1
|
García-Castañeda M, Michelucci A, Zhao N, Malik S, Dirksen RT. Postdevelopmental knockout of Orai1 improves muscle pathology in a mouse model of Duchenne muscular dystrophy. J Gen Physiol 2022; 154:213383. [PMID: 35939054 PMCID: PMC9365874 DOI: 10.1085/jgp.202213081] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 07/07/2022] [Indexed: 11/20/2022] Open
Abstract
Duchenne muscular dystrophy (DMD), an X-linked disorder caused by loss-of-function mutations in the dystrophin gene, is characterized by progressive muscle degeneration and weakness. Enhanced store-operated Ca2+ entry (SOCE), a Ca2+ influx mechanism coordinated by STIM1 sensors of luminal Ca2+ within the sarcoplasmic reticulum (SR) and Ca2+-permeable Orai1 channels in the sarcolemma, is proposed to contribute to Ca2+-mediated muscle damage in DMD. To directly determine the impact of Orai1-dependent SOCE on the dystrophic phenotype, we crossed mdx mice with tamoxifen-inducible, muscle-specific Orai1 knockout mice (mdx-Orai1 KO mice). Both constitutive and SOCE were significantly increased in flexor digitorum brevis fibers from mdx mice, while SOCE was absent in fibers from both Orai1 KO and mdx-Orai1 KO mice. Compared with WT mice, fibers from mdx mice exhibited (1) increased resting myoplasmic Ca2+ levels, (2) reduced total releasable Ca2+ store content, and (3) a prolonged rate of electrically evoked Ca2+ transient decay. These effects were partially normalized in fibers from mdx-Orai1 KO mice. Intact extensor digitorum longus muscles from mdx mice exhibited a significant reduction of maximal specific force, which was rescued in muscles from mdx-Orai1 KO mice. Finally, during exposure to consecutive eccentric contractions, muscles from mdx mice displayed a more pronounced decline in specific force compared with that of WT mice, which was also significantly attenuated by Orai1 ablation. Together, these results indicate that enhanced Orai1-dependent SOCE exacerbates the dystrophic phenotype and that Orai1 deficiency improves muscle pathology by both normalizing Ca2+ homeostasis and promoting sarcolemmal integrity/stability.
Collapse
Affiliation(s)
- Maricela García-Castañeda
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Antonio Michelucci
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY,Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Nan Zhao
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Sundeep Malik
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Robert T. Dirksen
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| |
Collapse
|
2
|
Mekies LN, Regev D, Eisen B, Fernandez‐Gracia J, Baskin P, Ben Jehuda R, Shulman R, Reiter I, Palty R, Arad M, Gottlieb E, Binah O. Depressed β-adrenergic inotropic responsiveness and intracellular calcium handling abnormalities in Duchenne Muscular Dystrophy patients' induced pluripotent stem cell-derived cardiomyocytes. J Cell Mol Med 2021; 25:3922-3934. [PMID: 33619882 PMCID: PMC8051742 DOI: 10.1111/jcmm.16341] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/05/2021] [Accepted: 01/14/2021] [Indexed: 12/20/2022] Open
Abstract
Duchenne muscular dystrophy (DMD), caused by mutations in the dystrophin gene, is an X-linked disease affecting male and rarely adult heterozygous females, resulting in death by the late 20s to early 30s. Previous studies reported depressed left ventricular function in DMD patients which may result from deranged intracellular Ca2+ -handling. To decipher the mechanism(s) underlying the depressed LV function, we tested the hypothesis that iPSC-CMs generated from DMD patients feature blunted positive inotropic response to β-adrenergic stimulation. To test the hypothesis, [Ca2+ ]i transients and contractions were recorded from healthy and DMD-CMs. While in healthy CMs (HC) isoproterenol caused a prominent positive inotropic effect, DMD-CMs displayed a blunted inotropic response. Next, we tested the functionality of the sarcoplasmic reticulum (SR) by measuring caffeine-induced Ca2+ release. In contrast to HC, DMD-CMs exhibited reduced caffeine-induced Ca2+ signal amplitude and recovery time. In support of the depleted SR Ca2+ stores hypothesis, in DMD-CMs the negative inotropic effects of ryanodine and cyclopiazonic acid were smaller than in HC. RNA-seq analyses demonstrated that in DMD CMs the RNA-expression levels of specific subunits of the L-type calcium channel, the β1-adrenergic receptor (ADRβ1) and adenylate cyclase were down-regulated by 3.5-, 2.8- and 3-fold, respectively, which collectively contribute to the depressed β-adrenergic responsiveness.
Collapse
MESH Headings
- Adrenergic Agents/pharmacology
- Adult
- Calcium/metabolism
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Cell Differentiation
- Female
- Gene Expression Regulation
- Humans
- Induced Pluripotent Stem Cells/drug effects
- Induced Pluripotent Stem Cells/metabolism
- Induced Pluripotent Stem Cells/pathology
- Male
- Middle Aged
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Myocardial Contraction
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- RNA-Seq
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-1/metabolism
- Sarcoplasmic Reticulum/drug effects
- Sarcoplasmic Reticulum/metabolism
- Sarcoplasmic Reticulum/pathology
Collapse
Affiliation(s)
- Lucy N. Mekies
- Department of PhysiologyBiophysics and Systems BiologyRappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Danielle Regev
- Department of PhysiologyBiophysics and Systems BiologyRappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Binyamin Eisen
- Department of PhysiologyBiophysics and Systems BiologyRappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Jonatan Fernandez‐Gracia
- Department of Cell Biology and Cancer ScienceRappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Polina Baskin
- Department of PhysiologyBiophysics and Systems BiologyRappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Ronen Ben Jehuda
- Department of PhysiologyBiophysics and Systems BiologyRappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
- Faculty of Biotechnology and Food EngineeringTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Rita Shulman
- Department of PhysiologyBiophysics and Systems BiologyRappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Irina Reiter
- Department of PhysiologyBiophysics and Systems BiologyRappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Raz Palty
- Department of BiochemistryRappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Michael Arad
- Leviev Heart CenterSheba Medical CenterRamat GanIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Eyal Gottlieb
- Department of Cell Biology and Cancer ScienceRappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Ofer Binah
- Department of PhysiologyBiophysics and Systems BiologyRappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
3
|
Coccurello R, Volonté C. P2X7 Receptor in the Management of Energy Homeostasis: Implications for Obesity, Dyslipidemia, and Insulin Resistance. Front Endocrinol (Lausanne) 2020; 11:199. [PMID: 32528404 PMCID: PMC7247848 DOI: 10.3389/fendo.2020.00199] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/19/2020] [Indexed: 12/15/2022] Open
Abstract
Whole-body energy metabolism entails the highly regulated balance between food intake, nutrient breakdown, energy generation (ATP), and energy storage for the preservation of vital functions and body mass. Purinergic signaling has attracted increasing attention in the regulatory mechanisms not only for the reverse processes of white adipose tissue lipogenesis and lipolysis, but also for brown adipocyte-dependent thermogenesis and leptin production. This regulatory role has remarkable implications in the handling of body's energy expenditure and energy reservoir. Hence, selected purinergic receptors can play a relevant function in lipid metabolism, endocrine activity, glucose uptake, ATP-dependent increased expression of uncoupling protein 1, and browning of adipose tissue. Indeed, purinergic P2 receptors regulate adipogenesis and lipid metabolism and are involved in adipogenic differentiation. In particular, the ionotropic ATP-activated P2X7 subtype is involved in fat distribution, as well as in the modulation of inflammatory pathways in white adipose tissue. Within this context, very recent evidence has established a direct function of P2X7 in energy metabolism. Specifically, either genetic deletion (P2X7 knockout mice) or subchronic pharmacological inhibition of the receptor produces a decrease of whole-body energy expenditure and, concurrently, an increase of carbohydrate oxidation. As further evidence, lipid accumulation, increased fat mass distribution, and weight gain are reported in P2X7-depleted mice. Conversely, the stimulation of P2X7 enhances energy expenditure. Altogether, this knowledge supports the role of P2X7 signaling in the fight against obesity and insulin resistance, as well as in the promotion of adaptive thermogenesis.
