1
|
Clark BJ. The START-domain proteins in intracellular lipid transport and beyond. Mol Cell Endocrinol 2020; 504:110704. [PMID: 31927098 DOI: 10.1016/j.mce.2020.110704] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 12/17/2022]
Abstract
The Steroidogenic Acute Regulatory Protein-related Lipid Transfer (START) domain is a ~210 amino acid sequence that folds into an α/β helix-grip structure forming a hydrophobic pocket for lipid binding. The helix-grip fold structure defines a large superfamily of proteins, and this review focuses on the mammalian START domain family members that include single START domain proteins with identified ligands, and larger multi-domain proteins that may have novel roles in metabolism. Much of our understanding of the mammalian START domain proteins in lipid transport and changes in metabolism has advanced through studies using knockout mouse models, although for some of these proteins the identity and/or physiological role of ligand binding remains unknown. The findings that helped define START domain lipid-binding specificity, lipid transport, and changes in metabolism are presented to highlight that fundamental questions remain regarding the biological function(s) for START domain-containing proteins.
Collapse
Affiliation(s)
- Barbara J Clark
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| |
Collapse
|
2
|
Tanaka M, Osanai T, Homma Y, Hanada K, Okumura K, Tomita H. IQGAP1 activates PLC-δ1 by direct binding and moving along microtubule with DLC-1 to cell surface. FASEB Bioadv 2019; 1:465-480. [PMID: 32123844 PMCID: PMC6996382 DOI: 10.1096/fba.2019-00020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/05/2019] [Accepted: 05/31/2019] [Indexed: 01/08/2023] Open
Abstract
Phospholipase C (PLC)-δ1, activated by p122RhoGTPase-activating protein (GAP)/deleted in liver cancer-1 (p122RhoGAP/DLC-1), contributes to the coronary spastic angina (CSA) pathogenesis. The present study aims to further investigate the p122RhoGAP/DLC-1 protein. We examined molecules assisting this protein and identified a scaffold protein-IQ motif-containing GTPase-activating protein 1 (IQGAP1). IQGAP1-C binds to the steroidogenic acute regulatory-related lipid transfer (START) domain of p122RhoGAP/DLC-1, and PLC-δ1 binds to IQGAP1-N, forming a complex. In fluorescence microscopy, small dots of PLC-δ1 created fine linear arrays like microtubules, and IQGAP1 and p122RhoGAP/DLC-1 were colocated in the cytoplasm with PLC-δ1. Ionomycin induced the raft recruitment of the PLC-δ1, IQGAP1, and p122RhoGAP/DLC-1 complex by translocation to the plasma membrane (PM), indicating the movement of this complex is along microtubules with the motor protein kinesin. Moreover, the IQGAP1 protein was elevated in skin fibroblasts obtained from patients with CSA, and it enhanced the PLC activity and peak intracellular calcium concentration in response to acetylcholine. IQGAP1, a novel stimulating protein, forms a complex with p122RhoGAP/DLC-1 and PLC-δ1 that moves along microtubules and enhances the PLC activity.
Collapse
Affiliation(s)
- Makoto Tanaka
- Department of Stroke and Cerebrovascular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| | - Tomohiro Osanai
- Department of Nursing ScienceHirosaki University Graduate School of Health ScienceHirosakiJapan
| | - Yoshimi Homma
- Department of Biomolecular ScienceFukushima Medical University School of MedicineFukushimaJapan
| | - Kenji Hanada
- Department of CardiologyHirosaki University Graduate School of MedicineHirosakiJapan
| | - Ken Okumura
- Division of CardiologySaiseikai Kumamoto HospitalKumamotoJapan
| | - Hirofumi Tomita
- Department of Stroke and Cerebrovascular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
- Department of CardiologyHirosaki University Graduate School of MedicineHirosakiJapan
| |
Collapse
|
3
|
Sim CK, Kim SY, Brunmeir R, Zhang Q, Li H, Dharmasegaran D, Leong C, Lim YY, Han W, Xu F. Regulation of white and brown adipocyte differentiation by RhoGAP DLC1. PLoS One 2017; 12:e0174761. [PMID: 28358928 PMCID: PMC5373604 DOI: 10.1371/journal.pone.0174761] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/15/2017] [Indexed: 12/22/2022] Open
Abstract
Adipose tissues constitute an important component of metabolism, the dysfunction of which can cause obesity and type II diabetes. Here we show that differentiation of white and brown adipocytes requires Deleted in Liver Cancer 1 (DLC1), a Rho GTPase Activating Protein (RhoGAP) previously studied for its function in liver cancer. We identified Dlc1 as a super-enhancer associated gene in both white and brown adipocytes through analyzing the genome-wide binding profiles of PPARγ, the master regulator of adipogenesis. We further observed that Dlc1 expression increases during differentiation, and knockdown of Dlc1 by siRNA in white adipocytes reduces the formation of lipid droplets and the expression of fat marker genes. Moreover, knockdown of Dlc1 in brown adipocytes reduces expression of brown fat-specific genes and diminishes mitochondrial respiration. Dlc1-/- knockout mouse embryonic fibroblasts show a complete inability to differentiate into adipocytes, but this phenotype can be rescued by inhibitors of Rho-associated kinase (ROCK) and filamentous actin (F-actin), suggesting the involvement of Rho pathway in DLC1-regulated adipocyte differentiation. Furthermore, PPARγ binds to the promoter of Dlc1 gene to regulate its expression during both white and brown adipocyte differentiation. These results identify DLC1 as an activator of white and brown adipocyte differentiation, and provide a molecular link between PPARγ and Rho pathways.
Collapse
Affiliation(s)
- Choon Kiat Sim
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Sun-Yee Kim
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore
| | - Reinhard Brunmeir
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Qiongyi Zhang
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Hongyu Li
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore
| | - Dharmini Dharmasegaran
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Carol Leong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Ying Yan Lim
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Weiping Han
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Feng Xu
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- * E-mail:
| |
Collapse
|
4
|
Sabbir MG, Dillon R, Mowat MRA. Dlc1 interaction with non-muscle myosin heavy chain II-A (Myh9) and Rac1 activation. Biol Open 2016; 5:452-60. [PMID: 26977077 PMCID: PMC4890663 DOI: 10.1242/bio.015859] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/23/2016] [Indexed: 01/30/2023] Open
Abstract
The Deleted in liver cancer 1 (Dlc1) gene codes for a Rho GTPase-activating protein that also acts as a tumour suppressor gene. Several studies have consistently found that overexpression leads to excessive cell elongation, cytoskeleton changes and subsequent cell death. However, none of these studies have been able to satisfactorily explain the Dlc1-induced cell morphological phenotypes and the function of the different Dlc1 isoforms. Therefore, we have studied the interacting proteins associated with the three major Dlc1 transcriptional isoforms using a mass spectrometric approach in Dlc1 overexpressing cells. We have found and validated novel interacting partners in constitutive Dlc1-expressing cells. Our study has shown that Dlc1 interacts with non-muscle myosin heavy chain II-A (Myh9), plectin and spectrin proteins in different multiprotein complexes. Overexpression of Dlc1 led to increased phosphorylation of Myh9 protein and activation of Rac1 GTPase. These data support a role for Dlc1 in induced cell elongation morphology and provide some molecular targets for further analysis of this phenotype.
Collapse
Affiliation(s)
- Mohammad G Sabbir
- Research Institute of Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba R3E 0V9, Canada
| | - Rachelle Dillon
- Research Institute of Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba R3E 0V9, Canada
| | - Michael R A Mowat
- Research Institute of Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba R3E 0V9, Canada Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, R3E 0J9, Canada
| |
Collapse
|
5
|
Kinjo T, Tanaka M, Osanai T, Shibutani S, Narita I, Tanno T, Nishizaki K, Ichikawa H, Kimura Y, Ishida Y, Yokota T, Shimada M, Homma Y, Tomita H, Okumura K. Enhanced p122RhoGAP/DLC-1 Expression Can Be a Cause of Coronary Spasm. PLoS One 2015; 10:e0143884. [PMID: 26624289 PMCID: PMC4666625 DOI: 10.1371/journal.pone.0143884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/10/2015] [Indexed: 01/17/2023] Open
Abstract
Background We previously showed that phospholipase C (PLC)-δ1 activity was enhanced by 3-fold in patients with coronary spastic angina (CSA). We also reported that p122Rho GTPase-activating protein/deleted in liver cancer-1 (p122RhoGAP/DLC-1) protein, which was discovered as a PLC-δ1 stimulator, was upregulated in CSA patients. We tested the hypothesis that p122RhoGAP/DLC-1 overexpression causes coronary spasm. Methods and Results We generated transgenic (TG) mice with vascular smooth muscle (VSM)-specific overexpression of p122RhoGAP/DLC-1. The gene and protein expressions of p122RhoGAP/DLC-1 were markedly increased in the aorta of homozygous TG mice. Stronger staining with anti-p122RhoGAP/DLC-1 in the coronary artery was found in TG than in WT mice. PLC activities in the plasma membrane fraction and the whole cell were enhanced by 1.43 and 2.38 times, respectively, in cultured aortic vascular smooth muscle cells from homozygous TG compared with those from WT mice. Immediately after ergometrine injection, ST-segment elevation was observed in 1 of 7 WT (14%), 6 of 7 heterozygous TG (84%), and 7 of 7 homozygous TG mice (100%) (p<0.05, WT versus TGs). In the isolated Langendorff hearts, coronary perfusion pressure was increased after ergometrine in TG, but not in WT mice, despite of the similar response to prostaglandin F2α between TG and WT mice (n = 5). Focal narrowing of the coronary artery after ergometrine was documented only in TG mice. Conclusions VSM-specific overexpression of p122RhoGAP/DLC-1 enhanced coronary vasomotility after ergometrine injection in mice, which is relevant to human CSA.
