1
|
Okkels N, Grothe MJ, Taylor JP, Hasselbalch SG, Fedorova TD, Knudsen K, van der Zee S, van Laar T, Bohnen NI, Borghammer P, Horsager J. Cholinergic changes in Lewy body disease: implications for presentation, progression and subtypes. Brain 2024; 147:2308-2324. [PMID: 38437860 DOI: 10.1093/brain/awae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
Cholinergic degeneration is significant in Lewy body disease, including Parkinson's disease, dementia with Lewy bodies, and isolated REM sleep behaviour disorder. Extensive research has demonstrated cholinergic alterations in the CNS of these disorders. More recently, studies have revealed cholinergic denervation in organs that receive parasympathetic denervation. This enables a comprehensive review of cholinergic changes in Lewy body disease, encompassing both central and peripheral regions, various disease stages and diagnostic categories. Across studies, brain regions affected in Lewy body dementia show equal or greater levels of cholinergic impairment compared to the brain regions affected in Lewy body disease without dementia. This observation suggests a continuum of cholinergic alterations between these disorders. Patients without dementia exhibit relative sparing of limbic regions, whereas occipital and superior temporal regions appear to be affected to a similar extent in patients with and without dementia. This implies that posterior cholinergic cell groups in the basal forebrain are affected in the early stages of Lewy body disorders, while more anterior regions are typically affected later in the disease progression. The topographical changes observed in patients affected by comorbid Alzheimer pathology may reflect a combination of changes seen in pure forms of Lewy body disease and those seen in Alzheimer's disease. This suggests that Alzheimer co-pathology is important to understand cholinergic degeneration in Lewy body disease. Thalamic cholinergic innervation is more affected in Lewy body patients with dementia compared to those without dementia, and this may contribute to the distinct clinical presentations observed in these groups. In patients with Alzheimer's disease, the thalamus is variably affected, suggesting a different sequential involvement of cholinergic cell groups in Alzheimer's disease compared to Lewy body disease. Patients with isolated REM sleep behaviour disorder demonstrate cholinergic denervation in abdominal organs that receive parasympathetic innervation from the dorsal motor nucleus of the vagus, similar to patients who experienced this sleep disorder in their prodrome. This implies that REM sleep behaviour disorder is important for understanding peripheral cholinergic changes in both prodromal and manifest phases of Lewy body disease. In conclusion, cholinergic changes in Lewy body disease carry implications for understanding phenotypes and the influence of Alzheimer co-pathology, delineating subtypes and pathological spreading routes, and for developing tailored treatments targeting the cholinergic system.
Collapse
Affiliation(s)
- Niels Okkels
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Reina Sofia Alzheimer's Centre, CIEN Foundation-ISCIII, 28031 Madrid, Spain
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Steen Gregers Hasselbalch
- Danish Dementia Research Center, Department of Neurology, Copenhagen University Hospital, 2100 Copenhagen Ø, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Tatyana D Fedorova
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Karoline Knudsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Sygrid van der Zee
- Department of Neurology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Teus van Laar
- Department of Neurology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Nicolaas I Bohnen
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
- Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | - Jacob Horsager
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
| |
Collapse
|
2
|
Gil-Rivas A, de Pascual-Teresa B, Ortín I, Ramos A. New Advances in the Exploration of Esterases with PET and Fluorescent Probes. Molecules 2023; 28:6265. [PMID: 37687094 PMCID: PMC10488407 DOI: 10.3390/molecules28176265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023] Open
Abstract
Esterases are hydrolases that catalyze the hydrolysis of esters into the corresponding acids and alcohols. The development of fluorescent probes for detecting esterases is of great importance due to their wide spectrum of biological and industrial applications. These probes can provide a rapid and sensitive method for detecting the presence and activity of esterases in various samples, including biological fluids, food products, and environmental samples. Fluorescent probes can also be used for monitoring the effects of drugs and environmental toxins on esterase activity, as well as to study the functions and mechanisms of these enzymes in several biological systems. Additionally, fluorescent probes can be designed to selectively target specific types of esterases, such as those found in pathogenic bacteria or cancer cells. In this review, we summarize the recent fluorescent probes described for the visualization of cell viability and some applications for in vivo imaging. On the other hand, positron emission tomography (PET) is a nuclear-based molecular imaging modality of great value for studying the activity of enzymes in vivo. We provide some examples of PET probes for imaging acetylcholinesterases and butyrylcholinesterases in the brain, which are valuable tools for diagnosing dementia and monitoring the effects of anticholinergic drugs on the central nervous system.
Collapse
Affiliation(s)
- Alba Gil-Rivas
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
| | - Beatriz de Pascual-Teresa
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
| | - Irene Ortín
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
| | - Ana Ramos
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
| |
Collapse
|
3
|
Liu T, Zhang Q, Li H, Cui X, Qi Z, Yang X. An injectable, self-healing, electroconductive hydrogel loaded with neural stem cells and donepezil for enhancing local therapy effect of spinal cord injury. J Biol Eng 2023; 17:48. [PMID: 37488558 PMCID: PMC10367392 DOI: 10.1186/s13036-023-00368-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a serious injury with high mortality and disability rates, and there is no effective treatment at present. It has been reported that some treatments, such as drug intervention and stem cell transplantation have positive effects in promoting neurological recovery. Although those treatments are effective for nerve regeneration, many drawbacks, such as low stem cell survival rates and side effects caused by systemic medication, have limited their development. In recent years, injectable hydrogel materials have been widely used in tissue engineering due to their good biocompatibility, biodegradability, controllable properties, and low invasiveness. The treatment strategy of injectable hydrogels combined with stem cells or drugs has made some progress in SCI repair, showing the potential to overcome the drawbacks of traditional drugs and stem cell therapy. METHODS In this study, a novel injectable electroactive hydrogel (NGP) based on sodium hyaluronate oxide (SAO) and polyaniline-grafted gelatine (NH2-Gel-PANI) was developed as a material in which to load neural stem cells (NSCs) and donepezil (DPL) to facilitate nerve regeneration after SCI. To evaluate the potential of the prepared NGP hydrogel in SCI repair applications, the surface morphology, self-repairing properties, electrical conductivity and cytocompatibility of the resulting hydrogel were analysed. Meanwhile, we evaluated the neural repair ability of NGP hydrogels loaded with DPL and NSCs using a rat model of spinal cord injury. RESULTS The NGP hydrogel has a suitable pore size, good biocompatibility, excellent conductivity, and injectable and self-repairing properties, and its degradation rate matches the repair cycle of spinal cord injury. In addition, DPL could be released continuously and slowly from the NGP hydrogel; thus, the NGP hydrogel could serve as an excellent carrier for drugs and cells. The results of in vitro cell experiments showed that the NGP hydrogel had good cytocompatibility and could significantly promote the neuronal differentiation and axon growth of NSCs, and loading the hydrogel with DPL could significantly enhance this effect. More importantly, the NGP hydrogel loaded with DPL showed a significant inhibitory effect on astrocytic differentiation of NSCs in vitro. Animal experiments showed that the combination of NGP hydrogel, DPL, and NSCs had the best therapeutic effect on the recovery of motor function and nerve conduction function in rats. NGP hydrogel loaded with NSCs and DPL not only significantly increased the myelin sheath area, number of new neurons and axon area but also minimized the area of the cystic cavity and glial scar and promoted neural circuit reconstruction. CONCLUSIONS The DPL- and NSC-laden electroactive hydrogel developed in this study is an ideal biomaterial for the treatment of traumatic spinal cord injury.
Collapse
Affiliation(s)
- Tiemei Liu
- Department of Blood Transfusion, China-Japan Union Hospital of Jilin University, 130033, Changchun, China
| | - Qiang Zhang
- Department of Orthopaedic Surgery, The Second Hospital of Jilin University, 130041, Changchun, China
| | - Hongru Li
- Department of Orthopaedic Surgery, The Second Hospital of Jilin University, 130041, Changchun, China
| | - Xiaoqian Cui
- Department of Emergency and Critical Care, The Second Hospital of Jilin University, 130041, Changchun, PR China
| | - Zhiping Qi
- Department of Orthopaedic Surgery, The Second Hospital of Jilin University, 130041, Changchun, China.
| | - Xiaoyu Yang
- Department of Blood Transfusion, China-Japan Union Hospital of Jilin University, 130033, Changchun, China.