Collapse
Affiliation(s)
- Roberto Coccurello
- Institute for Complex System (ISC), National Research Council (CNR), Rome, Italy
- Preclinical Neuroscience, European Center for Brain Research (CERC)/IRCCS Santa Lucia Foundation, Rome, Italy
| | - Cinzia Volonté
- Preclinical Neuroscience, European Center for Brain Research (CERC)/IRCCS Santa Lucia Foundation, Rome, Italy
- Institute for Systems Analysis and Computer Science, National Research Council (CNR), Rome, Italy
| |
Collapse
|
4
|
Bella P, Farini A, Banfi S, Parolini D, Tonna N, Meregalli M, Belicchi M, Erratico S, D'Ursi P, Bianco F, Legato M, Ruocco C, Sitzia C, Sangiorgi S, Villa C, D'Antona G, Milanesi L, Nisoli E, Mauri P, Torrente Y. Blockade of IGF2R improves muscle regeneration and ameliorates Duchenne muscular dystrophy. EMBO Mol Med 2020; 12:e11019. [PMID: 31793167 PMCID: PMC6949491 DOI: 10.15252/emmm.201911019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/17/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a debilitating fatal X-linked muscle disorder. Recent findings indicate that IGFs play a central role in skeletal muscle regeneration and development. Among IGFs, insulinlike growth factor 2 (IGF2) is a key regulator of cell growth, survival, migration and differentiation. The type 2 IGF receptor (IGF2R) modulates circulating and tissue levels of IGF2 by targeting it to lysosomes for degradation. We found that IGF2R and the store-operated Ca2+ channel CD20 share a common hydrophobic binding motif that stabilizes their association. Silencing CD20 decreased myoblast differentiation, whereas blockade of IGF2R increased proliferation and differentiation in myoblasts via the calmodulin/calcineurin/NFAT pathway. Remarkably, anti-IGF2R induced CD20 phosphorylation, leading to the activation of sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase (SERCA) and removal of intracellular Ca2+ . Interestingly, we found that IGF2R expression was increased in dystrophic skeletal muscle of human DMD patients and mdx mice. Blockade of IGF2R by neutralizing antibodies stimulated muscle regeneration, induced force recovery and normalized capillary architecture in dystrophic mdx mice representing an encouraging starting point for the development of new biological therapies for DMD.
Collapse
Affiliation(s)
- Pamela Bella
- Stem Cell LaboratoryDepartment of Pathophysiology and TransplantationUnit of NeurologyFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoCentro Dino FerrariUniversitá degli Studi di MilanoMilanItaly
| | - Andrea Farini
- Stem Cell LaboratoryDepartment of Pathophysiology and TransplantationUnit of NeurologyFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoCentro Dino FerrariUniversitá degli Studi di MilanoMilanItaly
| | - Stefania Banfi
- Hematology Department Fondazione IRCCSDepartment of Oncology and Hemato‐oncologyIstituto Nazionale dei TumoriUniversitá degli Studi di MilanoMilanItaly
| | | | | | - Mirella Meregalli
- Stem Cell LaboratoryDepartment of Pathophysiology and TransplantationUnit of NeurologyFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoCentro Dino FerrariUniversitá degli Studi di MilanoMilanItaly
| | - Marzia Belicchi
- Stem Cell LaboratoryDepartment of Pathophysiology and TransplantationUnit of NeurologyFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoCentro Dino FerrariUniversitá degli Studi di MilanoMilanItaly
| | | | - Pasqualina D'Ursi
- Institute of Technologies in BiomedicineNational Research Council (ITB‐CNR)MilanItaly
| | | | - Mariella Legato
- Stem Cell LaboratoryDepartment of Pathophysiology and TransplantationUnit of NeurologyFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoCentro Dino FerrariUniversitá degli Studi di MilanoMilanItaly
| | - Chiara Ruocco
- Department of Medical Biotechnology and Translational MedicineCenter for Study and Research on ObesityMilan UniversityMilanItaly
| | - Clementina Sitzia
- UOC SMEL‐1Scuola di Specializzazione di Patologia Clinica e Biochimica ClinicaUniversità degli Studi di MilanoMilanItaly
| | - Simone Sangiorgi
- Neurosurgery UnitDepartment of SurgeryASST Lariana‐S. Anna HospitalComoItaly
| | - Chiara Villa
- Stem Cell LaboratoryDepartment of Pathophysiology and TransplantationUnit of NeurologyFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoCentro Dino FerrariUniversitá degli Studi di MilanoMilanItaly
| | - Giuseppe D'Antona
- Department of Public Health, Experimental and Forensic MedicinePavia UniversityPaviaItaly
| | - Luciano Milanesi
- Institute of Technologies in BiomedicineNational Research Council (ITB‐CNR)MilanItaly
| | - Enzo Nisoli
- Department of Medical Biotechnology and Translational MedicineCenter for Study and Research on ObesityMilan UniversityMilanItaly
| | - PierLuigi Mauri
- Institute of Technologies in BiomedicineNational Research Council (ITB‐CNR)MilanItaly
| | - Yvan Torrente
- Stem Cell LaboratoryDepartment of Pathophysiology and TransplantationUnit of NeurologyFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoCentro Dino FerrariUniversitá degli Studi di MilanoMilanItaly
| |
Collapse
|
5
|
Komatsu M, Nakada T, Kawagishi H, Kato H, Yamada M. Increase in phospholamban content in mouse skeletal muscle after denervation. J Muscle Res Cell Motil 2019; 39:163-173. [DOI: 10.1007/s10974-019-09504-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/20/2019] [Indexed: 10/27/2022]
|
6
|
Gaglianone RB, Santos AT, Bloise FF, Ortiga-Carvalho TM, Costa ML, Quirico-Santos T, da Silva WS, Mermelstein C. Reduced mitochondrial respiration and increased calcium deposits in the EDL muscle, but not in soleus, from 12-week-old dystrophic mdx mice. Sci Rep 2019; 9:1986. [PMID: 30760802 PMCID: PMC6374364 DOI: 10.1038/s41598-019-38609-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 01/04/2019] [Indexed: 12/12/2022] Open
Abstract
