical displacement may work together to ensure efficient and robust invasion.
Collapse
|
34
|
Hagedorn EJ, Ziel JW, Morrissey MA, Linden LM, Wang Z, Chi Q, Johnson SA, Sherwood DR. The netrin receptor DCC focuses invadopodia-driven basement membrane transmigration in vivo. ACTA ACUST UNITED AC 2013; 201:903-13. [PMID: 23751497 PMCID: PMC3678161 DOI: 10.1083/jcb.201301091] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Localized activation of netrin signaling induces focused F-actin formation and the protrusive force necessary for physical displacement of basement membrane during cell transmigration. Though critical to normal development and cancer metastasis, how cells traverse basement membranes is poorly understood. A central impediment has been the challenge of visualizing invasive cell interactions with basement membrane in vivo. By developing live-cell imaging methods to follow anchor cell (AC) invasion in Caenorhabditis elegans, we identify F-actin–based invadopodia that breach basement membrane. When an invadopodium penetrates basement membrane, it rapidly transitions into a stable invasive process that expands the breach and crosses into the vulval tissue. We find that the netrin receptor UNC-40 (DCC) specifically enriches at the site of basement membrane breach and that activation by UNC-6 (netrin) directs focused F-actin formation, generating the invasive protrusion and the cessation of invadopodia. Using optical highlighting of basement membrane components, we further demonstrate that rather than relying solely on proteolytic dissolution, the AC’s protrusion physically displaces basement membrane. These studies reveal an UNC-40–mediated morphogenetic transition at the cell–basement membrane interface that directs invading cells across basement membrane barriers.
Collapse
|
35
|
Abstract
Remodeling of extracellular matrix (ECM) is a fundamental cell property that allows cells to alter their microenvironment and move through tissues. Invadopodia and podosomes are subcellular actin-rich structures that are specialized for matrix degradation and are formed by cancer and normal cells, respectively. Although initial studies focused on defining the core machinery of these two structures, recent studies have identified inputs from both growth factor and adhesion signaling as crucial for invasive activity. This Commentary will outline the current knowledge on the upstream signaling inputs to invadopodia and podosomes and their role in governing distinct stages of these invasive structures. We discuss invadopodia and podosomes as adhesion structures and highlight new data showing that invadopodia-associated adhesion rings promote the maturation of already-formed invadopodia. We present a model in which growth factor stimulation leads to phosphoinositide 3-kinase (PI3K) activity and formation of invadopodia, whereas adhesion signaling promotes exocytosis of proteinases at invadopodia.
Collapse
Affiliation(s)
- Daisuke Hoshino
- Department of Cancer Biology, Vanderbilt University Medical Center, 2220 Pierce Avenue, Nashville, TN 37232-6840, USA
| | | | | |
Collapse
|
36
|
Slochower DR, Huwe PJ, Radhakrishnan R, Janmey PA. Quantum and all-atom molecular dynamics simulations of protonation and divalent ion binding to phosphatidylinositol 4,5-bisphosphate (PIP2). J Phys Chem B 2013; 117:8322-9. [PMID: 23786273 DOI: 10.1021/jp401414y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular dynamics calculations have been used to determine the structure of phosphatidylinositol 4,5 bisphosphate (PIP2) at the quantum level and to quantify the propensity for PIP2 to bind two physiologically relevant divalent cations, Mg(2+) and Ca(2+). We performed a geometry optimization at the Hartree-Fock 6-31+G(d) level of theory in vacuum and with a polarized continuum dielectric to determine the conformation of the phospholipid headgroup in the presence of water and its partial charge distribution. The angle between the headgroup and the acyl chains is nearly perpendicular, suggesting that in the absence of other interactions the inositol ring would lie flat along the cytoplasmic surface of the plasma membrane. Next, we employed hybrid quantum mechanics/molecular mechanics (QM/MM) simulations to investigate the protonation state of PIP2 and its interactions with magnesium or calcium. We test the hypothesis suggested by prior experiments that binding of magnesium to PIP2 is mediated by a water molecule that is absent when calcium binds. These results may explain the selective ability of calcium to induce the formation of PIP2 clusters and phase separation from other lipids.