- Department of Orthopaedic Surgery, The Second Hospital of Jilin University, 130041, Changchun, China.
| |
Collapse
|
4
|
Dávila G, Torres-Prioris MJ, López-Barroso D, Berthier ML. Turning the Spotlight to Cholinergic Pharmacotherapy of the Human Language System. CNS Drugs 2023; 37:599-637. [PMID: 37341896 PMCID: PMC10374790 DOI: 10.1007/s40263-023-01017-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 06/22/2023]
Abstract
Even though language is essential in human communication, research on pharmacological therapies for language deficits in highly prevalent neurodegenerative and vascular brain diseases has received little attention. Emerging scientific evidence suggests that disruption of the cholinergic system may play an essential role in language deficits associated with Alzheimer's disease and vascular cognitive impairment, including post-stroke aphasia. Therefore, current models of cognitive processing are beginning to appraise the implications of the brain modulator acetylcholine in human language functions. Future work should be directed further to analyze the interplay between the cholinergic system and language, focusing on identifying brain regions receiving cholinergic innervation susceptible to modulation with pharmacotherapy to improve affected language domains. The evaluation of language deficits in pharmacological cholinergic trials for Alzheimer's disease and vascular cognitive impairment has thus far been limited to coarse-grained methods. More precise, fine-grained language testing is needed to refine patient selection for pharmacotherapy to detect subtle deficits in the initial phases of cognitive decline. Additionally, noninvasive biomarkers can help identify cholinergic depletion. However, despite the investigation of cholinergic treatment for language deficits in Alzheimer's disease and vascular cognitive impairment, data on its effectiveness are insufficient and controversial. In the case of post-stroke aphasia, cholinergic agents are showing promise, particularly when combined with speech-language therapy to promote trained-dependent neural plasticity. Future research should explore the potential benefits of cholinergic pharmacotherapy in language deficits and investigate optimal strategies for combining these agents with other therapeutic approaches.
Collapse
Affiliation(s)
- Guadalupe Dávila
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Marqués de Beccaria 3, 29010, Malaga, Spain
- Instituto de Investigación Biomédica de Malaga-IBIMA, Malaga, Spain
- Department of Psychobiology and Methodology of Behavioral Sciences, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
- Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - María José Torres-Prioris
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Marqués de Beccaria 3, 29010, Malaga, Spain
- Instituto de Investigación Biomédica de Malaga-IBIMA, Malaga, Spain
- Department of Psychobiology and Methodology of Behavioral Sciences, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
- Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - Diana López-Barroso
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Marqués de Beccaria 3, 29010, Malaga, Spain
- Instituto de Investigación Biomédica de Malaga-IBIMA, Malaga, Spain
- Department of Psychobiology and Methodology of Behavioral Sciences, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
- Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - Marcelo L Berthier
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Marqués de Beccaria 3, 29010, Malaga, Spain.
- Instituto de Investigación Biomédica de Malaga-IBIMA, Malaga, Spain.
- Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain.
| |
Collapse
|
5
|
Okkels N, Horsager J, Labrador-Espinosa MA, Hansen FO, Andersen KB, Just MK, Fedorova TD, Skjærbæk C, Munk OL, Hansen KV, Gottrup H, Hansen AK, Grothe MJ, Borghammer P. Distribution of cholinergic nerve terminals in the aged human brain measured with [ 18F]FEOBV PET and its correlation with histological data. Neuroimage 2023; 269:119908. [PMID: 36720436 DOI: 10.1016/j.neuroimage.2023.119908] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/10/2023] [Accepted: 01/27/2023] [Indexed: 01/30/2023] Open
Abstract
INTRODUCTION [18F]fluoroetoxybenzovesamicol ([18F]FEOBV) is a positron emission topography (PET) tracer for the vesicular acetylcholine transporter (VAChT), a protein located predominantly in synaptic vesicles in cholinergic nerve terminals. We aimed to use [18F]FEOBV PET to study the cholinergic topography of the healthy human brain. MATERIALS AND METHODS [18F]FEOBV PET brain data volumes of healthy elderly humans were normalized to standard space and intensity-normalized to the white matter. Stereotactic atlases of regions of interest were superimposed to describe and quantify tracer distribution. The spatial distribution of [18F]FEOBV PET uptake was compared with histological and gene expression data. RESULTS Twenty participants of both sexes and a mean age of 73.9 ± 6.0 years, age-range [64; 86], were recruited. Highest tracer binding was present in the striatum, some thalamic nuclei, and the basal forebrain. Intermediate binding was found in most nuclei of the brainstem, thalamus, and hypothalamus; the vermis and flocculonodular lobe; and the hippocampus, amygdala, insula, cingulate, olfactory cortex, and Heschl's gyrus. Lowest binding was present in most areas of the cerebral cortex, and in the cerebellar nuclei and hemispheres. The spatial distribution of tracer correlated with immunohistochemical post-mortem data, as well as with regional expression levels of SLC18A3, the VAChT coding gene. DISCUSSION Our in vivo findings confirm the regional cholinergic distribution in specific brain structures as described post-mortem. A positive spatial correlation between tracer distribution and regional gene expression levels further corroborates [18F]FEOBV PET as a validated tool for in vivo cholinergic imaging. The study represents an advancement in the continued efforts to delineate the spatial topography of the human cholinergic system in vivo.
Collapse
Affiliation(s)
- Niels Okkels
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark.
| | - Jacob Horsager
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Miguel A Labrador-Espinosa
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Frederik O Hansen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Katrine B Andersen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mie Kristine Just
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tatyana D Fedorova
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Casper Skjærbæk
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ole L Munk
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Kim V Hansen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Hanne Gottrup
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Allan K Hansen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Nuclear Medicine, Aalborg University Hospital, Aalborg, Denmark
| | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
6
|
Zhao N, Liu D, Wang Y, Zhang X, Zhang L. Screening and identification of anti-acetylcholinesterase ingredients from Tianzhi granule based on ultrafiltration combined with ultra-performance liquid chromatography-mass spectrometry and in silico analysis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115641. [PMID: 35973628 DOI: 10.1016/j.jep.2022.115641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tianzhi granule (TZG) is a traditional Chinese formula that is widely used for the treatment of vascular dementia (VaD). AIM OF THE STUDY To discover the herbs in TZG possessing acetylcholinesterase (AChE) inhibitory activity and to screen the anti-acetylcholinesterase ingredients from active herbs. MATERIALS AND METHODS In vitro AChE inhibitory activity assay of eleven herbal extracts was conducted. An ultrafiltration combined with ultra-performance liquid chromatography-mass spectrometry method was established to screen and identify the anti-acetylcholinesterase ingredients from active extracts. In addition, in vitro AChE inhibitory activity assay and molecular docking were adopted for further investigation. Moreover, ultra-performance liquid chromatography-mass spectrometry was performed for the content determination of active compounds in TZG. RESULTS Three herbs in TZG showed significant AChE inhibitory activity. A total of thirteen active ingredients were screened out and identified, and all of these compounds were present in TZG. Five available commercial standards presented moderate AChE inhibitory activity, and all of which have a relatively high content in TZG. CONCLUSION A number of herbs and compounds with acetylcholinesterase inhibitory activity were found in TZG, which provided a scientific basis for the material basis and quality control research of TZG.
Collapse
Affiliation(s)
- Nan Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Dan Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yi Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xiaozhe Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
7
|
Abstract
This article presents an overview of imaging agents for PET that have been applied for research and diagnostic purposes in patients affected by dementia. Classified by the target which the agents visualize, seven groups of tracers can be distinguished, namely radiopharmaceuticals for: (1) Misfolded proteins (ß-amyloid, tau, α-synuclein), (2) Neuroinflammation (overexpression of translocator protein), (3) Elements of the cholinergic system, (4) Elements of monoamine neurotransmitter systems, (5) Synaptic density, (6) Cerebral energy metabolism (glucose transport/ hexokinase), and (7) Various other proteins. This last category contains proteins involved in mechanisms underlying neuroinflammation or cognitive impairment, which may also be potential therapeutic targets. Many receptors belong to this category: AMPA, cannabinoid, colony stimulating factor 1, metabotropic glutamate receptor 1 and 5 (mGluR1, mGluR5), opioid (kappa, mu), purinergic (P2X7, P2Y12), sigma-1, sigma-2, receptor for advanced glycation endproducts, and triggering receptor expressed on myeloid cells-1, besides several enzymes: cyclooxygenase-1 and 2 (COX-1, COX-2), phosphodiesterase-5 and 10 (PDE5, PDE10), and tropomyosin receptor kinase. Significant advances in neuroimaging have been made in the last 15 years. The use of 2-[18F]-fluoro-2-deoxy-D-glucose (FDG) for quantification of regional cerebral glucose metabolism is well-established. Three tracers for ß-amyloid plaques have been approved by the Food and Drug Administration and European Medicines Agency. Several tracers for tau neurofibrillary tangles are already applied in clinical research. Since many novel agents are in the preclinical or experimental stage of development, further advances in nuclear medicine imaging can be expected in the near future. PET studies with established tracers and tracers for novel targets may result in early diagnosis and better classification of neurodegenerative disorders and in accurate monitoring of therapy trials which involve these targets. PET data have prognostic value and may be used to assess the response of the human brain to interventions, or to select the appropriate treatment strategy for an individual patient.
