1
|
Zhang H, Tang Y, Zhou Y, Wang Y, Si H, Li L, Tang B. DNAzyme-RCA-based colorimetric and lateral flow dipstick assays for the point-of-care testing of exosomal m5C-miRNA-21. Chem Sci 2024; 15:9345-9352. [PMID: 38903234 PMCID: PMC11186332 DOI: 10.1039/d4sc02648a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 06/22/2024] Open
Abstract
Methylation of microRNAs (miRNAs) is a post-transcriptional modification that affects miRNA activity by altering the specificity of miRNAs to target mRNAs. Abnormal methylation of miRNAs in cancer suggests their potential as a tumor marker. However, the traditional methylated miRNA detection mainly includes mass spectrometry, sequencing and others; complex procedures and reliance on large instruments greatly limit their application in point-of-care testing (POCT). Based on this, we developed DNAzyme-RCA-based gold nanoparticle (AuNP) colorimetric and lateral flow dipstick (LFD) assays to achieve convenient detection of exosomal 5-methylcytosine miRNA-21 (m5C-miRNA-21) for the first time. The two assays achieved specific recognition and linear amplification of m5C-miRNA-21 through the DNAzyme triggered RCA reaction and color output with low background interference through AuNP aggregation induced by base complementary pairing. The lowest concentration of m5C-miRNA-21 visible to the naked eye of the two assays can reach 1 pM and 0.1 pM, respectively. Detection of exosomal m5C-miRNA-21 in clinical blood samples showed that the expression level of m5C-miRNA-21 in colorectal cancer patients was significantly higher than that in healthy individuals. This approach not only demonstrates a new strategy for the detection of colorectal cancer but also provides a reference for the development of novel diagnostic tools for other miRNA methylation-related diseases.
Collapse
Affiliation(s)
- Hao Zhang
- Department College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Yue Tang
- Department of Emergency Medicine, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University Jinan 250014 P. R. China
| | - Yingshun Zhou
- Department College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Yiguo Wang
- First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital Jinan 250014 P. R. China
| | - Haibin Si
- Department College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Lu Li
- Department College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Bo Tang
- Department College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
- Laoshan Laboratory Qingdao 266237 P. R. China
| |
Collapse
|
2
|
Shi Z, Liu X, Li D, Fan X, He L, Zhou D, Lin H. Construction of a prognostic model based on genome-wide methylation analysis of miRNAs for hepatocellular carcinoma. Epigenomics 2024; 16:513-527. [PMID: 38477016 PMCID: PMC11160443 DOI: 10.2217/epi-2023-0365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
Aim: Using the methylation level of miRNA genes to develop a prognostic model for patients with hepatocellular carcinoma (HCC). Materials & methods: least absolute shrinkage and selection operator and multivariate Cox regression analyses were performed to develop a prognostic model. One miRNA in the model was selected for verification. Results: A prognostic model was developed using eight miRNAs. The areas under the curve for predicting overall survival at 1, 3 and 5 years were 0.75, 0.81 and 0.81. miR-223 was found to be hypomethylated in 160 HCC tissues, and its methylation level was associated with Barcelona Clinic Liver Cancer stages and the prognosis of patients with HCC. Conclusion: The prognostic model based on miRNA methylation levels has the capability to partially forecast the prognosis of patients with HCC.
Collapse
Affiliation(s)
- Zhaoqi Shi
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Xiaolong Liu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Duguang Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Lifeng He
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Daizhan Zhou
- Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan, China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| |
Collapse
|
3
|
Tran PX, Inoue J, Harada H, Inazawa J. Potential for reversing miR-634-mediated cytoprotective processes to improve efficacy of chemotherapy against oral squamous cell carcinoma. Mol Ther Oncolytics 2022; 24:897-908. [PMID: 35571376 PMCID: PMC9073396 DOI: 10.1016/j.omto.2022.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/11/2022] [Indexed: 01/04/2023] Open
Abstract
For advanced oral squamous cell carcinoma (OSCC), increasing sensitivity to chemotherapy is a major challenge in improving treatment outcomes, and targeting cytoprotective processes that lead to the chemotherapy resistance of cancer cells may be therapeutically promising. Tumor-suppressive microRNAs (miRNAs) can target multiple cancer-promoting genes concurrently and are thus expected to be useful seeds for cancer therapeutics. We revealed that miR-634-mediated targeting of multiple cytoprotective process-related genes, including cellular inhibitor of apoptosis protein 1 (cIAP1), can effectively increase cisplatin (CDDP)-induced cytotoxicity and overcome CDDP resistance in OSCC cells. The combination of topical treatment with miR-634 ointment and administration of CDDP was synergistically effective against OSCC tumor growth in a xenograft mouse model. Furthermore, the expression of miR-634 target genes is frequently upregulated in primary OSCC tumors. Our study suggests that reversing miR-634-mediated cytoprotective processes activated in cancer cells is a potentially useful strategy to improve CDDP efficacy against advanced OSCC.
Collapse
Affiliation(s)
- Phuong Xuan Tran
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Department of Oral and Maxillofacial Surgery, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Jun Inoue
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Johji Inazawa
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Bioresource Research Center, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
4
|
Chen D, Yang X, Liu M, Zhang Z, Xing E. Roles of miRNA dysregulation in the pathogenesis of multiple myeloma. Cancer Gene Ther 2021; 28:1256-1268. [PMID: 33402729 PMCID: PMC8636266 DOI: 10.1038/s41417-020-00291-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/03/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023]
Abstract
Multiple myeloma (MM) is a malignant disease of plasma cells with complex pathology, causing significant morbidity due to its end-organ destruction. The outcomes of patients with myeloma have significantly improved in the past couple of decades with the introduction of novel agents, such as proteasome inhibitors, immunomodulators, and monoclonal antibodies. However, MM remains incurable and presents considerable individual heterogeneity. MicroRNAs (miRNAs) are short, endogenous noncoding RNAs of 19-22 nucleotides that regulate gene expression at the posttranscriptional level. Numerous studies have shown that miRNA deregulation is closely related to MM pathology, including tumor initiation, progression, metastasis, prognosis, and drug response, which make the complicated miRNA network an attractive and marvelous area of investigation for novel anti-MM therapeutic approaches. Herein, we mainly summarized the current knowledge on the roles of miRNAs, which are of great significance in regulating pathological factors involved in MM progressions, such as bone marrow microenvironment, methylation, immune regulation, genomic instability, and drug resistance. Meanwhile, their potential as novel prognostic biomarkers and therapeutic targets was also discussed.
Collapse
Affiliation(s)
- Dan Chen
- Department of Central Laboratory, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Xinhong Yang
- Department of Hematology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Min Liu
- Department of Hematology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Zhihua Zhang
- Department of Hematology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China.
| | - Enhong Xing
- Department of Central Laboratory, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China.
| |
Collapse
|
5
|
Inoue J, Inazawa J. Cancer-associated miRNAs and their therapeutic potential. J Hum Genet 2021; 66:937-945. [PMID: 34088973 DOI: 10.1038/s10038-021-00938-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 04/21/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022]
Abstract
MicroRNA (miRNA; miR) is a functionally small non-coding RNA and can negatively regulate gene expression by directly binding to the target gene. Some miRNAs are closely involved in the development and progression of cancer and are abnormally expressed in many cancer types. Therefore, control of the expression of cancer-associated miRNAs is expected as a next-generation drug modality to treat advanced types of cancers with high unmet medical needs. Indeed, miRNA therapeutics, which are based on the functional inhibition of oncogenic miRNA (OncomiR) using antisense oligonucleotides (anti-miR) and the replacement via the introduction of a synthetic miRNA mimic for tumor suppressive miRNA (TS-miR), have been developed. In this review, we summarize cancer-associated miRNAs related to various cancer pathologies and their clinical application to miRNA therapeutics for cancer.
Collapse
Affiliation(s)
- Jun Inoue
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Johji Inazawa
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan. .,Bioresource Research Center, TMDU, Tokyo, Japan.
| |
Collapse
|
6
|
Organoids and Liquid Biopsy in Oral Cancer Research. J Clin Med 2020; 9:jcm9113701. [PMID: 33218071 PMCID: PMC7698863 DOI: 10.3390/jcm9113701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/15/2020] [Indexed: 12/22/2022] Open
Abstract
To promote the newest discoveries in oral cancer research, a special issue "Frontiers in Oral Cancer-Basic and Clinical Sciences" in the Journal of Clinical Medicine (JCM) was opened from September 2019 to April 2020 [...].
Collapse
|
7
|
Li T, Mao C, Wang X, Shi Y, Tao Y. Epigenetic crosstalk between hypoxia and tumor driven by HIF regulation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:224. [PMID: 33109235 PMCID: PMC7592369 DOI: 10.1186/s13046-020-01733-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Hypoxia is the major influence factor in physiological and pathological courses which are mainly mediated by hypoxia-inducible factors (HIFs) in response to low oxygen tensions within solid tumors. Under normoxia, HIF signaling pathway is inhibited due to HIF-α subunits degradation. However, in hypoxic conditions, HIF-α is activated and stabilized, and HIF target genes are successively activated, resulting in a series of tumour-specific activities. The activation of HIFs, including HIF-1α, HIF-2α and HIF-3α, subsequently induce downstream target genes which leads to series of responses, the resulting abnormal processes or metabolites in turn affect HIFs stability. Given its functions in tumors progression, HIFs have been regarded as therapeutic targets for improved treatment efficacy. Epigenetics refers to alterations in gene expression that are stable between cell divisions, and sometimes between generations, but do not involve changes in the underlying DNA sequence of the organism. And with the development of research, epigenetic regulation has been found to play an important role in the development of tumors, which providing accumulating basic or clinical evidences for tumor treatments. Here, given how little has been reported about the overall association between hypoxic tumors and epigenetics, we made a more systematic review from epigenetic perspective in hope of helping others better understand hypoxia or HIF pathway, and providing more established and potential therapeutic strategies in tumors to facilitate epigenetic studies of tumors.
