1
|
Santos JAV, Silva D, Marques MPM, Batista de Carvalho LAE. Platinum-based chemotherapy: trends in organic nanodelivery systems. NANOSCALE 2024; 16:14640-14686. [PMID: 39037425 DOI: 10.1039/d4nr01483a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Despite the investment in platinum drugs research, cisplatin, carboplatin and oxaliplatin are still the only Pt-based compounds used as first line treatments for several cancers, with a few other compounds being approved for administration in some Asian countries. However, due to the severe and worldwide impact of oncological diseases, there is an urge for improved chemotherapeutic approaches. Furthermore, the pharmaceutical application of platinum complexes is hindered by their inherent toxicity and acquired resistance. Nanodelivery systems rose as a key strategy to overcome these challenges, with recognized versatility and ability towards improving the safety, bioavailability and efficacy of the available drugs. Among the known nanocarriers, organic systems have been widely applied, taking advantage of their potential as drug vehicles. Researchers have mainly focused on the development of lipidic and polymeric carriers, including supramolecular structures, with an overall improvement of encapsulated platinum complexes. Herein, an overview of recent trends and strategies is presented, with the main focus on the encapsulation of platinum compounds into organic nanocarriers, showcasing the evolution in the design and development of these promising systems. This comprehensive review highlights formulation methods as well as characterization procedures, providing insights that may be helpful for the development of novel platinum nanocarriers aiming at future pharmaceutical applications.
Collapse
Affiliation(s)
- João A V Santos
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Daniela Silva
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Maria Paula M Marques
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Luís A E Batista de Carvalho
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
2
|
Kirti A, Simnani FZ, Jena S, Lenka SS, Kalalpitiya C, Naser SS, Singh D, Choudhury A, Sahu RN, Yadav A, Sinha A, Nandi A, Panda PK, Kaushik NK, Suar M, Verma SK. Nanoparticle-mediated metronomic chemotherapy in cancer: A paradigm of precision and persistence. Cancer Lett 2024; 594:216990. [PMID: 38801886 DOI: 10.1016/j.canlet.2024.216990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/05/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Current methods of cancer therapy have demonstrated enormous potential in tumor inhibition. However, a high dosage regimen of chemotherapy results in various complications which affect the normal body cells. Tumor cells also develop resistance against the prescribed drugs in the whole treatment regimen increasing the risk of cancer relapse. Metronomic chemotherapy is a modern treatment method that involves administering drugs at low doses continuously, allowing the drug sufficient time to take its effect. This method ensures that the toxicity of the drugs is to a minimum in comparison to conventional chemotherapy. Nanoparticles have shown efficacy in delivering drugs to the tumor cells in various cancer therapies. Combining nanoparticles with metronomic chemotherapy can yield better treatment results. This combination stimulates the immune system, improving cancer cells recognition by immune cells. Evidence from clinical and pre-clinical trials supports the use of metronomic delivery for drug-loaded nanoparticles. This review focuses on the functionalization of nanoparticles for improved drug delivery and inhibition of tumor growth. It emphasizes the mechanisms of metronomic chemotherapy and its conjunction with nanotechnology. Additionally, it explores tumor progression and the current methods of chemotherapy. The challenges associated with nano-based metronomic chemotherapy are outlined, paving the way for prospects in this dynamic field.
Collapse
Affiliation(s)
- Apoorv Kirti
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | | | - Snehasmita Jena
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Sudakshya S Lenka
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | | | | | - Dibyangshee Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Anmol Choudhury
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Rudra Narayan Sahu
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Anu Yadav
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Aditya Nandi
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India; Instituto de Investigaciones en Materiales, UNAM, 04510, CDMX, Mexico
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Republic of Korea.
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India.
| | - Suresh K Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India.
| |
Collapse
|
3
|
Alaei M, Moetamani-Ahmadi M, Mahaki H, Fiuji H, Maftooh M, Hassanian SM, Khazaei M, Shahri AP, Ferns GA, Frozanfar F, Tanzadehpanah H, Avan A. Nanoliposomal oxaliplatin ameliorates chemotherapy-induced neuropathy. Neurosci Lett 2023; 812:137367. [PMID: 37419304 DOI: 10.1016/j.neulet.2023.137367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/19/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is an important adverse effect of treatment with oxaliplatin (OXA). We have developed PEGylated nanoliposomal oxaliplatin (OXA-LIP) and tested its activity in an animal model of CIPN. OXA-LIPs were prepared using a combination of egg yolk lecithin, cholesterol, and DSPE-mPEG2000 (at ratios 400, 80, and 27 mg). These liposomes were characterized using several different methods (e.g., polydispersity index (PDI), and zeta potential, FESEM). The in vivo study was performed in 15 male rats comprising three groups: a negative control (normal saline) OXA, and OXA-LIP. These were injected intraperitoneally at a concentration of 4 mg/kg on two consecutive days every week, for 4 weeks. After that, CIPN was assessed using the hotplate and acetonedropmethods. Oxidative stress biomarkers such as SOD, catalase, MDA, and TTG were measured in the serum samples. The functional disturbances of the liver and kidney were assessed by measuring the serum levels of ALT, AST, creatinine, urea, and bilirubin. Furthermore, hematological parameters were determined in the three groups. The OXA-LIP had an average particle size, PDI, and zeta potential of 111.2 ± 1.35 nm, 0.15 ± 0.045, and -52.4 ± 17 mV, respectively. The encapsulation efficiency of OXA-LIP was 52% with low leakage rates at 25 °C.Thermal hyperalgesia changes showed OXA has significant effects in the induction of neuropathy on days 7, 14, and 21 compared to the control group. OXA had a significantly greater sensitivity than the OXA-LIP and control groups in the thermal allodynia test (P < 0.001). OXA-LIP administration did not show significant effects on the changes of oxidative stress, biochemical factors, and cell count. Our findings provide a proof of concept on the potential application of oxaliplatin encapsulated with PEGylated nanoliposome to ameliorate the severity of neuropathy, supporting further studies in clinical phases to explore the value of this agent for Chemotherapy-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Maryam Alaei
- Department of Clinical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Moetamani-Ahmadi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanie Mahaki
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Fiuji
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Maftooh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Clinical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Fatemeh Frozanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Tanzadehpanah
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq; Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
4
|
Panthi VK, Dua K, Singh SK, Gupta G, Hansbro PM, Paudel KR. Nanoformulations-Based Metronomic Chemotherapy: Mechanism, Challenges, Recent Advances, and Future Perspectives. Pharmaceutics 2023; 15:pharmaceutics15041192. [PMID: 37111677 PMCID: PMC10146318 DOI: 10.3390/pharmaceutics15041192] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Cancer-related death is a significant health and economic burden worldwide, and some conventional chemotherapy is associated with limited effectiveness in completely curing various cancers, severe adverse effects, and destruction of healthy cells. To overcome the complications associated with conventional treatment, metronomic chemotherapy (MCT) is extensively suggested. In this review, we aim to highlight the importance of MCT over conventional chemotherapeutic approach with emphasis on nanoformulations-based MCT, their mechanism, challenges, recent advances, and future perspectives. Nanoformulations-based MCT revealed remarkable antitumor activity in both preclinical and clinical settings. For example, the metronomic scheduling of oxaliplatin-loaded nanoemulsion and polyethylene glycol-coated stealth nanoparticles incorporating paclitaxel were proven very effective in tumor-bearing mice and rats, respectively. Additionally, several clinical studies have demonstrated the benefit of MCT with acceptable tolerance. Moreover, metronomic might be a promising treatment strategy for improving cancer care in low- and middle-income nations. However, an appropriate alternative to a metronomic regimen for an individual ailment, suitable combinational delivery and scheduling, and predictive biomarkers are certain parts that remain unanswered. Further clinical-based comparative research studies are mandatory to be performed before entailing this treatment modality in clinical practice as alternative maintenance therapy or in place of transferring to therapeutic management.