Collapse
Affiliation(s)
- Aren van Waarde
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen, the Netherlands.
| | - Sofia Marcolini
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, the Netherlands
| | - Peter Paul de Deyn
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, the Netherlands; University of Antwerp, Born-Bunge Institute, Neurochemistry and Behavior, Campus Drie Eiken, Wilrijk, Belgium
| | - Rudi A J O Dierckx
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen, the Netherlands; Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Yamawaki H, Futagami S, Sakasegawa N, Murakami M, Agawa S, Ikeda G, Noda H, Kirita K, Gudis K, Higuchi K, Kodaka Y, Ueki N, Iwakiri K. Acotiamide attenuates central urocortin 2-induced intestinal inflammatory responses, and urocortin 2 treatment reduces TNF-α productions in LPS-stimulated macrophage cell lines. Neurogastroenterol Motil 2020; 32:e13813. [PMID: 32030855 DOI: 10.1111/nmo.13813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/21/2019] [Accepted: 01/09/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND To determine whether central and in vitro administration of urocortin 2 (Ucn 2) affected intestinal inflammatory responses in LPS-stimulated rat models and macrophage cell lines and acotiamide modified mucosal inflammation in this model. METHODS Rats were divided into four groups. LPS-stimulated group (n = 4); LPS- and urocortin 2-treated group (n = 4); LPS- and acotiamide-treated group (n = 4); and LPS-, urocortin 2-, and acotiamide-treated group (n = 4). CD68-, CCR2-, and corticotropin-releasing hormone receptor type 2 (CRHR2)-positive cells were assessed by immunostaining. Myeloperoxidase (MPO) activity was measured. TNF-α, IL-6, and IL-4 levels were measured by ELISA method. Gastric emptying and small intestinal transit time were determined using Evans blue. KEY RESULTS Central administration of Ucn 2 significantly aggravated infiltrations of CD68- and CCR2-positive cells in the intestinal mucosa of LPS-stimulated rat models compared to those in LPS treatment alone. Interestingly, acotiamide treatment significantly reduced the migrations of both CD68- and CCR2-positive cells in the jejunum of central Ucn 2-treated LPS-stimulated rat models. Acotiamide significantly reduced the expression levels of IkB-α phosphorylation in LPS- and MCP-1-stimulated NR8383 cells. Central administration of Ucn 2 significantly delayed gastric emptying. In contrast, Ucn 2 stimulation significantly reduced TNF-α and IL-6 productions in LPS-stimulated NR8383 cells and astressin B reversed the inhibition of TNF-α production in stimulated NR8383 cells. Acotiamide (30 μmol/L) significantly reduced TNF-α and IL-6 productions in LPS- and MCP-1-stimulated NR8383 cells. CONCLUSIONS AND INFERENCES Central and in vitro treatments of Ucn 2 affected intestinal inflammatory responses, respectively, and acotiamide improved them.
Collapse
Affiliation(s)
- Hiroshi Yamawaki
- Division of Gastroenterology, Nippon Medical School, Tokyo, Japan
| | - Seiji Futagami
- Division of Gastroenterology, Nippon Medical School, Tokyo, Japan
| | | | - Makoto Murakami
- Division of Gastroenterology, Nippon Medical School, Tokyo, Japan
| | - Shuhei Agawa
- Division of Gastroenterology, Nippon Medical School, Tokyo, Japan
| | - Go Ikeda
- Division of Gastroenterology, Nippon Medical School, Tokyo, Japan
| | - Hiroto Noda
- Division of Gastroenterology, Nippon Medical School, Tokyo, Japan
| | - Kumiko Kirita
- Division of Gastroenterology, Nippon Medical School, Tokyo, Japan
| | - Katya Gudis
- Division of Gastroenterology, Nippon Medical School, Tokyo, Japan
| | | | - Yasuhiro Kodaka
- Division of Gastroenterology, Nippon Medical School, Tokyo, Japan
| | - Nobue Ueki
- Division of Gastroenterology, Nippon Medical School, Tokyo, Japan
| | | |
Collapse
|
9
|
Droguerre M, Duchêne A, Picoli C, Portal B, Lejards C, Guiard BP, Meunier J, Villard V, Déglon N, Hamon M, Mouthon F, Charvériat M. Efficacy of THN201, a Combination of Donepezil and Mefloquine, to Reverse Neurocognitive Deficits in Alzheimer's Disease. Front Neurosci 2020; 14:563. [PMID: 32612499 PMCID: PMC7309601 DOI: 10.3389/fnins.2020.00563] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/07/2020] [Indexed: 01/15/2023] Open
Abstract
Donepezil (DPZ) is an acetylcholinesterase inhibitor used in Alzheimer’s disease to restore cognitive functions but is endowed with limited efficacy. Recent studies pointed out the implication of astroglial networks in cognitive processes, notably via astrocyte connexins (Cxs), proteins involved in gap junction intercellular communications. Hence, we investigated the impact on cognition of pharmacological or genetic modulations of those astrocyte Cxs during DPZ challenge in two rodent models of Alzheimer’s disease–like memory deficits. We demonstrated that the Cx modulator mefloquine (MEF) significantly enhanced the procognitive effect of DPZ in both models. In parallel, we determined that MEF potentiated DPZ-induced release of acetylcholine in hippocampus. Finally, local genetic silencing of astrocyte Cxs in the hippocampus was also found to enhance the procognitive effect of DPZ, pointing out the importance of Cx-dependent astrocyte networks in memory processes.
Collapse
Affiliation(s)
| | | | | | - Benjamin Portal
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Camille Lejards
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Bruno P Guiard
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France
| | | | | | - Nicole Déglon
- Laboratory of Neurotherapies and NeuroModulation, Neuroscience Research Center (CRN), University of Lausanne, Lausanne, Switzerland.,Laboratory of Neurotherapies and NeuroModulation, Department of Clinical Neuroscience (DNC), Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | | | | | | |
Collapse
|
10
|
Chen Y, Tang W, Gordon A, Li B. Development of an Integrated Tissue Pretreatment Protocol for Enhanced MALDI MS Imaging of Drug Distribution in the Brain. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1066-1073. [PMID: 32223232 DOI: 10.1021/jasms.0c00003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) technique has attracted intense interest in the visualization of drug distribution in tissues. Its capability to spatially resolve individual molecules makes it a unique tool in drug development and research. However, low drug content and severe ion suppression in tissues hinder its broader application to resolve drug tissue distribution, especially small molecule drugs with a molecular weight below 500 Da. In this work, an integrated tissue pretreatment protocol was developed to enhance the detection of central nervous system drugs in the mouse brain using MALDI MSI. To evaluate the protocol, brain sections from mice dosed intraperitoneally with donepezil, tacrine, clozapine, haloperidol, and aripiprazole were used. The tissue sections were pretreated serially by washing with ammonium acetate solution, incubation with trifluoroacetic acid vapor, and n-hexane washing before MALDI MSI. Compared with the untreated sample, the signal intensities for the test drugs increased by 4.7- to 31.5-fold after pretreatment. Besides the enhancement of signal intensity, fine optimization of pretreatment time and washing solvents preserved the spatial distribution of target drug molecules. The utility of the developed protocol also provided tissue-specific distribution for five drugs which were well resolved when imaged by MALDI MS.
Collapse
Affiliation(s)
- Yanwen Chen
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Weiwei Tang
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Andrew Gordon
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Bin Li
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
11
|
Bruno JL, Hosseini SH, Lightbody AA, Manchanda MK, Reiss AL. Brain circuitry, behavior, and cognition: A randomized placebo-controlled trial of donepezil in fragile X syndrome. J Psychopharmacol 2019; 33:975-985. [PMID: 31264943 PMCID: PMC6894490 DOI: 10.1177/0269881119858304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Fragile X syndrome, the most common inherited cause for intellectual disability, is associated with alterations in cholinergic among other neurotransmitter systems. This study investigated the effects of donepezil hydrochloride, a cholinesterase inhibitor that has potential to correct aberrant cholinergic signaling. METHOD Forty-two individuals with fragile X syndrome (mean age=19.61 years) were randomized to receive 2.5-10.0 mg of donepezil (n=20, seven females) or placebo (n=22, eight females) per day. One individual in the active group withdrew at week 7. Outcomes included the contingency naming test, the aberrant behavior checklist, and behavior and brain activation patterns during a functional magnetic resonance imaging gaze discrimination task. RESULTS There were no significant differences between active and placebo groups on cognitive (contingency naming task) or behavioral (total score or subscales of the aberrant behavior checklist) outcomes. At baseline, the active and placebo groups did not differ in functional magnetic resonance imaging activation patterns during the gaze task. After 12 weeks of treatment the active group displayed reduced activation in response to the averted vs direct gaze contrast, relative to the placebo group, in the left superior frontal gyrus. CONCLUSIONS Reduced functional brain activation for the active group may represent less arousal in response to direct eye gaze, relative to the placebo group. Change in functional magnetic resonance imaging activation patterns may serve as a more sensitive metric and predictor of response to treatment when compared to cognitive and behavioral assessments. Our results suggest that donepezil may have an impact on brain functioning, but longer term follow-up and concomitant behavioral intervention may be required to demonstrate improvement in cognition and behavior.