Collapse
Affiliation(s)
- Tiansheng Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Chao Mao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiang Wang
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Ying Shi
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| | - Yongguang Tao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China. .,Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
8
|
Improving the Efficacy of EGFR Inhibitors by Topical Treatment of Cutaneous Squamous Cell Carcinoma with miR-634 Ointment. MOLECULAR THERAPY-ONCOLYTICS 2020; 19:294-307. [PMID: 33294587 PMCID: PMC7695908 DOI: 10.1016/j.omto.2020.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/17/2020] [Indexed: 12/18/2022]
Abstract
For cutaneous squamous cell carcinoma (cSCC), topical treatment is an essential option for patients who are not candidates for, or who refuse, surgery. Epidermal growth factor receptor (EGFR) plays a key role in the development of cSCC, but EGFR tyrosine kinase inhibitors (TKIs), such as gefitinib, have shown only partial clinical benefit in this disease. Thus, there is an unmet need to develop novel strategies for improving the efficacy of TKIs in cSCC. We previously demonstrated that the tumor-suppressive microRNA (miRNA) miR-634 functions as a negative modulator of the cytoprotective cancer cell survival processes and is a useful anticancer therapeutic agent. In the present study, we found that topical application of an ointment containing miR-634 inhibited in vivo tumor growth without toxicity in a cSCC xenograft mouse model and a 7,12-dimethylbenz[a]anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA)-induced papilloma mouse model. Functional validation revealed that miR-634 overexpression reduced glutaminolysis by directly targeting ASCT2, a glutamine transporter. Furthermore, overexpression of miR-634 synergistically enhanced TKI-induced cytotoxicity by triggering severe energetic stress in vitro and in vivo. Thus, we propose that topical treatment with miR-634 ointment is a useful strategy for improving for EGFR TKI-based therapy for cSCC.
Collapse
|
9
|
Soliman AM, Lin TS, Mahakkanukrauh P, Das S. Role of microRNAs in Diagnosis, Prognosis and Management of Multiple Myeloma. Int J Mol Sci 2020; 21:E7539. [PMID: 33066062 PMCID: PMC7589124 DOI: 10.3390/ijms21207539] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/19/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022] Open
Abstract
Multiple myeloma (MM) is a cancerous bone disease characterized by malignant transformation of plasma cells in the bone marrow. MM is considered to be the second most common blood malignancy, with 20,000 new cases reported every year in the USA. Extensive research is currently enduring to validate diagnostic and therapeutic means to manage MM. microRNAs (miRNAs) were shown to be dysregulated in MM cases and to have a potential role in either progression or suppression of MM. Therefore, researchers investigated miRNAs levels in MM plasma cells and created tools to test their impact on tumor growth. In the present review, we discuss the most recently discovered miRNAs and their regulation in MM. Furthermore, we emphasized utilizing miRNAs as potential targets in the diagnosis, prognosis and treatment of MM, which can be useful for future clinical management.
Collapse
Affiliation(s)
- Amro M. Soliman
- Department of Biological Sciences—Physiology, Cell and Developmental Biology, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Teoh Seong Lin
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia
| | - Pasuk Mahakkanukrauh
- Department of Anatomy & Excellence in Osteology Research and Training Center (ORTC), Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Srijit Das
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
10
|
Yang J, Liu A, He I, Bai Y. Bioinformatics Analysis Revealed Novel 3'UTR Variants Associated with Intellectual Disability. Genes (Basel) 2020; 11:genes11090998. [PMID: 32858868 PMCID: PMC7563394 DOI: 10.3390/genes11090998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/15/2020] [Accepted: 08/24/2020] [Indexed: 01/03/2023] Open
Abstract
MicroRNAs (or miRNAs) are short nucleotide sequences (~17–22 bp long) that play important roles in gene regulation through targeting genes in the 3′untranslated regions (UTRs). Variants located in genomic regions might have different biological consequences in changing gene expression. Exonic variants (e.g., coding variant and 3′UTR variant) are often causative of diseases due to their influence on gene product. Variants harbored in the 3′UTR region where miRNAs perform their targeting function could potentially alter the binding relationships for target pairs, which could relate to disease causation. We gathered miRNA–mRNA targeting pairs from published studies and then employed the database of microRNA Target Site single nucleotide variants (SNVs) (dbMTS) to discover novel SNVs within the selected pairs. We identified a total of 183 SNVs for the 114 pairs of accurate miRNA–mRNA targeting pairs selected. Detailed bioinformatics analysis of the three genes with identified variants that were exclusively located in the 3′UTR section indicated their association with intellectual disability (ID). Our result showed an exceptionally high expression of GPR88 in brain tissues based on GTEx gene expression data, while WNT7A expression data were relatively high in brain tissues when compared to other tissues. Motif analysis for the 3′UTR region of WNT7A showed that five identified variants were well-conserved across three species (human, mouse, and rat); the motif that contains the variant identified in GPR88 is significant at the level of the 3′UTR of the human genome. Studies of pathways, protein–protein interactions, and relations to diseases further suggest potential association with intellectual disability of our discovered SNVs. Our results demonstrated that 3′UTR variants could change target interactions of miRNA–mRNA pairs in the context of their association with ID. We plan to automate the methods through developing a bioinformatics pipeline for identifying novel 3′UTR SNVs harbored by miRNA-targeted genes in the future.
Collapse
Affiliation(s)
- Junmeng Yang
- Shanghai Starriver Bilingual School, Shanghai 201100, China;
| | - Anna Liu
- Appleby College, Oakville, ON L6L3V7, Canada;
| | - Isabella He
- Pittsford Mendon High School, 472 Mendon Road, Pittsford, NY 14534, USA;
| | - Yongsheng Bai
- Department of Biology, Eastern Michigan University, 441 Mark Jefferson Hall, Ypsilanti, MI 48197, USA
- Next-Gen Intelligent Science Training, Ann Arbor, MI 48105, USA
- Correspondence:
| |
Collapse
|
11
|
Cheray M, Etcheverry A, Jacques C, Pacaud R, Bougras-Cartron G, Aubry M, Denoual F, Peterlongo P, Nadaradjane A, Briand J, Akcha F, Heymann D, Vallette FM, Mosser J, Ory B, Cartron PF. Cytosine methylation of mature microRNAs inhibits their functions and is associated with poor prognosis in glioblastoma multiforme. Mol Cancer 2020; 19:36. [PMID: 32098627 PMCID: PMC7041276 DOI: 10.1186/s12943-020-01155-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/13/2020] [Indexed: 12/23/2022] Open
Abstract
Background Literature reports that mature microRNA (miRNA) can be methylated at adenosine, guanosine and cytosine. However, the molecular mechanisms involved in cytosine methylation of miRNAs have not yet been fully elucidated. Here we investigated the biological role and underlying mechanism of cytosine methylation in miRNAs in glioblastoma multiforme (GBM). Methods RNA immunoprecipitation with the anti-5methylcytosine (5mC) antibody followed by Array, ELISA, dot blot, incorporation of a radio-labelled methyl group in miRNA, and miRNA bisulfite sequencing were perfomred to detect the cytosine methylation in mature miRNA. Cross-Linking immunoprecipiation qPCR, transfection with methylation/unmethylated mimic miRNA, luciferase promoter reporter plasmid, Biotin-tagged 3’UTR/mRNA or miRNA experiments and in vivo assays were used to investigate the role of methylated miRNAs. Finally, the prognostic value of methylated miRNAs was analyzed in a cohorte of GBM pateints. Results Our study reveals that a significant fraction of miRNAs contains 5mC. Cellular experiments show that DNMT3A/AGO4 methylated miRNAs at cytosine residues inhibit the formation of miRNA/mRNA duplex and leading to the loss of their repressive function towards gene expression. In vivo experiments show that cytosine-methylation of miRNA abolishes the tumor suppressor function of miRNA-181a-5p miRNA for example. Our study also reveals that cytosine-methylation of miRNA-181a-5p results is associated a poor prognosis in GBM patients. Conclusion Together, our results indicate that the DNMT3A/AGO4-mediated cytosine methylation of miRNA negatively. Graphical abstract ![]()
Collapse
Affiliation(s)
- Mathilde Cheray
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France.,Present address: Department of Oncology-Pathology, Cancer Centrum Karolinska (CCK), R8:03, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Amandine Etcheverry
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGdR), F-35043, Rennes, France.,Université Rennes1, UEB, UMS 3480 Biosit, Faculté de Médecine, F-35043, Rennes, France.,Plate-forme Génomique Environnementale et Humaine Biosit, Université Rennes1, F-35043, Rennes, France.,CHU Rennes, Service de Génétique Moléculaire et Génomique, F-35033, Rennes, France
| | - Camille Jacques
- INSERM, UMR 1238, équipe labellisée ligue 2012, 1 Rue Gaston Veil, 44035, Nantes, France
| | - Romain Pacaud
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France.,LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Gwenola Bougras-Cartron
- CRCINA, INSERM, Université de Nantes, Nantes, France.,LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France.,EpiSAVMEN, Epigenetic consortium Pays de la Loire, Nantes, France
| | - Marc Aubry
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGdR), F-35043, Rennes, France.,Université Rennes1, UEB, UMS 3480 Biosit, Faculté de Médecine, F-35043, Rennes, France.,Plate-forme Génomique Environnementale et Humaine Biosit, Université Rennes1, F-35043, Rennes, France
| | - Florent Denoual
- CHU Rennes, Service de Génétique Moléculaire et Génomique, F-35033, Rennes, France
| | - Pierre Peterlongo
- IRISA Inria Rennes Bretagne Atlantique, équipe GenScale, Campus de Beaulieu, 35042, Rennes, France
| | - Arulraj Nadaradjane
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France.,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France.,EpiSAVMEN, Epigenetic consortium Pays de la Loire, Nantes, France
| | - Joséphine Briand
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France.,LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France.,EpiSAVMEN, Epigenetic consortium Pays de la Loire, Nantes, France
| | - Farida Akcha
- EpiSAVMEN, Epigenetic consortium Pays de la Loire, Nantes, France.,Ifremer, Laboratoire d'Ecotoxicologie, Rue de l'Ile d'Yeu, BP21105, cedex 03 44311, . Nantes, France
| | - Dominique Heymann
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France.,LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France
| | - François M Vallette
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France.,LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Jean Mosser
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGdR), F-35043, Rennes, France.,Université Rennes1, UEB, UMS 3480 Biosit, Faculté de Médecine, F-35043, Rennes, France.,Plate-forme Génomique Environnementale et Humaine Biosit, Université Rennes1, F-35043, Rennes, France.,CHU Rennes, Service de Génétique Moléculaire et Génomique, F-35033, Rennes, France.,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France
| | - Benjamin Ory
- INSERM, UMR 1238, équipe labellisée ligue 2012, 1 Rue Gaston Veil, 44035, Nantes, France.,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France.,EpiSAVMEN, Epigenetic consortium Pays de la Loire, Nantes, France
| | - Pierre-François Cartron
- CRCINA, INSERM, Université de Nantes, Nantes, France. .,Faculté de Médecine, Université de Nantes, Nantes, France. .,LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France. .,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France. .,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France. .,EpiSAVMEN, Epigenetic consortium Pays de la Loire, Nantes, France. .,Institut de Cancérologie de l'Ouest, CRCINA INSERM U1232, Equipe 9 -Apoptose et Progression tumorale, LaBCT, Boulevard du Pr J Monod, 44805, Saint-Herblain, France.