Mitochondria play an important role in providing ATP for muscle contraction. Muscle physiology is compromised in Duchenne muscular dystrophy (DMD) and several studies have shown the involvement of bioenergetics. In this work we investigated the mitochondrial physiology in fibers from fast-twitch muscle (EDL) and slow-twitch muscle (soleus) in the mdx mouse model for DMD and in control C57BL/10J mice. In our study, multiple mitochondrial respiratory parameters were investigated in permeabilized muscle fibers from 12-week-old animals, a critical age where muscle regeneration is observed in the mdx mouse. Using substrates of complex I and complex II from the electron transport chain, ADP and mitochondrial inhibitors, we found in the mdx EDL, but not in the mdx soleus, a reduction in coupled respiration suggesting that ATP synthesis is affected. In addition, the oxygen consumption after addition of complex II substrate is reduced in mdx EDL; the maximal consumption rate (measured in the presence of uncoupler) also seems to be reduced. Mitochondria are involved in calcium regulation and we observed, using alizarin stain, calcium deposits in mdx muscles but not in control muscles. Interestingly, more calcium deposits were found in mdx EDL than in mdx soleus. These data provide evidence that in 12-week-old mdx mice, calcium is accumulated and mitochondrial function is disturbed in the fast-twitch muscle EDL, but not in the slow-twitch muscle soleus.
Collapse
Affiliation(s)
- Rhayanna B Gaglianone
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Anderson Teixeira Santos
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Flavia Fonseca Bloise
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Tania Maria Ortiga-Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Manoel Luis Costa
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Wagner Seixas da Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Claudia Mermelstein
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
7
|
Voit A, Patel V, Pachon R, Shah V, Bakhutma M, Kohlbrenner E, McArdle JJ, Dell'Italia LJ, Mendell JR, Xie LH, Hajjar RJ, Duan D, Fraidenraich D, Babu GJ. Reducing sarcolipin expression mitigates Duchenne muscular dystrophy and associated cardiomyopathy in mice. Nat Commun 2017; 8:1068. [PMID: 29051551 PMCID: PMC5648780 DOI: 10.1038/s41467-017-01146-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 08/22/2017] [Indexed: 01/16/2023] Open
Abstract
Sarcolipin (SLN) is an inhibitor of the sarco/endoplasmic reticulum (SR) Ca2+ ATPase (SERCA) and is abnormally elevated in the muscle of Duchenne muscular dystrophy (DMD) patients and animal models. Here we show that reducing SLN levels ameliorates dystrophic pathology in the severe dystrophin/utrophin double mutant (mdx:utr -/-) mouse model of DMD. Germline inactivation of one allele of the SLN gene normalizes SLN expression, restores SERCA function, mitigates skeletal muscle and cardiac pathology, improves muscle regeneration, and extends the lifespan. To translate our findings into a therapeutic strategy, we knock down SLN expression in 1-month old mdx:utr -/- mice via adeno-associated virus (AAV) 9-mediated RNA interference. The AAV treatment markedly reduces SLN expression, attenuates muscle pathology and improves diaphragm, skeletal muscle and cardiac function. Taken together, our findings suggest that SLN reduction is a promising therapeutic approach for DMD.
Collapse
Affiliation(s)
- Antanina Voit
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Vishwendra Patel
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Ronald Pachon
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Vikas Shah
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Mohammad Bakhutma
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Erik Kohlbrenner
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Joseph J McArdle
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Louis J Dell'Italia
- Department of Medicine, University of Alabama at Birmingham, and Birmingham VA Medical Center, Birmingham, AL, 35294, USA
| | - Jerry R Mendell
- Department of Pediatrics and Department of Neurology, Ohio State University Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Roger J Hajjar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, Neurology, Bioengineering, Biomedical Sciences, The University of Missouri, Columbia, MO, 65212, USA
| | - Diego Fraidenraich
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Gopal J Babu
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA.
| |
Collapse
|
8
|
Pauly M, Angebault-Prouteau C, Dridi H, Notarnicola C, Scheuermann V, Lacampagne A, Matecki S, Fauconnier J. ER stress disturbs SR/ER-mitochondria Ca 2+ transfer: Implications in Duchenne muscular dystrophy. Biochim Biophys Acta Mol Basis Dis 2017. [PMID: 28625916 DOI: 10.1016/j.bbadis.2017.06.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Besides its role in calcium (Ca2+) homeostasis, the sarco-endoplamic reticulum (SR/ER) controls protein folding and is tethered to mitochondria. Under pathophysiological conditions the unfolded protein response (UPR) is associated with disturbance in SR/ER-mitochondria crosstalk. Here, we investigated whether ER stress altered SR/ER-mitochondria links, Ca2+ handling and muscle damage in WT (Wild Type) and mdx mice, the murine model of Duchenne Muscular Dystrophy (DMD). In WT mice, the SR/ER-mitochondria links were decreased in isolated FDB muscle fibers after injection of ER stress activator tunicamycin (TM). Ca2+ imaging revealed an increase of cytosolic Ca2+ transient and a decrease of mitochondrial Ca2+ uptake. The force generating capacity of muscle dropped after TM. This impaired contractile function was accompanied by an increase in autophagy markers and calpain-1 activation. Conversely, ER stress inhibitors restored SR/ER-mitochondria links, mitochondrial Ca2+ uptake and improved diaphragm contractility in mdx mice. Our findings demonstrated that ER stress-altered SR/ER-mitochondria links, disturbed Ca2+ handling and muscle function in WT and mdx mice. Thus, ER stress may open up a prospect of new therapeutic targets in DMD.