Collapse
Affiliation(s)
- Takahiko Kinjo
- Department of Cardiology and Nephrology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Makoto Tanaka
- Department of Hypertension and Stroke Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tomohiro Osanai
- Department of Health Promotion, Hirosaki University Graduate School of Health Science, Hirosaki, Japan
| | - Shuji Shibutani
- Department of Cardiology and Nephrology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ikuyo Narita
- Department of Cardiology and Nephrology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tomohiro Tanno
- Department of Cardiology and Nephrology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kimitaka Nishizaki
- Department of Cardiology and Nephrology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hiroaki Ichikawa
- Department of Cardiology and Nephrology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yoshihiro Kimura
- Department of Cardiology and Nephrology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yuji Ishida
- Department of Cardiology and Nephrology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takashi Yokota
- Department of Cardiology and Nephrology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Michiko Shimada
- Department of Cardiology and Nephrology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yoshimi Homma
- Department of Biomolecular Science, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hirofumi Tomita
- Department of Cardiology and Nephrology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ken Okumura
- Department of Cardiology and Nephrology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
- Department of Hypertension and Stroke Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
- * E-mail:
| |
Collapse
|
6
|
Basak P, Dillon R, Leslie H, Raouf A, Mowat MRA. The Deleted in Liver Cancer 1 (Dlc1) tumor suppressor is haploinsufficient for mammary gland development and epithelial cell polarity. BMC Cancer 2015; 15:630. [PMID: 26353792 PMCID: PMC4565020 DOI: 10.1186/s12885-015-1642-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 09/01/2015] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Deleted in Liver Cancer 1 (Dlc1) is a tumor suppressor gene, which maps to human chromosome 8p21-22 and is found frequently deleted in many cancers including breast cancer. The promoter of the remaining allele is often found methylated. The Dlc1 gene encodes a RhoGAP protein that regulates cell proliferation, migration and inhibits cell growth and invasion when restored in Dlc1 deficient tumor cell lines. This study focuses on determining the role of Dlc1 in normal mammary gland development and epithelial cell polarity in a Dlc1 gene trapped (gt) mouse. METHODS Mammary gland whole mount preparations from 10-week virgin heterozygous Dlc1(gt/+) gene-trapped mice were compared with age-matched wild type (WT) controls. Hematoxylin-Eosin (H&E) and Masson's Trichrome staining of histological sections were carried out. Mammary glands from Dlc1(gt/+) mice and WT controls were enzymatically digested with collagenase and dispase and then cultured overnight to deplete hematopoietic and endothelial cells. The single cell suspensions were then cultured in Matrigel for 12 days. To knockdown Dlc1 expression, primary WT mammary epithelial cells were infected with short hairpin (sh) RNA expressing lentivirus or with a scrambled shRNA control. RESULTS Dlc1(gt/+) mice showed anomalies in the mammary gland that included increased ductal branching and deformities in terminal end buds and branch points. Compared to the WT controls, Masson's Trichrome staining showed a thickened stromal layer with increased collagen deposition in mammary glands from Dlc1(gt/+) mice. Dlc1(gt/+) primary mammary epithelial cells formed increased solid acinar spheres in contrast with WT and scrambled shRNA control cells, which mostly formed hollow acinar structures when plated in 3D Matrigel cultures. These solid acinar structures were similar to the acinar structures formed when Dlc1 gene expression was knocked down in WT mammary cells by shRNA lentiviral transduction. The solid acinar structures were not due to a defect in apoptosis as determined by a lack of detectible cleaved caspase 3 antibody staining. Primary mammary cells from Dlc1(gt/+) mice showed increased RhoA activity compared with WT cells. CONCLUSIONS The results illustrate that decreased Dlc1 expression can disrupt the normal cell polarization and mammary ductal branching. Altogether this study suggests that Dlc1 plays a role in maintaining normal mammary epithelial cell polarity and that Dlc1 is haploinsufficient.
Collapse
Affiliation(s)
- Pratima Basak
- Manitoba Institute of Cell Biology, CancerCare Manitoba, Winnipeg, MB, R3E 0V9, Canada.
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB, Canada.
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada.
- Regenerative Medicine Program, University of Manitoba, Winnipeg, MB, Canada.
| | - Rachelle Dillon
- Manitoba Institute of Cell Biology, CancerCare Manitoba, Winnipeg, MB, R3E 0V9, Canada.
| | - Heather Leslie
- Manitoba Institute of Cell Biology, CancerCare Manitoba, Winnipeg, MB, R3E 0V9, Canada.
| | - Afshin Raouf
- Manitoba Institute of Cell Biology, CancerCare Manitoba, Winnipeg, MB, R3E 0V9, Canada.
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada.
- Regenerative Medicine Program, University of Manitoba, Winnipeg, MB, Canada.
| | - Michael R A Mowat
- Manitoba Institute of Cell Biology, CancerCare Manitoba, Winnipeg, MB, R3E 0V9, Canada.
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
7
|
Abstract
Metastases are responsible for most cancer-related deaths. One of the hallmarks of metastatic cells is increased motility and migration through extracellular matrixes. These processes rely on specific small GTPases, in particular those of the Rho family. Deleted in liver cancer-1 (DLC1) is a tumor suppressor that bears a RhoGAP activity. This protein is lost in most cancers, allowing malignant cells to proliferate and disseminate in a Rho-dependent manner. However, DLC1 is also a scaffold protein involved in alternative pathways leading to tumor and metastasis suppressor activities. Recently, substantial information has been gathered on these mechanisms and this review is aiming at describing the potential and known alternative GAP-independent mechanisms allowing DLC1 to impair migration, invasion, and metastasis formation.
Collapse
|
8
|
Braun AC, Olayioye MA. Rho regulation: DLC proteins in space and time. Cell Signal 2015; 27:1643-51. [PMID: 25889896 DOI: 10.1016/j.cellsig.2015.04.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/08/2015] [Indexed: 12/19/2022]
Abstract
Rho GTPases function as molecular switches that connect changes of the external environment to intracellular signaling pathways. They are active at various subcellular sites and require fast and tight regulation to fulfill their role as transducers of extracellular stimuli. New imaging technologies visualizing the active states of Rho proteins in living cells elucidated the necessity of precise spatiotemporal activation of the GTPases. The local regulation of Rho proteins is coordinated by the interaction with different guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) that turn on and off GTPase signaling to downstream effectors. GEFs and GAPs thus serve as critical signaling nodes that specify the amplitude and duration of a particular Rho signaling pathway. Despite their importance in Rho regulation, the molecular aspects underlying the spatiotemporal control of the regulators themselves are still largely elusive. In this review we will focus on the Deleted in Liver Cancer (DLC) family of RhoGAP proteins and summarize the evidence gathered over the past years revealing their different subcellular localizations that might account for isoform-specific functions. We will also highlight the importance of their tightly controlled expression in the context of neoplastic transformation.
Collapse
Affiliation(s)
- Anja C Braun
- University of Stuttgart, Institute of Cell Biology and Immunology, Allmandring 31, 70569 Stuttgart, Germany
| | - Monilola A Olayioye
- University of Stuttgart, Institute of Cell Biology and Immunology, Allmandring 31, 70569 Stuttgart, Germany.
| |
Collapse
|
9
|
Ko FCF, Ping Yam JW. Regulation of deleted in liver cancer 1 tumor suppressor by protein-protein interactions and phosphorylation. Int J Cancer 2013; 135:264-9. [DOI: 10.1002/ijc.28505] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/16/2013] [Indexed: 12/26/2022]
Affiliation(s)
- Frankie Chi Fat Ko
- Department of Pathology and Centre for Cancer Research; Li Ka Shing Faculty of Medicine, State Key Laboratory for Liver Research, The University of Hong Kong; Hong Kong
| | - Judy Wai Ping Yam
- Department of Pathology and Centre for Cancer Research; Li Ka Shing Faculty of Medicine, State Key Laboratory for Liver Research, The University of Hong Kong; Hong Kong
| |
Collapse
|
10
|
Hitkova I, Yuan G, Anderl F, Gerhard M, Kirchner T, Reu S, Röcken C, Schäfer C, Schmid RM, Vogelmann R, Ebert MPA, Burgermeister E. Caveolin-1 protects B6129 mice against Helicobacter pylori gastritis. PLoS Pathog 2013; 9:e1003251. [PMID: 23592983 PMCID: PMC3623771 DOI: 10.1371/journal.ppat.1003251] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 02/04/2013] [Indexed: 02/07/2023] Open
Abstract
Caveolin-1 (Cav1) is a scaffold protein and pathogen receptor in the mucosa of the gastrointestinal tract. Chronic infection of gastric epithelial cells by Helicobacter pylori (H. pylori) is a major risk factor for human gastric cancer (GC) where Cav1 is frequently down-regulated. However, the function of Cav1 in H. pylori infection and pathogenesis of GC remained unknown. We show here that Cav1-deficient mice, infected for 11 months with the CagA-delivery deficient H. pylori strain SS1, developed more severe gastritis and tissue damage, including loss of parietal cells and foveolar hyperplasia, and displayed lower colonisation of the gastric mucosa than wild-type B6129 littermates. Cav1-null mice showed enhanced infiltration of macrophages and B-cells and secretion of chemokines (RANTES) but had reduced levels of CD25+ regulatory T-cells. Cav1-deficient human GC cells (AGS), infected with the CagA-delivery proficient H. pylori strain G27, were more sensitive to CagA-related cytoskeletal stress morphologies (“humming bird”) compared to AGS cells stably transfected with Cav1 (AGS/Cav1). Infection of AGS/Cav1 cells triggered the recruitment of p120 RhoGTPase-activating protein/deleted in liver cancer-1 (p120RhoGAP/DLC1) to Cav1 and counteracted CagA-induced cytoskeletal rearrangements. In human GC cell lines (MKN45, N87) and mouse stomach tissue, H. pylori down-regulated endogenous expression of Cav1 independently of CagA. Mechanistically, H. pylori activated sterol-responsive element-binding protein-1 (SREBP1) to repress transcription of the human Cav1 gene from sterol-responsive elements (SREs) in the proximal Cav1 promoter. These data suggested a protective role of Cav1 against H. pylori-induced inflammation and tissue damage. We propose that H. pylori exploits down-regulation of Cav1 to subvert the host's immune response and to promote signalling of its virulence factors in host cells. Infection with the bacterium Helicobacter pylori (H. pylori) mainly affects children in the developing countries who are at risk to progress to gastric cancer (GC) as adults after many years of persistent infection, especially with strains which are positive for the oncogenic virulence factor CagA. Eradication of H. pylori by antibiotics is a treatment of choice but may also alter the susceptibility to allergies and other tumor types. Thus, novel diagnostic or prognostic markers are needed which detect early molecular changes in the stomach mucosa during the transition of chronic inflammation to cancer. In our study, we found that the tumor suppressor caveolin-1 (Cav1) is reduced upon infection with H. pylori, and CagA was sufficient but not necessary for this down-regulation. Loss of Cav1 was caused by H. pylori-dependent activation of sterol-responsive element-binding protein-1 (SREBP1), and this event abolished the interaction of Cav1 with p120 RhoGTPase-activating protein/deleted in liver cancer-1 (p120RhoGAP/DLC1), a second bona fide tumor suppressor in gastric tissue. Conclusively, Cav1 and DLC1 may constitute novel molecular markers in the H. pylori-infected gastric mucosa before neoplastic transformation of the epithelium.