Collapse
Affiliation(s)
- Jennifer L. Bruno
- Center for Interdisciplinary Brain Sciences Research, Stanford University.,To whom correspondence should be addressed: 401 Quarry Road, Palo Alto, CA 94304, Phone: 818-415-9119, Fax: (650) 724-4761,
| | - S.M. Hadi Hosseini
- Center for Interdisciplinary Brain Sciences Research, Stanford University
| | - Amy A. Lightbody
- Center for Interdisciplinary Brain Sciences Research, Stanford University
| | - Mai K. Manchanda
- Center for Interdisciplinary Brain Sciences Research, Stanford University
| | - Allan L. Reiss
- Center for Interdisciplinary Brain Sciences Research, Stanford University.,Department of Radiology, Stanford University.,Department of Pediatrics, Stanford University
| |
Collapse
|
12
|
Liu R, Crawford J, Callahan PM, Terry AV, Constantinidis C, Blake DT. Intermittent stimulation in the nucleus basalis of meynert improves sustained attention in rhesus monkeys. Neuropharmacology 2018; 137:202-210. [PMID: 29704983 DOI: 10.1016/j.neuropharm.2018.04.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/30/2018] [Accepted: 04/23/2018] [Indexed: 01/29/2023]
Abstract
Sustained attention is essential in important behaviors in daily life. Many neuropsychiatric disorders are characterized by a compromised ability to sustain attention, making this cognitive domain an important therapeutic target. In this study, we tested a novel method of improving sustained attention. Monkeys were engaged in a continuous performance task (CPT) while the nucleus basalis of Meynert (NB), the main source of cholinergic innervation of the neocortex, was stimulated. Intermittent NB stimulation improved the animals' performance by increasing the hit rate and decreasing the false alarm rate. Administration of the cholinesterase inhibitor donepezil or the muscarinic antagonist scopolamine alone impaired performance, whereas the nicotinic antagonist mecamylamine alone improved performance. Applying NB stimulation while mecamylamine or donepezil were administered impaired CPT performance. Methylphenidate, a monoaminergic psychostimulant, was applied in conjunction with intermittent stimulation as a negative control, as it does not directly modulate cholinergic output. Methylphenidate also improved performance, and it produced further improvement when combined with NB stimulation. The additive effect of the combination suggested NB stimulation altered behavior independently from methylphenidate effects. We conclude that basal forebrain projections contribute to sustained attention, and that intermittent NB stimulation is an effective way of improving performance.
Collapse
Affiliation(s)
- Ruifeng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China; Brain and Behavior Discovery Institute, Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Jonathan Crawford
- Brain and Behavior Discovery Institute, Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Patrick M Callahan
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Christos Constantinidis
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - David T Blake
- Brain and Behavior Discovery Institute, Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA.
| |
Collapse
|
13
|
Mochida I, Shimosegawa E, Kanai Y, Naka S, Matsunaga K, Isohashi K, Horitsugi G, Watabe T, Kato H, Hatazawa J. Whole-Body Distribution of Donepezil as an Acetylcholinesterase Inhibitor after Oral Administration in Normal Human Subjects: A 11C-donepezil PET Study. ASIA OCEANIA JOURNAL OF NUCLEAR MEDICINE & BIOLOGY 2017; 5:3-9. [PMID: 28840133 PMCID: PMC5221682 DOI: 10.22038/aojnmb.2016.7513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Objective(s): It is difficult to investigate the whole-body distribution of an orally administered drug by means of positron emission tomography (PET), owing to the short physical half-life of radionuclides, especially when 11C-labeled compounds are tested. Therefore, we aimed to examine the whole-body distribution of donepezil (DNP) as an acetylcholinesterase inhibitor by means of 11C-DNP PET imaging, combined with the oral administration of pharmacological doses of DNP. Methods: We studied 14 healthy volunteers, divided into group A (n=4) and group B (n=10). At first, we studied four females (mean age: 57.3±4.5 y), three of whom underwent 11C-DNP PET scan at 2.5 h after the oral administration of 1 mg and 30 µg of DNP, respectively, while one patient was scanned following the oral administration of 30 µg of DNP (group A). Then, we studied five females and five males (48.3±6.1 y), who underwent 11C-DNP PET scan, without the oral administration of DNP (group B). Plasma DNP concentration upon scanning was measured by tandem mass spectrometry. Arterialized venous blood samples were collected periodically to measure plasma radioactivity and metabolites. In group A, 11C-DNP PET scan of the brain and whole body continued for 60 and 20 min, respectively. Subjects in group B underwent sequential whole-body scan for 60 min. The regional uptake of 11C-DNP was analyzed by measuring the standard uptake value (SUV) through setting regions of interest on major organs with reference CT. Results: In group A, plasma DNP concentration was significantly correlated with the orally administered dose of DNP. The mean plasma concentration was 2.00 nM (n=3) after 1 mg oral administration and 0.06 nM (n=4) after 30 µg oral administration. No significant difference in plasma radioactivity or fraction of metabolites was found between groups A and B. High 11C-DNP accumulation was found in the liver, stomach, pancreas, brain, salivary glands, bone marrow, and myocardium in groups A and B, in this order. No significant difference in SUV value was found among 11C-DNP PET studies after the oral administration of 1 mg of DNP, 30 µg of DNP, or no DNP. Conclusion: The present study demonstrated that the whole-body distribution of DNP after the oral administration of pharmacological doses could be evaluated by 11C-DNP PET studies, combined with the oral administration of DNP.
Collapse
Affiliation(s)
- Ikuko Mochida
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Osaka, Japan.,Osaka University Graduate School of Medicine, Immunology Frontier Research Center, Osaka, Japan
| | - Eku Shimosegawa
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasukazu Kanai
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sadahiro Naka
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Osaka, Japan.,Osaka University Hospital, Osaka, Japan
| | - Keiko Matsunaga
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kayako Isohashi
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Genki Horitsugi
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tadashi Watabe
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroki Kato
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jun Hatazawa
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Osaka, Japan.,Osaka University Graduate School of Medicine, Immunology Frontier Research Center, Osaka, Japan
| |
Collapse
|
14
|
3-(Benzyloxy)-1-(5-[18F]fluoropentyl)-5-nitro-1H-indazole: a PET radiotracer to measure acetylcholinesterase in brain. Future Med Chem 2017. [DOI: 10.4155/fmc-2017-0023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Aim: Noninvasive studies of the acetylcholinesterase (AChE) level in Alzheimer's disease (AD) patients can contribute to a better understanding of the disease and its therapeutic. We propose 3-(benzyloxy)-1-(5-[18F]fluoropentyl)-5-nitro-1H-indazole, [18F]-IND1, structurally related to the AChE-inhibitor CP126,998, as a new positron emission tomography-radiotracer. Experimental: Radiosynthesis, with 18F, stability, lipophilicity and protein binding of [18F]-IND1 were studied. In vivo behavior, in normal mice and on AD mice models, were also analyzed. Results: [18F]-IND1 was obtained in good radiochemical yield, was stable for at least 2 h in different conditions, and had adequate lipophilicity for blood–brain barrier penetration. Biodistribution studies, in normal mice, showed that [18F]-IND1 was retained in the brain after 1 h. In vivo tacrine-blocking experiments indicated this uptake could be specifically due to AChE interaction. Studies in transgenic AD mice showed differential, compared with normal mice, binding in many brain regions. Conclusion: [18F]-IND1 can be used to detect AChE changes in AD patients.
Collapse
|
15
|
Borghammer P, Knudsen K, Fedorova TD, Brooks DJ. Imaging Parkinson's disease below the neck. NPJ Parkinsons Dis 2017; 3:15. [PMID: 28649615 PMCID: PMC5460119 DOI: 10.1038/s41531-017-0017-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/21/2016] [Accepted: 03/21/2017] [Indexed: 01/18/2023] Open
Abstract
Parkinson's disease is a systemic disorder with widespread and early α-synuclein pathology in the autonomic and enteric nervous systems, which is present throughout the gastrointestinal canal prior to diagnosis. Gastrointestinal and genitourinary autonomic symptoms often predate clinical diagnosis by several years. It has been hypothesized that progressive α-synuclein aggregation is initiated in hyperbranched, non-myelinated neuron terminals, and may subsequently spread via retrograde axonal transport. This would explain why autonomic nerves are so prone to formation of α-synuclein pathology. However, the hypothesis remains unproven and in vivo imaging methods of peripheral organs may be essential to study this important research field. The loss of sympathetic and parasympathetic nerve terminal function in Parkinson's disease has been demonstrated using radiotracers such as 123I-meta-iodobenzylguanidin, 18F-dopamine, and 11C-donepezil. Other radiotracer and radiological imaging methods have shown highly prevalent dysfunction of pharyngeal and esophageal motility, gastric emptying, colonic transit time, and anorectal function. Here, we summarize the methodology and main findings of radio-isotope and radiological modalities for imaging peripheral pathology in Parkinson's disease.