Collapse
Affiliation(s)
- Marion Pauly
- Inserm U1055, Hypoxie et Physiopathologies, Université Grenoble Alpes, Grenoble, France; Inserm U1046, UMR CNRS 9214, Université Montpellier, CHRU Montpellier, Montpellier, France
| | | | - Haikel Dridi
- Inserm U1046, UMR CNRS 9214, Université Montpellier, CHRU Montpellier, Montpellier, France
| | - Cécile Notarnicola
- Inserm U1046, UMR CNRS 9214, Université Montpellier, CHRU Montpellier, Montpellier, France
| | - Valérie Scheuermann
- Inserm U1046, UMR CNRS 9214, Université Montpellier, CHRU Montpellier, Montpellier, France
| | - Alain Lacampagne
- Inserm U1046, UMR CNRS 9214, Université Montpellier, CHRU Montpellier, Montpellier, France
| | - Stefan Matecki
- Inserm U1046, UMR CNRS 9214, Université Montpellier, CHRU Montpellier, Montpellier, France
| | - Jérémy Fauconnier
- Inserm U1046, UMR CNRS 9214, Université Montpellier, CHRU Montpellier, Montpellier, France.
| |
Collapse
|
9
|
Horvath DM, Murphy RM, Mollica JP, Hayes A, Goodman CA. The effect of taurine and β-alanine supplementation on taurine transporter protein and fatigue resistance in skeletal muscle from mdx mice. Amino Acids 2016; 48:2635-2645. [PMID: 27444300 DOI: 10.1007/s00726-016-2292-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/30/2016] [Indexed: 11/29/2022]
Abstract
This study investigated the effect of taurine and β-alanine supplementation on muscle function and muscle taurine transporter (TauT) protein expression in mdx mice. Wild-type (WT) and mdx mice (5 months) were supplemented with taurine or β-alanine for 4 weeks, after which in vitro contractile properties, fatigue resistance and force recovery, and the expression of the TauT protein and proteins involved in excitation-contraction (E-C) coupling were examined in fast-twitch muscle. There was no difference in basal TauT protein expression or basal taurine content between mdx than WT muscle. Supplementation with taurine and β-alanine increased and reduced taurine content, respectively, in muscle from WT and mdx mice but had no effect of TauT protein. Taurine supplementation reduced body and muscle mass, and enhanced fatigue resistance and force recovery in mdx muscle. β-Alanine supplementation enhanced fatigue resistance in WT and mdx muscle. There was no difference in the basal expression of key E-C coupling proteins [ryanodine receptor 1 (RyR1), dihydropyridine receptor (DHPR), sarco(endo)plasmic reticulum Ca2+-ATPase 1 (SERCA1) or calsequestrin 1 (CSQ1)] between WT and mdx mice, and the expression of these proteins was not altered by taurine or β-alanine supplementation. These findings suggest that TauT protein expression is relatively insensitive to changes in muscle taurine content in WT and mdx mice, and that taurine and β-alanine supplementation may be viable therapeutic strategies to improve fatigue resistance of dystrophic skeletal muscle.
Collapse
Affiliation(s)
- Deanna M Horvath
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Janelle P Mollica
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Alan Hayes
- Centre for Chronic Disease Prevention and Management, Victoria University, Melbourne, Australia.,Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Australia.,Australian Institute for Musculoskeletal Science, Western Health, Melbourne, VIC, Australia
| | - Craig A Goodman
- Centre for Chronic Disease Prevention and Management, Victoria University, Melbourne, Australia.,Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Australia
| |
Collapse
|
10
|
Dufresne SS, Boulanger-Piette A, Bossé S, Frenette J. Physiological role of receptor activator nuclear factor-kB (RANK) in denervation-induced muscle atrophy and dysfunction. ACTA ACUST UNITED AC 2016; 3:e13231-e13236. [PMID: 27547781 PMCID: PMC4991940 DOI: 10.14800/rci.1323] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The bone remodeling and homeostasis are mainly controlled by the receptor-activator of nuclear factor kB (RANK), its ligand RANKL, and the soluble decoy receptor osteoprotegerin (OPG) pathway. While there is a strong association between osteoporosis and skeletal muscle dysfunction, the functional relevance of a particular biological pathway that synchronously regulates bone and skeletal muscle physiopathology remains elusive. Our recent article published in the American Journal of Physiology (Cell Physiology) showed that RANK is also expressed in fully differentiated C2C12 myotubes and skeletal muscles. We used the Cre-Lox approach to inactivate muscle RANK (RANKmko) and showed that RANK deletion preserves the force of denervated fast-twitch EDL muscles. However, RANK deletion had no positive impact on slow-twitch Sol muscles. In addition, denervating RANKmko EDL muscles induced an increase in the total calcium concentration ([CaT]), which was associated with a surprising decrease in SERCA activity. Interestingly, the levels of STIM-1, which mediates Ca2+ influx following the depletion of SR Ca2+ stores, were markedly higher in denervated RANKmko EDL muscles. We speculated that extracellular Ca2+ influx mediated by STIM-1 may be important for the increase in [CaT] and the gain of force in denervated RANKmko EDL muscles. Overall, these findings showed for the first time that the RANKL/RANK interaction plays a role in denervation-induced muscle atrophy and dysfunction.