Collapse
Affiliation(s)
- Ivana Hitkova
- Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gang Yuan
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Florian Anderl
- Institute of Medical Microbiology, Immunology and Hygiene, Technische Universität München, München, Germany
| | - Markus Gerhard
- Institute of Medical Microbiology, Immunology and Hygiene, Technische Universität München, München, Germany
- German Centre for Infection Research (DZIF), München, Germany
| | - Thomas Kirchner
- Institute of Pathology, Klinikum der Universität München, München, Germany
| | - Simone Reu
- Institute of Pathology, Klinikum der Universität München, München, Germany
| | - Christoph Röcken
- Department of Pathology, Christian-Albrechts Universität, Kiel, Germany
| | - Claus Schäfer
- Department of Medicine II, Klinikum der Universität München, München, Germany
| | - Roland M. Schmid
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Roger Vogelmann
- Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias P. A. Ebert
- Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Elke Burgermeister
- Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- * E-mail:
| |
Collapse
|
11
|
Phospholipase C-δ1 regulates interleukin-1β and tumor necrosis factor-α mRNA expression. Exp Cell Res 2012; 318:1987-93. [DOI: 10.1016/j.yexcr.2012.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 06/05/2012] [Accepted: 06/07/2012] [Indexed: 11/23/2022]
|
12
|
Du X, Qian X, Papageorge A, Schetter AJ, Vass WC, Liu X, Braverman R, Robles AI, Lowy DR. Functional interaction of tumor suppressor DLC1 and caveolin-1 in cancer cells. Cancer Res 2012; 72:4405-16. [PMID: 22693251 DOI: 10.1158/0008-5472.can-12-0777] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Deleted in liver cancer 1 (DLC1), a tumor suppressor gene frequently inactivated in non-small cell lung cancer (NSCLC) and other malignancies, encodes a multidomain protein with a RhoGTPase-activating (RhoGAP) domain and a StAR-related lipid transfer (START) domain. However, no interacting macromolecule has been mapped to the DLC1 START domain. Caveolin-1 (CAV-1) functions as a tumor suppressor in most contexts and forms a complex with DLC1. Here, we have mapped the region of DLC1 required for interaction with CAV-1 to the DLC1 START domain. Mutation of the DLC1 START domain disrupted the interaction and colocalization with CAV-1. Moreover, DLC1 with a START domain mutation failed to suppress neoplastic growth, although it negatively regulated active Rho. CAV-1 and DLC1 expression levels were correlated in two public datasets of NSCLC lines and in two independent publicly available mRNA expression datasets of NSCLC tumors. Clinically, low DLC1 expression predicted a poor clinical outcome in patients with lung cancer. Together, our findings indicate that complex formation between the DLC1 START domain and CAV-1 contributes to DLC1 tumor suppression via a RhoGAP-independent mechanism, and suggest that DLC1 inactivation probably contributes to cancer progression.
Collapse
Affiliation(s)
- Xiaoli Du
- Laboratory of Cellular Oncology, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Lipid transfer proteins of the steroidogenic acute regulatory protein-related lipid transfer (START) domain family are defined by the presence of a conserved ∼210 amino acid sequence that folds into an α/β helix-grip structure forming a hydrophobic pocket for ligand binding. The mammalian START proteins bind diverse ligands, such as cholesterol, oxysterols, phospholipids, sphingolipids, and possibly fatty acids, and have putative roles in non-vesicular lipid transport, thioesterase enzymatic activity, and tumor suppression. However, the biological functions of many members of the START domain protein family are not well established. Recent research has focused on characterizing the cell-type distribution and regulation of the START proteins, examining the specificity and directionality of lipid transport, and identifying disease states associated with dysregulation of START protein expression. This review summarizes the current concepts of the proposed physiological and pathological roles for the mammalian START domain proteins in cholesterol and lipid trafficking.
Collapse
Affiliation(s)
- Barbara J Clark
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, School of Medicine, University of Louisville, Louisville, Kentucky 40292, USA.
| |
Collapse
|
14
|
Murakami R, Osanai T, Tomita H, Sasaki S, Maruyama A, Itoh K, Homma Y, Okumura K. p122 protein enhances intracellular calcium increase to acetylcholine: its possible role in the pathogenesis of coronary spastic angina. Arterioscler Thromb Vasc Biol 2010; 30:1968-75. [PMID: 20634475 DOI: 10.1161/atvbaha.110.203083] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Phospholipase C-δ1 activity is enhanced in patients with coronary artery spasm, and a p122 protein was recently cloned to potentiate phospholipase C-δ1 activity. To investigate the role of p122 in enhanced vasomotility, we examined p122 expression in the cultured skin fibroblasts obtained from patients with and without coronary spasm, intracellular Ca(2+) concentration ([Ca(2+)]i) [corrected] at baseline and after stimulation with acetylcholine in the cells transfected with p122, and promoter in genomic DNA. METHODS AND RESULTS [corrected] p122 protein and gene expression levels in patients with coronary spasm (n=11) were enhanced compared with levels in control subjects (n=9) (P<0.01 for both). [Ca(2+)](i) at baseline and the peak increase in [Ca(2+)](i) in response to acetylcholine were both 2 times higher in cells transfected with p122 than in those without p122. Conversely, knockdown of p122 resulted in diminished [Ca(2+)](i) response. In the p122 promoter analysis, the -228G/A and -1466C/T variants revealed the increase in luciferase activity. Although the -1466C/T variant was similar between 144 patients with coronary spasm and 148 controls, the -228G/A variant was more frequent in male patients than in male controls (P<0.05). CONCLUSIONS The p122 protein is upregulated in patients with coronary spasm, causing increased [Ca(2+)](i) to acetylcholine, and thereby seems to be related to enhanced coronary vasomotility.
Collapse
Affiliation(s)
- Reiichi Murakami
- Department of Cardiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Sato D, Sugimura K, Satoh D, Uemura T. Crossveinless-c, the Drosophila homolog of tumor suppressor DLC1, regulates directional elongation of dendritic branches via down-regulating Rho1 activity. Genes Cells 2010; 15:485-500. [PMID: 20384791 DOI: 10.1111/j.1365-2443.2010.01399.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Diverse neuronal subtypes develop distinctive morphologies of dendritic arbors that receive synaptic or sensory inputs. Dendritic arbors of many subtypes take on a polarized shape, and one underlying mechanism is unidirectionally biased elongation of dendritic branches. As reported herein, we found that Drosophila Crossveinless-c (Cv-c) was a key regulator for such directional growth. In the cv-c mutant, two subclass of multidendritic sensory neurons examined formed dorsally directed branches; however, dendritic branches had difficulty in growing along the anterior-posterior (A-P) body axis. Cv-c belongs to the family of Rho GTPase-activating proteins (RhoGAPs) and is the homolog of human tumor suppressor DLC1. The RhoGAP activity of Cv-c was required cell-autonomously for the A-P-oriented growth, and Cv-c elevated the GTPase activity of Rho1 and Cdc42 in a cell-free assay. Our analysis of genetic interactions suggested that Rho1 was the target of Cv-c in vivo. All of our results suggest that Cv-c contributes to sprouting and subsequent growth of the A-P-oriented branches through negative regulation of Rho1. We discuss a role of Cv-c in dendritic growth in response to environmental cues.
Collapse
Affiliation(s)
- Daichi Sato
- Laboratory of Cell Recognition and Pattern Formation, Graduate School of Biostudies, South Campus Research Building (Building G), Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | |
Collapse
|
16
|
Sabbir MG, Wigle N, Loewen S, Gu Y, Buse C, Hicks GG, Mowat MRA. Identification and characterization of Dlc1 isoforms in the mouse and study of the biological function of a single gene trapped isoform. BMC Biol 2010; 8:17. [PMID: 20199662 PMCID: PMC2839985 DOI: 10.1186/1741-7007-8-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 03/03/2010] [Indexed: 01/01/2023] Open
Abstract
Background The Dlc1 (deleted in liver cancer 1) tumour suppressor gene codes for a RhoGTPase activating protein that is found inactivated in many tumour types. Several transcriptional isoforms have been described but the functional significance and tissue distribution of each form is presently poorly understood. Also, differences in the number of isoforms and splice variants reported still exist between different mammalian species. In order to better understand the number and function of the different variants of the Dlc1 gene in the mouse, we have carried out a detailed analysis. Extensive 3' RACE experiments were carried out in order to identify all possible Dlc1 isoforms and splice variants in the mouse. In addition, we have generated a gene trapped mouse that targets one of these isoforms in order to study its biological function. The effect of this gene trap insertion on the splicing of other isoforms has also been studied. Results In addition to the known 6.1 and 6.2 Kb transcripts of Dlc1, our study revealed the existence of a novel 7.6 Kb transcriptional isoform in the mouse, which corresponds to the human 7.4 Kb (KIAA1723) cDNA transcript. A gene trapped embryonic cell line, with an insertion between Exon 1 and 2 of the 6.1 Kb transcriptional isoform, was used to generate a transgenic mouse. This line showed a significant reduction in the expression of the trapped isoform. However, reduced expression of the other isoforms was not seen. Mice heterozygous for the gene trapped allele were phenotypically normal, but homozygous mutant embryos did not survive beyond 10.5 days post coitum. Dlc1gt/gt embryos showed defects in the brain, heart, and placental blood vessels. Cultured serum-free mouse embryo cells from Dlc1 deficient embryos had elevated RhoA activity and displayed alterations in the organization of actin filaments and focal adhesions. The Dlc1 deficient cells also exhibited increased wound closure in an in vitro scratch assay. Conclusions The mouse has three major transcriptional isoforms of the Dlc1 gene that are differentially expressed in various tissues. A mouse with exon 1 of the 6.1 Kb transcript gt resulted in hypomorphic expression of Dlc1 protein and an embryonic lethal phenotype in the homozygous condition, which indicates that this isoform plays a major role in mouse development. The Dlc1 deficient cells showed altered cytoskeleton structure, increased RhoA activity and cellular migration.