| |
Collapse
|
12
|
Gokita K, Inoue J, Ishihara H, Kojima K, Inazawa J. Therapeutic Potential of LNP-Mediated Delivery of miR-634 for Cancer Therapy. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 19:330-338. [PMID: 31877409 PMCID: PMC6938807 DOI: 10.1016/j.omtn.2019.10.045] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/11/2019] [Accepted: 10/23/2019] [Indexed: 01/23/2023]
Abstract
MicroRNAs (miRNAs) are endogenous small noncoding RNAs that negatively regulate gene expression by interfering with the translation or stability of target transcripts. Some tumor-suppressive miRNAs can concurrently target multiple cancer-promoting genes and may be useful as therapeutic anticancer agents. However, the development of drug delivery systems is critical for the implementation of miRNA-based therapeutics. We have previously demonstrated that the enforced expression of miR-634 effectively induces apoptosis by concurrently and directly targeting genes associated with mitochondrial homeostasis, antiapoptosis signaling, antioxidant ability, and autophagy in cancer cells. In the current study, we validated the therapeutic potential of lipid nanoparticle (LNP)-mediated delivery of miR-634 for cancer therapy. We confirmed the ability of enforced expression of miR-634 to induce apoptosis in various cancer cell lines, including pancreatic cancer cells. Intravenous administration of LNPs harboring miR-634 significantly reduced the xenograft tumor growth of BxPC-3 pancreatic cancer cells in mice. These findings suggest that LNP-mediated delivery of miR-634 can potentially be used for cancer therapy.
Collapse
Affiliation(s)
- Kentaro Gokita
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan; Department of Minimally Invasive Treatment, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jun Inoue
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Hiroshi Ishihara
- Nanomedicine Research, hhc Data Creation Center, Eisai, Ibaraki, Japan
| | - Kazuyuki Kojima
- Department of Minimally Invasive Treatment, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Johji Inazawa
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan; Bioresource Research Center, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
13
|
Koshizuka K, Hanazawa T, Arai T, Okato A, Kikkawa N, Seki N. Involvement of aberrantly expressed microRNAs in the pathogenesis of head and neck squamous cell carcinoma. Cancer Metastasis Rev 2018; 36:525-545. [PMID: 28836104 DOI: 10.1007/s10555-017-9692-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that act as fine-tuners of the post-transcriptional control of protein-coding or noncoding RNAs by repressing translation or cleaving RNA transcripts in a sequence-dependent manner in cells. Accumulating evidence have been indicated that aberrantly expressed miRNAs are deeply involved in human pathogenesis, including cancers. Surprisingly, these small, single-stranded RNAs (18-23 nucleotides) have been shown to function as antitumor or oncogenic RNAs in several types of cancer cells. A single miRNA has regulating hundreds or thousands of different mRNAs, and individual mRNA has been regulated by multiple different miRNAs in normal cells. Therefore, tightly controlled RNA networks can be disrupted by dysregulated of miRNAs in cancer cells. Investigation of novel miRNA-mediated RNA networks in cancer cells could provide new insights in the field of cancer research. In this review, we focus on head and neck squamous cell carcinoma (HNSCC) and discuss current findings of the involvement of aberrantly expressed miRNAs in the pathogenesis of HNSCC.
Collapse
Affiliation(s)
- Keiichi Koshizuka
- Department of Functional Genomics, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.,Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Toyoyuki Hanazawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takayuki Arai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Atsushi Okato
- Department of Functional Genomics, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Naoko Kikkawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| |
Collapse
|
14
|
Clinical and biological significance of miR-23b and miR-193a in human hepatocellular carcinoma. Oncotarget 2018; 8:6955-6969. [PMID: 28036298 PMCID: PMC5351682 DOI: 10.18632/oncotarget.14332] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 12/16/2016] [Indexed: 12/22/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common cancer of the liver with a very poor prognosis. The dysregulation of microRNAs (miRs) is indeed implicated in HCC onset and progression. In this study, we have evaluated the expression of miR-23b and miR-193a in a large cohort of 59 and 67 HCC patients, respectively. miR-23b and miR-193a resulted significantly down-regulated in primary HCCs compared to their matched peritumoral counterparts. Furthermore, patients with higher miR-193a expression exhibited longer OS and DFS, suggesting that miR-193a may be a molecular prognostic factor for HCC patients. Since the regulation of miRs by DNA methylation may occur in human cancers, we verified whether the down-modulation of miR-23b and miR-193a in HCC tissues could be related to DNA methylation. An inverse trend between miR-23b expression and DNA methylation was observed, indicating that miR-23b can be epigenetically regulated. By contrast, the down-regulation of miR-193a was not mediated by DNA methylation. To verify the potential role of miR-23b and miR-193a as responsive molecular targets in vitro, we used the inhibitor of DNA methylation 5-aza-dC to restore miR-23b expression level in combination with miR-193a transfection. The combined treatment led to a significant inhibition of cellular proliferation and migration. Taken together, our findings provide evidence that miR-23b and miR-193a may be molecular diagnostic and prognostic factors for HCC; furthermore, miR-23b and miR-193a are responsive molecular targets for limiting HCC cell aggressiveness in combination with the epigenetic drug 5-aza-dC. Moreover, our results provide new advances in the epigenetic regulation of these miRs in HCC.
Collapse
|
15
|
Shao Y, Li P, Zhu ST, Yue JP, Ji XJ, Ma D, Wang L, Wang YJ, Zong Y, Wu YD, Zhang ST. MiR-26a and miR-144 inhibit proliferation and metastasis of esophageal squamous cell cancer by inhibiting cyclooxygenase-2. Oncotarget 2017; 7:15173-86. [PMID: 26959737 PMCID: PMC4924778 DOI: 10.18632/oncotarget.7908] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 01/29/2016] [Indexed: 12/21/2022] Open
Abstract
The altered expression of miRNAs is involved in carcinogenesis of esophageal squamous cell carcinoma (ESCC), but whether miRNAs regulate COX-2 expression in ESCC is not clear. To this end, the expression levels of miR-26a and miR-144 in ESCC clinical tissues and cell lines were investigated by qRT-PCR. COX-2 and PEG2 were quantified by western blot and ELISA. Decrease in miR-26a and miR-144 expression in ESCC was found by a comparison between 30 pairs of ESCC tumor and adjacent normal tissues as well as in 11 ESCC cell lines (P < 0.001). Co-transfection of miR-26a and miR-144 in ESCC cell lines more significantly suppressed cell proliferation, migration, and invasion than did either miR-26a or miR-144 alone (all P < 0.001), as shown by assays of CCK8, migration and invasion and flow cytometry. The inhibitory effect of these two miRNAs in vivo was also verified in nude mice xenograft models. COX-2 was confirmed as a target of miR-26a and miR-144. In conclusion, miR-26a and miR-144 expression is downregulated in ESCC. Co-expression of miR-26a and miR-144 in ESCC cells resulted in inhibition of proliferation and metastasis in vitro and in vivo, suggesting that targeting COX-2 may be the mechanism of these two miRNAs.
Collapse
Affiliation(s)
- Ying Shao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Sheng-Tao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Ji-Ping Yue
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Xiao-Jun Ji
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dan Ma
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Li Wang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Yong-Jun Wang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Ye Zong
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Yong-Dong Wu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Shu-Tian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| |
Collapse
|
16
|
Epigenetic drivers of tumourigenesis and cancer metastasis. Semin Cancer Biol 2017; 51:149-159. [PMID: 28807546 DOI: 10.1016/j.semcancer.2017.08.004] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/13/2017] [Accepted: 08/02/2017] [Indexed: 02/07/2023]
Abstract
Since the completion of the first human genome sequence and the advent of next generation sequencing technologies, remarkable progress has been made in understanding the genetic basis of cancer. These studies have mainly defined genetic changes as either causal, providing a selective advantage to the cancer cell (a driver mutation) or consequential with no selective advantage (not directly causal, a passenger mutation). A vast unresolved question is how a primary cancer cell becomes metastatic and what are the molecular events that underpin this process. However, extensive sequencing efforts indicate that mutation may not be a causal factor for primary to metastatic transition. On the other hand, epigenetic changes are dynamic in nature and therefore potentially play an important role in determining metastatic phenotypes and this area of research is just starting to be appreciated. Unlike genetic studies, current limitations in studying epigenetic events in cancer metastasis include a lack of conceptual understanding and an analytical framework for identifying putative driver and passenger epigenetic changes. In this review, we discuss the key concepts involved in understanding the role of epigenetic alterations in the metastatic cascade. We particularly focus on driver epigenetic events, and we describe analytical approaches and biological frameworks for distinguishing between "epi-driver" and "epi-passenger" events in metastasis. Finally, we suggest potential directions for future research in this important area of cancer research.