Collapse
Affiliation(s)
- Sébastien S Dufresne
- Centre Hospitalier Universitaire de Québec-Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CRCHUL), Université Laval, Quebec City, Quebec, G1V 4G2, Canada
| | - Antoine Boulanger-Piette
- Centre Hospitalier Universitaire de Québec-Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CRCHUL), Université Laval, Quebec City, Quebec, G1V 4G2, Canada
| | - Sabrina Bossé
- Centre Hospitalier Universitaire de Québec-Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CRCHUL), Université Laval, Quebec City, Quebec, G1V 4G2, Canada
| | - Jérôme Frenette
- Centre Hospitalier Universitaire de Québec-Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CRCHUL), Université Laval, Quebec City, Quebec, G1V 4G2, Canada; Département de Réadaptation, Faculté de Médecine, Université Laval, Quebec City, Quebec, G1V 4G2, Canada
| |
Collapse
|
11
|
Dorchies OM, Reutenauer-Patte J, Dahmane E, Ismail HM, Petermann O, Patthey- Vuadens O, Comyn SA, Gayi E, Piacenza T, Handa RJ, Décosterd LA, Ruegg UT. The anticancer drug tamoxifen counteracts the pathology in a mouse model of duchenne muscular dystrophy. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:485-504. [PMID: 23332367 DOI: 10.1016/j.ajpath.2012.10.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 09/17/2012] [Accepted: 10/07/2012] [Indexed: 12/18/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a severe disorder characterized by progressive muscle wasting,respiratory and cardiac impairments, and premature death. No treatment exists so far, and the identification of active substances to fight DMD is urgently needed. We found that tamoxifen, a drug used to treat estrogen-dependent breast cancer, caused remarkable improvements of muscle force and of diaphragm and cardiac structure in the mdx(5Cv) mouse model of DMD. Oral tamoxifen treatment from 3 weeks of age for 15 months at a dose of 10 mg/kg/day stabilized myofiber membranes, normalized whole body force, and increased force production and resistance to repeated contractions of the triceps muscle above normal values. Tamoxifen improved the structure of leg muscles and diminished cardiac fibrosis by~ 50%. Tamoxifen also reduced fibrosis in the diaphragm, while increasing its thickness,myofiber count, and myofiber diameter, thereby augmenting by 72% the amount of contractile tissue available for respiratory function. Tamoxifen conferred a markedly slower phenotype to the muscles.Tamoxifen and its metabolites were present in nanomolar concentrations in plasma and muscles,suggesting signaling through high-affinity targets. Interestingly, the estrogen receptors ERa and ERb were several times more abundant in dystrophic than in normal muscles, and tamoxifen normalized the relative abundance of ERb isoforms. Our findings suggest that tamoxifen might be a useful therapy for DMD.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Behavior, Animal/drug effects
- Biomarkers/metabolism
- Biomechanical Phenomena/drug effects
- Body Weight/drug effects
- Creatine Kinase/blood
- Diaphragm/pathology
- Diaphragm/physiopathology
- Disease Models, Animal
- Feeding Behavior/drug effects
- Fibrosis
- Mice
- Muscle Contraction/drug effects
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/pathology
- Muscular Dystrophy, Animal/blood
- Muscular Dystrophy, Animal/drug therapy
- Muscular Dystrophy, Animal/pathology
- Muscular Dystrophy, Animal/physiopathology
- Muscular Dystrophy, Duchenne/blood
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/physiopathology
- Myocardium/pathology
- Organ Size/drug effects
- Receptors, Estrogen/metabolism
- Tamoxifen/blood
- Tamoxifen/pharmacology
- Tamoxifen/therapeutic use
Collapse
Affiliation(s)
- Olivier M Dorchies
- Department of Pharmacology, University of Geneva and University of Lausanne, Geneva, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Schneider JS, Shanmugam M, Gonzalez JP, Lopez H, Gordan R, Fraidenraich D, Babu GJ. Increased sarcolipin expression and decreased sarco(endo)plasmic reticulum Ca2+ uptake in skeletal muscles of mouse models of Duchenne muscular dystrophy. J Muscle Res Cell Motil 2013; 34:349-56. [DOI: 10.1007/s10974-013-9350-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 05/27/2013] [Indexed: 02/02/2023]
|
13
|
Mosqueira M, Zeiger U, Förderer M, Brinkmeier H, Fink RHA. Cardiac and respiratory dysfunction in Duchenne muscular dystrophy and the role of second messengers. Med Res Rev 2013; 33:1174-213. [PMID: 23633235 DOI: 10.1002/med.21279] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Duchenne muscular dystrophy (DMD) affects young boys and is characterized by the absence of dystrophin, a large cytoskeletal protein present in skeletal and cardiac muscle cells and neurons. The heart and diaphragm become necrotic in DMD patients and animal models of DMD, resulting in cardiorespiratory failure as the leading cause of death. The major consequences of the absence of dystrophin are high levels of intracellular Ca(2+) and the unbalanced production of NO that can finally trigger protein degradation and cell death. Cytoplasmic increase in Ca(2+) concentration directly and indirectly triggers different processes such as necrosis, fibrosis, and activation of macrophages. The absence of the neuronal isoform of nitric oxide synthase (nNOS) and the overproduction of NO by the inducible isoform (iNOS) further increase the intracellular Ca(2+) via a hypernitrosylation of the ryanodine receptor. NO overproduction, which further induces the expression of iNOS but decreases the expression of the endothelial isoform (eNOS), deregulates the muscle tissue blood flow creating an ischemic situation. The high levels of Ca(2+) in dystrophic muscles and the ischemic state of the muscle tissue would culminate in a positive feedback loop. While efforts continue toward optimizing cardiac and respiratory care of DMD patients, both Ca(2+) and NO in cardiac and respiratory muscle pathways have been shown to be important to the etiology of the disease. Understanding the mechanisms behind the fine regulation of Ca(2+) -NO may be important for a noninterventional and noninvasive supportive approach to treat DMD patients, improving the quality of life and natural history of DMD patients.
Collapse
Affiliation(s)
- Matias Mosqueira
- Medical Biophysics Unit, Institute of Physiology and Pathophysiology, INF326, Heidelberg University, 69120 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
14
|
Ng R, Banks GB, Hall JK, Muir LA, Ramos JN, Wicki J, Odom GL, Konieczny P, Seto J, Chamberlain JR, Chamberlain JS. Animal models of muscular dystrophy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 105:83-111. [PMID: 22137430 DOI: 10.1016/b978-0-12-394596-9.00004-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The muscular dystrophies (MDs) represent a diverse collection of inherited human disorders, which affect to varying degrees skeletal, cardiac, and sometimes smooth muscle (Emery, 2002). To date, more than 50 different genes have been implicated as causing one or more types of MD (Bansal et al., 2003). In many cases, invaluable insights into disease mechanisms, structure and function of gene products, and approaches for therapeutic interventions have benefited from the study of animal models of the different MDs (Arnett et al., 2009). The large number of genes that are associated with MD and the tremendous number of animal models that have been developed preclude a complete discussion of each in the context of this review. However, we summarize here a number of the more commonly used models together with a mixture of different types of gene and MD, which serves to give a general overview of the value of animal models of MD for research and therapeutic development.