Collapse
Affiliation(s)
- Mohammad G Sabbir
- Manitoba Institute of Cell Biology, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, MB R3E 0V9, Canada
| | | | | | | | | | | | | |
Collapse
|
17
|
Kawai K, Kitamura SY, Maehira K, Seike JI, Yagisawa H. START-GAP1/DLC1 is localized in focal adhesions through interaction with the PTB domain of tensin2. ACTA ACUST UNITED AC 2009; 50:202-15. [PMID: 19895840 DOI: 10.1016/j.advenzreg.2009.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Katsuhisa Kawai
- Graduate School of Life Science, University of Hyogo, Harima Science Garden City, Hyogo-ken 978-1297, Japan
| | | | | | | | | |
Collapse
|
18
|
A distinct pool of phosphatidylinositol 4,5-bisphosphate in caveolae revealed by a nanoscale labeling technique. Proc Natl Acad Sci U S A 2009; 106:9256-61. [PMID: 19470488 DOI: 10.1073/pnas.0900216106] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Multiple functionally independent pools of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)] have been postulated to occur in the cell membrane, but the existing techniques lack sufficient resolution to unequivocally confirm their presence. To analyze the distribution of PI(4,5)P(2) at the nanoscale, we developed an electron microscopic technique that probes the freeze-fractured membrane preparation by the pleckstrin homology domain of phospholipase C-delta1. This method does not require chemical fixation or expression of artificial probes, it is applicable to any cell in vivo and in vitro, and it can define the PI(4,5)P(2) distribution quantitatively. By using this method, we found that PI(4,5)P(2) is highly concentrated at the rim of caveolae both in cultured fibroblasts and mouse smooth muscle cells in vivo. PI(4,5)P(2) was also enriched in the coated pit, but only a low level of clustering was observed in the flat undifferentiated membrane. When cells were treated with angiotensin II, the PI(4,5)P(2) level in the undifferentiated membrane decreased to 37.9% within 10 sec and then returned to the initial level. Notably, the PI(4,5)P(2) level in caveolae showed a slower but more drastic change and decreased to 20.6% at 40 sec, whereas the PI(4,5)P(2) level in the coated pit was relatively constant and decreased only to 70.2% at 10 sec. These results show the presence of distinct PI(4,5)P(2) pools in the cell membrane and suggest a unique role for caveolae in phosphoinositide signaling.
Collapse
|
19
|
Alpy F, Legueux F, Bianchetti L, Tomasetto C. [START domain-containing proteins: a review of their role in lipid transport and exchange]. Med Sci (Paris) 2009; 25:181-91. [PMID: 19239851 DOI: 10.1051/medsci/2009252181] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Fifteen START domain-containing proteins exist in mammals. On the basis of their structural homology, this family is divided into several sub-families consisting mainly of non-vesicular intracellular lipid carriers. With the exception of the Thioesterase-START subfamily, the other subfamilies are represented among invertebrates. The START domain is always located in the C-terminus of the protein. It is a module of about 210 residues that binds lipids, including sterols. Cholesterol, 25-hydroxycholesterol, phosphatidylcholine, phosphatidylethanolamine and ceramides are ligands for STARD1/STARD3-6, STARD5, STARD2/STARD10, STARD10 and STARD11, respectively. The lipids or sterols bound by the remaining 7 START proteins are unknown. The START domain can be regarded as a lipid-exchange and/or a lipid-sensing domain. The START domain consists in a deep lipid-binding pocket--that shields the hydrophic ligand from the external aqueous environment--covered by a lid formed by a C-terminal alpha helix. Within the same subgroup, such as the sterols-carriers subgroup, different START domains have similar biochemical properties; however, their expression profile and their subcellular localization distinguish them and are critical for their different biological functions. START proteins act in a variety of distinct physiological processes, such as lipid transfer between intracellular compartments, lipid metabolism and modulation of signaling events. Mutation or misexpression of START proteins is linked to pathological processes, including genetic disorders, autoimmune diseases and cancers.
Collapse
Affiliation(s)
- Fabien Alpy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Biologie du Cancer, UPR 6520 CNRS/U964 Inserm/Université Louis Pasteur, BP10142, 67404 Illkirch, CU de Strasbourg, France
| | | | | | | |
Collapse
|
20
|
Hankins GR, Sasaki T, Lieu AS, Saulle D, Karimi K, Li JZ, Helm GA. Identification of the deleted in liver cancer 1 gene, DLC1, as a candidate meningioma tumor suppressor. Neurosurgery 2009; 63:771-80; discussion 780-1. [PMID: 18981889 DOI: 10.1227/01.neu.0000325488.72518.9e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Meningiomas are the second most common primary tumors of the central nervous system. Meningiomas at the cranial base pose technical challenges and result in increased morbidity. To investigate the molecular mechanisms of meningioma formation, the expression profiles of 12 000 genes from meningiomas and dural specimens were compared. METHODS Ribonucleic acid from 6 meningiomas (World Health Organization Grade I) and 4 dural specimens was profiled using U95A GeneChips (Affymetrix, Inc., Santa Clara, CA). Expression profiles of the 2 groups were compared using dChip and Data Mining Tool software packages (Affymetrix, Inc.) to identify differentially expressed genes. Down-regulation of a differentially expressed tumor suppressor gene, deleted in liver cancer 1 (DLC1), was verified by quantitative real-time reverse transcription-polymerase chain reaction and immunohistochemical staining. Function and methylation of DLC1 were assessed by ectopic expression in 5 primary cultures, demethylation assay using 5-aza-2'-deoxycytidine, and methylation-specific polymerase chain reaction in 4 meningioma samples. RESULTS Gene expression profiling revealed up-regulation of 5 genes (fibroblast growth factor 9, gibbon leukemia virus receptor 2, cyclin D1, eukaryotic translation initiation factor 5A, and 28S ribosomal ribonucleic acid) and down-regulation of 35 genes, including DLC1, in meningiomas. The down-regulation of DLC1 in meningiomas was confirmed by quantitative real-time reverse transcription-polymerase chain reaction and immunohistochemical staining. Transfection of DLC1 complementary deoxyribonucleic acid into primary cultures of 5 meningiomas resulted in decreased replication. Although demethylation decreased meningioma cell growth rates in vitro, methylation-specific polymerase chain reaction did not detect DLC1 promoter methylation. CONCLUSION The results suggest that DLC1 may function as a tumor suppressor gene in meningiomas. Furthermore, DLC1 promoter methylation does not appear to be responsible for the decreased DLC1 expression in these tumors.
Collapse
Affiliation(s)
- Gerald R Hankins
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Liao YC, Shih YP, Lo SH. Mutations in the focal adhesion targeting region of deleted in liver cancer-1 attenuate their expression and function. Cancer Res 2008; 68:7718-22. [PMID: 18829524 DOI: 10.1158/0008-5472.can-08-2042] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Deleted in liver cancer-1 (DLC-1) is a RhoGTPase-activating protein (RhoGAP) domain containing tumor suppressor that is often down-regulated in various cancer types. Previously, we have shown that DLC-1 is recruited to focal adhesions by binding to the Src homology 2 domains of tensins and the focal adhesion localization is critical for the tumor suppression activity of DLC-1. To investigate whether mutations in the focal adhesion targeting (FAT) region might occur and attenuate the expression, localization, and function of DLC-1, we have first mapped the FAT region to the amino acid residues from 201 to 500, and then sequenced cDNAs and genomic DNAs encoding the FAT region from cancer patients. Several missense and nonsense mutations were detected. All missense mutations were further examined for the potential effect on the function of DLC-1. Although these mutations did not seem to affect the focal adhesion localization of DLC-1, the activities of suppressing tumor cell growth were impaired in two mutants: T301K and S308I. Consistent with the fact that the RhoGAP activity of DLC-1 is essential for inhibiting tumor cell growth, the RhoGAP activities were significantly reduced in these mutants, suggesting that the FAT region also contains a regulatory element for its COOH-terminal RhoGAP domain. Our studies have shown that mutations in DLC-1 may lead to loss of function and contribute to the tumorigenesis, and have revealed an allosteric regulation site for its RhoGAP activity.
Collapse
Affiliation(s)
- Yi-Chun Liao
- Department of Biochemistry and Molecular Medicine, Center for Tissue Regeneration and Repair, University of California, Davis, Sacramento, California 95817, USA
| | | | | |
Collapse
|
22
|
Kim TY, Healy KD, Der CJ, Sciaky N, Bang YJ, Juliano RL. Effects of structure of Rho GTPase-activating protein DLC-1 on cell morphology and migration. J Biol Chem 2008; 283:32762-70. [PMID: 18786931 PMCID: PMC2583296 DOI: 10.1074/jbc.m800617200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
DLC-1 encodes a Rho GTPase-activating protein (RhoGAP) and
negative regulator of specific Rho family proteins (RhoA-C and Cdc42). DLC-1
is a multi-domain protein, with the RhoGAP catalytic domain flanked by an
amino-terminal sterile α motif (SAM) and a carboxyl-terminal START
domain. The roles of these domains in the regulation of DLC-1 function remain
to be determined. We undertook a structure-function analysis involving
truncation and missense mutants of DLC-1. We determined that the
amino-terminal SAM domain functions as an autoinhibitory domain of intrinsic
RhoGAP activity. Additionally, we determined that the SAM and START domains
are dispensable for DLC-1 association with focal adhesions. We then
characterized several mutants for their ability to regulate cell migration and
identified constitutively activated and dominant negative mutants of DLC-1. We
report that DLC-1 activation profoundly alters cell morphology, enhances
protrusive activity, and can increase the velocity but reduce directionality
of cell migration. Conversely, the expression of the amino-terminal domain of
DLC-1 acts as a dominant negative and profoundly inhibits cell migration by
displacing endogenous DLC-1 from focal adhesions.