Collapse
Affiliation(s)
- Vijay Kumar Panthi
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur 302017, India
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia
| |
Collapse
|
5
|
Suda K, Yamada S, Miyahara K, Fujiwara N, Kosaka S, Abe K, Seo S, Nakamura S, Lane GJ, Yamataka A. High intestinal vascular permeability in a murine model for Hirschsprung’s disease: implications for postoperative Hirschsprung-associated enterocolitis. Pediatr Surg Int 2022; 39:15. [PMID: 36449111 PMCID: PMC9713090 DOI: 10.1007/s00383-022-05308-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/14/2022] [Indexed: 12/02/2022]
Abstract
PURPOSE Intestinal vascular permeability (VP) in a murine model for Hirschsprung's disease (HD) and postoperative Hirschsprung-associated enterocolitis (HAEC) were investigated. METHODS Intestinal VP was determined using a Miles assay using 1% Evans blue injected into a superficial temporal vein of newborn endothelin receptor-B KO HD model (KO) and syngeneic wild-type (WT) mice (n = 5, respectively). Extravasated Evans blue in normoganglionic ileum (Ng-I), normoganglionic proximal colon (Ng-PC) and aganglionic distal colon (Ag-DC) was quantified by absorbance at 620 nm. Quantitative polymerase chain reaction (qPCR) for Vascular Endothelial Growth Factor A (VEGF-A), VEGF-B, CDH5, SELE and CD31, and immunofluorescence for CD31 were performed. RESULTS VP was significantly higher in Ng-I, Ng-PC, and Ag-DC from KO than WT (p < 0.01, p < 0.05, and p < 0.05, respectively). qPCR demonstrated upregulated VEGF-A in Ng-I and Ag-DC, VEGF-B in Ng-I, and SELE in Ng-I and Ng-PC (p < 0.05, p < 0.05, p < 0.05, p < 0.01 and p < 0.05, respectively), and downregulated CDH5 in Ng-I and Ng-PC from KO (p < 0.05, respectively). Expression of CD31 mRNA in Ng-I and Ag-DC from KO was significantly higher on qPCR (p < 0.05) but differences on immunofluorescence were not significant. CONCLUSIONS VP may be etiologic for postoperative HAEC throughout the intestinal tract even after excision of aganglionic bowel.
Collapse
Affiliation(s)
- Kazuto Suda
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Shunsuke Yamada
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Katsumi Miyahara
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Naho Fujiwara
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Seitaro Kosaka
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Kumpei Abe
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shogo Seo
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shinji Nakamura
- Division of Biomedical Imaging Research, and Division of Ultrastructural Research, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Geoffrey J Lane
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Atsuyuki Yamataka
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| |
Collapse
|
6
|
Singh P, Waghambare P, Khan T, Omri A. Colorectal cancer management: Strategies in drug delivery. Expert Opin Drug Deliv 2022; 19:653-670. [PMID: 35656670 DOI: 10.1080/17425247.2022.2084531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Colorectal cancer (CRC) is the third most common cancer leading to death worldwide following breast and lung cancer with the incidence rate of 10%. The treatment comprises of surgery, radiation, and ablation therapy depending upon the stage of cancer. AREAS COVERED The review focuses on various drug delivery strategies explored to circumvent the major constraints associated with the conventional drug delivery systems- poor bioavailability, intra- and inter individual variability, exposure of normal cells to antineoplastic agents, and presence of efflux pump. All these attributes impact the effective delivery of chemotherapeutic agents at the tumor site. The various target specific drug delivery systems developed for colorectal cancer include pH dependent, microbiologically triggered, time dependent, magnetically driven, pressure dependent, prodrug/polysaccharide based, osmotic and ligand mediated systems. This review enumerates novel target specific approaches developed and investigated for potential utility in CRC therapeutics. EXPERT OPINION The limitations of conventional delivery systems can be overcome by development of colon-specific targeted drug delivery systems that overcome the obstacles of nonspecific biodistribution, drug resistance and unwanted adverse effects of conventional drug delivery systems. In addition, nanotechnology approaches help to increase drug solubility, bioavailability, reduce side effects and provide superior drug response in CRC.
Collapse
Affiliation(s)
- Prabha Singh
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| | - Pramita Waghambare
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
| |
Collapse
|
7
|
Ando H. [Elucidation for Intratumor Localization of a DDS-based Anticancer Drug and Enhancement of Its Therapeutic Effects via Improvement of the Tumor Microenvironment]. YAKUGAKU ZASSHI 2021; 141:1241-1245. [PMID: 34719544 DOI: 10.1248/yakushi.21-00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the development of drug delivery system (DDS)-based anticancer drugs, the techniques for the intratumor mapping and quantification of active pharmaceutical ingredients (API) in pharmaceuticals must be pivotal for predicting pharmacological effects and adverse events. X-ray fluorescence spectrometry (XRF) is a potent analytical tool for mapping/quantifying platinum pharmaceutics such as oxaliplatin (l-OHP) and its liposomal formulation. In recent studies, we employed XRF to visualize the intratumor micro-distribution of l-OHP in a tumor-bearing model mouse intravenously injected with either free l-OHP or l-OHP liposomes. The intratumor distribution of l-OHP within tumor sections could be determined by XRF to detect platinum atoms. After treatment with the liposomal formulation, the l-OHP was localized near the tumor vessels and, via repeated injections, increasingly accumulated in tumors by a much greater degree than treatment with free l-OHP. The repeated injections of l-OHP liposomes improved the vascular permeability via inducing the apoptosis of tumor cells near the tumor vessels, which should improve the tumor microenvironment and enhance the intratumor accumulation of repeated doses of l-OHP liposomes. The proposed process was also used to visualize the intratumor distribution of l-OHP in rectal cancer specimens resected from a patient who had received l-OHP-based preoperative chemotherapy. We further revealed that neutralization of an acidic tumor microenvironment via oral administration with NaHCO3 could improve the therapeutic efficacy of weakly basic anticancer agent-encapsulating liposomes. Collectively, mapping/quantifying the intratumor API in DDS drugs and/or improving the tumor microenvironment would be an effective means to accelerate the clinical development of DDS-based anticancer drugs.