Collapse
Affiliation(s)
- Rainer Ng
- Division of Medical Genetics, Department of Neurology, University of Washington, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Shin JH, Bostick B, Yue Y, Hajjar R, Duan D. SERCA2a gene transfer improves electrocardiographic performance in aged mdx mice. J Transl Med 2011; 9:132. [PMID: 21834967 PMCID: PMC3162513 DOI: 10.1186/1479-5876-9-132] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 08/11/2011] [Indexed: 12/27/2022] Open
Abstract
Background Cardiomyocyte calcium overloading has been implicated in the pathogenesis of Duchenne muscular dystrophy (DMD) heart disease. The cardiac isoform of sarcoplasmic reticulum calcium ATPase (SERCA2a) plays a major role in removing cytosolic calcium during heart muscle relaxation. Here, we tested the hypothesis that SERCA2a over-expression may mitigate electrocardiography (ECG) abnormalities in old female mdx mice, a murine model of DMD cardiomyopathy. Methods 1 × 1012 viral genome particles/mouse of adeno-associated virus serotype-9 (AAV-9) SERCA2a vector was delivered to 12-m-old female mdx mice (N = 5) via a single bolus tail vein injection. AAV transduction and the ECG profile were examined eight months later. Results The vector genome was detected in the hearts of all AAV-injected mdx mice. Immunofluorescence staining and western blot confirmed SERCA2a over-expression in the mdx heart. Untreated mdx mice showed characteristic tachycardia, PR interval reduction and QT interval prolongation. AAV-9 SERCA2a treatment corrected these ECG abnormalities. Conclusions Our results suggest that AAV SERCA2a therapy may hold great promise in treating dystrophin-deficient heart disease.
Collapse
Affiliation(s)
- Jin-Hong Shin
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA
| | | | | | | | | |
Collapse
|
16
|
Goonasekera SA, Lam CK, Millay DP, Sargent MA, Hajjar RJ, Kranias EG, Molkentin JD. Mitigation of muscular dystrophy in mice by SERCA overexpression in skeletal muscle. J Clin Invest 2011; 121:1044-52. [PMID: 21285509 DOI: 10.1172/jci43844] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 12/01/2010] [Indexed: 11/17/2022] Open
Abstract
Muscular dystrophies (MDs) comprise a group of degenerative muscle disorders characterized by progressive muscle wasting and often premature death. The primary defect common to most MDs involves disruption of the dystrophin-glycoprotein complex (DGC). This leads to sarcolemmal instability and Ca(2+) influx, inducing cellular necrosis. Here we have shown that the dystrophic phenotype observed in δ-sarcoglycan–null (Sgcd(–/–)) mice and dystrophin mutant mdx mice is dramatically improved by skeletal muscle–specific overexpression of sarcoplasmic reticulum Ca(2+) ATPase 1 (SERCA1). Rates of myofiber central nucleation, tissue fibrosis, and serum creatine kinase levels were dramatically reduced in Sgcd(–/–) and mdx mice with the SERCA1 transgene, which also rescued the loss of exercise capacity in Sgcd(–/–) mice. Adeno-associated virus–SERCA2a (AAV-SERCA2a) gene therapy in the gastrocnemius muscle of Sgcd(–/–) mice mitigated dystrophic disease. SERCA1 overexpression reversed a defect in sarcoplasmic reticulum Ca(2+) reuptake that characterizes dystrophic myofibers and reduced total cytosolic Ca(2+). Further, SERCA1 overexpression almost completely rescued the dystrophic phenotype in a mouse model of MD driven solely by Ca(2+) influx. Mitochondria isolated from the muscle of SERCA1-Sgcd(–/–) mice were no longer swollen and calpain activation was reduced, suggesting protection from Ca(2+)-driven necrosis. Our results suggest a novel therapeutic approach using SERCA1 to abrogate the altered intracellular Ca(2+) levels that underlie most forms of MD.
Collapse
Affiliation(s)
- Sanjeewa A Goonasekera
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Howard Hughes Medical Institute, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Lafoux A, Divet A, Gervier P, Huchet-Cadiou C. Diaphragm tension reduced in dystrophic mice by an oxidant, hypochlorous acid. Can J Physiol Pharmacol 2010; 88:130-40. [PMID: 20237587 DOI: 10.1139/y09-117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In dystrophin-deficient skeletal muscle cells, in which Ca2+ homeostasis is disrupted and reactive oxygen species production is increased, we hypothesized that hypochlorous acid (HOCl), a strong H2O2-related free radical, damages contractile proteins and the sarcoplasmic reticulum. The aim of the present study was to investigate the effects of exposure to oxidative stress, generated by applying HOCl (100 micromol/L and 1 mmol/L), on the contractile function and sarcoplasmic reticulum properties of dystrophic mice. Experiments were performed on diaphragm muscle, which is severely affected in the mdx mouse, and the results were compared with those obtained in healthy (non-dystrophic) mice. In Triton-skinned fibres from C57BL/10 and mdx mice, 1 mmol/L HOCl increased myofibrillar Ca2+ sensitivity, but decreased maximal Ca2+-activated tension. In the presence of HOCl, higher concentrations of MgATP were required to produce rigor tensions. The interaction between HOCl and the Ca2+ uptake mechanisms was demonstrated using saponin-skinned fibres and sarcoplasmic reticulum vesicles. The results showed that HOCl, at micromolar or millimolar concentrations, can modify sarcoplasmic reticulum Ca2+ uptake and that this effect was more pronounced in diaphragm muscle from mdx mice. We conclude that in dystrophic diaphragm skeletal muscle cells, HOCl activates a cellular pathway that leads to an increase in the intracellular concentration of Ca2+.