Collapse
Affiliation(s)
- Per Borghammer
- Department of Nuclear Medicine & PET Centre, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karoline Knudsen
- Department of Nuclear Medicine & PET Centre, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tatyana D. Fedorova
- Department of Nuclear Medicine & PET Centre, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - David J. Brooks
- Department of Nuclear Medicine & PET Centre, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Division of Neuroscience, Department of Medicine, Imperial College London, London, UK
- Division of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW The purpose of this review was to summarize current advances in positron emission tomography (PET) cardiac autonomic nervous system (ANS) imaging, with a specific focus on clinical applications of novel and established tracers. RECENT FINDINGS [11C]-Meta-hydroxyephedrine (HED) has provided useful information in evaluation of normal and pathological cardiovascular function. Recently, [11C]-HED PET imaging was able to predict lethal arrhythmias, sudden cardiac death (SCD), and all-cause mortality in heart failure patients with reduced ejection fraction (HFrEF). In addition, initial [11C]-HED PET imaging studies have shown the potential of this agent in elucidating the relationship between impaired cardiac sympathetic nervous system (SNS) innervation and the severity of diastolic dysfunction in HF patients with preserved ejection fraction (HFpEF) and in predicting the response to cardiac resynchronization therapy (CRT) in HFrEF patients. Longer half-life 18F-labeled presynaptic SNS tracers (e.g., [18F]-LMI1195) have been developed to facilitate clinical imaging, although no PET radiotracers that target the ANS have gained wide clinical use in the cardiovascular system. Although the use of parasympathetic nervous system radiotracers in cardiac imaging is limited, the novel tracer, [11C]-donepezil, has shown potential utility in initial studies. Many ANS radioligands have been synthesized for PET cardiac imaging, but to date, the most clinically relevant PET tracer has been [11C]-HED. Recent studies have shown the utility of [11C]-HED in relevant clinical issues, such as in the elusive clinical syndrome of HFpEF. Conversely, tracers that target cardiac PNS innervation have been used less clinically, but novel tracers show potential utility for future work. The future application of [11C]-HED and newly designed 18F-labeled tracers for targeting the ANS hold promise for the evaluation and management of a wide range of cardiovascular diseases, including the prognostication of patients with HFpEF.
Collapse
Affiliation(s)
- Nabil E Boutagy
- Section of Cardiovascular Medicine, Department of Medicine, Yale University School of Medicine, 375 Congress Avenue, New Haven, CT, 06519, USA
| | - Albert J Sinusas
- Section of Cardiovascular Medicine, Department of Medicine, Yale University School of Medicine, 375 Congress Avenue, New Haven, CT, 06519, USA.
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
17
|
Afzelius P, Alstrup AKO, Schønheyder HC, Borghammer P, Jensen SB, Bender D, Nielsen OL. Utility of 11C-methionine and 11C-donepezil for imaging of Staphylococcus aureus induced osteomyelitis in a juvenile porcine model: comparison to autologous 111In-labelled leukocytes, 99m Tc-DPD, and 18F-FDG. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2016; 6:286-300. [PMID: 28078182 PMCID: PMC5218858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 08/31/2016] [Indexed: 06/06/2023]
Abstract
The aim of this study was to compare 11C-methionine and 11C-donepezil positron emission tomography (PET) with 111In-labeled leukocyte and 99m Tc-DPD (Tc-99m 3,3-diphosphono-1,2-propanedicarboxylic acid) single-photon emission computed tomography (SPECT), and 18F-fluorodeoxyglucose (18F-FDG) PET to improve detection of osteomyelitis. The tracers' diagnostic utility where tested in a juvenile porcine hematogenously induced osteomyelitis model comparable to osteomyelitis in children. Five 8-9 weeks old female domestic pigs were scanned seven days after intra-arterial inoculation in the right femoral artery with a porcine strain of Staphylococcus aureus. The sequential scan protocol included Computed Tomography, 11C-methionine and 11C-donepezil PET, 99m Tc-DPD and 111In-labelled leukocytes scintigraphy, and 18F-FDG PET. This was followed by necropsy of the pigs and gross pathology, histopathology, and microbial examination. The pigs developed a total of 24 osteomyelitic lesions, 4 lesions characterized as contiguous abscesses and pulmonary abscesses (in two pigs). By comparing the 24 osteomyelitic lesions, 18F-FDG accumulated in 100%, 111In-leukocytes in 79%, 11C-methionine in 79%, 11C-donepezil in 58%, and 99m Tc-DPD in none. Overall, 18F-FDG PET was superior to 111In-leukocyte SPECT and 11C-methionine in marking infectious lesions.
Collapse
Affiliation(s)
- Pia Afzelius
- Department of Diagnostic Imaging, North Zealand Hospital, Hillerød, University Hospital of CopenhagenCopenhagen, Denmark
| | - Aage KO Alstrup
- Department of Nuclear Medicine and PET Centre, Aarhus University HospitalAarhus, Denmark
| | - Henrik C Schønheyder
- Department of Clinical Microbiology, Aalborg University HospitalAalborg, Denmark
- Department of Clinical Medicine, Aalborg UniversityAalborg, Denmark
| | - Per Borghammer
- Department of Nuclear Medicine and PET Centre, Aarhus University HospitalAarhus, Denmark
| | - Svend B Jensen
- Department of Nuclear Medicine, Aalborg University HospitalAalborg, Denmark
- Department of Chemistry and Biochemistry, Aalborg UniversityAalborg, Denmark
| | - Dirk Bender
- Department of Nuclear Medicine and PET Centre, Aarhus University HospitalAarhus, Denmark
| | - Ole L Nielsen
- Department of Veterinary Disease Biology, University of CopenhagenCopenhagen, Denmark
| |
Collapse
|
18
|
Amyloid imaging: Past, present and future perspectives. Ageing Res Rev 2016; 30:95-106. [PMID: 26827784 DOI: 10.1016/j.arr.2016.01.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 11/23/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterised by the gradual onset of dementia. The pathological hallmarks of the disease are Aβ amyloid plaques, and tau neurofibrillary tangles, along dendritic and synaptic loss and reactive gliosis. Functional and molecular neuroimaging techniques such as positron emission tomography (PET) using functional and molecular tracers, in conjuction with other Aβ and tau biomarkers in CSF, are proving valuable in the differential diagnosis of AD, as well as in establishing disease prognosis. With the advent of new therapeutic strategies, there has been an increasing application of these techniques for the determination of Aβ burden in vivo in the patient selection, evaluation of target engagement and assessment of the efficacy of therapeutic approaches aimed at reducing Aβ in the brain.
Collapse
|
19
|
Summerfield SG, Zhang Y, Liu H. Examining the Uptake of Central Nervous System Drugs and Candidates across the Blood-Brain Barrier. ACTA ACUST UNITED AC 2016; 358:294-305. [DOI: 10.1124/jpet.116.232447] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 05/17/2016] [Indexed: 01/13/2023]
|
20
|
Borghammer P, Knudsen K, Brooks DJ. Imaging Systemic Dysfunction in Parkinson’s Disease. Curr Neurol Neurosci Rep 2016; 16:51. [DOI: 10.1007/s11910-016-0655-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Gjerløff T, Jakobsen S, Nahimi A, Munk OL, Bender D, Alstrup AKO, Vase KH, Hansen SB, Brooks DJ, Borghammer P. In vivo imaging of human acetylcholinesterase density in peripheral organs using 11C-donepezil: dosimetry, biodistribution, and kinetic analyses. J Nucl Med 2014; 55:1818-24. [PMID: 25324520 DOI: 10.2967/jnumed.114.143859] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Brain cholinergic function has been previously studied with PET but little effort has been devoted to imaging peripheral organs. Many disorders, including diabetes and Parkinson disease, are associated with autonomic dysfunction including parasympathetic denervation. Nonneuronal cholinergic signaling is also involved in immune responses to infections and in cancer pathogenesis. 5-(11)C-methoxy-donepezil, a noncompetitive acetylcholinesterase ligand, was previously validated for imaging cerebral levels of acetylcholinesterase. In the present study, we explored the utility of (11)C-donepezil for imaging acetylcholinesterase densities in peripheral organs, including the salivary glands, heart, stomach, intestine, pancreas, liver, and spleen. METHODS With autoradiography, we determined binding affinities and levels of nonspecific (11)C-donepezil binding to porcine tissues. Radiation dosimetry was estimated by whole-body PET of a single human volunteer. Biodistribution and kinetic analyses of (11)C-donepezil time-activity curves were assessed with dynamic PET scans of 6 healthy human volunteers. A single pig with bacterial abscesses was PET-scanned to explore (11)C-donepezil uptake in infections. RESULTS Autoradiography showed high (11)C-donepezil binding (dissociation constant, 6-39 nM) in pig peripheral organs with low nonspecific signal. Radiation dosimetry was favorable (effective dose, 5.2 μSv/MBq). Peripheral metabolization of (11)C-donepezil was low (>90% unchanged ligand at 60 min). Slow washout kinetics were seen in the salivary glands, heart, intestines, pancreas, and prostate. A linear correlation was seen between (11)C-donepezil volumes of distribution and standardized uptake values, suggesting that arterial blood sampling may not be necessary for modeling uptake kinetics in future (11)C-donepezil PET studies. High standardized uptake values and slow washout kinetics were seen in bacterial abscesses. CONCLUSION (11)C-donepezil PET is suitable for imaging acetylcholinesterase densities in peripheral organs. Its uptake may potentially be quantitated with static whole-body PET scans not requiring arterial blood sampling. We also demonstrated high (11)C-donepezil binding in bacterial abscesses. We propose that (11)C-donepezil PET imaging may be able to quantify the parasympathetic innervation of organs but also detect nonneuronal cholinergic activity in infections.