Collapse
Affiliation(s)
- Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| |
Collapse
|
8
|
Mogi K, Kamiya I, Makino A, Hirao A, Abe R, Doi Y, Shimizu T, Ando H, Morito K, Takayama K, Ishida T, Nagasawa K. Liposomalization of Oxaliplatin Exacerbates the Non-Liposomal Formulation-Induced Decrease of Sweet Taste Sensitivity in Rats. J Pharm Sci 2021; 110:3937-3945. [PMID: 34246630 DOI: 10.1016/j.xphs.2021.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 11/15/2022]
Abstract
Here, we investigated whether or not the characteristics of the oxaliplatin-induced sweet taste sensitivity were altered by PEGylated liposomalization of oxaliplatin (liposomal oxaliplatin), which enhances its anticancer efficacy. Liposomal oxaliplatin and oxaliplatin were intravenously and intraperitoneally, respectively, administered to male Sprague-Dawley rats at the total dose of 8 mg/kg. A brief-access test for evaluation of sweet taste sensitivity on day 7 revealed that both liposomal oxaliplatin and oxaliplatin decreased the sensitivity of rats, the degree with the former being greater than in the case of the latter. Liposomalization of oxaliplatin increased the accumulation of platinum in lingual non-epithelial tissues, through which taste nerves passed. The lingual platinum accumulation induced by not only liposomal oxaliplatin but also oxaliplatin was decreased on cooling of the tongue during the administration. In the current study, we revealed that liposomalization of oxaliplatin exacerbated the oxaliplatin-induced decrease of sweet taste sensitivity by increasing the accumulation of platinum/oxaliplatin in lingual non-epithelial tissues. These findings may suggest that reduction of liposomal oxaliplatin distribution to the tongue on cooling during the administration prevents exacerbation of the decrease of sweet taste sensitivity, maintaining the quality of life and chemotherapeutic outcome in patients.
Collapse
Affiliation(s)
- Keisuke Mogi
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, JAPAN
| | - Ikumi Kamiya
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, JAPAN
| | - Aimi Makino
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, JAPAN
| | - Ayaka Hirao
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, JAPAN
| | - Reina Abe
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, JAPAN
| | - Yusuke Doi
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, JAPAN
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, JAPAN
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, JAPAN
| | - Katsuya Morito
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, JAPAN
| | - Kentaro Takayama
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, JAPAN
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, JAPAN
| | - Kazuki Nagasawa
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, JAPAN.
| |
Collapse
|
9
|
Emam SE, Abu Lila AS, Elsadek NE, Ando H, Shimizu T, Okuhira K, Ishima Y, Mahdy MA, Ghazy FES, Ishida T. Cancer cell-type tropism is one of crucial determinants for the efficient systemic delivery of cancer cell-derived exosomes to tumor tissues. Eur J Pharm Biopharm 2019; 145:27-34. [DOI: 10.1016/j.ejpb.2019.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/03/2019] [Accepted: 10/16/2019] [Indexed: 01/02/2023]
|
10
|
Doi Y, Shimizu T, Ishima Y, Ishida T. Long-term storage of PEGylated liposomal oxaliplatin with improved stability and long circulation times in vivo. Int J Pharm 2019; 564:237-243. [PMID: 31002935 DOI: 10.1016/j.ijpharm.2019.04.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/12/2019] [Accepted: 04/14/2019] [Indexed: 12/01/2022]
Abstract
Liposomal anticancer drugs have been developed with improved clinical effects and reduced side effects. We have developed a PEGylated liposomal formulation of oxaliplatin that has anticancer effects in animal models of colorectal cancer with a favorable toxicity profile. To move this formulation into clinical development, a formulation that is stable during long term storage is needed, which has similar pharmacokinetics and therapeutic activity against solid tumors to the original formulation. In this study, we found that PEGylated liposomal oxaliplatin showed no changes in particle size after long term storage (12 months at 2-8 °C), but phospholipid degradation had occurred. Hence, the stored formulation had compromised membrane integrity, resulting in decreased in vivo circulation times of the liposomes. To improve the stability during long-term storage, a screening study to obtain an appropriate stabilizer was carried out. The buffer 2-morpholinoethansulfonic acid (MES) attenuated not only phospholipid degradation but also oxaliplatin degradation, unlike most other excipients. After 12 months storage at 2-8 °C in the presence of MES only slight degradation of phospholipids in PEGylated liposomal oxaliplatin occurred, resulting in similar in vivo pharmacokinetic profiles of the encapsulated oxaliplatin to the original formulation. Long term stability of PEGylated liposomal oxaliplatin was achieved by addition of MES, resulting in long circulation half-lives in vivo, a property which would be expected to lead to increased suppression of tumor growth and reduced side effects. Our formulation may now be suitable for clinical development.
Collapse
Affiliation(s)
- Yusuke Doi
- Formulation Research Laboratory, CMC Division, Taiho Pharmaceutical Co., Ltd., 224-2, Ebisuno, Hiraishi, Kawauchi-cho, Tokushima 771-0194, Japan
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan.
| |
Collapse
|
11
|
Englinger B, Pirker C, Heffeter P, Terenzi A, Kowol CR, Keppler BK, Berger W. Metal Drugs and the Anticancer Immune Response. Chem Rev 2018; 119:1519-1624. [DOI: 10.1021/acs.chemrev.8b00396] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bernhard Englinger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Christine Pirker
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Alessio Terenzi
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Christian R. Kowol
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Bernhard K. Keppler
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Chang CW, Liu CY, Lee HC, Huang YH, Li LH, Chiau JSC, Wang TE, Chu CH, Shih SC, Tsai TH, Chen YJ. Lactobacillus casei Variety rhamnosus Probiotic Preventively Attenuates 5-Fluorouracil/Oxaliplatin-Induced Intestinal Injury in a Syngeneic Colorectal Cancer Model. Front Microbiol 2018; 9:983. [PMID: 29867884 PMCID: PMC5962742 DOI: 10.3389/fmicb.2018.00983] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/26/2018] [Indexed: 12/12/2022] Open
Abstract
Adjuvant 5-fluorouracil (5-FU)-based chemotherapy, including FOLFOX (5-FU, leucovorin, and oxaliplatin), is recommended for colorectal cancer. However, intestinal mucositis remains a common adverse effect for which no effective preventive strategies are available. To develop a convenient and novel way to alleviate mucositis, we investigated the effect of Lactobacillus casei variety rhamnosus (Lcr35) on FOLFOX-induced mucosal injury. BALB/c mice subcutaneously injected with syngeneic CT26 colorectal adenocarcinoma cells were orally administered Lcr35 daily before, during, and after 5-day injection of FOLFOX regimen, for 14 days. The following methods were used: diarrhea score for toxicity, ELISA for cytokine production, histopathology for intestinal injury, immunohistochemistry for apoptosis/proliferation and regulatory proteins, RT-PCR for cytokine mRNA expression, and DNA sequencing for fecal gut microbiota. FOLFOX administration to colorectal cancer-bearing mice significantly inhibited tumor growth and the accompanying marked diarrhea and intestinal injury histologically characterized by the shortening of villi and destruction of intestinal crypts. Preventive administration of Lcr35 dose-dependently reduced the severity of diarrhea and intestinal mucositis without affecting the anti-tumor effect of FOLFOX. The numbers of apoptotic, NF-κB-, and BAX-activated cells increased after FOLFOX, and these responses were mitigated by Lcr35. TNF-α and IL-6 upregulation by FOLFOX treatment was attenuated by Lcr35. The fecal gut microbiota composition of Firmicutes and Bacteroidetes disturbed by FOLFOX was significantly reversed by Lcr35 toward a preferential profile. In conclusion, the oral probiotic Lcr35 prevented FOLFOX-induced intestinal mucositis in colorectal cancer-bearing mice. The putative mechanism might involve modulation of gut microbiota and proinflammatory responses with suppression of intrinsic apoptosis in intestinal injury.