Collapse
Affiliation(s)
- Aude Lafoux
- Université de Nantes, CNRS, UMR 6204, Biotechnologie, Biocatalyse et Biorégulation, Faculté des Sciences et des Techniques, 2 rue de la Houssinière, BP 92208, F-44322 Nantes, CEDEX 03, France
| | | | | | | |
Collapse
|
18
|
Friedrich O, Weber C, von Wegner F, Chamberlain JS, Fink RHA. Unloaded speed of shortening in voltage-clamped intact skeletal muscle fibers from wt, mdx, and transgenic minidystrophin mice using a novel high-speed acquisition system. Biophys J 2008; 94:4751-65. [PMID: 18424498 PMCID: PMC2397370 DOI: 10.1529/biophysj.107.126557] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 02/08/2008] [Indexed: 11/18/2022] Open
Abstract
Skeletal muscle unloaded shortening has been indirectly determined in the past. Here, we present a novel high-speed optical tracking technique that allows recording of unloaded shortening in single intact, voltage-clamped mammalian skeletal muscle fibers with 2-ms time resolution. L-type Ca(2+) currents were simultaneously recorded. The time course of shortening was biexponential: a fast initial phase, tau(1), and a slower successive phase, tau(2,) with activation energies of 59 kJ/mol and 47 kJ/mol. Maximum unloaded shortening speed, v(u,max), was faster than that derived using other techniques, e.g., approximately 14.0 L(0) s(-1) at 30 degrees C. Our technique also allowed direct determination of shortening acceleration. We applied our technique to single fibers from C57 wild-type, dystrophic mdx, and minidystrophin-expressing mice to test whether unloaded shortening was affected in the pathophysiological mechanism of Duchenne muscular dystrophy. v(u,max) and a(u,max) values were not significantly different in the three strains, whereas tau(1) and tau(2) were increased in mdx fibers. The results were complemented by myosin heavy and light chain (MLC) determinations that showed the same myosin heavy chain IIA profiles in the interossei muscles from the different strains. In mdx muscle, MLC-1f was significantly increased and MLC-2f and MLC-3f somewhat reduced. Fast initial active shortening seems almost unaffected in mdx muscle.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Dystrophin/genetics
- Dystrophin/metabolism
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred mdx
- Mice, Transgenic
- Microscopy, Video/instrumentation
- Microscopy, Video/methods
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/physiology
- Muscle, Skeletal/cytology
- Muscle, Skeletal/physiology
- Patch-Clamp Techniques
- Signal Processing, Computer-Assisted/instrumentation
Collapse
Affiliation(s)
- O Friedrich
- Medical Biophysics, Department of Systems Physiology, Institute of Physiology and Pathophysiology, Ruprecht-Karls-University, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
19
|
L-type Ca2+ channel function is linked to dystrophin expression in mammalian muscle. PLoS One 2008; 3:e1762. [PMID: 18516256 PMCID: PMC2408559 DOI: 10.1371/journal.pone.0001762] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 02/08/2008] [Indexed: 11/19/2022] Open
Abstract
Background In dystrophic mdx skeletal muscle, aberrant Ca2+ homeostasis and fibre degeneration are found. The absence of dystrophin in models of Duchenne muscular dystrophy (DMD) has been connected to altered ion channel properties e.g. impaired L-type Ca2+ currents. In regenerating mdx muscle, ‘revertant’ fibres restore dystrophin expression. Their functionality involving DHPR-Ca2+-channels is elusive. Methods and Results We developed a novel ‘in-situ’ confocal immuno-fluorescence and imaging technique that allows, for the first time, quantitative subcellular dystrophin-DHPR colocalization in individual, non-fixed, muscle fibres. Tubular DHPR signals alternated with second harmonic generation signals originating from myosin. Dystrophin-DHPR colocalization was substantial in wt fibres, but diminished in most mdx fibres. Mini-dystrophin (MinD) expressing fibres successfully restored colocalization. Interestingly, in some aged mdx fibres, colocalization was similar to wt fibres. Most mdx fibres showed very weak membrane dystrophin staining and were classified ‘mdx-like’. Some mdx fibres, however, had strong ‘wt-like’ dystrophin signals and were identified as ‘revertants’. Split mdx fibres were mostly ‘mdx-like’ and are not generally ‘revertants’. Correlations between membrane dystrophin and DHPR colocalization suggest a restored putative link in ‘revertants’. Using the two-micro-electrode-voltage clamp technique, Ca2+-current amplitudes (imax) showed very similar behaviours: reduced amplitudes in most aged mdx fibres (as seen exclusively in young mdx mice) and a few mdx fibres, most likely ‘revertants’, with amplitudes similar to wt or MinD fibres. Ca2+ current activation curves were similar in ‘wt-like’ and ‘mdx-like’ aged mdx fibres and are not the cause for the differences in current amplitudes. imax amplitudes were fully restored in MinD fibres. Conclusions We present evidence for a direct/indirect DHPR-dystrophin interaction present in wt, MinD and ‘revertant’ mdx fibres but absent in remaining mdx fibres. Our imaging technique reliably detects single isolated ‘revertant’ fibres that could be used for subsequent physiological experiments to study mechanisms and therapy concepts in DMD.
Collapse
|
20
|
Divet A, Paesante S, Grasso C, Cavagna D, Tiveron C, Paolini C, Protasi F, Huchet-Cadiou C, Treves S, Zorzato F. Increased Ca2+ storage capacity of the skeletal muscle sarcoplasmic reticulum of transgenic mice over-expressing membrane bound calcium binding protein junctate. J Cell Physiol 2008; 213:464-74. [PMID: 17516551 DOI: 10.1002/jcp.21121] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Junctate is an integral sarco(endo)plasmic reticulum protein expressed in many tissues including heart and skeletal muscle. Because of its localization and biochemical characteristics, junctate is deemed to participate in the regulation of the intracellular Ca2+ concentration. However, its physiological function in muscle cells has not been investigated yet. In this study we examined the effects of junctate over-expression by generating a transgenic mouse model which over-expresses junctate in skeletal muscle. Our results demonstrate that junctate over-expression induced a significant increase in SR Ca2+ storage capacity which was paralleled by an increased 4-chloro-m-cresol and caffeine-induced Ca2+ release, whereas it did not affect SR Ca2+-dependent ATPase activity and SR Ca2+ loading rates. In addition, junctate over-expression did not affect the expression levels of SR Ca2+ binding proteins such as calsequestrin, calreticulin and sarcalumenin. These findings suggest that junctate over-expression is associated with an increase in the SR Ca2+ storage capacity and releasable Ca2+ content and support a physiological role for junctate in intracellular Ca2+ homeostasis.
Collapse
Affiliation(s)
- Alexandra Divet
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Schertzer JD, van der Poel C, Shavlakadze T, Grounds MD, Lynch GS. Muscle-specific overexpression of IGF-I improves E-C coupling in skeletal muscle fibers from dystrophic mdx mice. Am J Physiol Cell Physiol 2007; 294:C161-8. [PMID: 17989207 DOI: 10.1152/ajpcell.00399.2007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a lethal X-linked disease caused by the absence of functional dystrophin. Abnormal excitation-contraction (E-C) coupling has been reported in dystrophic muscle fibers from mdx mice, and alterations in E-C coupling components may occur as a direct result of dystrophin deficiency. We hypothesized that muscle-specific overexpression of insulin-growth factor-1 (IGF-I) would reduce E-C coupling failure in mdx muscle. Mechanically skinned extensor digitorum longus muscle fibers from mdx mice displayed a faster decline in depolarization-induced force responses (DIFR); however, there were no differences in sarcoplasmic reticulum (SR)-mediated Ca(2+) resequestration or in the properties of the contractile apparatus when compared with nondystrophic controls. The rate of DIFR decline was restored to control levels in fibers from transgenic mdx mice that overexpressed IGF-I in skeletal muscle (mdx/IGF-I mice). Dystrophic muscles have a lower transcript level of a specific dihydropyridine receptor (DHPR) isoform, and IGF-I-mediated changes in E-C coupling were associated with increased transcript levels of specific DHPR isoforms involved in Ca(2+) regulation. Importantly, IGF-I overexpression also increased the sensitivity of the contractile apparatus to Ca(2+). The results demonstrate that IGF-I can ameliorate fundamental aspects of E-C coupling failure in dystrophic muscle fibers and that these effects are important for the improvements in cellular function induced by this growth factor.