Collapse
Affiliation(s)
- Tai Young Kim
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
23
|
Clarke CJ, Forman S, Pritchett J, Ohanian V, Ohanian J. Phospholipase C-delta1 modulates sustained contraction of rat mesenteric small arteries in response to noradrenaline, but not endothelin-1. Am J Physiol Heart Circ Physiol 2008; 295:H826-34. [PMID: 18567701 DOI: 10.1152/ajpheart.01396.2007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vasoconstrictors activate phospholipase C (PLC), which hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP(2)), leading to calcium mobilization, protein kinase C activation, and contraction. Our aim was to investigate whether PLC-delta(1), a PLC isoform implicated in alpha(1)-adrenoreceptor signaling and the pathogenesis of hypertension, is involved in noradrenaline (NA) or endothelin (ET-1)-induced PIP(2) hydrolysis and contraction. Rat mesenteric small arteries were studied. Contractility was measured by pressure myography, phospholipids or inositol phosphates were measured by radiolabeling with (33)Pi or myo-[(3)H]inositol, and caveolae/rafts were prepared by discontinuous sucrose density centrifugation. PLC-delta(1) was localized by immunoblot analysis and neutralized by delivery of PLC-delta(1) antibody. The PLC inhibitor U73122, but not the negative control U-73342, markedly inhibited NA and ET-1 contraction but had no effect on potassium or phorbol ester contraction, implicating PLC activity in receptor-mediated smooth muscle contraction. PLC-delta(1) was present in caveolae/rafts, and NA, but not ET-1, stimulated a rapid twofold increase in PLC-delta(1) levels in these domains. PLC-delta(1) is calcium dependent, and removal of extracellular calcium prevented its association with caveolae/rafts in response to NA, concomitantly reducing NA-induced [(33)P]PIP(2) hydrolysis and [(3)H]inositol phosphate formation but with no effect on ET-1-induced [(33)P]PIP(2) hydrolysis. Neutralization of PLC-delta(1) by PLC-delta(1) antibody prevented its caveolae/raft association and attenuated the sustained contractile response to NA compared with control antibodies. In contrast, ET-1-induced contraction was not affected by PLC-delta(1) antibody. These results indicate the novel and selective role of caveolae/raft localized PLC-delta(1) in NA-induced PIP(2) hydrolysis and sustained contraction in intact vascular tissue.
Collapse
Affiliation(s)
- Christopher J Clarke
- Cardiovascular Research Group, School of Clinical and Laboratory Science, Univ. of Manchester, Core Technology Facility (3floor 46 Grafton St., Manchester M13 9NT, UK
| | | | | | | | | |
Collapse
|
24
|
Healy KD, Hodgson L, Kim TY, Shutes A, Maddileti S, Juliano RL, Hahn KM, Harden TK, Bang YJ, Der CJ. DLC-1 suppresses non-small cell lung cancer growth and invasion by RhoGAP-dependent and independent mechanisms. Mol Carcinog 2008; 47:326-37. [PMID: 17932950 DOI: 10.1002/mc.20389] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Expression of the tumor suppressor deleted in liver cancer-1 (DLC-1) is lost in non-small cell lung (NSCLC) and other human carcinomas, and ectopic DLC-1 expression dramatically reduces proliferation and tumorigenicity. DLC-1 is a multi-domain protein that includes a Rho GTPase activating protein (RhoGAP) domain which has been hypothesized to be the basis of its tumor suppressive actions. To address the importance of the RhoGAP function of DLC-1 in tumor suppression, we performed biochemical and biological studies evaluating DLC-1 in NSCLC. Full-length DLC-1 exhibited strong GAP activity for RhoA as well as RhoB and RhoC, but only very limited activity for Cdc42 in vitro. In contrast, the isolated RhoGAP domain showed 5- to 20-fold enhanced activity for RhoA, RhoB, RhoC, and Cdc42. DLC-1 protein expression was absent in six of nine NSCLC cell lines. Restoration of DLC-1 expression in DLC-1-deficient NSCLC cell lines reduced RhoA activity, and experiments with a RhoA biosensor demonstrated that DLC-1 dramatically reduces RhoA activity at the leading edge of cellular protrusions. Furthermore, DLC-1 expression in NSCLC cell lines impaired both anchorage-dependent and -independent growth, as well as invasion in vitro. Surprisingly, we found that the anti-tumor activity of DLC-1 was due to both RhoGAP-dependent and -independent activities. Unlike the rat homologue p122RhoGAP, DLC-1 was not capable of activating the phospholipid hydrolysis activity of phospholipase C-delta1. Combined, these studies provide information on the mechanism of DLC-1 function and regulation, and further support the role of DLC-1 tumor suppression in NSCLC.
Collapse
Affiliation(s)
- Kevin D Healy
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27599-7295, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kawai K, Iwamae Y, Yamaga M, Kiyota M, Ishii H, Hirata H, Homma Y, Yagisawa H. Focal adhesion-localization of START-GAP1/DLC1 is essential for cell motility and morphology. Genes Cells 2008; 14:227-41. [PMID: 19170769 DOI: 10.1111/j.1365-2443.2008.01265.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There is a class of GTPase activating proteins for the Rho family GTPases (RhoGAPs) that contain the steroidogenic acute regulatory protein (STAR)-related lipid transfer (START) domain. In mammals three genes encode such proteins and they are designated START-GAP1-3 or deleted in liver cancer 1-3 (DLC1-3). In this study, we examined the intracellular localization and roles of START-GAP1/DLC1 in cell motility. Immunofluorescence microscopic analysis of NRK cells and HeLa cells revealed that START-GAP1 was localized in focal adhesions. Amino acid residues 265-459 of START-GAP1 were found to be necessary for focal adhesion targeting and we name the region "the focal adhesion-targeting (FAT) domain." It was previously known that ectopic expression of START-GAP1 induced cell rounding. We demonstrated that the FAT domain of START-GAP1 was partially required for this morphological change. Furthermore, expression of this domain in HeLa cells resulted in dissociation of endogenous START-GAP1 from focal adhesions as a dominant negative modulator, reducing cell migration and spreading. Taken together, START-GAP1 is targeted to focal adhesions via the FAT domain and regulates actin rearrangement through down-regulation of active RhoA and Cdc42. Its absence from focal adhesions could, therefore, cause abnormal cell motility and spreading.
Collapse
Affiliation(s)
- Katsuhisa Kawai
- University of Hyogo, Harima Science Garden City, Hyogo-ken, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Durkin ME, Yuan BZ, Zhou X, Zimonjic DB, Lowy DR, Thorgeirsson SS, Popescu NC. DLC-1:a Rho GTPase-activating protein and tumour suppressor. J Cell Mol Med 2008; 11:1185-207. [PMID: 17979893 PMCID: PMC4401278 DOI: 10.1111/j.1582-4934.2007.00098.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The deleted in liver cancer 1 (DLC-1) gene encodes a GTPase activating protein that acts as a negative regulator of the Rho family of small GTPases. Rho proteins transduce signals that influence cell morphology and physiology, and their aberrant up-regulation is a key factor in the neoplastic process, including metastasis. Since its discovery, compelling evidence has accumulated that demonstrates a role for DLC-1 as a bona fide tumour suppressor gene in different types of human cancer. Loss of DLC-1 expression mediated by genetic and epigenetic mechanisms has been associated with the development of many human cancers, and restoration of DLC-1 expression inhibited the growth of tumour cells in vivo and in vitro. Two closely related genes, DLC-2 and DLC-3, may also be tumour suppressors. This review presents the current status of progress in understanding the biological functions of DLC-1 and its relatives and their roles in neoplasia.
Collapse
Affiliation(s)
- Marian E Durkin
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Yam JWP, Ko FCF, Chan CY, Jin DY, Ng IOL. Interaction of deleted in liver cancer 1 with tensin2 in caveolae and implications in tumor suppression. Cancer Res 2007; 66:8367-72. [PMID: 16951145 DOI: 10.1158/0008-5472.can-05-2850] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Deleted in liver cancer 1 (DLC1) is a recently identified tumor suppressor gene frequently underexpressed in hepatocellular carcinoma (HCC). DLC1 encodes a Rho GTPase-activating protein domain that exhibits growth-suppressive activity in HCC cell lines. Our recent finding has revealed that inhibition of Rho-mediated actin stress fiber formation by DLC1 is associated with its growth inhibitory activity. In the present study, we identified tensin2 as the novel binding partner of DLC1. Tensin2 belongs to a new family of focal adhesion proteins that play key roles in cytoskeleton organization and signal transduction. Dysregulation of tensin proteins has previously been implicated in human cancers. Tensin2 is highly expressed in human liver. Introduction of tensin2 into HCC cell lines with low expression of tensin2 caused significant growth inhibition and induction of apoptosis. Tensin2 directly interacted with DLC1 in vitro and in vivo. Both proteins localized to punctate structures in the cytoplasm. Sequence analysis of DLC1 and tensin2 identified caveolin-1 binding motif in both proteins. In vivo immunoprecipitation study confirmed that both proteins indeed interacted with endogenous caveolin-1, which is the major structural component of caveolae. Our findings presented here suggest a new model for the action of DLC1 in hepatocytes, whereby DLC1-tensin2 complex interacts with Rho GTPases in caveolae to effect cytoskeletal reorganization.
Collapse
Affiliation(s)
- Judy Wai Ping Yam
- Department of Pathology, SH Ho Foundation Research Laboratories and Hong Kong Jockey Club Clinical Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | |
Collapse
|
28
|
Yamaga M, Kawai K, Kiyota M, Homma Y, Yagisawa H. Recruitment and activation of phospholipase C (PLC)-delta1 in lipid rafts by muscarinic stimulation of PC12 cells: contribution of p122RhoGAP/DLC1, a tumor-suppressing PLCdelta1 binding protein. ACTA ACUST UNITED AC 2007; 48:41-54. [PMID: 18157946 DOI: 10.1016/j.advenzreg.2007.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Masaki Yamaga
- Laboratory of Biological Signaling, Graduate School of Life Science, University of Hyogo, Harima Science Garden City, Hyogo-ken 978-1297, Japan
| | | | | | | | | |
Collapse
|
29
|
Li H, Fung KL, Jin DY, Chung SSM, Ching YP, Ng IOL, Sze KH, Ko BCB, Sun H. Solution structures, dynamics, and lipid-binding of the sterile alpha-motif domain of the deleted in liver cancer 2. Proteins 2007; 67:1154-66. [PMID: 17380510 DOI: 10.1002/prot.21361] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The deleted in liver cancer 2 (DLC2) is a tumor suppressor gene, frequently found to be underexpressed in hepatocellular carcinoma. DLC2 is a multidomain protein containing a sterile alpha-motif (SAM) domain, a GTPase-activating protein (GAP) domain, and a lipid-binding StAR-related lipid-transfer (START) domain. The SAM domain of DLC2, DLC2-SAM, exhibits a low level of sequence homology (15-30%) with other SAM domains, and appears to be the prototype of a new subfamily of SAM domains found in DLC2-related proteins. In the present study, we have determined the three-dimensional solution structure of DLC2-SAM using NMR methods together with molecular dynamics simulated annealing. In addition, we performed a backbone dynamics study. The DLC2-SAM packed as a unique four alpha-helical bundle stabilized by interhelix hydrophobic interactions. The arrangement of the four helices is distinct from all other known SAM domains. In contrast to some members of the SAM domain family which form either dimers or oligomers, both biochemical analyses and rotational correlation time (tau(c)) measured by backbone 15N relaxation experiments indicated that DLC2-SAM exists as a monomer in solution. The interaction of DLC2-SAM domain with sodium dodecyl sulfate (SDS) micelles and 1,2-dimyristoyl-sn-glycerol-3-phosphatidylglycerol (DMPG) phospholipids was examined by CD and NMR spectroscopic techniques. The DLC2-SAM exhibits membrane binding properties accompanied by minor loss of the secondary structure of the protein. Deletion studies showed that the self-association of DLC2 in vivo does not require SAM domain, instead, a protein domain consisting of residues 120-672 mediates the self-association of DLC2.