Collapse
Affiliation(s)
- Ching-Wei Chang
- Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Gastroenterology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Chia-Yuan Liu
- Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Gastroenterology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Hung-Chang Lee
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.,Mackay Junior College of Medicine, Nursing, and Management, New Taipei City, Taiwan.,MacKay Children's Hospital, Taipei, Taiwan
| | - Yen-Hua Huang
- Institute of Biomedical Informatics, Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei, Taiwan
| | - Li-Hui Li
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan
| | | | - Tsang-En Wang
- Division of Gastroenterology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.,Mackay Junior College of Medicine, Nursing, and Management, New Taipei City, Taiwan
| | - Cheng-Hsin Chu
- Division of Gastroenterology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.,Mackay Junior College of Medicine, Nursing, and Management, New Taipei City, Taiwan
| | - Shou-Chuan Shih
- Division of Gastroenterology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.,Mackay Junior College of Medicine, Nursing, and Management, New Taipei City, Taiwan
| | - Tung-Hu Tsai
- Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Chemical Engineering, National United University, Miaoli, Taiwan
| | - Yu-Jen Chen
- Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.,Department of Radiation Oncology, MacKay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
13
|
Ando H, Abu Lila AS, Tanaka M, Doi Y, Terada Y, Yagi N, Shimizu T, Okuhira K, Ishima Y, Ishida T. Intratumoral Visualization of Oxaliplatin within a Liposomal Formulation Using X-ray Fluorescence Spectrometry. Mol Pharm 2018; 15:403-409. [PMID: 29287147 DOI: 10.1021/acs.molpharmaceut.7b00762] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Microsynchrotron radiation X-ray fluorescence spectrometry (μ-SR-XRF) is an X-ray procedure that utilizes synchrotron radiation as an excitation source. μ-SR-XRF is a rapid, nondestructive technique that allows mapping and quantification of metals and biologically important elements in cell or tissue samples. Generally, the intratumor distribution of nanocarrier-based therapeutics is assessed by tracing the distribution of a labeled nanocarrier within tumor tissue, rather than by tracing the encapsulated drug. Instead of targeting the delivery vehicle, we employed μ-SR-XRF to visualize the intratumoral microdistribution of oxaliplatin (l-OHP) encapsulated within PEGylated liposomes. Tumor-bearing mice were intravenously injected with either l-OHP-containing PEGylated liposomes (l-OHP liposomes) or free l-OHP. The intratumor distribution of l-OHP within tumor sections was determined by detecting the fluorescence of platinum atoms, which are the main elemental components of l-OHP. The l-OHP in the liposomal formulation was localized near the tumor vessels and accumulated in tumors at concentrations greater than those seen with the free form, which is consistent with the results of our previous study that focused on fluorescent labeling of PEGylated liposomes. In addition, repeated administration of l-OHP liposomes substantially enhanced the tumor accumulation and/or intratumor distribution of a subsequent dose of l-OHP liposomes, presumably via improvements in tumor vascular permeability, which is also consistent with our previous results. In conclusion, μ-SR-XRF imaging efficiently and directly traced the intratumor distribution of the active pharmaceutical ingredient l-OHP encapsulated in liposomes within tumor tissue. μ-SR-XRF imaging could be a powerful means for estimating tissue distribution and even predicting the pharmacological effect of nanocarrier-based anticancer metal compounds.
Collapse
Affiliation(s)
- Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University , 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Amr S Abu Lila
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University , 1-78-1, Sho-machi, Tokushima 770-8505, Japan.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University , Zagazig 44519, Egypt.,Department of Pharmaceutics, College of Pharmacy, Hail University , Hail 81442, Saudi Arabia
| | - Masao Tanaka
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University , 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Yusuke Doi
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University , 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Yasuko Terada
- Japan Synchrotron Radiation Research Institute (JASRI) , 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Naoto Yagi
- Japan Synchrotron Radiation Research Institute (JASRI) , 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University , 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Keiichiro Okuhira
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University , 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University , 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University , 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| |
Collapse
|
14
|
Nishida K, Kashiwagi M, Shiba S, Muroki K, Ohishi A, Doi Y, Ando H, Ishida T, Nagasawa K. Liposomalization of oxaliplatin induces skin accumulation of it, but negligible skin toxicity. Toxicol Appl Pharmacol 2017; 337:76-84. [DOI: 10.1016/j.taap.2017.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/04/2017] [Accepted: 10/12/2017] [Indexed: 01/04/2023]
|
15
|
Abu Lila AS, Moriyoshi N, Fukushima M, Huang CL, Wada H, Ishida T. Metronomic S-1 dosing and thymidylate synthase silencing have synergistic antitumor efficacy in a colorectal cancer xenograft model. Cancer Lett 2017; 400:223-231. [DOI: 10.1016/j.canlet.2016.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/30/2016] [Accepted: 11/02/2016] [Indexed: 01/30/2023]
|
16
|
Shimizu T, Abu Lila AS, Nishio M, Doi Y, Ando H, Ukawa M, Ishima Y, Ishida T. Modulation of antitumor immunity contributes to the enhanced therapeutic efficacy of liposomal oxaliplatin in mouse model. Cancer Sci 2017. [PMID: 28643902 PMCID: PMC5581521 DOI: 10.1111/cas.13305] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Immune modulation of the tumor microenvironment has been reported to participate in the therapeutic efficacy of many chemotherapeutic agents. Recently, we reported that liposomal encapsulation of oxaliplatin (l-OHP) within PEGylated liposomes conferred a superior antitumor efficacy to free l-OHP in murine colorectal carcinoma-bearing mice through permitting preferential accumulation of the encapsulated drug within tumor tissue. However, the contribution of the immune-modulatory properties of liposomal l-OHP and/or free l-OHP to the overall antitumor efficacy was not elucidated. In the present study, therefore, we investigated the effect of liposomal encapsulation of l-OHP within PEGylated liposomes on the antitumor immunity in both immunocompetent and immunodeficient mice. Liposomal l-OHP significantly suppressed the growth of tumors implanted in immunocompetent mice, but not in immunodeficient mice. In immunocompetent mice, liposomal l-OHP increased the tumor MHC-1 level and preserved antitumor immunity through decreasing the number of immune suppressor cells, including regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages, which collectively suppress CD8+ T cell-mediated tumor cells killing. In contrast, free l-OHP ruined antitumor immunity. These results suggest that the antitumor efficacy of liposomal l-OHP is attributed, on the one hand, to its immunomodulatory effect on tumor immune microenvironment that is superior to that of free l-OHP, and on the other hand, to its direct cytotoxic effect on tumor cells.