Collapse
Affiliation(s)
- David R Slochower
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | | | | |
Collapse
|
37
|
Vaškovičová K, Žárský V, Rösel D, Nikolič M, Buccione R, Cvrčková F, Brábek J. Invasive cells in animals and plants: searching for LECA machineries in later eukaryotic life. Biol Direct 2013; 8:8. [PMID: 23557484 PMCID: PMC3663805 DOI: 10.1186/1745-6150-8-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 03/21/2013] [Indexed: 02/08/2023] Open
Abstract
Invasive cell growth and migration is usually considered a specifically metazoan phenomenon. However, common features and mechanisms of cytoskeletal rearrangements, membrane trafficking and signalling processes contribute to cellular invasiveness in organisms as diverse as metazoans and plants – two eukaryotic realms genealogically connected only through the last common eukaryotic ancestor (LECA). By comparing current understanding of cell invasiveness in model cell types of both metazoan and plant origin (invadopodia of transformed metazoan cells, neurites, pollen tubes and root hairs), we document that invasive cell behavior in both lineages depends on similar mechanisms. While some superficially analogous processes may have arisen independently by convergent evolution (e.g. secretion of substrate- or tissue-macerating enzymes by both animal and plant cells), at the heart of cell invasion is an evolutionarily conserved machinery of cellular polarization and oriented cell mobilization, involving the actin cytoskeleton and the secretory pathway. Its central components - small GTPases (in particular RHO, but also ARF and Rab), their specialized effectors, actin and associated proteins, the exocyst complex essential for polarized secretion, or components of the phospholipid- and redox- based signalling circuits (inositol-phospholipid kinases/PIP2, NADPH oxidases) are aparently homologous among plants and metazoans, indicating that they were present already in LECA. Reviewer: This article was reviewed by Arcady Mushegian, Valerian Dolja and Purificacion Lopez-Garcia.
Collapse
Affiliation(s)
- Katarína Vaškovičová
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Vinicna 7, 128 43, Prague 2, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
38
|
Chuang Y, Xu X, Kwiatkowska A, Tsapraillis G, Hwang H, Petritis K, Flynn D, Symons M. Regulation of synaptojanin 2 5'-phosphatase activity by Src. Cell Adh Migr 2012; 6:518-25. [PMID: 23076136 PMCID: PMC3547897 DOI: 10.4161/cam.22139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Synaptojanin 2 (SYNJ2) is a phosphatidylinositol (PI) phosphatase that controls two distinct functions, clathrin-mediated endocytosis and tumor cell invadopodia formation and invasion. Here, we identify a number of novel SYNJ2 binding partners, several of which have previously been shown to be necessary for invadopodia formation or clathrin-mediated endocytosis. We focus on Src family kinases. We found that Src phosphorylates SYNJ2 on Tyr490, thereby stimulating SYNJ2 5′-phosphatase activity in vitro. We also provide evidence that Src-mediated phosphorylation of SYNJ2 contributes to invadopodia formation.
Collapse
Affiliation(s)
- Yayu Chuang
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research at North Shore-LIJ, Manhasset, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Lipid raft association restricts CD44-ezrin interaction and promotion of breast cancer cell migration. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:2172-87. [PMID: 23031255 DOI: 10.1016/j.ajpath.2012.08.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 08/03/2012] [Accepted: 08/13/2012] [Indexed: 01/13/2023]
Abstract
Cancer cell migration is an early event in metastasis, the main cause of breast cancer-related deaths. Cholesterol-enriched membrane domains called lipid rafts influence the function of many molecules, including the raft-associated protein CD44. We describe a novel mechanism whereby rafts regulate interactions between CD44 and its binding partner ezrin in migrating breast cancer cells. Specifically, in nonmigrating cells, CD44 and ezrin localized to different membranous compartments: CD44 predominantly in rafts, and ezrin in nonraft compartments. After the induction of migration (either nonspecific or CD44-driven), CD44 affiliation with lipid rafts was decreased. This was accompanied by increased coprecipitation of CD44 and active (threonine-phosphorylated) ezrin-radixin-moesin (ERM) proteins in nonraft compartments and increased colocalization of CD44 with the nonraft protein, transferrin receptor. Pharmacological raft disruption using methyl-β-cyclodextrin also increased CD44-ezrin coprecipitation and colocalization, further suggesting that CD44 interacts with ezrin outside rafts during migration. Conversely, promoting CD44 retention inside lipid rafts by pharmacological inhibition of depalmitoylation virtually abolished CD44-ezrin interactions. However, transient single or double knockdown of flotillin-1 or caveolin-1 was not sufficient to increase cell migration over a short time course, suggesting complex crosstalk mechanisms. We propose a new model for CD44-dependent breast cancer cell migration, where CD44 must relocalize outside lipid rafts to drive cell migration. This could have implications for rafts as pharmacological targets to down-regulate cancer cell migration.