Collapse
|
17
|
Akdemir B, Nakajima Y, Inazawa J, Inoue J. miR-432 Induces NRF2 Stabilization by Directly Targeting KEAP1. Mol Cancer Res 2017; 15:1570-1578. [PMID: 28760781 DOI: 10.1158/1541-7786.mcr-17-0232] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/16/2017] [Accepted: 07/25/2017] [Indexed: 11/16/2022]
Abstract
NF-E2-related factor 2 (NRF2) is a master transcriptional regulator that integrates cellular stress responses and is negatively regulated by Kelch-like ECH-associated protein 1 (KEAP1) at the post-translational level. In human cancers, aberrantly stabilized NRF2, by the mutation of either NRF2 or KEAP1 or by the potential inhibition of autophagy, plays a vital role in tumor growth and chemoresistance through the activation of target genes. MicroRNAs (miRNA) are endogenous small noncoding RNAs that can negatively regulate gene expression by interfering with translation and/or stability of target transcripts. However, miRNA-mediated regulation of the NRF2-KEAP1 pathway under physiological conditions is poorly understood. Here, miR-432-3p positively regulates NRF2 activity through the downregulation of KEAP1 by a direct-binding mechanism to the coding region of KEAP1. Overexpression of miR-432-3p resulted in a decreased sensitivity of esophageal squamous cell carcinoma (ESCC) cells to chemotherapy drugs including cisplatin (CDDP). Conversely, the inhibition of miR-432-3p expression by the CRISPR/Cas9 system resulted in an increased sensitivity of ESCC cells to CDDP. Furthermore, miR-432-3p was overexpressed in primary ESCC tumors (55 of 84, 65.5%) and a negative correlation between the expression level of KEAP1 and miR-432-3p in primary ESCC tumors was observed.Implications: These findings provide novel insights into the mechanism of NRF2 stabilization in human cancers. Mol Cancer Res; 15(11); 1570-8. ©2017 AACR.
Collapse
Affiliation(s)
- Burak Akdemir
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuaki Nakajima
- Department of Surgical Gastroenterology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Johji Inazawa
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan. .,Bioresource Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jun Inoue
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan. .,Bioresource Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
18
|
miR-509-5p and miR-1243 increase the sensitivity to gemcitabine by inhibiting epithelial-mesenchymal transition in pancreatic cancer. Sci Rep 2017. [PMID: 28638102 PMCID: PMC5479822 DOI: 10.1038/s41598-017-04191-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) contributes to various processes in cancer progression, such as metastasis and drug resistance. Since we have already established a cell-based reporter system for identifying EMT-suppressive microRNAs (miRNAs) in the pancreatic cancer cell line Panc1, we performed a function-based screening assay by combining this reporter system and a miRNA library composed of 1,090 miRNAs. As a result, we identified miR-509-5p and miR-1243 as EMT-suppressive miRNAs, although the mechanisms for EMT-suppression induced by these miRNAs have yet to be clarified. Herein, we demonstrated that overexpression of miR-509-5p and miR-1243 increased the expression of E-cadherin through the suppression of EMT-related gene expression and that drug sensitivity increased with a combination of each of these miRNAs and gemcitabine. Moreover, miR-509-5p was associated with worse overall survival in patients with pancreatic cancer and was identified as an independently selected predictor of mortality. Our findings suggest that miR-509-5p and miR-1243 might be novel chemotherapeutic targets and serve as biomarkers in pancreatic cancer.
Collapse
|
19
|
Chu Y, Fan W, Guo W, Zhang Y, Wang L, Guo L, Duan X, Wei J, Xu G. miR-1247-5p functions as a tumor suppressor in human hepatocellular carcinoma by targeting Wnt3. Oncol Rep 2017; 38:343-351. [PMID: 28586038 DOI: 10.3892/or.2017.5702] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 11/20/2016] [Indexed: 01/11/2023] Open
Abstract
Increasing evidence suggests that aberrant expression of certain microRNAs (miRNAs) may participate in the genesis and progression of tumors. Several studies have indicated that miR-1247-5p plays different roles in various types of cancer cells. The effects of miR-1247-5p on human hepatocellular carcinoma (HCC) cells are elusive. In the present study, we investigated the effects of miR-1247-5p on the progression of HCC. The transcript of miR-1247-5p was markedly downregulated in clinical samples of patients with HCC and HCC cell lines, and ectopic overexpression of miR‑1247-5p markedly inhibited the proliferation and invasion of HepG2 cells, induced cell apoptosis in vitro, and suppressed the growth of transplanted tumors in vivo. Wnt3 was found to be a potential target of miR-1247-5p and overexpression of miR-1247-5p was able to significantly downregulate the expression of Wnt3 by directly targeting the 3'UTR of this gene, which was verified by luciferase reporter assay and western blotting. Furthermore, we found that the miR-1247-5p gene was hypermethylated in HepG2 cells, and the transcript of miR-1247-5p was increased significantly after treatment with the demethylation drug 5-azacytidine. These findings demonstrated that miR-1247-5p functions as a tumor suppressor in human HCC by targeting Wnt3 and that the expression of miR-1247-5p can be regulated by DNA methylation, which indicates that miR-1247-5p has the potential to be a therapeutic target as well as a diagnostic marker of HCC.
Collapse
Affiliation(s)
- Yuankui Chu
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Weining Fan
- Department of Laboratory Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Wenwei Guo
- Department of Laboratory Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yixin Zhang
- Department of Laboratory Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Lixin Wang
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Le Guo
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Xiangguo Duan
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Jun Wei
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Guangxian Xu
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
20
|
Chen Y, Luo D, Tian W, Li Z, Zhang X. Demethylation of miR-495 inhibits cell proliferation, migration and promotes apoptosis by targeting STAT-3 in breast cancer. Oncol Rep 2017; 37:3581-3589. [PMID: 28498478 DOI: 10.3892/or.2017.5621] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 04/18/2017] [Indexed: 11/06/2022] Open
Abstract
In breast cancer (BC), silencing of miRNA genes due to miRNA gene promoter methylation are the important mechanisms directly contributing to tumorigenesis and tumor progression. miRNA-495 (miR-495) has been reported to be a tumor suppressor gene in various cancers, but its role and regulation in BC remains unclear. In the present study, the level of miR-495 was inversely correlated with the expression of STAT-3 in BC tissues and cell lines. miR-495 can directly target 3'-UTR of STAT-3 mRNA and thereby decrease the expression of STAT-3 in MCF-7 and HCC1973 cells by Targetscan and Dual-luciferase assay. We further analyzed miR-495 promoter methylation by sodium bisulfite sequencing method (BSP), and found DNA methyltransferase inhibitor, 5-AzaC concomitantly upregulated expression of miR-495 and downregulated its target gene STAT-3 and its downstream target VEGF. Furthermore, we further observed that 5-AzaC treatment, miR-495 mimics and STAT-3 knockdown significantly inhibited cell function in breast cancer by Transwell assay, EdU flow cytometry, Annexin V-FITC/PI combined with flow cytometry and Hoechst staining. Taken together, our data are first to demonstrate that the miR-495 is silenced due to promoter methylation in breast cancer. DNA methyltransferase inhibitor 5-AzaC could reverse miR‑495 (suppressor gene) and STAT-3 (oncogene). The anticancer properties of 5-AzaC were preliminarily confirmed in breast cancer.
Collapse
Affiliation(s)
- Yi Chen
- Department of General (Breast and Thyroid), Daping Hospital of the Third Military Medical University, No. 10 Yangtze River Branch, Yuzhong, Chongqing 400042, P.R. China
| | - Donglin Luo
- Department of General (Breast and Thyroid), Daping Hospital of the Third Military Medical University, No. 10 Yangtze River Branch, Yuzhong, Chongqing 400042, P.R. China
| | - Wuguo Tian
- Department of General (Breast and Thyroid), Daping Hospital of the Third Military Medical University, No. 10 Yangtze River Branch, Yuzhong, Chongqing 400042, P.R. China
| | - Zhirong Li
- Department of General (Breast and Thyroid), Daping Hospital of the Third Military Medical University, No. 10 Yangtze River Branch, Yuzhong, Chongqing 400042, P.R. China
| | - Xiaohua Zhang
- Department of General (Breast and Thyroid), Daping Hospital of the Third Military Medical University, No. 10 Yangtze River Branch, Yuzhong, Chongqing 400042, P.R. China
| |
Collapse
|
21
|
Anwar SL, Krech T, Hasemeier B, Schipper E, Schweitzer N, Vogel A, Kreipe H, Buurman R, Skawran B, Lehmann U. hsa-mir-183 is frequently methylated and related to poor survival in human hepatocellular carcinoma. World J Gastroenterol 2017; 23:1568-1575. [PMID: 28321157 PMCID: PMC5340808 DOI: 10.3748/wjg.v23.i9.1568] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/13/2016] [Accepted: 02/08/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To screen clinically relevant microRNAs (miRNAs) silenced by DNA methylation in human hepatocellular carcinoma (HCC).
METHODS Knockdown of DNA methyltransferases (DNMTs) using siRNAs and miRNA profiling in HCC cell lines were performed to identify DNA hypermethylation-mediated miRNA downregulation. Confirmation using individual quantitative real-time PCR (qRT-PCR) assays was then performed followed by DNA methylation quantification at the promoter of the miRNA genes. Quantification of DNA methylation and miRNA expression was then performed in primary HCC tumor samples and related with clinicopathological variables.
RESULTS miRNA profiling after DNMT knockdown in HCC cell lines revealed upregulation of miR-23, miR-25 and miR-183. After qRT-PCR confirmation and CpG island methylation quantification of these miRNAs in cell lines, further analysis in primary HCC specimens showed that hsa-miR-183 is hypermethylated in 30% of HCC (n = 40). Expression of mature miR-183 showed an inverse correlation with DNA methylation levels. In HCC cells, DNMT knockdown and 5-aza-2'-deoxycytidine treatment reduced methylation and stimulated expression of miR-183. In HCC patients, hypermethylation at hsa-miR-183 promoter significantly correlates with poor survival (log-rank test P = 0.03). DNA methylation analysis in healthy liver, benign liver tumors (hepatocellular adenoma and focal nodular hyperplasia) and their corresponding adjacent tissues showed absence of hypermethylation supporting the notion that aberrant methylation at hsa-miR-183 is specific for the malignant transformation of hepatocytes.
CONCLUSION Our data indicate that hypermethylation of hsa-miR-183 is a frequent event in HCC and potentially useful as a novel surrogate diagnostic and prognostic marker.