Collapse
Affiliation(s)
- Trine Gjerløff
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark; and
| | - Steen Jakobsen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark; and
| | - Adjmal Nahimi
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark; and
| | - Ole L Munk
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark; and
| | - Dirk Bender
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark; and
| | - Aage K O Alstrup
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark; and
| | - Karina H Vase
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark; and
| | - Søren B Hansen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark; and
| | - David J Brooks
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark; and Department of Medicine, Imperial College London, London, United Kingdom
| | - Per Borghammer
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark; and
| |
Collapse
|
22
|
Watabe T, Naka S, Ikeda H, Horitsugi G, Kanai Y, Isohashi K, Ishibashi M, Kato H, Shimosegawa E, Watabe H, Hatazawa J. Distribution of intravenously administered acetylcholinesterase inhibitor and acetylcholinesterase activity in the adrenal gland: 11C-donepezil PET study in the normal rat. PLoS One 2014; 9:e107427. [PMID: 25225806 PMCID: PMC4166663 DOI: 10.1371/journal.pone.0107427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/10/2014] [Indexed: 12/30/2022] Open
Abstract
Purpose Acetylcholinesterase (AChE) inhibitors have been used for patients with Alzheimer's disease. However, its pharmacokinetics in non-target organs other than the brain has not been clarified yet. The purpose of this study was to evaluate the relationship between the whole-body distribution of intravenously administered 11C-Donepezil (DNP) and the AChE activity in the normal rat, with special focus on the adrenal glands. Methods The distribution of 11C-DNP was investigated by PET/CT in 6 normal male Wistar rats (8 weeks old, body weight = 220±8.9 g). A 30-min dynamic scan was started simultaneously with an intravenous bolus injection of 11C-DNP (45.0±10.7 MBq). The whole-body distribution of the 11C-DNP PET was evaluated based on the Vt (total distribution volume) by Logan-plot analysis. A fluorometric assay was performed to quantify the AChE activity in homogenized tissue solutions of the major organs. Results The PET analysis using Vt showed that the adrenal glands had the 2nd highest level of 11C-DNP in the body (following the liver) (13.33±1.08 and 19.43±1.29 ml/cm3, respectively), indicating that the distribution of 11C-DNP was the highest in the adrenal glands, except for that in the excretory organs. The AChE activity was the third highest in the adrenal glands (following the small intestine and the stomach) (24.9±1.6, 83.1±3.0, and 38.5±8.1 mU/mg, respectively), indicating high activity of AChE in the adrenal glands. Conclusions We demonstrated the whole-body distribution of 11C-DNP by PET and the AChE activity in the major organs by fluorometric assay in the normal rat. High accumulation of 11C-DNP was observed in the adrenal glands, which suggested the risk of enhanced cholinergic synaptic transmission by the use of AChE inhibitors.
Collapse
Affiliation(s)
- Tadashi Watabe
- Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- PET molecular Imaging Center, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- * E-mail:
| | | | - Hayato Ikeda
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Genki Horitsugi
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yasukazu Kanai
- Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- PET molecular Imaging Center, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kayako Isohashi
- PET molecular Imaging Center, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Mana Ishibashi
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiroki Kato
- PET molecular Imaging Center, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Eku Shimosegawa
- PET molecular Imaging Center, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiroshi Watabe
- Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- PET molecular Imaging Center, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Jun Hatazawa
- PET molecular Imaging Center, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
23
|
Daulatzai MA. Chronic functional bowel syndrome enhances gut-brain axis dysfunction, neuroinflammation, cognitive impairment, and vulnerability to dementia. Neurochem Res 2014; 39:624-44. [PMID: 24590859 DOI: 10.1007/s11064-014-1266-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 02/10/2014] [Accepted: 02/25/2014] [Indexed: 12/15/2022]
Abstract
The irritable bowel syndrome (IBS) is a common chronic functional gastrointestinal disorder world wide that lasts for decades. The human gut harbors a diverse population of microbial organisms which is symbiotic and important for well being. However, studies on conventional, germ-free, and obese animals have shown that alteration in normal commensal gut microbiota and an increase in pathogenic microbiota-termed "dysbiosis", impact gut function, homeostasis, and health. Diarrhea, constipation, visceral hypersensitivity, and abdominal pain arise in IBS from the gut-induced dysfunctional metabolic, immune, and neuro-immune communication. Dysbiosis in IBS is associated with gut inflammation. Gut-related inflammation is pivotal in promoting endotoxemia, systemic inflammation, and neuroinflammation. A significant proportion of IBS patients chronically consume alcohol, non-steroidal anti-inflammatories, and fatty diet; they may also suffer from co-morbid respiratory, neuromuscular, psychological, sleep, and neurological disorders. The above pathophysiological substrate is underpinned by dysbiosis, and dysfunctional bidirectional "Gut-Brain Axis" pathways. Pathogenic gut microbiota-related systemic inflammation (due to increased lipopolysaccharide and pro-inflammatory cytokines, and barrier dysfunction), may trigger neuroinflammation enhancing dysfunctional brain regions including hippocampus and cerebellum. These as well as dysfunctional vago-vagal gut-brain axis may promote cognitive impairment. Indeed, inflammation is characteristic of a broad spectrum of neurodegenerative diseases that manifest demntia. It is argued that an awareness of pathophysiological impact of IBS and implementation of appropriate therapeutic measures may prevent cognitive impairment and minimize vulnerability to dementia.
Collapse
Affiliation(s)
- Mak Adam Daulatzai
- Sleep Disorders Group, EEE Department, Melbourne School of Engineering, The University of Melbourne, Grattan Street, 3rd Floor, Room No. 344, Parkville, VIC, 3010, Australia,
| |
Collapse
|
24
|
Kikuchi T, Okamura T, Zhang MR, Irie T. PET probes for imaging brain acetylcholinesterase. J Labelled Comp Radiopharm 2013; 56:172-9. [DOI: 10.1002/jlcr.3002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 11/08/2012] [Accepted: 11/08/2012] [Indexed: 12/31/2022]
Affiliation(s)
- Tatsuya Kikuchi
- Probe Research Team, Molecular Probe Program, Molecular Imaging Center; National Institute of Radiological Sciences; Chiba; 263-8555; Japan
| | - Toshimitsu Okamura
- Probe Research Team, Molecular Probe Program, Molecular Imaging Center; National Institute of Radiological Sciences; Chiba; 263-8555; Japan
| | - Ming-Rong Zhang
- Probe Research Team, Molecular Probe Program, Molecular Imaging Center; National Institute of Radiological Sciences; Chiba; 263-8555; Japan
| | - Toshiaki Irie
- Probe Research Team, Molecular Probe Program, Molecular Imaging Center; National Institute of Radiological Sciences; Chiba; 263-8555; Japan
| |
Collapse
|
25
|
Da Costa Branquinho E, Becker G, Bouteiller C, Jean L, Renard PY, Zimmer L. Radiosynthesis and in vivo evaluation of fluorinated huprine derivates as PET radiotracers of acetylcholinesterase. Nucl Med Biol 2013; 40:554-60. [PMID: 23522975 DOI: 10.1016/j.nucmedbio.2013.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 02/04/2013] [Accepted: 02/04/2013] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Developing positron emission tomography (PET) radiotracers for non-invasive study of the cholinergic system is crucial to the understanding of neurodegenerative diseases. Although several acetylcholinesterase (AChE) PET tracers radiolabeled with carbon-11 exist, no fluorinated radiotracer is currently used in clinical imaging studies. The purpose of the present study is to describe the first fluorinated PET radiotracer for this brain enzyme. METHODS Three structural analogs of huprine, a specific AChE inhibitor presenting high affinity towards AChE in vitro, were synthesized and labeled with fluorine-18 via a mesylate/fluoro-nucleophilic aliphatic substitution: ([(18)F]-FHUa, [(18)F]-FHUb and [(18)F]-FHUc). Initial biological evaluation included in vitro autoradiography in rat with competition with an AChE inhibitor at different concentrations, and microPET-scan on anesthetized rats. In vivo PET studies in anesthetized cat focused on [(18)F]-FHUa. RESULTS AND CONCLUSIONS Although radiosynthesis of these huprine analogs was straightforward, they showed poor brain penetration potential, partially reversed after pharmacological inhibition of P-glycoprotein. These results indicated that current huprine analogs are not suitable for PET mapping of brain AChE receptors, but require physicochemical modulation in order to increase brain penetration.