Collapse
Affiliation(s)
- Hongyan Li
- Department of Chemistry and Open Laboratory of Chemical Biology, The University of Hong Kong, Pokfulam, Hong Kong, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Qian X, Li G, Asmussen HK, Asnaghi L, Vass WC, Braverman R, Yamada KM, Popescu NC, Papageorge AG, Lowy DR. Oncogenic inhibition by a deleted in liver cancer gene requires cooperation between tensin binding and Rho-specific GTPase-activating protein activities. Proc Natl Acad Sci U S A 2007; 104:9012-7. [PMID: 17517630 PMCID: PMC1868654 DOI: 10.1073/pnas.0703033104] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Indexed: 01/24/2023] Open
Abstract
The three deleted in liver cancer genes (DLC1-3) encode Rho-GTPase-activating proteins (RhoGAPs) whose expression is frequently down-regulated or silenced in a variety of human malignancies. The RhoGAP activity is required for full DLC-dependent tumor suppressor activity. Here we report that DLC1 and DLC3 bind to human tensin1 and its chicken homolog. The binding has been mapped to the tensin Src homology 2 (SH2) and phosphotyrosine binding (PTB) domains at the C terminus of tensin proteins. Distinct DLC1 sequences are required for SH2 and PTB binding. DCL binding to both domains is constitutive under basal conditions. The SH2 binding depends on a tyrosine in DCL1 (Y442) but is phosphotyrosine-independent, a highly unusual feature for SH2 binding. DLC1 competed with the binding of other proteins to the tensin C terminus, including beta 3-integrin binding to the PTB domain. Point mutation of a critical tyrosine residue (Y442F) in DLC1 rendered the protein deficient for binding the tensin SH2 domain and binding full-length tensin. The Y442F protein was diffusely cytoplasmic, in contrast to the localization of wild-type DLC1 to focal adhesions, but it retained the ability to reduce the intracellular levels of Rho-GTP. The Y442F mutant displayed markedly reduced biological activity, as did a mutant that was RhoGAP-deficient. The results suggest that DLC1 is a multifunctional protein whose biological activity depends on cooperation between its tensin binding and RhoGAP activities, although neither activity depends on the other.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kenneth M. Yamada
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | - Nicholas C. Popescu
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | | | | |
Collapse
|
31
|
Liao YC, Lo SH. Deleted in liver cancer-1 (DLC-1): a tumor suppressor not just for liver. Int J Biochem Cell Biol 2007; 40:843-7. [PMID: 17521951 PMCID: PMC2323245 DOI: 10.1016/j.biocel.2007.04.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 04/10/2007] [Accepted: 04/11/2007] [Indexed: 11/15/2022]
Abstract
Deleted in liver cancer 1 (DLC-1), as its name implied, was originally isolated as a potential tumor suppressor gene often deleted in hepatocellular carcinoma. Further studies have indicated that down-expression of DLC-1 either by genomic deletion or DNA methylation is associated with a variety of cancer types including lung, breast, prostate, kidney, colon, uterus, ovary, and stomach. Re-expression of DLC-1 in cancer cells regulates the structure of actin cytoskeleton and focal adhesions and significantly inhibits cell growth, supporting its role as a tumor suppressor. This tumor suppressive function relies on DLC-1's RhoGTPase activating protein (RhoGAP) activity and steroidogenic acute regulatory (StAR)-related lipid transfer (START) domain, as well as its focal adhesion localization, which is recruited by the Src Homology 2 (SH2) domains of tensins in a phosphotyrosine-independent fashion. Therefore, the expression and subcellular localization of DLC-1 could be a useful molecular marker for cancer prognosis, whereas DLC-1 and its downstream signaling molecules might be therapeutic targets for the treatment of cancer.
Collapse
Affiliation(s)
- Yi-Chun Liao
- Lawrence Ellison Center for Tissue Regeneration and Repair, Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | | |
Collapse
|
32
|
Liao YC, Si L, deVere White RW, Lo SH. The phosphotyrosine-independent interaction of DLC-1 and the SH2 domain of cten regulates focal adhesion localization and growth suppression activity of DLC-1. ACTA ACUST UNITED AC 2006; 176:43-9. [PMID: 17190795 PMCID: PMC2063623 DOI: 10.1083/jcb.200608015] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The tensin family member cten (C-terminal tensin like) is an Src homology 2 (SH2) and phosphotyrosine binding domain–containing focal adhesion molecule that may function as a tumor suppressor. However, the mechanism has not been well established. We report that cten binds to another tumor suppressor, deleted in liver cancer 1 (DLC-1), and the SH2 domain of cten is responsible for the interaction. Unexpectedly, the interaction between DLC-1 and the cten SH2 domain is independent of tyrosine phosphorylation of DLC-1. By site-directed mutagenesis, we have identified several amino acid residues on cten and DLC-1 that are essential for this interaction. Mutations on DLC-1 perturb the interaction with cten and disrupt the focal adhesion localization of DLC-1. Furthermore, these DLC-1 mutants have lost their tumor suppression activities. When these DLC-1 mutants were fused to a focal adhesion targeting sequence, their tumor suppression activities were significantly restored. These results provide a novel mechanism whereby the SH2 domain of cten-mediated focal adhesion localization of DLC-1 plays an essential role in its tumor suppression activity.
Collapse
Affiliation(s)
- Yi-Chun Liao
- Center for Tissue Regeneration and Repair, University of California, Davis, Sacramento, CA 95817, USA
| | | | | | | |
Collapse
|
33
|
Tosun M, Erac Y, Selli C, Karakaya N. Sarcoplasmic-endoplasmic reticulum Ca2+-ATPase inhibition prevents endothelin A receptor antagonism in rat aorta. Am J Physiol Heart Circ Physiol 2006; 292:H1961-6. [PMID: 17172280 DOI: 10.1152/ajpheart.00298.2006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study tested whether sarcoplasmic-endoplasmic reticulum Ca(2+)-ATPase regulates the ability of endothelin receptor antagonist to inhibit the endothelin-1 constriction. The endothelin A receptor antagonist BQ-123 (1 microM) completely relaxed constriction to 10 nM endothelin-1 in endothelium-denuded rat aorta. Challenge with cyclopiazonic acid (10 microM), a sarcoplasmic-endoplasmic reticulum Ca(2+)-ATPase inhibitor, during the plateau of endothelin-1 constriction enhanced the constriction by approximately 30%. BQ-123 relaxed the endothelin-1 plus cyclopiazonic acid constriction by only approximately 10%. In contrast, prazosin (1 microM), an alpha-adrenergic receptor antagonist, still completely relaxed the 0.3 muM phenylephrine constriction in the presence of cyclopiazonic acid. Verapamil relaxed the endothelin-1 plus cyclopiazonic acid constriction by approximately 30%, whereas Ni(2+) and 2-aminoethoxydiphenyl borate, nonselective cation channel and store-operated channel blockers, respectively, completely relaxed the constriction. These results suggest that lowered sarcoplasmic-endoplasmic reticulum Ca(2+)-ATPase activity selectively decreases the ability of endothelin receptor antagonist to inhibit the endothelin A receptor. The decreased antagonism may be related to the opening of store-operated channels and subsequent greater internalization of endothelin A receptor.
Collapse
Affiliation(s)
- M Tosun
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkey.
| | | | | | | |
Collapse
|
34
|
Hunter I, Nixon GF. Spatial compartmentalization of tumor necrosis factor (TNF) receptor 1-dependent signaling pathways in human airway smooth muscle cells. Lipid rafts are essential for TNF-alpha-mediated activation of RhoA but dispensable for the activation of the NF-kappaB and MAPK pathways. J Biol Chem 2006; 281:34705-15. [PMID: 16982613 PMCID: PMC2653078 DOI: 10.1074/jbc.m605738200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor (TNF)-alpha-induced activation of RhoA, mediated by TNF receptor 1 (TNFR1), is a prerequisite step in a pathway that leads to increased 20-kDa light chain of myosin (MLC20) phosphorylation and airway smooth muscle contraction. In this study, we have investigated the proximal events in TNF-alpha-induced RhoA activation. TNFR1 is localized to both lipid raft and nonraft regions of the plasma membrane in primary human airway smooth muscle cells. TNF-alpha engagement of TNFR1 recruited the adaptor proteins TRADD, TRAF-2, and RIP into lipid rafts and activated RhoA, NF-kappaB, and MAPK pathways. Depletion of cholesterol from rafts with methyl-beta-cyclodextrin caused a redistribution of TNFR1 to nonraft plasma membrane and prevented ligand-induced RhoA activation. By contrast, TNF-alpha-induced activation of NF-kappaB and MAPKs was unaffected by methyl-beta-cyclodextrin indicating that, in airway smooth muscle cells, activation of these pathways occurred independently of lipid rafts. Targeted knockdown of caveolin-1 completely abrogated TNF-alpha-induced RhoA activation, identifying this raft-resident protein as a positive regulator of the activation process. The signaling adaptors TRADD and RIP were also found to be necessary for ligand-induced RhoA activation. Taken together, our results suggest that in airway smooth muscle cells, spatial compartmentalization of TNFR1 provides a mechanism for generating distinct signaling outcomes in response to ligand engagement and define a mechanistic role for lipid rafts and caveolin-1 in TNF-alpha-induced activation of RhoA.