Collapse
|
22
|
Luo LJ, Yang F, Ding JJ, Yan DL, Wang DD, Yang SJ, Ding L, Li J, Chen D, Ma R, Wu JZ, Tang JH. MiR-31 inhibits migration and invasion by targeting SATB2 in triple negative breast cancer. Gene 2016; 594:47-58. [DOI: 10.1016/j.gene.2016.08.057] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/28/2016] [Accepted: 08/31/2016] [Indexed: 12/22/2022]
|
23
|
Luo LJ, Wang DD, Wang J, Yang F, Tang JH. Diverse roles of miR-335 in development and progression of cancers. Tumour Biol 2016; 37:15399–15410. [PMID: 27718128 DOI: 10.1007/s13277-016-5385-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/09/2016] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs), a series of small noncoding RNAs that regulate gene expression at the post-transcriptional/translational level, are pivotal in cell differentiation, biological development, occurrence, and development of diseases, especially in cancers. Early studies have shown that miRNA-335 (miR-335) is widely dysregulated in human cancers and play critical roles in tumorigenesis and tumor progression. In this review, we aim to summarize the regulation of miR-335 expression mechanisms in cancers. We focus on the target genes regulated by miR-335 and its downstream signaling pathways involved in the biological effects of tumor growth, invasion, and metastasis both in vitro and in vivo, and analyze the relationships between miR-335 expression and the clinical characteristics of tumors as well as its effects on prognosis. The collected evidences support the potential use of miR-335 in prognosis and diagnosis as well as the therapeutic prospects of miR-335 in cancers.
Collapse
Affiliation(s)
- Long-Ji Luo
- Department of General Surgery, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, 210009, China
| | - Dan-Dan Wang
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, 210009, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Wang
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, 210009, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fan Yang
- Department of General Surgery, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, 210009, China
| | - Jin-Hai Tang
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, 210009, China.
| |
Collapse
|
24
|
Yu FY, Tu Y, Deng Y, Guo C, Ning J, Zhu Y, Lv X, Ye H. MiR-4500 is epigenetically downregulated in colorectal cancer and functions as a novel tumor suppressor by regulating HMGA2. Cancer Biol Ther 2016; 17:1149-1157. [PMID: 27686621 DOI: 10.1080/15384047.2016.1235661] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
This study aimed to understand the exact function and potential mechanism of miR-4500 in colorectal cancer (CRC). In this study, the expression of miR-4500 was decreased in both CRC cells and tissues, and downregulated miR-4500 indicated advanced tumor stage and poor survival. By bisulfite sequencing analysis, we found that the CpG island in the promoter region of miR-4500 was hypermethylated in CRC cells and tissues compared with normal control cells and non-tumor tissues, respectively. Functionally, gain- and loss-of-function analyses indicated the tumor suppressor role of miR-4500: it suppressed cell proliferation, cell cycle progression, migration, and invasion. Predictive algorithms and experimental analyses identified HMGA2 as a direct target of miR-4500. Reintroducing HMGA2 impaired the inhibitory effects of miR-4500 on cell growth and motility. Clinically, higher HMGA2 protein expression in CRC tissues was associated with advanced tumor stage and poor survival. An inverse correlation was found between miR-4500 levels and HMGA2 protein expression. Taken together, this study provides the first evidence that miR-4500 functions as a novel tumor suppressor in the miR-4500/HMGA2 axis in colorectal carcinogenesis, and restoring miR-4500 expression might represent a promising therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Feng Yan Yu
- a Guangdong Key Laboratory for Research and Development of Natural Drugs , Guangdong Medical University , Zhanjiang, Guangdong Province , China.,b The Second Clinical College of Guangdong Medical University , Zhanjiang, Guangdong Province , China
| | - Yun Tu
- c Zhanjiang People's Central Hospital , Zhanjiang, Guangdong Province , China
| | - Ying Deng
- a Guangdong Key Laboratory for Research and Development of Natural Drugs , Guangdong Medical University , Zhanjiang, Guangdong Province , China
| | - Cancan Guo
- a Guangdong Key Laboratory for Research and Development of Natural Drugs , Guangdong Medical University , Zhanjiang, Guangdong Province , China
| | - Jue Ning
- a Guangdong Key Laboratory for Research and Development of Natural Drugs , Guangdong Medical University , Zhanjiang, Guangdong Province , China
| | - Yuzhen Zhu
- a Guangdong Key Laboratory for Research and Development of Natural Drugs , Guangdong Medical University , Zhanjiang, Guangdong Province , China
| | - Xiaohua Lv
- d Department of Pharmacology , Guangdong Medical University , Zhanjiang, Guangdong Province , China
| | - Hua Ye
- a Guangdong Key Laboratory for Research and Development of Natural Drugs , Guangdong Medical University , Zhanjiang, Guangdong Province , China
| |
Collapse
|
25
|
Lynch SM, O'Neill KM, McKenna MM, Walsh CP, McKenna DJ. Regulation of miR-200c and miR-141 by Methylation in Prostate Cancer. Prostate 2016; 76:1146-59. [PMID: 27198154 PMCID: PMC5082568 DOI: 10.1002/pros.23201] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/22/2016] [Indexed: 11/26/2022]
Abstract
BACKGROUND In prostate cancer (PCa), abnormal expression of several microRNAs (miRNAs) has been previously reported. Increasing evidence shows that aberrant epigenetic regulation of miRNAs is a contributing factor to their altered expression in cancer. In this study, we investigate whether expression of miR-200c and miR-141 in PCa is related to the DNA methylation status of their promoter. METHODS PCR analysis of miR-200c and miR-141, and CpG methylation analysis of their common promoter, was performed in PCa cell-lines and in archived prostate biopsy specimens. The biological significance of miR-200c and miR-141 expression in prostate cancer cells was assessed by a series of in vitro bioassays and the effect on proposed targets DNMT3A and TET1/TET3 was investigated. The effect on promoter methylation status in cells treated with demethylating agents was also examined. RESULTS miR-200c and miR-141 are both highly elevated in LNCaP, 22RV1, and DU145 cells, but significantly reduced in PC3 cells. This correlates inversely with the methylation status of the miR-200c/miR-141 promoter, which is unmethylated in LNCaP, 22RV1, and DU145 cells, but hypermethylated in PC3. In PC3 cells, miR-200c and miR-141 expression is subsequently elevated by treatment with the demethylating drug decitabine (5-aza-2'deoxycytidine) and by knockdown of DNA methyltransferase 1 (DNMT1), suggesting their expression is regulated by methylation. Expression of miR-200c and miR-141 in prostate biopsy tissue was inversely correlated with methylation in promoter CpG sites closest to the miR-200c/miR-141 loci. In vitro, over-expression of miR-200c in PC3 cells inhibited growth and clonogenic potential, as well as inducing apoptosis. Expression of the genes DNMT3A and TET1/TET3 were down-regulated by miR-200c and miR-141 respectively. Finally, treatment with the soy isoflavone genistein caused demethylation of the promoter CpG sites closest to the miR-200c/miR-141 loci resulting in increased miR-200c expression. CONCLUSIONS Our findings provide evidence that miR-200c and miR-141 are under epigenetic regulation in PCa cells. We propose that profiling their expression and methylation status may have potential as a novel biomarker or focus of therapeutic intervention in the diagnosis and prognosis of PCa. Prostate 76:1146-1159, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Seodhna M. Lynch
- Biomedical Sciences Research InstituteUniversity of UlsterColeraineUK
| | - Karla M. O'Neill
- Biomedical Sciences Research InstituteUniversity of UlsterColeraineUK
- School of MedicineDentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| | - Michael M. McKenna
- Department of Cellular PathologyWestern Health and Social Care TrustAltnagelvin Area HospitalDerryUK
| | - Colum P. Walsh
- Biomedical Sciences Research InstituteUniversity of UlsterColeraineUK
| | - Declan J. McKenna
- Biomedical Sciences Research InstituteUniversity of UlsterColeraineUK
| |
Collapse
|
26
|
The microRNA signatures: aberrantly expressed microRNAs in head and neck squamous cell carcinoma. J Hum Genet 2016; 62:3-13. [PMID: 27557665 DOI: 10.1038/jhg.2016.105] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/15/2016] [Accepted: 07/11/2016] [Indexed: 12/13/2022]
Abstract
microRNAs (miRNAs) are responsible for fine tuning the normal expression of RNA networks in human cells. Accumulating studies have demonstrated that abnormally expressed miRNAs have pivotal roles in the development of head and neck squamous cell carcinoma (HNSCC). Specifically, expression signatures of miRNAs in HNSCC have revealed dysregulated production of miRNAs and the resultant abnormal production of mRNAs and proteins. In this review, we discuss current findings regarding aberrantly expressed miRNAs and their contribution to HNSCC molecular pathogenesis.
Collapse
|
27
|
Sengupta D, Deb M, Rath SK, Kar S, Parbin S, Pradhan N, Patra SK. DNA methylation and not H3K4 trimethylation dictates the expression status of miR-152 gene which inhibits migration of breast cancer cells via DNMT1/CDH1 loop. Exp Cell Res 2016; 346:176-87. [PMID: 27475839 DOI: 10.1016/j.yexcr.2016.07.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/06/2016] [Accepted: 07/26/2016] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNA) are small non-coding RNAs which targets most protein-coding transcripts (mRNA) and destroy them. Thus miRNA controls the abundance of those specific proteins and impact on developmental, physiological and pathological processes. Dysregulation of miRNA function thus may lead to various clinicopathological complications, including breast cancer. Silencing of miR-152 gene due to promoter DNA methylation alter the expression pattern of several other genes. E-cadherin (CDH1) forms the core of adherent junctions between surrounding epithelial cells, link with actin cytoskeleton and affects cell signaling. CDH1 gene is down regulated by promoter DNA methylation during cancer progression. In this investigation, we attempt to elucidate the correlation of miR-152 and CDH1 function, as it is well known that the loss of CDH1 function is one of the major reasons for cancer metastasis and aggressiveness of spreading. For the first time we have shown that loss of CDH1 expression is directly proportional to the loss of miR-152 function in breast cancer cells. mRNA and protein expression profile of DNMT1 implicate that miR-152 targets DNMT1 mRNA and inhibits its protein expression. Tracing the molecular marks on DNA and histone 3 for understanding the mechanism of gene regulation by ChIP analyses leads to a paradoxical result that shows DNA methylation adjacent to active histone marking (enrichment of H3K4me3) silence miR-152 gene. Further experiments revealed that DNMT1 plays crucial role for regulation of miR-152 gene. When DNMT1 protein function is blocked miR-152 expression prevails and destroys the mRNA of DNMT1; this molecular regulatory mechanism is creating a cyclic feedback loop, which is now focused as DNMT1/miR-152 switch for on/off of DNMT1 target genes. We discovered modulation of CDH1 gene expression by DNMT1/miR-152 switches. We have demonstrated further that DNMT1 down regulation mediated upregulation of CDH1 (hereafter, DNMT1/CDH1 loop) in presence of ectopic-excess of miR-152 prevents migration of cancer cells. Our data provides novel insights into the regulation mechanism of miRNA and mRNA/protein coding genes and enhances the amplitude of cancer epigenome.