Collapse
Affiliation(s)
- Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Graduate School of Pharmaceutical Science, Tokushima University, Tokushima, Japan
| | - Amr S Abu Lila
- Department of Pharmacokinetics and Biopharmaceutics, Graduate School of Pharmaceutical Science, Tokushima University, Tokushima, Japan.,Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.,Department of Pharmaceutics, College of Pharmacy, Hail University, Hail, Saudi Arabia
| | - Miho Nishio
- Department of Pharmacokinetics and Biopharmaceutics, Graduate School of Pharmaceutical Science, Tokushima University, Tokushima, Japan
| | - Yusuke Doi
- Department of Pharmacokinetics and Biopharmaceutics, Graduate School of Pharmaceutical Science, Tokushima University, Tokushima, Japan
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Graduate School of Pharmaceutical Science, Tokushima University, Tokushima, Japan
| | - Masami Ukawa
- Department of Pharmacokinetics and Biopharmaceutics, Graduate School of Pharmaceutical Science, Tokushima University, Tokushima, Japan
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Graduate School of Pharmaceutical Science, Tokushima University, Tokushima, Japan
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Graduate School of Pharmaceutical Science, Tokushima University, Tokushima, Japan
| |
Collapse
|
17
|
Alaaeldin E, Abu Lila AS, Ando H, Fukushima M, Huang CL, Wada H, Sarhan HA, Khaled KA, Ishida T. Co-administration of liposomal l-OHP and PEGylated TS shRNA-lipoplex: A novel approach to enhance anti-tumor efficacy and reduce the immunogenic response to RNAi molecules. J Control Release 2017; 255:210-217. [PMID: 28461099 DOI: 10.1016/j.jconrel.2017.04.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 04/20/2017] [Accepted: 04/26/2017] [Indexed: 12/17/2022]
Abstract
Many therapeutic strategies have been applied in efforts to conquer the development and/or progression of cancer. The combination of chemotherapy and an RNAi-based approach has proven to be an efficient anticancer therapy. However, the feasibility of such a therapeutic strategy has been substantially restricted either by the failure to achieve the efficient delivery of RNAi molecules to tumor tissue or by the immunostimulatory response triggered by RNAi molecules. In this study, therefore, we intended to investigate the efficacy of using liposomal oxaliplatin (liposomal l-OHP) to guarantee the efficient delivery of RNAi molecules, namely shRNA against thymidylate synthase (TS shRNA) complexed with cationic liposome (TS shRNA-lipoplex), to solid tumors, and to suppress the immunostimulatory effect of RNAi molecules, TS shRNA, following intravenous administration. Herein, we describe how liposomal l-OHP enhanced the intra-tumor accumulation of TS shRNA-lipoplex and significantly reduced the immunostimulatory response triggered by TS shRNA. Consequently, such enhanced accumulation of TS shRNA-lipoplex along with the cytotoxic effect of liposomal l-OHP led to a remarkable tumor growth suppression (compared to mono-therapy) following systemic administration. Our results, therefore, may have important implications for the provision of a safer and more applicable combination therapy of RNAi molecules and anti-cancer agents that can produce a more reliable anti-tumor effect.
Collapse
Affiliation(s)
- Eman Alaaeldin
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan; Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Amr S Abu Lila
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; Department of Pharmaceutics, College of Pharmacy, Hail University, Hail 81442, Saudi Arabia
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan; Department of Cancer Metabolism and Therapy, Institute of Biomedical Sciences,Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Masakazu Fukushima
- Department of Cancer Metabolism and Therapy, Institute of Biomedical Sciences,Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Cheng-Long Huang
- Department of Thoracic Surgery, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Hiromi Wada
- Department of Thoracic Surgery, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Hatem A Sarhan
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Khaled A Khaled
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan; Department of Cancer Metabolism and Therapy, Institute of Biomedical Sciences,Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan.
| |
Collapse
|
18
|
Abu Lila AS, Ishida T. Metronomic chemotherapy and nanocarrier platforms. Cancer Lett 2016; 400:232-242. [PMID: 27838415 DOI: 10.1016/j.canlet.2016.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 10/30/2016] [Accepted: 11/02/2016] [Indexed: 12/12/2022]
Abstract
The therapeutic concept of administering chemotherapeutic agents continuously at lower doses, relative to the maximum tolerated dose (MTD) without drug-free breaks over extended periods -known as "metronomic chemotherapy"- is a promising approach for anti-angiogenic cancer therapy. In comparison with MTD chemotherapy regimens, metronomic chemotherapy has demonstrated reduced toxicity. However, as a monotherapy, metronomic chemotherapy has failed to provide convincing results in clinical trials. Therapeutic approaches including combining the anti-angiogenic "metronomic" therapy with conventional radio-/chemo-therapy and/or targeted delivery of chemotherapeutic agents to tumor tissues via their encapsulation with nanocarrier-based platforms have proven to potentiate the overall therapeutic outcomes. In this review, therefore, we focused on the mutual contribution made by nanoscale drug delivery platforms to the therapeutic efficacy of metronomic-based chemotherapy. In addition, the influence that the dosing schedule has on the overall therapeutic efficacy of metronomic chemotherapy is discussed.
Collapse
Affiliation(s)
- Amr S Abu Lila
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Medical Biosciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Hail University, Hail 2440, Saudi Arabia
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Medical Biosciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan.
| |
Collapse
|
19
|
Doi Y, Abu Lila AS, Matsumoto H, Okada T, Shimizu T, Ishida T. Improvement of intratumor microdistribution of PEGylated liposome via tumor priming by metronomic S-1 dosing. Int J Nanomedicine 2016; 11:5573-5582. [PMID: 27822036 PMCID: PMC5087787 DOI: 10.2147/ijn.s119069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The efficient delivery of nanocarrier-based cancer therapeutics into tumor tissue is problematic. Structural abnormalities, tumor vasculature heterogeneity, and elevated intratumor pressure impose barriers against the preferential accumulation of nanocarrier-based cancer therapeutics within tumor tissues and, consequently, compromise their therapeutic efficacy. Recently, we have reported that metronomic S-1, orally available tegafur formulation, dosing synergistically augmented the therapeutic efficacy of oxaliplatin (l-OHP)-containing PEGylated liposome without increasing the toxicity in animal model. However, the exact mechanism behind such synergistic effect was not fully elucidated. In this study, therefore, we tried to shed the light on the contributions of metronomic S-1 dosing to the enhanced accumulation and/or spatial distribution of PEGylated liposome within tumor tissue. Tumor priming with metronomic S-1 treatment induced a potent apoptotic response against both angiogenic endothelial cells and tumor cells adjacent to tumor blood vessels, resulting in enhanced tumor blood flow via transient normalization of tumor vasculature, along with alleviation of intratumor pressure. Such a change in the tumor microenvironment imparted by S-1 treatment allows efficient delivery of PEGylated liposome to tumor tissue and permits their deep penetration/distribution into the tumor mass. Such a priming effect of S-1 dosing can be exploited as a promising strategy to enhance the therapeutic efficacy of nanocarrier-based cancer therapeutics suffering from inadequate/heterogeneous delivery to tumor tissues.
Collapse
Affiliation(s)
- Yusuke Doi
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Amr S Abu Lila
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Hail University, Hail, Saudi Arabia
| | - Haruna Matsumoto
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Tomoko Okada
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
20
|
Yang C, Fu ZX. Liposomal delivery and polyethylene glycol-liposomal oxaliplatin for the treatment of colorectal cancer (Review). Biomed Rep 2014; 2:335-339. [PMID: 24748970 PMCID: PMC3990200 DOI: 10.3892/br.2014.249] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 02/25/2014] [Indexed: 12/17/2022] Open
Abstract
Oxaliplatin is effective for the treatment of advanced colorectal cancer; however, its application is restricted due to its dose-limiting toxicity. Liposomes are sphere-shaped vesicles consisting of one or more phospholipid bilayers. Liposomes as drug carriers are characterized by delayed release, lesion targeting and may be used as a drug-delivery system to decrease the side effects of cytotoxic drugs. Active targeting modification of liposomes may change the biological distribution of the anticancer agents, reduce or reverse multidrug resistance of tumor cells and enhance the effects of anticancer therapy. Based on the characteristics mentioned above, the aim of the present review was to demonstrate that polyethylene glycol-liposomes containing oxaliplatin may offer advantages for the treatment of colorectal cancer in clinical practice.