Collapse
|
40
|
Martin KH, Hayes KE, Walk EL, Ammer AG, Markwell SM, Weed SA. Quantitative measurement of invadopodia-mediated extracellular matrix proteolysis in single and multicellular contexts. J Vis Exp 2012:e4119. [PMID: 22952016 DOI: 10.3791/4119] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cellular invasion into local tissues is a process important in development and homeostasis. Malregulated invasion and subsequent cell movement is characteristic of multiple pathological processes, including inflammation, cardiovascular disease and tumor cell metastasis. Focalized proteolytic degradation of extracellular matrix (ECM) components in the epithelial or endothelial basement membrane is a critical step in initiating cellular invasion. In tumor cells, extensive in vitro analysis has determined that ECM degradation is accomplished by ventral actin-rich membrane protrusive structures termed invadopodia. Invadopodia form in close apposition to the ECM, where they moderate ECM breakdown through the action of matrix metalloproteinases (MMPs). The ability of tumor cells to form invadopodia directly correlates with the ability to invade into local stroma and associated vascular components. Visualization of invadopodia-mediated ECM degradation of cells by fluorescent microscopy using dye-labeled matrix proteins coated onto glass coverslips has emerged as the most prevalent technique for evaluating the degree of matrix proteolysis and cellular invasive potential. Here we describe a version of the standard method for generating fluorescently-labeled glass coverslips utilizing a commercially available Oregon Green-488 gelatin conjugate. This method is easily scaled to rapidly produce large numbers of coated coverslips. We show some of the common microscopic artifacts that are often encountered during this procedure and how these can be avoided. Finally, we describe standardized methods using readily available computer software to allow quantification of labeled gelatin matrix degradation mediated by individual cells and by entire cellular populations. The described procedures provide the ability to accurately and reproducibly monitor invadopodia activity, and can also serve as a platform for evaluating the efficacy of modulating protein expression or testing of anti-invasive compounds on extracellular matrix degradation in single and multicellular settings.
Collapse
Affiliation(s)
- Karen H Martin
- Department of Neurobiology and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, USA
| | | | | | | | | | | |
Collapse
|
41
|
Scott KEN, Wheeler FB, Davis AL, Thomas MJ, Ntambi JM, Seals DF, Kridel SJ. Metabolic regulation of invadopodia and invasion by acetyl-CoA carboxylase 1 and de novo lipogenesis. PLoS One 2012; 7:e29761. [PMID: 22238651 PMCID: PMC3253107 DOI: 10.1371/journal.pone.0029761] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 12/04/2011] [Indexed: 01/04/2023] Open
Abstract
Invadopodia are membrane protrusions that facilitate matrix degradation and cellular invasion. Although lipids have been implicated in several aspects of invadopodia formation, the contributions of de novo fatty acid synthesis and lipogenesis have not been defined. Inhibition of acetyl-CoA carboxylase 1 (ACC1), the committed step of fatty acid synthesis, reduced invadopodia formation in Src-transformed 3T3 (3T3-Src) cells, and also decreased the ability to degrade gelatin. Inhibition of fatty acid synthesis through AMP-activated kinase (AMPK) activation and ACC phosphorylation also decreased invadopodia incidence. The addition of exogenous 16∶0 and 18∶1 fatty acid, products of de novo fatty acid synthesis, restored invadopodia and gelatin degradation to cells with decreased ACC1 activity. Pharmacological inhibition of ACC also altered the phospholipid profile of 3T3-Src cells, with the majority of changes occurring in the phosphatidylcholine (PC) species. Exogenous supplementation with the most abundant PC species, 34∶1 PC, restored invadopodia incidence, the ability to degrade gelatin and the ability to invade through matrigel to cells deficient in ACC1 activity. On the other hand, 30∶0 PC did not restore invadopodia and 36∶2 PC only restored invadopodia incidence and gelatin degradation, but not cellular invasion through matrigel. Pharmacological inhibition of ACC also reduced the ability of MDA-MB-231 breast, Snb19 glioblastoma, and PC-3 prostate cancer cells to invade through matrigel. Invasion of PC-3 cells through matrigel was also restored by 34∶1 PC supplementation. Collectively, the data elucidate the novel metabolic regulation of invadopodia and the invasive process by de novo fatty acid synthesis and lipogenesis.