Collapse
Affiliation(s)
- Dipta Sengupta
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Moonmoon Deb
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Sandip Kumar Rath
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Swayamsiddha Kar
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Sabnam Parbin
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Nibedita Pradhan
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India.
| |
Collapse
|
28
|
Yanaka Y, Muramatsu T, Uetake H, Kozaki KI, Inazawa J. miR-544a induces epithelial-mesenchymal transition through the activation of WNT signaling pathway in gastric cancer. Carcinogenesis 2015; 36:1363-71. [PMID: 26264654 DOI: 10.1093/carcin/bgv106] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 07/17/2015] [Indexed: 12/13/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) contributes to cancer progression, as well as the development of normal organs, wound healing and organ fibrosis. We established a cell-based reporter system for identifying EMT-inducing microRNAs (miRNAs) with a gastric cancer (GC) cell line, MKN1, transfected with a reporter construct containing a promoter sequence of VIM in the 5' upstream region of the TurboRFP reporter gene. Function-based screening using this reporter system was performed with a 328-miRNA library, and resulted in the identification miR-544a as an EMT-inducing miRNA. Although miR-544a is already known to be involved in the regulation of CDH1, the mechanism by which EMT occurs remains poorly understood. Herein, we demonstrated that overexpression of miR-544a induces VIM, SNAI1 and ZEB1 expression, and reduces CDH1 expression, resulting in an EMT phenotype. In addition, we found that CDH1 and AXIN2, which are related to the degradation and the translocation of β-catenin, are direct targets of miR-544a. Subsequently, the reduction of CDH1 and AXIN2 by miR-544a induced the nuclear import of β-catenin, suggesting that miR-544a may activate the WNT signaling pathway through the stabilization of β-catenin in nucleus. Our findings raise the possibility that inhibition of miR-544a may be a therapeutic target of metastatic GC.
Collapse
Affiliation(s)
- Yoshimitsu Yanaka
- Department of Molecular Cytogenetics, Medical Research Institute, Department of Surgical Oncology and
| | - Tomoki Muramatsu
- Department of Molecular Cytogenetics, Medical Research Institute
| | | | - Ken-ichi Kozaki
- Department of Molecular Cytogenetics, Medical Research Institute, Bioresource Research Center, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan, Department of Dental Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan and
| | - Johji Inazawa
- Department of Molecular Cytogenetics, Medical Research Institute, Bioresource Research Center, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan, Hard Tissue Genome Research Center, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| |
Collapse
|
29
|
Fujiwara N, Inoue J, Kawano T, Tanimoto K, Kozaki KI, Inazawa J. miR-634 Activates the Mitochondrial Apoptosis Pathway and Enhances Chemotherapy-Induced Cytotoxicity. Cancer Res 2015. [PMID: 26216549 DOI: 10.1158/0008-5472.can-15-0257] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Some tumor-suppressing miRNAs target multiple oncogenes concurrently and therefore may be useful as cancer therapeutic agents. Further, such miRNAs may be useful to address chemotherapeutic resistance in cancer, which remains a primary clinical challenge in need of solutions. Thus, cytoprotective processes upregulated in cancer cells that are resistant to chemotherapy are a logical target for investigation. Here, we report that overexpression of miR-634 activates the mitochondrial apoptotic pathway by direct concurrent targeting of genes associated with mitochondrial homeostasis, antiapoptosis, antioxidant ability, and autophagy. In particular, we show how enforced expression of miR-634 enhanced chemotherapy-induced cytotoxicity in a model of esophageal squamous cell carcinoma, where resistance to chemotherapy remains clinically problematic. Our findings illustrate how reversing miR-634-mediated cytoprotective processes may offer a broadly useful approach to improving cancer therapy.
Collapse
Affiliation(s)
- Naoto Fujiwara
- Department of Molecular Cytogenetics, Medical Research Institute and Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan. Department of Esophageal and General Surgery, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jun Inoue
- Department of Molecular Cytogenetics, Medical Research Institute and Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tatsuyuki Kawano
- Department of Esophageal and General Surgery, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kousuke Tanimoto
- Department of Molecular Cytogenetics, Medical Research Institute and Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ken-Ichi Kozaki
- Department of Dental Pharmacology, Graduate School, Okayama University, Okayama, Japan
| | - Johji Inazawa
- Department of Molecular Cytogenetics, Medical Research Institute and Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan. Department of Genome Medicine, Hard Tissue Genome Research Center, Tokyo Medical and Dental University, Tokyo, Japan. Bioresource Research Center, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
30
|
Loginov VI, Rykov SV, Fridman MV, Braga EA. Methylation of miRNA genes and oncogenesis. BIOCHEMISTRY (MOSCOW) 2015; 80:145-62. [DOI: 10.1134/s0006297915020029] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
31
|
Kiga K, Mimuro H, Suzuki M, Shinozaki-Ushiku A, Kobayashi T, Sanada T, Kim M, Ogawa M, Iwasaki YW, Kayo H, Fukuda-Yuzawa Y, Yashiro M, Fukayama M, Fukao T, Sasakawa C. Epigenetic silencing of miR-210 increases the proliferation of gastric epithelium during chronic Helicobacter pylori infection. Nat Commun 2014; 5:4497. [PMID: 25187177 PMCID: PMC4279363 DOI: 10.1038/ncomms5497] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/25/2014] [Indexed: 02/08/2023] Open
Abstract
Persistent colonization of the gastric mucosa by Helicobacter pylori (Hp) elicits chronic inflammation and aberrant epithelial cell proliferation, which increases the risk of gastric cancer. Here we examine the ability of microRNAs to modulate gastric cell proliferation in response to persistent Hp infection and find that epigenetic silencing of miR-210 plays a key role in gastric disease progression. Importantly, DNA methylation of the
miR-210
gene is increased in Hp-positive human gastric biopsies as compared with Hp-negative controls. Moreover, silencing of miR-210 in gastric epithelial cells promotes proliferation. We identify
STMN1
and
DIMT1
as miR-210 target genes and demonstrate that inhibition of miR-210 expression augments cell proliferation by activating
STMN1
and
DIMT1
. Together, our results highlight inflammation-induced epigenetic silencing of miR-210 as a mechanism of induction of chronic gastric diseases, including cancer, during Hp infection.
Chronic infection with the bacterium Helicobacter pylori is associated with inflammation and increased risk of gastric cancer. Kiga et al. show that methylation and silencing of the microRNA gene miR-210 is associated with infection in humans, and promotes proliferation of gastric epithelial cells in culture.
Collapse
Affiliation(s)
- Kotaro Kiga
- 1] Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan [2] Max-Planck-Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany [3]
| | - Hitomi Mimuro
- 1] Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan [2]
| | - Masato Suzuki
- Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Aya Shinozaki-Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Taira Kobayashi
- Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Takahito Sanada
- Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Minsoo Kim
- Division of Bacterial Infection Biology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Michinaga Ogawa
- Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yuka W Iwasaki
- Max-Planck-Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Hiroyuki Kayo
- Max-Planck-Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Yoko Fukuda-Yuzawa
- Max-Planck-Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Masakazu Yashiro
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Taro Fukao
- Max-Planck-Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Chihiro Sasakawa
- 1] Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan [2] Division of Bacterial Infection Biology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan [3] Nippon Institute for Biological Science, 9-2221-1 Shinmachi, Ome, Tokyo 198-0024, Japan [4] Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| |
Collapse
|
32
|
Anwar SL, Lehmann U. DNA methylation, microRNAs, and their crosstalk as potential biomarkers in hepatocellular carcinoma. World J Gastroenterol 2014; 20:7894-7913. [PMID: 24976726 PMCID: PMC4069317 DOI: 10.3748/wjg.v20.i24.7894] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 01/24/2014] [Accepted: 03/06/2014] [Indexed: 02/06/2023] Open
Abstract
Epigenetic alterations have been identified as a major characteristic in human cancers. Advances in the field of epigenetics have contributed significantly in refining our knowledge of molecular mechanisms underlying malignant transformation. DNA methylation and microRNA expression are epigenetic mechanisms that are widely altered in human cancers including hepatocellular carcinoma (HCC), the third leading cause of cancer related mortality worldwide. Both DNA methylation and microRNA expression patterns are regulated in developmental stage specific-, cell type specific- and tissue-specific manner. The aberrations are inferred in the maintenance of cancer stem cells and in clonal cell evolution during carcinogenesis. The availability of genome-wide technologies for DNA methylation and microRNA profiling has revolutionized the field of epigenetics and led to the discovery of a number of epigenetically silenced microRNAs in cancerous cells and primary tissues. Dysregulation of these microRNAs affects several key signalling pathways in hepatocarcinogenesis suggesting that modulation of DNA methylation and/or microRNA expression can serve as new therapeutic targets for HCC. Accumulative evidence shows that aberrant DNA methylation of certain microRNA genes is an event specifically found in HCC which correlates with unfavorable outcomes. Therefore, it can potentially serve as a biomarker for detection as well as for prognosis, monitoring and predicting therapeutic responses in HCC.
Collapse
|
33
|
MicroRNA: important player in the pathobiology of multiple myeloma. BIOMED RESEARCH INTERNATIONAL 2014; 2014:521586. [PMID: 24991558 PMCID: PMC4065722 DOI: 10.1155/2014/521586] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/19/2014] [Indexed: 01/13/2023]
Abstract
Recent studies have revealed a pivotal role played by a class of small, noncoding RNAs, microRNA (miRNA), in multiple myeloma (MM), a plasma cell (PC) malignancy causing significant morbidity and mortality. Deregulated miRNA expression in patient's PCs and plasma has been associated with tumor progression, molecular subtypes, clinical staging, prognosis, and drug response in MM. A number of important oncogenic and tumor suppressor miRNAs have been discovered to regulate important genes and pathways such as p53 and IL6-JAK-STAT signaling. miRNAs may also form complex regulatory circuitry with genetic and epigenetic machineries, the deregulation of which could lead to malignant transformation and progression. The translational potential of miRNAs in the clinic is being increasingly recognized that they could represent novel biomarkers and therapeutic targets. This review comprehensively summarizes current progress in delineating the roles of miRNAs in MM pathobiology and management.