Collapse
Affiliation(s)
- Chuang Yang
- Department of General Surgery, Third People's Hospital of Mianyang, Mianyang, Sichuan 621000, P.R. China ; Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing, Chongqing 400016, P.R. China
| | - Zhong-Xue Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing, Chongqing 400016, P.R. China
| |
Collapse
|
21
|
Nakamura H, Doi Y, Abu Lila AS, Nagao A, Ishida T, Kiwada H. Sequential treatment of oxaliplatin-containing PEGylated liposome together with S-1 improves intratumor distribution of subsequent doses of oxaliplatin-containing PEGylated liposome. Eur J Pharm Biopharm 2013; 87:142-51. [PMID: 24361534 DOI: 10.1016/j.ejpb.2013.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 12/04/2013] [Accepted: 12/10/2013] [Indexed: 11/24/2022]
Abstract
We recently reported that combination therapy with metronomic S-1 dosing and oxaliplatin (l-OHP)-containing PEGylated liposomes improved antitumor activity in a murine colorectal tumor model. However, little is known about the mechanism underlying such improved therapeutic efficacy. Here we investigated the impact of combined treatment on biodistribution, tumor accumulation and intratumor distribution of test PEGylated liposomes and on the structure of tumor vasculature in a solid tumor. The combined treatment clearly enhanced tumor accumulation and intratumor distribution of a subsequent test dose of PEGylated liposome as a result of on the one hand prolonging blood circulation of test liposome and on the other hand the alteration in tumor microenvironment. The l-OHP-containing PEGylated liposomes contributed predominantly to the enhanced tumor accumulation and altered tumor distribution of test liposome. On the other hand, metronomic S-1 dosing contributed to the altered tumor distribution but not the tumor accumulation of test liposome. The antitumor effect of the combined treatment, reflected by the proportion of apoptotic cells in the tumor, was approximately equally accounted for by each of the two treatments, leading to a roughly additive effect. In conclusion, 1-OHP-containing PEGylated liposome together with S-1 enhanced intratumor influx, leading to improved antitumor activity of subsequently injected 1-OHP-containing PEGylated liposomes and/or S-1. This strategy we propose, which is clinically applicable, may overcome the problems related to the use of EPR effect-based nanocarrier systems.
Collapse
Affiliation(s)
- Hiroyuki Nakamura
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Health Biosciences, The University of Tokushima, Tokushima, Japan
| | - Yusuke Doi
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Health Biosciences, The University of Tokushima, Tokushima, Japan
| | - Amr S Abu Lila
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Health Biosciences, The University of Tokushima, Tokushima, Japan; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Ai Nagao
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Health Biosciences, The University of Tokushima, Tokushima, Japan
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Health Biosciences, The University of Tokushima, Tokushima, Japan.
| | - Hiroshi Kiwada
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Health Biosciences, The University of Tokushima, Tokushima, Japan
| |
Collapse
|
22
|
Abu Lila AS, Nawata K, Shimizu T, Ishida T, Kiwada H. Use of polyglycerol (PG), instead of polyethylene glycol (PEG), prevents induction of the accelerated blood clearance phenomenon against long-circulating liposomes upon repeated administration. Int J Pharm 2013; 456:235-42. [DOI: 10.1016/j.ijpharm.2013.07.059] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/08/2013] [Accepted: 07/27/2013] [Indexed: 12/22/2022]
|
23
|
Ferdous T, Harada K, Kin T, Harada T, Ueyama Y. Efficacy of schedule-dependent metronomic S-1 chemotherapy in human oral squamous cell carcinoma cells. Int J Oncol 2013; 43:271-9. [PMID: 23695365 DOI: 10.3892/ijo.2013.1950] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 04/19/2013] [Indexed: 11/05/2022] Open
Abstract
Metronomic chemotherapy is based on administration of anticancer agents at low-doses at close regular intervals with no prolonged breaks, and aims to inhibit vascular endothelial cells as well as tumor cells. Recently, it was suggested that metronomic chemotherapy exerts anti-angiogenic effects by inducing thrombospondin-1 (TSP-1) and early growth response-1 (EGR-1), and antitumor effects by suppressing cancer stem cells. S-1 is a novel orally administered anticancer drug that is a combination of tegafur, 5-chloro-2, 4-dihydroxypyridine and oteracil potassium for maintaining efficacious concentrations of 5-FU and reducing the serious gastrointestinal toxicity associated with 5-FU. In the present study, we tried to determine the suitable administration method of S-1 against oral squamous cell carcinoma as a metronomic chemotherapy. We performed in vivo experiments in which tumor-bearing nude mice were used to examine the antitumor activity of S-1 (6.9 mg/kg). HSC2 tumors were treated with three different regimens, given as 4-week treatment and 2-week rest (4W-2W, 1 cycle); 2-week treatment and 1-week rest (2W-1W, 2 cycles); or alternate days treatment (1D-1D, 6 weeks). A fourth group served as control. Antitumor effects and body weight changes were compared in each group. Expression of TSP-1, EGR-1, CD31 and CD44 in HSC2 tumors was examined by immunohistochemistry. The treated groups showed higher tumor growth inhibition compared to the control group, and the relative tumor growth inhibition was not different between the treated groups. Briefly, each relative tumor growth inhibition was 32.4% (4W-2W), 39.6% (2W-1W) and 37.0% (1D-1D). During treatment periods, body weights were lower in the mice with 4W-2W or 2W-1W than 1D-1D or control. Moreover, reduction of microvessel density and CD44 expression, and induction of TSP-1 and EGR-1 expression was markedly seen in 1D-1D-treated tumors compared to 4W-2W-, 2W-1W-treated tumors or untreated control tumors by immunohistochemistry. These findings suggest that the 1D-1D regimen is more useful than the 4W-2W or 2W-1W regimen as a metronomic chemotherapy.
Collapse
Affiliation(s)
- Tarannum Ferdous
- Department of Oral and Maxillofacial Surgery, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | | | | | | | | |
Collapse
|
24
|
Zhang JX, Wang K, Mao ZF, Fan X, Jiang DL, Chen M, Cui L, Sun K, Dang SC. Application of liposomes in drug development--focus on gastroenterological targets. Int J Nanomedicine 2013; 8:1325-34. [PMID: 23630417 PMCID: PMC3623572 DOI: 10.2147/ijn.s42153] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Over the past decade, liposomes became a focal point in developing drug delivery systems. New liposomes, with novel lipid molecules or conjugates, and new formulations opened possibilities for safely and efficiently treating many diseases including cancers. New types of liposomes can prolong circulation time or specifically deliver drugs to therapeutic targets. This article concentrates on current developments in liposome based drug delivery systems for treating diseases of the gastrointestinal tract. We will review different types and uses of liposomes in the development of therapeutics for gastrointestinal diseases including inflammatory bowel diseases and colorectal cancer.