Collapse
Affiliation(s)
- Kristen E. N. Scott
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, North Carolina, United States of America
| | - Frances B. Wheeler
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, North Carolina, United States of America
| | - Amanda L. Davis
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, North Carolina, United States of America
| | - Michael J. Thomas
- Department of Biochemistry, Wake Forest School of Medicine, Winston Salem, North Carolina, United States of America
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston Salem, North Carolina, United States of America
| | - James M. Ntambi
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Darren F. Seals
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, North Carolina, United States of America
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston Salem, North Carolina, United States of America
| | - Steven J. Kridel
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, North Carolina, United States of America
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston Salem, North Carolina, United States of America
| |
Collapse
|
42
|
Zhang L, Mao YS, Janmey PA, Yin HL. Phosphatidylinositol 4, 5 bisphosphate and the actin cytoskeleton. Subcell Biochem 2012; 59:177-215. [PMID: 22374091 DOI: 10.1007/978-94-007-3015-1_6] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Dynamic changes in PM PIP(2) have been implicated in the regulation of many processes that are dependent on actin polymerization and remodeling. PIP(2) is synthesized primarily by the type I phosphatidylinositol 4 phosphate 5 kinases (PIP5Ks), and there are three major isoforms, called a, b and g. There is emerging evidence that these PIP5Ks have unique as well as overlapping functions. This review will focus on the isoform-specific roles of individual PIP5K as they relate to the regulation of the actin cytoskeleton. We will review recent advances that establish PIP(2) as a critical regulator of actin polymerization and cytoskeleton/membrane linkages, and show how binding of cytoskeletal proteins to membrane PIP(2) might alter lateral or transverse movement of lipids to affect raft formation or lipid asymmetry. The mechanisms for specifying localized increase in PIP(2) to regulate dynamic actin remodeling will also be discussed.
Collapse
Affiliation(s)
- Li Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, 75390-9040, Dallas, TX, USA
| | | | | | | |
Collapse
|
43
|
Rosenhouse‐Dantsker A, Mehta D, Levitan I. Regulation of Ion Channels by Membrane Lipids. Compr Physiol 2012; 2:31-68. [DOI: 10.1002/cphy.c110001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
44
|
Invadosome regulation by adhesion signaling. Curr Opin Cell Biol 2011; 23:597-606. [DOI: 10.1016/j.ceb.2011.04.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 04/11/2011] [Accepted: 04/11/2011] [Indexed: 12/16/2022]
|
45
|
Yamaguchi H, Oikawa T. Membrane lipids in invadopodia and podosomes: key structures for cancer invasion and metastasis. Oncotarget 2011; 1:320-8. [PMID: 21307399 DOI: 10.18632/oncotarget.100907] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Invadopodia are extracellular matrix (ECM)-degrading protrusions formed by invasive cancer cells. Podosomes are structures functionally similar to invadopodia that are found in oncogene-transformed fibroblasts and monocyte-derived cells, including macrophages and osteoclasts. These structures are thought to play important roles in the pericellular remodeling of ECM during cancer invasion and metastasis. Much effort has been directed toward identification of the molecular components and regulators of invadopodia/podosomes, which could be therapeutic targets in the treatment of malignant cancers. However, it remains largely unknown how these components are assembled into invadopodia/podosomes and how the assembly process is spatially and temporally regulated. This review will summarize recent progress on the molecular mechanisms of invadopodia/podosome formation, with strong emphasis on the roles of lipid rafts and phosphoinositides.
Collapse
Affiliation(s)
- Hideki Yamaguchi
- Growth Factor Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan.
| | | |
Collapse
|
46
|
Kuroiwa M, Oneyama C, Nada S, Okada M. The guanine nucleotide exchange factor Arhgef5 plays crucial roles in Src-induced podosome formation. J Cell Sci 2011; 124:1726-38. [DOI: 10.1242/jcs.080291] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Podosomes and invadopodia are actin-rich membrane protrusions that play a crucial role in cell adhesion and migration, and extracellular matrix remodeling in normal and cancer cells. The formation of podosomes and invadopodia is promoted by upregulation of some oncogenic molecules and is closely related to the invasive potential of cancer cells. However, the molecular mechanisms underlying the podosome and invadopodium formation still remain unclear. Here, we show that a guanine nucleotide exchange factor (GEF) for Rho family GTPases (Arhgef5) is crucial for Src-induced podosome formation. Using an inducible system for Src activation, we found that Src-induced podosome formation depends upon the Src SH3 domain, and identified Arhgef5 as a Src SH3-binding protein. RNA interference (RNAi)-mediated depletion of Arhgef5 caused robust inhibition of Src-dependent podosome formation. Overexpression of Arhgef5 promoted actin stress fiber remodeling through activating RhoA, and the activation of RhoA or Cdc42 was required for Src-induced podosome formation. Arhgef5 was tyrosine-phosphorylated by Src and bound to Src to positively regulate its activity. Furthermore, the pleckstrin homology (PH) domain of Arhgef5 was required for podosome formation, and Arhgef5 formed a ternary complex with Src and phosphoinositide 3-kinase when Src and/or Arhgef5 were upregulated. These findings provide novel insights into the molecular mechanisms of podosome and invadopodium formation induced by Src upregulation.