Collapse
|
26
|
Di Lorenzo F, Martorana A, Ponzo V, Bonnì S, D'Angelo E, Caltagirone C, Koch G. Cerebellar theta burst stimulation modulates short latency afferent inhibition in Alzheimer's disease patients. Front Aging Neurosci 2013; 5:2. [PMID: 23423358 PMCID: PMC3575596 DOI: 10.3389/fnagi.2013.00002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 01/25/2013] [Indexed: 01/11/2023] Open
Abstract
The dysfunction of cholinergic neurons is a typical hallmark in Alzheimer's disease (AD). Previous findings demonstrated that high density of cholinergic receptors is found in the thalamus and the cerebellum compared with the cerebral cortex and the hippocampus. We aimed at investigating whether activation of the cerebello-thalamo-cortical pathway by means of cerebellar theta burst stimulation (TBS) could modulate central cholinergic functions evaluated in vivo by using the neurophysiological determination of Short-Latency Afferent Inhibition (SLAI). We tested the SLAI circuit before and after administration of cerebellar continuous TBS (cTBS) in 12 AD patients and in 12 healthy age-matched control subjects (HS). We also investigated potential changes of intracortical circuits of the contralateral primary motor cortex (M1) by assessing short intracortical inhibition (SICI) and intracortical facilitation (ICF). SLAI was decreased in AD patients compared to HS. Cerebellar cTBS partially restored SLAI in AD patients at later inter-stimulus intervals (ISIs), but did not modify SLAI in HS. SICI and ICF did not differ in the two groups and were not modulated by cerebellar cTBS. These results demonstrate that cerebellar magnetic stimulation is likely to affect mechanisms of cortical cholinergic activity, suggesting that the cerebellum may have a direct influence on the cholinergic dysfunction in AD.
Collapse
|
27
|
Hiraoka K, Okamura N, Funaki Y, Hayashi A, Tashiro M, Hisanaga K, Fujii T, Takeda A, Yanai K, Iwata R, Mori E. Cholinergic deficit and response to donepezil therapy in Parkinson's disease with dementia. Eur Neurol 2012; 68:137-43. [PMID: 22832236 DOI: 10.1159/000338774] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 04/02/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND Although donepezil, an acetylcholinesterase inhibitor, has been proved to be effective in ameliorating cognitive impairment in Parkinson's disease with dementia (PDD), the responsiveness of patients to donepezil therapy varies. [5-(11)C-methoxy]donepezil, the radiolabeled form of donepezil, is a ligand for positron emission tomography (PET), which can be exploited for the quantitative analysis of donepezil binding to acetylcholinesterase and for cholinergic imaging. OBJECTIVES To investigate the deficits of the cholinergic system in the brain in PDD and its association with response to donepezil therapy. METHODS Twelve patients with PDD and 13 normal control subjects underwent [5-(11)C-methoxy]donepezil-PET imaging. For patients with PDD, daily administration of donepezil was started after [5-(11)C-methoxy]donepezil-PET imaging and continued for 3 months. RESULTS In the PDD group, the mean total distribution volume of the cerebral cortices was 22.7% lower than that of the normal control group. The mean total distribution volume of the patients with PDD was significantly correlated with improvement of visuoperceptual function after 3 months of donepezil therapy. CONCLUSION The results suggest that donepezil therapy is more effective in patients with less decrease in acetylcholinesterase, a binding site of donepezil, at least in the specific cognitive domain.
Collapse
Affiliation(s)
- Kotaro Hiraoka
- Division of Cyclotron Nuclear Medicin, Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Dementia with Lewy bodies (DLB) is a relative newcomer to the field of late-life dementia. Although a diversity of imaging methodologies is now available for the study of dementia, these have been applied most often to Alzheimer's disease (AD). Studies on DLB, although fewer, have yielded fascinating and important insights into the underlying pathophysiology of this condition and allowed clinical differentiation of DLB from other dementias. Imaging research on DLB has had significant ramifications in terms of raising the profile of DLB and helping define it as a distinctive and separate disease entity from AD.
Collapse
Affiliation(s)
- John-Paul Taylor
- Institute for Ageing and Health, Wolfson Research Centre, Campus for Aging and Vitality, Newcastle University, Newcastle Upon Tyne, NE4 5PL, UK.
| | | |
Collapse
|
29
|
Greater Responsiveness to Donepezil in Alzheimer Patients With Higher Levels of Acetylcholinesterase Based on Attention Task Scores and a Donepezil PET Study. Alzheimer Dis Assoc Disord 2012; 26:113-8. [DOI: 10.1097/wad.0b013e3182222bc0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
30
|
Aisen PS, Cummings J, Schneider LS. Symptomatic and nonamyloid/tau based pharmacologic treatment for Alzheimer disease. Cold Spring Harb Perspect Med 2012; 2:a006395. [PMID: 22393531 PMCID: PMC3282492 DOI: 10.1101/cshperspect.a006395] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In this work we consider marketed drugs for Alzheimer disease (AD) including acetylcholinesterase inhibitors (AChE-Is) and antiglutamatergic treatment involving the N-methyl-d-aspartate (NMDA) receptor. We discuss medications and substances available for use as cognitive enhancers that are not approved for AD or cognitive impairment, and other neurotransmitter-related therapies in development or currently being researched. We also review putative therapies that aim to slow disease progression by mechanisms not directly related to amyloid or tau.
Collapse
Affiliation(s)
- Paul S Aisen
- University of California, San Diego, California 92093, USA.
| | | | | |
Collapse
|
31
|
Vallabhajosula S. Positron emission tomography radiopharmaceuticals for imaging brain Beta-amyloid. Semin Nucl Med 2011; 41:283-99. [PMID: 21624562 DOI: 10.1053/j.semnuclmed.2011.02.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is defined histologically by the presence of extracellular β-amyloid (Aβ) plaques and intraneuronal neurofibrillary tangles in the cerebral cortex. The diagnosis of dementia, along with the prediction of who will develop dementia, has been assisted by magnetic resonance imaging and positron emission tomography (PET) by using [(18)F]fluorodeoxyglucose (FDG). These techniques, however, are not specific for AD. Based on the chemistry of histologic staining dyes, several Aβ-specific positron-emitting radiotracers have been developed to image neuropathology of AD. Among these, [(11)C]PiB is the most studied Aβ-binding PET radiopharmaceutical in the world. The histologic and biochemical specificity of PiB binding across different regions of the AD brain was demonstrated by showing a direct correlation between Aβ-containing amyloid plaques and in vivo [(11)C]PiB retention measured by PET imaging. Because (11)C is not ideal for commercialization, several (18)F-labeled tracers have been developed. At this time, [(18)F]3'-F-PiB (Flutemetamol), (18)F-AV-45 (Florbetapir), and (18)F-AV-1 (Florbetaben) are undergoing extensive phase II and III clinical trials. This article provides a brief review of the amyloid biology and chemistry of Aβ-specific (11)C and (18)F-PET radiopharmaceuticals. Clinical trials have clearly documented that PET radiopharmaceuticals capable of assessing Aβ content in vivo in the brains of AD subjects and subjects with mild cognitive impairment will be important as diagnostic agents to detect in vivo amyloid brain pathology. In addition, PET amyloid imaging will also help test the amyloid cascade hypothesis of AD and as an aid to assess the efficacy of antiamyloid therapeutics currently under development in clinical trials.