Collapse
Affiliation(s)
- Irene Hunter
- School of Medical Sciences, University of Aberdeen, IMS Building, Foresterhill, Aberdeen AB25 2ZD, United Kingdom.
| | | |
Collapse
|
35
|
Boyan BD, Wong KL, Wang L, Yao H, Guldberg RE, Drab M, Jo H, Schwartz Z. Regulation of growth plate chondrocytes by 1,25-dihydroxyvitamin D3 requires caveolae and caveolin-1. J Bone Miner Res 2006; 21:1637-47. [PMID: 16995819 DOI: 10.1359/jbmr.060713] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED We examined the role of caveolae and caveolin-1 in the mechanism of 1alpha,25(OH)(2)D(3) action in growth plate chondrocytes. We found that caveolae are required for rapid 1alpha,25(OH)(2)D(3)-dependent PKC signaling, and caveolin-1 must be present based on studies using chondrocytes from Cav-1(-/-) mice. INTRODUCTION 1,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)] regulates endochondral ossification in part through membrane-associated mechanisms, including protein kinase C (PKC) signaling activated by a membrane-associated 1alpha,25(OH)(2)D(3)-binding protein, ERp60. We tested the hypothesis that caveolae are required for 1alpha,25(OH)(2)D(3) action and play an important role in regulating chondrocyte biology and growth plate physiology. MATERIALS AND METHODS Rat costochondral chondrocytes were examined for caveolae by transmission electron microscopy of cultured cells and of cells in situ. Western blots and confocal microscopy were used to detect caveolae proteins including caveolin-1 (Cav-1) and 1alpha,25(OH)(2)D(3) receptors. Caveolae cholesterol was depleted with beta-cyclodextrin (CD) and effects of 1alpha,25(OH)(2)D(3) on PKC, DNA synthesis, alkaline phosphatase, and proteoglycan production determined. Chondrocytes from Cav-1(-/-) and C57BL/6 wildtype mice were also treated with 1alpha,25(OH)(2)D(3). Epiphyses and costochondral junctions of 8-week-old male Cav-1(-/-) and wildtype mice (N = 8) were compared by histomorphometry and microCT. Data were analyzed by ANOVA and Bonferroni for posthoc comparisons. RESULTS Growth zone chondrocytes had caveolae and Cav-1, -2, and -3. Resting zone chondrocytes, which do not exhibit a rapid 1alpha,25(OH)(2)D(3)-dependent increase in PKC activity, also had these caveolins, but caveolae were larger and fewer in number. ERp60 but not VDR co-localized with Cav-1 in plasma membranes and in lipid rafts. CD-treatment blocked 1alpha,25(OH)(2)D(3) effects on all parameters tested. The Cav-1(-/-) cells did not respond to 1alpha,25(OH)(2)D(3), although 1alpha,25(OH)(2)D(3) increased PKC, alkaline phosphatase, and [(35)S]-sulfate incorporation in wildtype C57BL/6 cells. Histology and microCT showed that Cav-1(-/-) growth plates were longer and had more hypertrophic cells in each column. Growth plate changes were reflected in the metaphysis. CONCLUSIONS The membrane-mediated effects of 1alpha,25(OH)(2)D(3) require caveolae and Cav-1, and Cav-1 deficiency results in altered growth plate physiology.
Collapse
Affiliation(s)
- Barbara D Boyan
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0363, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Caveolin-1 is the major structural protein in caveolae; small Omega-shaped invaginations within the plasma membrane. Caveolae are involved in signal transduction, wherein caveolin-1 acts as a scaffold to organise multiple molecular complexes regulating a variety of cellular events. Caveolin-1 has both tumour suppressor and oncogenic activities. However, recent evidence suggests a role for caveolin-1 in promoting cancer cell migration and metastasis with both loss and overexpression of caveolin-1 being described as a marker for progression in a variety of tumour types. Further studies are beginning to determine the molecular mechanisms by which caveolin-1 acts in promoting a metastatic phenotype. Targeting caveolin-1 expression may present a novel means of preventing metastasis. The purpose of this review is twofold: firstly, to survey the current knowledge of the contribution of caveolin-1 in promoting a metastasis, and secondly, to explore the viability of targeting caveolin-1 with novel therapeutics.
Collapse
Affiliation(s)
- Kenneth L van Golen
- The University of Michigan Comprehensive Cancer Center, Division of Hematology/Oncology, Department of Internal Medicine, 1500 East Medical Center Drive, Ann Arbor, MI 48109-0575-0548, USA.
| |
Collapse
|
37
|
Lo SH. Focal adhesions: what's new inside. Dev Biol 2006; 294:280-91. [PMID: 16650401 DOI: 10.1016/j.ydbio.2006.03.029] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 03/22/2006] [Accepted: 03/27/2006] [Indexed: 01/15/2023]
Abstract
The cytoplasmic side of focal adhesions is comprised of large molecular complexes that link transmembrane receptors, such as integrins, to the actin cytoskeleton and mediate signals modulating cell attachment, migration, proliferation, differentiation, and gene expression. These complexes are heterogeneous and dynamic structures that are apparent targets of regulatory signals that control the function of focal adhesions. Recent studies using genetic approaches in invertebrate and vertebrate systems have begun to reveal the structure and function of these complexes in vivo.
Collapse
Affiliation(s)
- Su Hao Lo
- Center for Tissue Regeneration and Repair, Department of Orthopaedic Surgery and Cancer Center, University of California-Davis, Davis, Sacramento, CA 95817, USA.
| |
Collapse
|
38
|
Ng DCH, Chan SF, Kok KH, Yam JWP, Ching YP, Ng IOL, Jin DY. Mitochondrial targeting of growth suppressor protein DLC2 through the START domain. FEBS Lett 2005; 580:191-8. [PMID: 16364308 DOI: 10.1016/j.febslet.2005.11.073] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2005] [Accepted: 11/27/2005] [Indexed: 10/25/2022]
Abstract
Deleted in liver cancer 2 (DLC2) is a candidate tumor suppressor frequently found to be deleted in hepatocellular carcinoma. In this study, we determined the subcellular localization of DLC2. Co-localization and biochemical fractionation studies revealed that DLC2 localized to mitochondria. In addition, the DLC2-containing cytoplasmic speckles were in proximity to lipid droplets. A DLC2 mutant containing the steroidogenic acute regulatory protein-related lipid transfer (START) domain only showed a localization pattern identical to that of DLC2. Taken together, we have provided the first evidence for mitochondrial localization of DLC2 through the START domain. These findings might have implications in liver physiology and carcinogenesis.
Collapse
Affiliation(s)
- David Chi-Heng Ng
- Department of Biochemistry, Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | | | | | | | | | | | | |
Collapse
|
39
|
Hers I, Wherlock M, Homma Y, Yagisawa H, Tavaré JM. Identification of p122RhoGAP (deleted in liver cancer-1) Serine 322 as a substrate for protein kinase B and ribosomal S6 kinase in insulin-stimulated cells. J Biol Chem 2005; 281:4762-70. [PMID: 16338927 DOI: 10.1074/jbc.m511008200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase B (PKB or Akt) plays an essential role in the actions of insulin, cytokines, and growth factors, although the substrates for PKB that are relevant to many of its actions require identification. In this study, we have reported the identification of p122RhoGAP, a GTPase-activating protein selective for RhoA and rodent homologue of the tumor suppressor deleted in liver cancer (DLC1) as a novel insulin-stimulated phosphoprotein in primary rat adipocytes. We have demonstrated that Ser-322 is phosphorylated upon insulin stimulation of intact cells and that this site is directly phosphorylated in vitro by PKB and ribosomal S6 kinase, members of the AGC (protein kinases A, G, and C) family of insulin-stimulated protein kinases. Furthermore, expression of constitutively active mutants of PKB or mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK) stimulates Ser-322 phosphorylation in intact cells, demonstrating that activation of the PKB or MEK pathway is sufficient for Ser-322 phosphorylation in vivo. Indeed, in primary adipocytes, insulin-stimulated Ser-322 phosphorylation was almost exclusively regulated by the phosphatidylinositol 3-kinase/PKB pathway, whereas in immortalized cells, insulin-stimulated phosphorylation was predominantly regulated by the MEK/extracellular signal-regulated kinase/ribosomal S6 kinase pathway, with the phosphatidylinositol 3-kinase/PKB pathway playing a minor role. These results demonstrate that p122RhoGAP Ser-322 acts as an integrator of signal transduction in a manner dependent on the cellular context.
Collapse
Affiliation(s)
- Ingeborg Hers
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom.
| | | | | | | | | |
Collapse
|
40
|
Alpy F, Tomasetto C. Give lipids a START: the StAR-related lipid transfer (START) domain in mammals. J Cell Sci 2005; 118:2791-801. [PMID: 15976441 DOI: 10.1242/jcs.02485] [Citation(s) in RCA: 297] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domain is a protein module of approximately 210 residues that binds lipids, including sterols. Fifteen mammalian proteins, STARD1-STARD15, possess a START domain and these can be grouped into six subfamilies. Cholesterol, 25-hydroxycholesterol, phosphatidylcholine, phosphatidylethanolamine and ceramides are ligands for STARD1/STARD3/STARD5, STARD5, STARD2/STARD10, STARD10 and STARD11, respectively. The lipids or sterols bound by the remaining 9 START proteins are unknown. Recent studies show that the C-terminal end of the domain plays a fundamental role, forming a lid over a deep lipid-binding pocket that shields the ligand from the external environment. The START domain can be regarded as a lipid-exchange and/or a lipid-sensing domain. Mammalian START proteins have diverse expression patterns and can be found free in the cytoplasm, attached to membranes or in the nucleus. They appear to function in a variety of distinct physiological processes, such as lipid transfer between intracellular compartments, lipid metabolism and modulation of signaling events. Mutation or misexpression of START proteins is linked to pathological processes, including genetic disorders, autoimmune disease and cancer.