Collapse
Affiliation(s)
- Jian-Xin Zhang
- Department of General Surgery, the Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, People’s Republic of China
| | - Kun Wang
- Department of General Surgery, the Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, People’s Republic of China
| | - Zheng-Fa Mao
- Department of General Surgery, the Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, People’s Republic of China
| | - Xin Fan
- Department of General Surgery, the Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, People’s Republic of China
| | - De-Li Jiang
- School of Chemistry and Chemical Engineering of Jiangsu University, Zhenjiang, Jiangsu Province, People’s Republic of China
| | - Min Chen
- School of Chemistry and Chemical Engineering of Jiangsu University, Zhenjiang, Jiangsu Province, People’s Republic of China
| | - Lei Cui
- Department of General Surgery, the Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, People’s Republic of China
| | - Kang Sun
- Department of General Surgery, the Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, People’s Republic of China
| | - Sheng-Chun Dang
- Department of General Surgery, the Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, People’s Republic of China
| |
Collapse
|
25
|
Gao C, Fei F, Wang T, Yang B, Gou S, Yang J, Liao L. Synthesis and in vitro cytotoxicity of platinum(II) complexes with chiral N-monosubstituted 1,2-cyclohexyldiamine derivatives as the carrier groups. J COORD CHEM 2013. [DOI: 10.1080/00958972.2013.775430] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Chuanzhu Gao
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , China
| | - Fan Fei
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , China
| | - Tianshuai Wang
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , China
| | - Bo Yang
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , China
| | - Shaohua Gou
- b Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research , Southeast University , Nanjing , China
| | - Jian Yang
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , China
| | - Liali Liao
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , China
| |
Collapse
|
26
|
Ishida T, Kiwada H. [Development of siRNA delivery strategy by active control of tumor microenvironment]. YAKUGAKU ZASSHI 2013; 133:379-86. [PMID: 23449418 DOI: 10.1248/yakushi.12-00239-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Efficient systemic siRNA delivery to cells in the target tissue is a current critical challenge in the drug delivery field. Several studies have demonstrated that nanoparticles such as polyethylene glycol (PEG)-coated siRNA-lipoplexes may enhance the systemic delivery of siRNA to tumor. However, the disordered tumor microenvironment still poses a potential impediment with respect to the efficient delivery of PEG-coated siRNA-lipoplexes. We recently showed that metronomic S-1 dosing (daily oral administration) enhanced the accumulation of PEG-coated liposome containing anticancer drug in solid tumor tissue and thereby increased therapeutic efficacy in tumor-bearing mouse model. To extend this work, we tried to investigate the effect of metronomic S-1 dosing on the intratumoral accumulation of PEG-coated siRNA-lipoplex and, thereby, their therapeutic efficacy in solid tumor-bearing mouse model. Results showed that metronomic S-1 dosing improved systemic delivery of intravenously injected PEG-coated siRNA-lipoplexes into solid tumor tissue. In addition, the combined therapy of S-1 and PEG-coated siRNA-lipoplexes showed potent tumor growth suppressive effect. Our proposed strategy may pose a promising therapeutic one to conquer cancer progression with siRNA.
Collapse
Affiliation(s)
- Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Health Biosciences, The University of Tokushima, Tokushima, Japan.
| | | |
Collapse
|
27
|
Nagao A, Abu Lila AS, Ishida T, Kiwada H. Abrogation of the accelerated blood clearance phenomenon by SOXL regimen: promise for clinical application. Int J Pharm 2012; 441:395-401. [PMID: 23174409 DOI: 10.1016/j.ijpharm.2012.11.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 10/26/2012] [Accepted: 11/11/2012] [Indexed: 12/14/2022]
Abstract
We recently proposed an S-1 combined with oxaliplatin (SOXL) regimen, a combination treatment consisting of oral metronomic S-1 dosing and intravenous administration of oxaliplatin (l-OHP) containing PEGylated liposomes, which showed potent antitumor activity in vivo. PEGylated liposomes induce what is referred to as the "accelerated blood clearance (ABC) phenomenon" upon repeated administration and consequently lose their long-circulating characteristics. This phenomenon seems to pose an impediment for the clinical application and use of PEGylated liposomal formulations. In the present study, l-OHP-containing PEGylated liposomes in the SOXL regimen significantly attenuated the ABC phenomenon in a dose-dependent manner through suppression of the anti-PEG IgM response, which allowed an enhanced hepatic uptake of subsequently injected test PEGylated liposomes. In tumor-bearing mice, the abrogation of the ABC phenomenon restored intratumor accumulation of subsequently injected PEGylated liposomes. Consequently, the therapeutic efficacy of the SOXL regimen over the combination of the free form of the drugs was credited not only with the selective delivery of drugs to the tumor tissue but also with ensuring an adequate accumulation of subsequent doses within the tumor tissue. The SOXL regimen we proposed may hold promise as a safe and effective treatment regimen for advanced colorectal cancer.
Collapse
Affiliation(s)
- Ai Nagao
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Health Biosciences, The University of Tokushima, Tokushima, Japan
| | | | | | | |
Collapse
|
28
|
Abu Lila AS, Matsumoto H, Doi Y, Nakamura H, Ishida T, Kiwada H. Tumor-type-dependent vascular permeability constitutes a potential impediment to the therapeutic efficacy of liposomal oxaliplatin. Eur J Pharm Biopharm 2012; 81:524-31. [DOI: 10.1016/j.ejpb.2012.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 04/15/2012] [Accepted: 04/17/2012] [Indexed: 01/28/2023]
|
29
|
Liu J, Tang J, He H, Cai LL, Huang Y, Wei X, Luo M, Wang B, Gao X, Yang C, Hu T, Song X, Yi T, Yang L, Xie Y, Tong A, Gou L, Zhao Y, Zheng Y. Preparation of the thienopyridine derivatives loaded liposomes and study on the effect of compound-lipid interaction on release behavior. Drug Deliv 2012; 19:247-54. [PMID: 22823892 DOI: 10.3109/10717544.2012.699983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The article describes characterization of two liposome formulations containing thienopyridine derivatives, namely TP-58 and TP-67. By preparing the liposomes, the concentration of the two compounds in ultrapure water was increased up to three orders of magnitude. After i.v. administration of the liposomes in rats, the initial compound plasma concentrations were enhanced more than fifty times relative to that after i.g. administration of the compound suspensions. It was found out that the release rate of TP-67 from the liposome both in vitro and in vivo was not significantly different from that of TP-58. TP-58 was more lipophilic than TP-67 according to partition coefficiency, and TP-67 had greater polarity than TP-58 based on polar surface area (PSA). With DSC, it was found out that the interaction magnitude between TP-67 and the lipid bilayer was not significantly different from that between TP-58 and the lipid bilayer, which accounted for the similarity of the two compounds in release rate both in vitro and in vivo. It indicated liposome can be used as a potential carrier for broading the application of TP-58 and TP-67. Interaction between the thienopyridine derivatives and the lipid bilayer is probably the decisive factor for compound release from the liposomes.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abu Lila AS, Okada T, Doi Y, Ichihara M, Ishida T, Kiwada H. Combination therapy with metronomic S-1 dosing and oxaliplatin-containing PEG-coated cationic liposomes in a murine colorectal tumor model: synergy or antagonism? Int J Pharm 2012; 426:263-270. [PMID: 22310465 DOI: 10.1016/j.ijpharm.2012.01.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/11/2012] [Accepted: 01/22/2012] [Indexed: 12/27/2022]
Abstract
Combination therapy with 2 or more drugs with different mechanisms of action has been considered a promising strategy for the effective treatment of advanced and metastatic cancers. However, the rational design of combination therapy represents a potential prerequisite for its effectiveness. Recently, we showed that the combination of oral metronomic S-1 dosing with oxaliplatin (l-OHP)-containing PEG-coated "neutral" liposomes exerted excellent antitumor activity. In addition, we recently designed a PEG-coated "cationic" liposome for dual-targeting delivery of l-OHP to tumor endothelial cells and tumor cells in a solid tumor. This targeted liposomal l-OHP formulation showed efficient antitumor activity in a murine tumor model, compared with l-OHP-containing PEG-coated "neutral" liposomes. In the present study, we investigated the issue of whether metronomic S-1 dosing with l-OHP-containing PEG-coated "cationic" liposomes creates synergy. Unfortunately, metronomic S-1 dosing resulted in impaired delivery of PEG-coated "cationic" liposomes into tumor tissue, presumably by decreasing the binding sites on tumor blood vessels available for the liposomes. The anticipated cytotoxic synergistic effect of the combination treatment was not achieved. Instead, the combination treatment showed lower antitumor efficacy than l-OHP-containing PEG-coated "cationic" liposomes alone. These results suggest that the combined treatment of S-1 and l-OHP-containing PEG-coated "cationic" liposomes seems to be antagonistic rather than synergistic.