Collapse
|
34
|
Yamamoto S, Inoue J, Kawano T, Kozaki KI, Omura K, Inazawa J. The impact of miRNA-based molecular diagnostics and treatment of NRF2-stabilized tumors. Mol Cancer Res 2013; 12:58-68. [PMID: 24307696 DOI: 10.1158/1541-7786.mcr-13-0246-t] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED NF-E2-related factor 2 (NRF2) is a master transcriptional regulator that integrates cellular stress responses and is negatively regulated by Kelch-like ECH-associated protein 1 (KEAP1) at the posttranslational level. In human cancers, aberrantly stabilized NRF2, either by mutation of NRF2 or KEAP1, plays a vital role in chemoresistance and tumor cell growth through the transcriptional activation of target genes, suggesting that targeted inhibition of NRF2 is a potential therapy for NRF2-stabilized tumors. MicroRNAs (miRNA) are endogenous small noncoding RNAs that can negatively regulate gene expression by interfering with the translation or stability of target transcripts. Moreover, tumor-suppressor miRNAs have been suggested to be useful for cancer treatment. Here, a reporter-coupled miRNA library screen identified four miRNAs (miR-507, -634, -450a, and -129-5p) that negatively regulate the NRF2-mediated oncogenic pathway by directly targeting NRF2. Importantly, downregulation of these miRNAs, in addition to the somatic mutation of NRF2 or KEAP1, is associated with stabilized NRF2 and poor prognosis in esophageal squamous cell carcinoma (ESCC). Furthermore, administration of a miR-507 alone or in combination with cisplatin inhibited tumor growth in vivo. Thus, these findings reveal that miRNA-based therapy is effective against NRF2-stabilized ESCC tumors. IMPLICATIONS This study determines the potential of miRNA-based molecular diagnostics and therapeutics in NRF2-stablized tumors.
Collapse
Affiliation(s)
- Shinsuke Yamamoto
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| | | | | | | | | | | |
Collapse
|
35
|
Aure MR, Leivonen SK, Fleischer T, Zhu Q, Overgaard J, Alsner J, Tramm T, Louhimo R, Alnæs GIG, Perälä M, Busato F, Touleimat N, Tost J, Børresen-Dale AL, Hautaniemi S, Troyanskaya OG, Lingjærde OC, Sahlberg KK, Kristensen VN. Individual and combined effects of DNA methylation and copy number alterations on miRNA expression in breast tumors. Genome Biol 2013; 14:R126. [PMID: 24257477 PMCID: PMC4053776 DOI: 10.1186/gb-2013-14-11-r126] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 11/20/2013] [Indexed: 01/31/2023] Open
Abstract
Background The global effect of copy number and epigenetic alterations on miRNA expression in cancer is poorly understood. In the present study, we integrate genome-wide DNA methylation, copy number and miRNA expression and identify genetic mechanisms underlying miRNA dysregulation in breast cancer. Results We identify 70 miRNAs whose expression was associated with alterations in copy number or methylation, or both. Among these, five miRNA families are represented. Interestingly, the members of these families are encoded on different chromosomes and are complementarily altered by gain or hypomethylation across the patients. In an independent breast cancer cohort of 123 patients, 41 of the 70 miRNAs were confirmed with respect to aberration pattern and association to expression. In vitro functional experiments were performed in breast cancer cell lines with miRNA mimics to evaluate the phenotype of the replicated miRNAs. let-7e-3p, which in tumors is found associated with hypermethylation, is shown to induce apoptosis and reduce cell viability, and low let-7e-3p expression is associated with poorer prognosis. The overexpression of three other miRNAs associated with copy number gain, miR-21-3p, miR-148b-3p and miR-151a-5p, increases proliferation of breast cancer cell lines. In addition, miR-151a-5p enhances the levels of phosphorylated AKT protein. Conclusions Our data provide novel evidence of the mechanisms behind miRNA dysregulation in breast cancer. The study contributes to the understanding of how methylation and copy number alterations influence miRNA expression, emphasizing miRNA functionality through redundant encoding, and suggests novel miRNAs important in breast cancer.
Collapse
|
36
|
Human RNAi pathway: crosstalk with organelles and cells. Funct Integr Genomics 2013; 14:31-46. [PMID: 24197738 DOI: 10.1007/s10142-013-0344-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 10/03/2013] [Accepted: 10/07/2013] [Indexed: 12/12/2022]
Abstract
Understanding gene regulation mechanisms has been a serious challenge in biology. As a novel mechanism, small non-coding RNAs are an alternative means of gene regulation in a specific and efficient manner. There are growing reports on regulatory roles of these RNAs including transcriptional gene silencing/activation and post-transcriptional gene silencing events. Also, there are several known small non-coding RNAs which all work through RNA interference pathway. Interestingly, these small RNAs are secreted from cells toward targeted cells presenting new communication approach in cell-cell or cell-organ signal transduction. In fact, understanding cellular and molecular basis of these pathways will strongly improve developing targeted therapies and potent and specific regulatory tools. This study will review some of the most recent findings in this subject and will introduce a super-pathway RNA interference-based small RNA silencing network.
Collapse
|
37
|
Shibuta T, Honda E, Shiotsu H, Tanaka Y, Vellasamy S, Shiratsuchi M, Umemura T. Imatinib induces demethylation of miR-203 gene: an epigenetic mechanism of anti-tumor effect of imatinib. Leuk Res 2013; 37:1278-86. [PMID: 23953880 DOI: 10.1016/j.leukres.2013.07.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 07/18/2013] [Indexed: 11/24/2022]
Abstract
MicroRNA (miRNA) is an important regulator of cellular proliferation, differentiation and death. Leukemia-specific signature of miRNAs suggests that epigenetic dysregulation of miRNAs is important for leukemogenesis. We focused on the role of DNA methylation of miR-203 which targets BCR-ABL1 mRNA. The microarray analysis showed that 48 miRNAs of CpG-rich 212 miRNAs were upregulated over 2-fold after imatinib treatment. Imatinib induced the demethylation of the miR-203 promoter region, resulting in low expression of targeted BCR-ABL1 gene, and loss of proliferation of leukemic cells. In conclusion, demethylation of miR-203 is one of the molecular mechanisms of imatinib-induced inhibition of BCR-ABL1-positive leukemic cells.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Benzamides/pharmacology
- Cell Line, Tumor
- CpG Islands
- DNA (Cytosine-5-)-Methyltransferase 1
- DNA (Cytosine-5-)-Methyltransferases/genetics
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- DNA Methylation/drug effects
- Epigenesis, Genetic/drug effects
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic/drug effects
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Piperazines/pharmacology
- Promoter Regions, Genetic
- Protein Kinase Inhibitors/pharmacology
- Pyrimidines/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- DNA Methyltransferase 3B
Collapse
Affiliation(s)
- Tatsuki Shibuta
- Department of Health Sciences, Faculty of Medical Sciences, Graduate School of Medical Sciences, Kyushu University, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Godnic I, Zorc M, Jevsinek Skok D, Calin GA, Horvat S, Dovc P, Kovac M, Kunej T. Genome-wide and species-wide in silico screening for intragenic MicroRNAs in human, mouse and chicken. PLoS One 2013; 8:e65165. [PMID: 23762306 PMCID: PMC3675212 DOI: 10.1371/journal.pone.0065165] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 04/22/2013] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNAs (ncRNAs) involved in regulation of gene expression. Intragenic miRNAs, especially those exhibiting a high degree of evolutionary conservation, have been shown to be coordinately regulated and/or expressed with their host genes, either with synergistic or antagonistic correlation patterns. However, the degree of cross-species conservation of miRNA/host gene co-location is not known and co-expression information is incomplete and fragmented among several studies. Using the genomic resources (miRBase and Ensembl) we performed a genome-wide in silico screening (GWISS) for miRNA/host gene pairs in three well-annotated vertebrate species: human, mouse, and chicken. Approximately half of currently annotated miRNA genes resided within host genes: 53.0% (849/1,600) in human, 48.8% (418/855) in mouse, and 42.0% (210/499) in chicken, which we present in a central publicly available Catalog of intragenic miRNAs (http://www.integratomics-time.com/miR-host/catalog). The miRNA genes resided within either protein-coding or ncRNA genes, which include long intergenic ncRNAs (lincRNAs) and small nucleolar RNAs (snoRNAs). Twenty-seven miRNA genes were found to be located within the same host genes in all three species and the data integration from literature and databases showed that most (26/27) have been found to be co-expressed. Particularly interesting are miRNA genes located within genes encoding for miRNA silencing machinery (DGCR8, DICER1, and SND1 in human and Cnot3, Gdcr8, Eif4e, Tnrc6b, and Xpo5 in mouse). We furthermore discuss a potential for phenotype misattribution of miRNA host gene polymorphism or gene modification studies due to possible collateral effects on miRNAs hosted within them. In conclusion, the catalog of intragenic miRNAs and identified 27 miRNA/host gene pairs with cross-species conserved co-location, co-expression, and potential co-regulation, provide excellent candidates for further functional annotation of intragenic miRNAs in health and disease.