Collapse
Affiliation(s)
- Fabien Alpy
- Inserm, U682 Strasbourg, F67200, Development and Physiopathology of the Intestine and Pancreas, University Louis Pasteur, Strasbourg, France
| | | |
Collapse
|
41
|
Stallings JD, Tall EG, Pentyala S, Rebecchi MJ. Nuclear Translocation of Phospholipase C-δ1 Is Linked to the Cell Cycle and Nuclear Phosphatidylinositol 4,5-Bisphosphate. J Biol Chem 2005; 280:22060-9. [PMID: 15809301 DOI: 10.1074/jbc.m413813200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear phosphoinositides, especially phosphatidylinositol 4,5-bisphosphate, fluctuate throughout the cell cycle and are linked to proliferation and differentiation. Here we report that phospholipase C-delta(1) accumulates in the nucleus at the G(1)/S boundary and in G(0) phases of the cell cycle. Furthermore, as wild-type protein accumulated in the nucleus, nuclear phosphatidylinositol 4,5-bisphosphate levels were elevated 3-5-fold, whereas total levels were decreased compared with asynchronous cultures. To test whether phosphatidylinositol 4,5-bisphosphate binding is important during this process, we introduced a R40D point mutation within the pleckstrin homology domain of phospholipase C-delta(1), which disables high affinity phosphatidylinositol 4,5-bisphosphate binding, and found that nuclear translocation was significantly reduced at G(1)/S and in G(0). These results demonstrate a cell cycle-dependent compartmentalization of phospholipase C-delta(1) and support the idea that relative levels of phosphoinositides modulate the portioning of phosphoinositide-binding proteins between the nucleus and other compartments.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Animals
- Blotting, Western
- Cell Cycle
- Cell Differentiation
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Cell Proliferation
- Chromatography, Thin Layer
- Cytoplasm/metabolism
- DNA, Complementary/metabolism
- Detergents/pharmacology
- Fibroblasts/metabolism
- Flow Cytometry
- Fluorescent Antibody Technique, Indirect
- G1 Phase
- Glioma/metabolism
- Green Fluorescent Proteins/metabolism
- Humans
- Image Processing, Computer-Assisted
- Isoenzymes/chemistry
- Isoenzymes/metabolism
- Lipid Metabolism
- Mice
- Microscopy, Fluorescence
- Models, Biological
- NIH 3T3 Cells
- Phosphatidylinositol 4,5-Diphosphate/metabolism
- Phospholipase C delta
- Point Mutation
- Protein Structure, Tertiary
- Protein Transport
- Resting Phase, Cell Cycle
- S Phase
- Subcellular Fractions
- Time Factors
- Transfection
- Type C Phospholipases/chemistry
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- Jonathan D Stallings
- Department of Anesthesiology, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
42
|
Kawai K, Yamaga M, Iwamae Y, Kiyota M, Kamata H, Hirata H, Homma Y, Yagisawa H. A PLCdelta1-binding protein, p122RhoGAP, is localized in focal adhesions. Biochem Soc Trans 2005; 32:1107-9. [PMID: 15506980 DOI: 10.1042/bst0321107] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have investigated the cellular distribution of p122RhoGAP, a GTPase-activating protein of Rho small GTPase and an activator of phospholipase C-delta(1). Immunofluorescence studies demonstrated that endogenous p122 is localized at the tips of actin stress fibres and co-localizes with vinculin in normal rat kidney cells. In immunoprecipitation studies, p122 co-precipitated with vinculin, indicating that p122 is localized at the sites of focal adhesion. We have also shown that the N-terminal half of p122 is responsible for this localization. It is conceivable, therefore, that p122 is involved in the reorganization of the actin cytoskeleton and focal adhesions that regulate cell-substratum adhesion and cell migration.
Collapse
Affiliation(s)
- K Kawai
- Laboratory of Biosignalling, Graduate School of Life Science, University of Hyogo, Harima Science Garden City, Hyogo-ken 978-1297, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Cestac P, Sarrabayrouse G, Médale-Giamarchi C, Rochaix P, Balaguer P, Favre G, Faye JC, Doisneau-Sixou S. Prenylation inhibitors stimulate both estrogen receptor alpha transcriptional activity through AF-1 and AF-2 and estrogen receptor beta transcriptional activity. Breast Cancer Res 2004; 7:R60-70. [PMID: 15642170 PMCID: PMC1064103 DOI: 10.1186/bcr956] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 09/22/2004] [Accepted: 10/04/2004] [Indexed: 02/08/2023] Open
Abstract
Introduction We showed in a previous study that prenylated proteins play a role in estradiol stimulation of proliferation. However, these proteins antagonize the ability of estrogen receptor (ER) α to stimulate estrogen response element (ERE)-dependent transcriptional activity, potentially through the formation of a co-regulator complex. The present study investigates, in further detail, how prenylated proteins modulate the transcriptional activities mediated by ERα and by ERβ. Methods The ERE-β-globin-Luc-SV-Neo plasmid was either stably transfected into MCF-7 cells or HeLa cells (MELN cells and HELN cells, respectively) or transiently transfected into MCF-7 cells using polyethylenimine. Cells deprived of estradiol were analyzed for ERE-dependent luciferase activity 16 hours after estradiol stimulation and treatment with FTI-277 (a farnesyltransferase inhibitor) or with GGTI-298 (a geranylgeranyltransferase I inhibitor). In HELN cells, the effect of prenyltransferase inhibitors on luciferase activity was compared after transient transfection of plasmids coding either the full-length ERα, the full-length ERβ, the AF-1-deleted ERα or the AF-2-deleted ERα. The presence of ERα was then detected by immunocytochemistry in either the nuclei or the cytoplasms of MCF-7 cells. Finally, Clostridium botulinum C3 exoenzyme treatment was used to determine the involvement of Rho proteins in ERE-dependent luciferase activity. Results FTI-277 and GGTI-298 only stimulate ERE-dependent luciferase activity in stably transfected MCF-7 cells. They stimulate both ERα-mediated and ERβ-mediated ERE-dependent luciferase activity in HELN cells, in the presence of and in the absence of estradiol. The roles of both AF-1 and AF-2 are significant in this effect. Nuclear ERα is decreased in the presence of prenyltransferase inhibitors in MCF-7 cells, again in the presence of and in the absence of estradiol. By contrast, cytoplasmic ERα is mainly decreased after treatment with FTI-277, in the presence of and in the absence of estradiol. The involvement of Rho proteins in ERE-dependent luciferase activity in MELN cells is clearly established. Conclusions Together, these results demonstrate that prenylated proteins (at least RhoA, RhoB and/or RhoC) antagonize the ability of ERα and ERβ to stimulate ERE-dependent transcriptional activity, potentially acting through both AF-1 and AF-2 transcriptional activities.
Collapse
Affiliation(s)
- Philippe Cestac
- Département 'Innovation Thérapeutique et Oncologie Moléculaire', Centre de Physiopathologie de Toulouse Purpan, INSERM U563 and Institut Claudius Regaud, Toulouse, France
| | - Guillaume Sarrabayrouse
- Département 'Innovation Thérapeutique et Oncologie Moléculaire', Centre de Physiopathologie de Toulouse Purpan, INSERM U563 and Institut Claudius Regaud, Toulouse, France
| | - Claire Médale-Giamarchi
- Département 'Innovation Thérapeutique et Oncologie Moléculaire', Centre de Physiopathologie de Toulouse Purpan, INSERM U563 and Institut Claudius Regaud, Toulouse, France
| | - Philippe Rochaix
- Département 'Innovation Thérapeutique et Oncologie Moléculaire', Centre de Physiopathologie de Toulouse Purpan, INSERM U563 and Institut Claudius Regaud, Toulouse, France
| | - Patrick Balaguer
- INSERM 540, Endocrinologie Moléculaire et Cellulaire des Cancers, Montpellier, France
| | - Gilles Favre
- Département 'Innovation Thérapeutique et Oncologie Moléculaire', Centre de Physiopathologie de Toulouse Purpan, INSERM U563 and Institut Claudius Regaud, Toulouse, France
| | - Jean-Charles Faye
- Département 'Innovation Thérapeutique et Oncologie Moléculaire', Centre de Physiopathologie de Toulouse Purpan, INSERM U563 and Institut Claudius Regaud, Toulouse, France
| | - Sophie Doisneau-Sixou
- Département 'Innovation Thérapeutique et Oncologie Moléculaire', Centre de Physiopathologie de Toulouse Purpan, INSERM U563 and Institut Claudius Regaud, Toulouse, France
| |
Collapse
|
44
|
Lua BL, Low BC. Filling the GAPs in cell dynamics control: BPGAP1 promotes cortactin translocation to the cell periphery for enhanced cell migration. Biochem Soc Trans 2004; 32:1110-2. [PMID: 15506981 DOI: 10.1042/bst0321110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cells undergo dynamic changes in morphology or motility during cellular division and proliferation, differentiation, neuronal pathfinding, wound healing, apoptosis, host defense and organ development. These processes are controlled by signalling events relayed through cascades of protein interactions leading to the establishment and maintenance of cytoskeletal networks of microtubules and actin. Various regulators, including the Rho small GTPases (guanine nucleotide triphosphatases), serve as master switches to fine-tune the amplitude, duration as well as the integration of such circuitry responses. Rho GTPases are activated by guanine nucleotide-exchange factors and inactivated by GAPs (GTPase-activating proteins). Although normally down-regulating signalling pathways by catalysing their GTPase activity, many GAPs exist with various protein modules, the functions of which still largely remain unknown. BPGAP1 is a novel RhoGAP that co-ordinately regulates pseudopodia and cell migration through the interplay of its BNIP-2 and Cdc42GAP homology domains serving as a homophilic/heterophilic interaction device, an enzymic RhoGAP domain that inactivates RhoA and a proline-rich region that binds the Src homology-3 domain of cortactin. Both proteins co-localize to cell periphery and enhance cell migration. As a molecular scaffold in cortical actin assembly and organization, cortactin and its interaction with small GTPases, GAPs and tyrosine kinases seems set to provide further insights to the multiplicity and complexity of cell dynamics control. Elucidating how these processes might be individually or co-ordinately regulated through cortactin remains an exciting future challenge.
Collapse
Affiliation(s)
- B L Lua
- Cell Signaling and Developmental Biology Laboratory, Department of Biological Sciences, The National University of Singapore, 14 Science Drive 4, Singapore 117543, The Republic of Singapore
| | | |
Collapse
|