Collapse
Affiliation(s)
- Amr S Abu Lila
- Department of Pharmacokinetics and Biopharmaceutics, Subdivision of Biopharmaceutical Sciences, Institute of Health Biosciences, The University of Tokushima, 1-78-1, Sho-machi, Tokushima 770-8505, Japan; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Tomoko Okada
- Department of Pharmacokinetics and Biopharmaceutics, Subdivision of Biopharmaceutical Sciences, Institute of Health Biosciences, The University of Tokushima, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Yusuke Doi
- Department of Pharmacokinetics and Biopharmaceutics, Subdivision of Biopharmaceutical Sciences, Institute of Health Biosciences, The University of Tokushima, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Masako Ichihara
- Department of Pharmacokinetics and Biopharmaceutics, Subdivision of Biopharmaceutical Sciences, Institute of Health Biosciences, The University of Tokushima, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Subdivision of Biopharmaceutical Sciences, Institute of Health Biosciences, The University of Tokushima, 1-78-1, Sho-machi, Tokushima 770-8505, Japan.
| | - Hiroshi Kiwada
- Department of Pharmacokinetics and Biopharmaceutics, Subdivision of Biopharmaceutical Sciences, Institute of Health Biosciences, The University of Tokushima, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| |
Collapse
|
31
|
Improved intratumoral delivery of PEG-coated siRNA-lipoplexes by combination with metronomic S-1 dosing in a murine solid tumor model. Drug Deliv Transl Res 2012; 2:77-86. [DOI: 10.1007/s13346-012-0059-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
32
|
A double-modulation strategy in cancer treatment with a chemotherapeutic agent and siRNA. Mol Ther 2011; 19:2040-7. [PMID: 21878904 DOI: 10.1038/mt.2011.174] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
5-Fluorouracil (5-FU) is broadly considered the drug of choice for treating human colorectal cancer (CRC). However, 5-FU resistance, mainly caused by the overexpression of antiapoptotic proteins such as Bcl-2, often leads ultimately to treatment failure. We here investigated the effect of Bcl-2 gene silencing, using small interfering RNA (siRNA) (siBcl-2), on the efficacy of 5-FU in CRC. Transfection of siBcl-2 by a Lipofectamine2000/siRNA lipoplex effectively downregulated Bcl-2 expression in the DLD-1 cell line (a CRC), resulting in significant cell growth inhibition in vitro upon treatment with 5-FU. For in vivo treatments, S-1, an oral formulation of Tegafur (TF), a prodrug of 5-FU, was used to mimic 5-FU infusion. The combined treatment of polyethylene glycol (PEG)-coated siBcl-2-lipoplex and S-1 showed superior tumor growth suppression in a DLD-1 xenograft model, compared to each single treatment. Surprisingly, daily S-1 treatment enhanced the accumulation of PEG-coated siBcl-2-lipoplex in tumor tissue. We propose a novel double modulation strategy in cancer treatment, in which chemotherapy enhances intratumoral siRNA delivery and the delivered siRNA enhances the chemosensitivity of tumors. Combination of siRNA-containing nanocarriers with chemotherapy may compensate for the limited delivery of siRNA to tumor tissue. In addition, such modulation strategy may be considered a promising therapeutic approach to successfully managing 5-FU-resistant tumors.
Collapse
|
33
|
Yang C, Liu HZ, Fu ZX, Lu WD. Oxaliplatin long-circulating liposomes improved therapeutic index of colorectal carcinoma. BMC Biotechnol 2011; 11:21. [PMID: 21401960 PMCID: PMC3064655 DOI: 10.1186/1472-6750-11-21] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 03/15/2011] [Indexed: 11/29/2022] Open
Abstract
Background Cytotoxic drugs are non-selective between normal and pathological tissue, and this poses a challenge regarding the strategy for treatment of tumors. To achieve sufficient antitumor activity for colorectal carcinoma, optimization of the therapeutic regimen is of great importance. We investigated the ability of oxaliplatin long-circulating liposomes (PEG-liposomal L-oHP) to provide an improved therapeutic index of colorectal carcinoma. Results We determined that PEG- liposomes conjugated with cells at 2 h, with a mean fluorescence intensity that was enhanced upon extended induction time. The PEG-liposomal L-oHP induced a significant apoptotic response as compared with free L-oHP, 23.21% ± 3.38% vs. 16.85% ± 0.98%, respectively. Fluorescence imaging with In-Vivo Imaging demonstrated that PEG- liposomes specifically targeted tumour tissue. After intravenous injections of PEG-liposomal L-oHP or free L-oHP, the tumour volume suppression ratio was 26.08% ± 12.43% and 18.19% ± 7.09%, respectively, the percentage increased life span (ILS%) was 45.36% and 76.19%, respectively, and Bcl-2, Bax mRNA and protein expression in tumour tissue was 0.27-fold vs. 0.88-fold and 1.32-fold vs. 1.61-fold compared with free L-oHP, respectively. Conclusion The PEG-liposomal L-oHP exhibited a tendency to target tumour tissue and demonstrated a significantly greater impact on apoptosis compared to free oxaliplatin.
Collapse
Affiliation(s)
- Chuang Yang
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, Chongqing, China.
| | | | | | | |
Collapse
|
34
|
Gao C, Gou S, Xu G. Synthesis, Characterization and Biological Evaluation of Platinum(II) Complexes with a Chiral N-Monosubstituted 1,2-Cyclohexyldiamine Derivative. Chem Pharm Bull (Tokyo) 2011; 59:851-4. [DOI: 10.1248/cpb.59.851] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Chuanzhu Gao
- Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Southeast University
- Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University
| | - Gang Xu
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Southeast University
- Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University
| |
Collapse
|