Collapse
Affiliation(s)
- Shankar Vallabhajosula
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Weill Cornell Medical College of Cornell University and New York Presbyterian Hospital, NY, USA.
| |
Collapse
|
32
|
Goveas JS, Xie C, Ward BD, Wu Z, Li W, Franczak M, Jones JL, Antuono PG, Li SJ. Recovery of hippocampal network connectivity correlates with cognitive improvement in mild Alzheimer's disease patients treated with donepezil assessed by resting-state fMRI. J Magn Reson Imaging 2011; 34:764-73. [PMID: 21769962 DOI: 10.1002/jmri.22662] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 04/29/2011] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To identify the neural correlates of cognitive improvement in mild Alzheimer's disease (AD) subjects following 12 weeks of donepezil treatment. MATERIALS AND METHODS Resting-state functional connectivity magnetic resonance imaging (R-fMRI) was used to measure the hippocampal functional connectivity (HFC) in 14 mild AD and 18 age-matched normal (CN) subjects. AD subjects were scanned at baseline and after donepezil treatment. CN subjects were scanned only at baseline as a reference to identify regions correlated or anticorrelated to the hippocampus. Before each scan, participants underwent cognitive, behavioral, and functional assessments. RESULTS After donepezil treatment, neural correlates of cognitive improvement measured by Mini-Mental State Examination scores were identified in the left parahippocampus, dorsolateral prefrontal cortex (DLPFC), and inferior frontal gyrus. Improvement in AD Assessment Scale-cognitive subscale scores correlated with the HFC changes in the left DLPFC and middle frontal gyrus. Stronger recovery in the network connectivity was associated with cognitive improvement. CONCLUSION R-fMRI may provide novel insights into the brain's responses to AD treatment in clinical pharmacological trials, and also may predict clinical response.
Collapse
Affiliation(s)
- Joseph S Goveas
- Department of Psychiatry and Behavioral Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kim MH, Maeng HJ, Yu KH, Lee KR, Tsuruo T, Kim DD, Shim CK, Chung SJ. Evidence of carrier-mediated transport in the penetration of donepezil into the rat brain. J Pharm Sci 2010; 99:1548-66. [PMID: 19691109 DOI: 10.1002/jps.21895] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The objective of this study was to characterize the mechanism that controls the transport of donepezil into the brain. The apparent brain uptake clearance (CL(app,br)) was decreased as a function of the dose of donepezil, suggesting an involvement of a saturable transport process via transporter(s) in the penetration across the blood-brain barrier (BBB). Consistent with in vivo results, the uptake of substrates for organic cation transporters was significantly reduced by donepezil in both MBEC4 cells (i.e., a model for BBB) and HEK 293 cells expressing the transporters found in the brain, indicative of the involvement of organic cation transporters in the transport of the drug. Furthermore, donepezil transport was enhanced (p < 0.01) in HEK 293 cells expressing rOCNT1, rOCTN2, or rCHT1. The CL(app,br) was reduced up to 52.8% of the control in rats that had been pretreated with choline, while the CL(app,br) was unaffected with pretreatments with organic cations other than choline, suggesting that choline and donepezil share a common transport mechanism in the penetration across the BBB in vivo. Taken together, these observations suggest that the transport of donepezil across the BBB is mediated by organic cation transporters such as choline transport system(s).
Collapse
Affiliation(s)
- Mi-Hwa Kim
- Department of Pharmaceutics, College of Pharmacy, Seoul National University, San 56-1, Shinlim-dong, Kwanak-gu, Seoul 151-742, Korea
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Estimation of Plasma IC50 of Donepezil for Cerebral Acetylcholinesterase Inhibition in Patients With Alzheimer Disease Using Positron Emission Tomography. Clin Neuropharmacol 2010; 33:74-8. [DOI: 10.1097/wnf.0b013e3181c71be9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
In-vivo visualization of key molecular processes involved in Alzheimer's disease pathogenesis: Insights from neuroimaging research in humans and rodent models. Biochim Biophys Acta Mol Basis Dis 2010; 1802:373-88. [PMID: 20060898 DOI: 10.1016/j.bbadis.2010.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 12/17/2009] [Accepted: 01/05/2010] [Indexed: 10/20/2022]
Abstract
Diverse age-associated neurodegenerative disorders are featured at a molecular level by depositions of self-aggregating molecules, as represented by amyloid beta peptides (Abeta) and tau proteins in Alzheimer's disease, and cascade-type chain reactions are supposedly commenced with biochemical aberrancies of these amyloidogenic components. Mutagenesis and multiplication of the genes encoding Abeta, tau and other pathogenic initiators may accelerate the incipient process at the cascade top, rationalizing generations of transgenic and knock-in animal models of these illnesses. Meanwhile, these genetic manipulations do not necessarily compress the timelines of crucial intermediate events linking amyloidogenesis and neuronal lethality, resulting in an incomplete recapitulation of the diseases. Requirements for modeling the entire cascade can be illustrated by a side-by-side comparison of humans and animal models with the aid of imaging-based biomarkers commonly applicable to different species. Notably, key components in a highly reactive state are assayable by probe-assisted neuroimaging techniques exemplified by positron emission tomography (PET), providing critical information on the in-vivo accessibility of these target molecules. In fact, multispecies PET studies in conjunction with biochemical, electrophysiological and neuropathological tests have revealed putative neurotoxic subspecies of Abeta assemblies, translocator proteins accumulating in aggressive but not neuroprotective microglia, and functionally active neuroreceptors available to endogenous neurotransmitters and exogenous agonistic ligands. Bidirectional translational studies between human cases and model strains based on this experimental paradigm are presently aimed at clarifying the tau pathogenesis, and would be expanded to analyses of disrupted calcium homeostasis and mitochondrial impairments. Since reciprocal causalities among the key processes have indicated an architectural interchangeability between cascade and network connections as an etiological representation, longitudinal imaging assays with manifold probes covering the cascade from top to bottom virtually delineate the network dynamics continuously altering in the course of the disease and its treatment, and therefore expedite the evaluation and optimization of therapeutic strategies intended for suppressing the neurodegenerative pathway over its full length.
Collapse
|
36
|
Radiopharmaceuticals for positron emission tomography investigations of Alzheimer’s disease. Eur J Nucl Med Mol Imaging 2009; 37:1575-93. [DOI: 10.1007/s00259-009-1301-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Accepted: 10/09/2009] [Indexed: 12/11/2022]
|
37
|
Okamura N, Fodero-Tavoletti MT, Kudo Y, Rowe CC, Furumoto S, Arai H, Masters CL, Yanai K, Villemagne VL. Advances in molecular imaging for the diagnosis of dementia. ACTA ACUST UNITED AC 2009; 3:705-16. [DOI: 10.1517/17530050903133790] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Hiraoka K, Okamura N, Funaki Y, Watanuki S, Tashiro M, Kato M, Hayashi A, Hosokai Y, Yamasaki H, Fujii T, Mori E, Yanai K, Watabe H. Quantitative analysis of donepezil binding to acetylcholinesterase using positron emission tomography and [5-(11)C-methoxy]donepezil. Neuroimage 2009; 46:616-23. [PMID: 19286462 DOI: 10.1016/j.neuroimage.2009.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 02/24/2009] [Accepted: 03/04/2009] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to establish kinetic analysis of [5-(11)C-methoxy]donepezil ([(11)C]donepezil), which was developed for the in-vivo visualization of donepezil binding to acetylcholinesterase (AChE) using positron emission tomography (PET). Donepezil is an AChE inhibitor that is widely prescribed to ameliorate the cognitive impairment of patients with dementia. Six healthy subjects took part in a dynamic study involving a 60-min PET scan after intravenous injection of [(11)C]donepezil. The total distribution volume (tDV) of [(11)C]donepezil was quantified by compartmental kinetic analysis and Logan graphical analysis. A one-tissue compartment model (1TCM) and a two-tissue compartment model (2TCM) were applied in the kinetic analysis. Goodness of fit was assessed with chi(2) criterion and Akaike's Information Criterion (AIC). Compared with a 1TCM, goodness of fit was significantly improved by a 2TCM. The tDVs provided by Logan graphical analysis were slightly lower than those provided by a 2TCM. The rank order of the mean tDVs in 10 regions was in line with the AChE activity reported in a previous post-mortem study. Logan graphical analysis generated voxel-wise images of tDV, revealing the overall distribution pattern of AChE in individual brains. Significant correlation was observed between tDVs calculated with and without metabolite correction for plasma time-activity curves, indicating that metabolite correction could be omitted. In conclusion, this method enables quantitative analysis of AChE and direct investigation of the pharmacokinetics of donepezil in the human brain.
Collapse
Affiliation(s)
- Kotaro Hiraoka
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Loke YK, Somogyi A, Lewis LD, Schachter M, Cohen AF, Ritter JM. Looking back: editors' pick of 2008. Br J Clin Pharmacol 2009; 67:1-4. [PMID: 19133056 PMCID: PMC2668078 DOI: 10.1111/j.1365-2125.2008.03354.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
40
|
Jacobson SA, Sabbagh MN. Donepezil: potential neuroprotective and disease-modifying effects. Expert Opin Drug Metab Toxicol 2008; 4:1363-9. [DOI: 10.1517/17425255.4.10.1363] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
41
|
Application of positron emission tomography to neuroimaging in sports sciences. Methods 2008; 45:300-6. [DOI: 10.1016/j.ymeth.2008.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 05/02/2008] [Accepted: 05/05/2008] [Indexed: 11/23/2022] Open
|