Collapse
Affiliation(s)
- Irena Godnic
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domzale, Slovenia
| | - Minja Zorc
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domzale, Slovenia
| | - Dasa Jevsinek Skok
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domzale, Slovenia
| | - George Adrian Calin
- Department of Experimental Therapeutics and The Center for RNA Interference and Non-Coding RNAs, The University of Texas, M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Simon Horvat
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domzale, Slovenia
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Peter Dovc
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domzale, Slovenia
| | - Milena Kovac
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domzale, Slovenia
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domzale, Slovenia
- * E-mail:
| |
Collapse
|
39
|
Bian EB, Zhao B, Huang C, Wang H, Meng XM, Wu BM, Ma TT, Zhang L, Lv XW, Li J. New advances of DNA methylation in liver fibrosis, with special emphasis on the crosstalk between microRNAs and DNA methylation machinery. Cell Signal 2013; 25:1837-44. [PMID: 23707524 DOI: 10.1016/j.cellsig.2013.05.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 05/07/2013] [Indexed: 12/17/2022]
Abstract
Epigenetics refers to the study of heritable changes in the pattern of gene expression that is controlled by a mechanism specifically not due to changes the primary DNA sequence. Well-known epigenetic mechanisms include DNA methylation, post-translational histone modifications and RNA-based mechanisms including those controlled by small non-coding RNAs (miRNAs). Recent studies have shown that epigenetic modifications orchestrate the hepatic stellate cell (HSC) activation and liver fibrosis. In this review we focus on the aberrant methylation of CpG island promoters of select genes is the prominent epigenetic mechanism to effectively silence gene transcription facilitating HSC activation and liver fibrosis. Furthermore, we also discuss epigenetic dysregulation of tumor-suppressor miRNA genes by promoter DNA methylation and the interaction of DNA methylation with miRNAs involved in the regulation of HSC activation and liver fibrosis. Recent advances in epigenetics alterations in the pathogenesis of liver fibrosis and their possible use as new therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Er-Bao Bian
- Institute for Liver Diseases of Anhui Medical University, Hefei 230032, Anhui Province, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Harazono Y, Muramatsu T, Endo H, Uzawa N, Kawano T, Harada K, Inazawa J, Kozaki KI. miR-655 Is an EMT-suppressive microRNA targeting ZEB1 and TGFBR2. PLoS One 2013; 8:e62757. [PMID: 23690952 PMCID: PMC3653886 DOI: 10.1371/journal.pone.0062757] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 03/25/2013] [Indexed: 12/17/2022] Open
Abstract
Recently, the epithelial-to-mesenchymal transition (EMT) has been demonstrated to contribute to normal and disease processes including cancer progression. To explore EMT-suppressive microRNAs (miRNAs), we established a cell-based reporter system using a stable clone derived from a pancreatic cancer cell line, Panc1, transfected with a reporter construct containing a promoter sequence of CDH1/E-cadherin in the 5′ upstream region of the ZsGreen1 reporter gene. Then, we performed function-based screening with 470 synthetic double-stranded RNAs (dsRNAs) mimicking human mature miRNAs using the system and identified miR-655 as a novel EMT-suppressive miRNA. Overexpression of miR-655 not only induced the upregulation of E-cadherin and downregulation of typical EMT-inducers but also suppressed migration and invasion of mesenchymal-like cancer cells accompanied by a morphological shift toward the epithelial phenotype. In addition, we found a significant correlation between miR-655 expression and a better prognosis in esophageal squamous cell carcinoma (ESCC). Moreover, ZEB1 and TGFBR2, which are essential components of the TGF-b signaling pathway, were identified as direct targets of miR-655, suggesting that the activation of the TGF-b-ZEB1-E-cadherin axis by aberrant downregulation of miR-655 may accelerate cancer progression.
Collapse
MESH Headings
- Antigens, CD
- Base Sequence
- Cadherins/genetics
- Cadherins/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- Epithelial-Mesenchymal Transition/genetics
- Genes, Reporter/genetics
- Homeodomain Proteins/genetics
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- MicroRNAs/genetics
- Mouth Neoplasms/genetics
- Mouth Neoplasms/pathology
- Phenotype
- Promoter Regions, Genetic/genetics
- Protein Serine-Threonine Kinases/genetics
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/genetics
- Signal Transduction/genetics
- Transcription Factors/genetics
- Zinc Finger E-box-Binding Homeobox 1
Collapse
Affiliation(s)
- Yosuke Harazono
- Department of Molecular Cytogenetics, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Maxillofacial Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomoki Muramatsu
- Department of Molecular Cytogenetics, Tokyo Medical and Dental University, Tokyo, Japan
- Global Center of Excellence (GCOE) Program for International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hironori Endo
- Department of Molecular Cytogenetics, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Maxillofacial Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Narikazu Uzawa
- Department of Maxillofacial Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tatsuyuki Kawano
- Department of Esophagogastric Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kiyoshi Harada
- Department of Maxillofacial Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Johji Inazawa
- Department of Molecular Cytogenetics, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Genome Medicine, Hard Tissue Genome Research Center, Tokyo Medical and Dental University, Tokyo, Japan
- Global Center of Excellence (GCOE) Program for International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail: (KK); (JI)
| | - Ken-ichi Kozaki
- Department of Molecular Cytogenetics, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Therapeutic Genomics, Medical Research Institute and School of Biomedical Science, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Genome Medicine, Hard Tissue Genome Research Center, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail: (KK); (JI)
| |
Collapse
|
41
|
Anwar SL, Albat C, Krech T, Hasemeier B, Schipper E, Schweitzer N, Vogel A, Kreipe H, Lehmann U. Concordant hypermethylation of intergenic microRNA genes in human hepatocellular carcinoma as new diagnostic and prognostic marker. Int J Cancer 2013; 133:660-70. [PMID: 23364900 DOI: 10.1002/ijc.28068] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 01/09/2013] [Indexed: 01/01/2023]
Abstract
Epigenetic inactivation by aberrant DNA methylation has been reported for many microRNA genes in various human malignancies. However, relatively little is known about microRNA gene methylation in hepatocellular carcinoma (HCC). Therefore, a systematic screen for identification of aberrantly hypermethylated microRNA genes in HCC was initiated. The methylation status of 39 intergenic CpG island associated microRNA genes was analyzed in HCC cell lines (n = 7), immortalized hepatocytes (n = 2) and normal liver samples (n = 5). Subsequently, 13 differentially methylated microRNA genes were analyzed in primary human HCC samples (n = 40), benign liver tumors (n = 15) and the adjacent liver tissues employing pyrosequencing. Expression of microRNA genes was measured using quantitative real-time polymerase chain reaction (RT-PCR). In addition, DNA methylation and expression of microRNA genes were measured after DNMT1 knockdown or DNMT inhibition. Aberrant hypermethylation and concomitant reduction in expression of intergenic microRNA genes is a frequent event in human HCC: hsa-mir-9-2 (23%), hsa-mir-9-3 (50 %), hsa-mir-124-1 (20%), hsa-mir-124-2 (13%), hsa-mir-124-3 (43%), hsa-mir-129-2 (58%), hsa-mir-596 (28%) and hsa-mir-1247 (38%). Altogether, it affects 90% of the HCC specimens under study. MicroRNA gene methylation is not found in hepatocellular adenoma (n = 10) and focal nodular hyperplasia (n = 5). DNMT1 knockdown or DNMT inhibition reduced microRNA gene methylation and stimulated expression. In primary human HCC specimens hypermethylation and expression of microRNA genes showed an inverse correlation. Concordant hypermethylation of three or more microRNA genes is a highly specific marker for the detection of HCC and for poor prognosis.
Collapse
|
42
|
Endo H, Muramatsu T, Furuta M, Uzawa N, Pimkhaokham A, Amagasa T, Inazawa J, Kozaki KI. Potential of tumor-suppressive miR-596 targeting LGALS3BP as a therapeutic agent in oral cancer. Carcinogenesis 2012; 34:560-9. [PMID: 23233740 DOI: 10.1093/carcin/bgs376] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The incidence and mortality statistics for oral squamous cell carcinoma (OSCC) were 10th and 12th, respectively, in human cancers diagnosed worldwide in 2008. In this study, to identify novel tumor-suppressive microRNAs (TS-miRNAs) and their direct targets in OSCC, we performed methylation-based screening for 43 miRNAs encoded by 46 miRNA genes located within 500 bp downstream of 40 CpG islands and genome-wide gene expression profiling in combination with a prediction database analysis, respectively, in 18 cell lines, resulting in the identification of a novel TS-miRNA miR-596 directly targeting LGALS3BP/Mac-2 BP/90K. DNA hypermethylation of CpG island located 5'-upstream of miR-596 gene was frequently observed in OSCC cell lines (100% of 18 cell lines) and primary OSCC cases (46.2 and 76.3% of 26 Japanese and 38 Thais primary cases, respectively) in a tumor-specific manner. The ectopic transfection of double-stranded RNA (dsRNA) mimicking miR-596 or specific small interfering RNA for LGALS3BP significantly induced growth inhibition and apoptosis in cell lines lacking miR-596 expression or overexpressing LGALS3BP, respectively, in a manner associated with a suppression of ERK1/2 phosphorylation. Moreover, we also mention the effect of dsRNA mimicking miR-596 on the growth of an OSCC cell line in vivo. Our findings define a central role for miR-596 in OSCC and suggest the potential of miR-596 as an anticancer agent for miRNA replacement therapy in OSCC.
Collapse
Affiliation(s)
- Hironori Endo
- Department of Molecular Cytogenetics, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Dohi O, Yasui K, Gen Y, Takada H, Endo M, Tsuji K, Konishi C, Yamada N, Mitsuyoshi H, Yagi N, Naito Y, Tanaka S, Arii S, Yoshikawa T. Epigenetic silencing of miR-335 and its host gene MEST in hepatocellular carcinoma. Int J Oncol 2012; 42:411-8. [PMID: 23229728 PMCID: PMC3583616 DOI: 10.3892/ijo.2012.1724] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 11/09/2012] [Indexed: 01/16/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that function as endogenous silencers of target genes. Some tumor-suppressive miRNAs are known to be epigenetically silenced by promoter DNA methylation in cancer. In the present study, we aimed to identify miRNA genes that are silenced by DNA hypermethylation in hepatocellular carcinoma (HCC). We screened for miRNA genes with promoter DNA hypermethylation using a genome-wide methylation microarray analysis in HCC cells. It was found that miR-335, which is harbored within an intron of its protein-coding host gene, MEST, was downregulated by aberrant promoter hypermethylation via further methylation assays, including methylation-specific PCR, combined bisulfite and restriction analysis, bisulfite sequencing analysis and 5-aza-2′-deoxycytidine treatment. The expression levels of miR-335 significantly correlated with those of MEST, supporting the notion that the intronic miR-335 is co-expressed with its host gene. The levels of miR-335/MEST methylation were significantly higher in 18 (90%) out of 20 primary HCC tumors, compared to their non-tumor tissue counterparts (P<0.001). The expression levels of miR-335 were significantly lower in 25 (78%) out of 32 primary HCC tumors, compared to their non-tumor tissue counterparts (P=0.001). Furthermore, the expression levels of miR-335 were significantly lower in HCC tumors with distant metastasis compared to those without distant metastasis (P=0.02). In conclusion, our results indicate that expression of miR-335 is reduced by aberrant DNA methylation in HCC.
Collapse
Affiliation(s)
- Osamu Dohi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|