Collapse
Affiliation(s)
- Jonathan D Schertzer
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
22
|
Hopf FW, Turner PR, Steinhardt RA. Calcium misregulation and the pathogenesis of muscular dystrophy. Subcell Biochem 2007; 45:429-464. [PMID: 18193647 DOI: 10.1007/978-1-4020-6191-2_16] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Although the exact nature of the relationship between calcium and the pathogenesis of Duchenne muscular dystrophy (DMD) is not fully understood, this is an important issue which has been addressed in several recent reviews (Alderton and Steinhardt, 2000a, Gailly, 2002, Allen et al., 2005). A key question when trying to understand the cellular basis of DMD is how the absence or low level of expression of dystrophin, a cytoskeletal protein, results in the slow but progressive necrosis of muscle fibres. Although loss of cytoskeletal and sarcolemmal integrity which results from the absence of dystrophin clearly plays a key role in the pathogenesis associated with DMD, a number of lines of evidence also establish a role for misregulation of calcium ions in the DMD pathology, particularly in the cytoplasmic space just under the sarcolemma. A number of calcium-permeable channels have been identified which can exhibit greater activity in dystrophic muscle cells, and exIsting evidence suggests that these may represent different variants of the same channel type (perhaps the transient receptor potential channel, TRPC). In addition, a prominent role for calcium-activated proteases in the DMD pathology has been established, as well as modulation of other intracellular regulatory proteins and signaling pathways. Whether dystrophin and its associated proteins have a direct role in the regulation of calcium ions, calcium channels or intracellular calcium stores, or indirectly alters calcium regulation through enhancement of membrane tearing, remains unclear. Here we focus on areas of consensus or divergence amongst the existing literature, and propose areas where future research would be especially valuable.
Collapse
Affiliation(s)
- F W Hopf
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, 5858 Horton St., Suite 200, Emeryville, CA 94608, USA.
| | | | | |
Collapse
|
23
|
Eizema K, van der Wal DE, van den Burg MMM, de Jonge HW, Everts ME. Differential Expression of Calcineurin and SR Ca2+ Handling Proteins in Equine Muscle Fibers During Early Postnatal Growth. J Histochem Cytochem 2006; 55:247-54. [PMID: 17101725 DOI: 10.1369/jhc.6a7039.2006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During early postnatal development, the myosin heavy chain (MyHC) expression pattern in equine gluteus medius muscle shows adaptation to movement and load, resulting in a decrease in the number of fast MyHC fibers and an increase in the number of slow MyHC fibers. In the present study we correlated the expression of MyHC isoforms to the expression of sarcoplasmic(endo)reticulum Ca2+-ATPase 1 and 2a (SERCA), phospholamban (PLB), calcineurin A (CnA), and calcineurin B (CnB). Gluteus medius muscle biopsies were taken at 0, 2, 4, and 48 weeks and analyzed using immunofluorescence. Both SERCA isoforms and PLB were expressed in almost all fiber types at birth. From 4 weeks of age onward, SERCA1 was exclusively expressed in fast MyHC fibers and SERCA2a and PLB in slow MyHC fibers. At all time points, CnA and CnB proteins were expressed at a basal level in all fibers, but with a higher expression level in MyHC type 1 fibers. From 4 weeks onward, expression of only CnA was also higher in MyHC type 2a and 2ad fibers. We propose a double function of calcineurin in calcium homeostasis and maintenance of slow MyHC fiber type identity. Although equine muscle is already functional at birth, expression patterns of the monitored proteins still show adaptation, depending on the MyHC fiber type.
Collapse
Affiliation(s)
- Karin Eizema
- Department of Pathobiology, Division of Anatomy and Physiology, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.158, NL-3508 TD, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
24
|
Lafoux A, Divet A, Gervier P, Huchet-Cadiou C. Greater susceptibility of the sarcoplasmic reticulum to H2O2 injuries in diaphragm muscle from mdx mice. J Pharmacol Exp Ther 2006; 318:1359-67. [PMID: 16801456 DOI: 10.1124/jpet.106.103291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of the present study was to investigate the direct effects of a reactive oxygen species, H(2)O(2), on the contractile function and sarcoplasmic reticulum properties of dystrophin-deficient diaphragm using chemically skinned fibers and sarcoplasmic reticulum vesicle preparations. The results obtained using Triton X-100-skinned fibers demonstrate that exposure to 1 mM H(2)O(2) had similar effects on the maximal Ca(2+)-activated tension and on the Ca(2+) sensitivity of the contractile apparatus of diaphragm fibers in Bl10 and mdx mice. The effects of H(2)O(2) were also assessed on sarcoplasmic reticulum function using saponin-skinned fibers and sarcoplasmic reticulum vesicle preparations. We found that H(2)O(2) induced changes in sarcoplasmic reticulum properties, particularly in the Ca(2+) pump function. The most important finding was that diaphragm muscle from mdx mice displayed increased sensitivity to the oxidant. Furthermore, in isolated superfused diaphragm muscle from mdx mice, the data demonstrate that the amount of superoxide anion produced under fatiguing conditions was increased. Our study shows that the sarcoplasmic reticulum, and the Ca(2+) pump in particular, in dystrophin-deficient muscles display increased susceptibility to H(2)O(2) injuries. This suggests that free radicals might, therefore, be involved in the pathophysiological pathway and dysregulation of Ca(2+) homeostasis of muscular dystrophy.
Collapse
Affiliation(s)
- Aude Lafoux
- Université de Nantes, Centre National de la Recherche Scientifique, Unité Mixte Recherche 6204, Biotechnologie, Biocatalyse et Biorégulation, Faculté des Sciences et des Techniques, F-44322 Nantes, Cedex 03, France
| | | | | | | |
Collapse
|