Collapse
Affiliation(s)
- Miho Kuroiwa
- Department of Oncogene Research, Research institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Chitose Oneyama
- Department of Oncogene Research, Research institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shigeyuki Nada
- Department of Oncogene Research, Research institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masato Okada
- Department of Oncogene Research, Research institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
47
|
Matyas GR, Wieczorek L, Bansal D, Chenine AL, Sanders-Buell E, Tovanabutra S, Kim JH, Polonis V, Alving CR. Inhibition of HIV-1 infection of peripheral blood mononuclear cells by a monoclonal antibody that binds to phosphoinositides and induces secretion of β-chemokines. Biochem Biophys Res Commun 2010; 402:808-12. [PMID: 21040700 PMCID: PMC7173129 DOI: 10.1016/j.bbrc.2010.10.124] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Accepted: 10/26/2010] [Indexed: 12/05/2022]
Abstract
A murine IgG mAb, WR321, selected for the ability to bind to phosphatidylinositol-4-phosphate and phosphatidylinositol-4,5-bisphosphate, but an inability to bind to any of 17 other lipids, including phosphatidylinositol, was examined as a probe for studying interactions of HIV-1 with primary human peripheral blood mononuclear cells. The WR321 mAb broadly neutralized CCR5-tropic strains of HIV-1 to prevent infection of the cells. The mAb also exhibited direct interaction with cells in the culture, resulting in secretion of chemokines that interfered with the interaction of HIV-1 virions with CCR5, the coreceptor for HIV-1 on the susceptible cells, leading to inhibition of infection by HIV-1. Phosphoinositides that are recognized by WR321 do not exist on the external surface of cells, but are concentrated on the inner surface (cytoplasmic leaflet) of the plasma membrane. Murine anti-phosphoinositide mAbs similar to WR321 have previously been directly microinjected into a variety of cultured cells, resulting in important changes in the functions of the cells. The present results suggest that binding of a mAb to phosphoinositides, resulting in secretion of β-chemokines into the culture medium and neutralization of infection by CCR5-tropic HIV-1 of nearby susceptible cells, occurred by uptake and binding of the mAb at an intracellular location in the cultured cells that then led to secretion of HIV-1-inhibitory β-chemokines.
Collapse
Affiliation(s)
- Gary R Matyas
- Division of Retrovirology, Walter Reed Army Institute of Research, Rockville, MD 20850, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Yamaguchi H, Oikawa T. Membrane lipids in invadopodia and podosomes: key structures for cancer invasion and metastasis. Oncotarget 2010; 1:320-328. [PMID: 21307399 PMCID: PMC3157727 DOI: 10.18632/oncotarget.164] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Accepted: 09/04/2010] [Indexed: 11/25/2022] Open
Abstract
Invadopodia are extracellular matrix (ECM)-degrading protrusions formed by invasive cancer cells. Podosomes are structures functionally similar to invadopodia that are found in oncogene-transformed fibroblasts and monocyte-derived cells, including macrophages and osteoclasts. These structures are thought to play important roles in the pericellular remodeling of ECM during cancer invasion and metastasis. Much effort has been directed toward identification of the molecular components and regulators of invadopodia/podosomes, which could be therapeutic targets in the treatment of malignant cancers. However, it remains largely unknown how these components are assembled into invadopodia/podosomes and how the assembly process is spatially and temporally regulated. This review will summarize recent progress on the molecular mechanisms of invadopodia/podosome formation, with strong emphasis on the roles of lipid rafts and phosphoinositides.
Collapse
Affiliation(s)
- Hideki Yamaguchi
- Growth Factor Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Tsukasa Oikawa
- Collaborative Research Resources, Institute for Integral Medical Research, School of Medicine, Keio University, Tokyo 160-8582, Japan
| |
Collapse
|