1
|
Tai G, Xia F, Chen C, Pereira A, Pirhalla J, Miao X, Young G, Beaumont C, Chen L. Investigation of the human metabolism and disposition of the prolyl hydrolase inhibitor daprodustat using IV microtracer with Entero-Test bile string. Pharmacol Res Perspect 2023; 11:e1145. [PMID: 37885335 PMCID: PMC10603292 DOI: 10.1002/prp2.1145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Daprodustat is an oral small molecule hypoxia-inducible factor (HIF) prolyl hydroxylase inhibitor (PHI) approved in Japan and the United States for the treatment of anemia associated with chronic kidney disease. This phase 1, nonrandomized, 2-period, crossover study in 6 healthy men characterized and quantified the metabolites generated after a microtracer IV infusion of 50 μg (125 nCi) [14 C]-daprodustat administered concomitantly with a nonradiolabeled therapeutic dose of a 6-mg daprodustat tablet, followed by a single oral solution dose of 25 mg (62.5 μCi) [14 C]-daprodustat. High-performance liquid chromatography (HPLC) coupled with radioactivity detection (TopCount or AMS) and HPLC-tandem mass spectrometry (HPLC-MSn ) were used for quantitative measurement and structural identification of radioactive metabolites in plasma, urine, feces, and bile. Following oral administration of [14 C]-daprodustat, unchanged daprodustat was the principal circulating drug-related component, accounting for 40% of plasma radioactivity. Predominant oxidative metabolites M2, M3, M4, and M13 individually represented 6-8% of the plasma radioactivity and together accounted for the majority of radioactivity in urine and feces (53% in both matrices; 12% and 41% of dose, respectively). Unchanged daprodustat was not detected in urine and was only 0.7% of total radioactivity in feces (<0.5% of dose), with the remainder of the dose accounted for by oxidative metabolites. The radio-metabolic profile of duodenal bile following IV infusion of [14 C]-daprodustat was similar to that observed in feces after oral administration. The data suggested that oral daprodustat was extensively absorbed, cleared exclusively by oxidative metabolism, and eliminated via hepatobiliary (primary) and urinary (secondary) excretion.
Collapse
Affiliation(s)
- Guoying Tai
- Drug Metabolism and PharmacokineticsGSKCollegevillePennsylvaniaUSA
| | - Fangming Xia
- Drug Metabolism and PharmacokineticsGSKCollegevillePennsylvaniaUSA
- Present address:
City of HopeDuarteCaliforniaUSA
| | - Cathy Chen
- Drug Metabolism and PharmacokineticsGSKCollegevillePennsylvaniaUSA
| | - Adrian Pereira
- Drug Metabolism and PharmacokineticsGSK, StevenageHertfordshireUK
| | - Jill Pirhalla
- Drug Metabolism and PharmacokineticsGSKCollegevillePennsylvaniaUSA
| | - Xiusheng Miao
- Drug Metabolism and PharmacokineticsGSKCollegevillePennsylvaniaUSA
| | - Graeme Young
- Drug Metabolism and PharmacokineticsGSK, WareHertfordshireUK
| | - Claire Beaumont
- Drug Metabolism and PharmacokineticsGSK, StevenageHertfordshireUK
| | - Liangfu Chen
- Drug Metabolism and PharmacokineticsGSKCollegevillePennsylvaniaUSA
| |
Collapse
|
2
|
Young GC, Spracklin DK, James AD, Hvenegaard MG, Scarfe G, Wagner DS, Georgi K, Schieferstein H, Bjornsdottir I, van Groen B, Romeo AA, Cassidy KC, Da-Violante G, Bister B, Blech S, Lyer R, Schulz SI, Cuyckens F, Moliner P. Considerations for Human ADME Strategy and Design Paradigm Shift(s) - An Industry White Paper. Clin Pharmacol Ther 2023; 113:775-781. [PMID: 35733280 DOI: 10.1002/cpt.2691] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/15/2022] [Indexed: 11/10/2022]
Abstract
The human absorption, distribution, metabolism, and excretion (hADME) study is the cornerstone of the clinical pharmacology package for small molecule drugs, providing comprehensive information on the rates and routes of disposition and elimination of drug-related material in humans through the use of 14 C-labeled drug. Significant changes have already been made in the design of the hADME study for many companies, but opportunity exists to continue to re-think both the design and timing of the hADME study in light of the potential offered by newer technologies, that enable flexibility in particular to reducing the magnitude of the radioactive dose used. This paper provides considerations on the variety of current strategies that exist across a number of pharmaceutical companies and on some of the ongoing debates around a potential move to the so called "human first/human only" approach, already adopted by at least one company. The paper also provides a framework for continuing the discussion in the application of further shifts in the paradigm.
Collapse
Affiliation(s)
- Graeme C Young
- GlaxoSmithKline Research & Development Ltd., David Jack Centre, Ware, UK
| | | | | | | | - Graeme Scarfe
- AstraZeneca, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Katrin Georgi
- The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | | | | | | | - Andrea A Romeo
- Roche Pharma Research and Early Development, Basel, Switzerland
| | | | | | - Bojan Bister
- Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Stefan Blech
- Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | | | | | | |
Collapse
|
3
|
Taskar KS, Yang X, Neuhoff S, Patel M, Yoshida K, Paine MF, Brouwer KL, Chu X, Sugiyama Y, Cook J, Polli JW, Hanna I, Lai Y, Zamek-Gliszczynski M. Clinical Relevance of Hepatic and Renal P-gp/BCRP Inhibition of Drugs: An International Transporter Consortium Perspective. Clin Pharmacol Ther 2022; 112:573-592. [PMID: 35612761 PMCID: PMC9436425 DOI: 10.1002/cpt.2670] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/16/2022] [Indexed: 12/11/2022]
Abstract
The role of P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) in drug-drug interactions (DDIs) and limiting drug absorption as well as restricting the brain penetration of drugs with certain physicochemical properties is well known. P-gp/BCRP inhibition by drugs in the gut has been reported to increase the systemic exposure to substrate drugs. A previous International Transporter Consortium (ITC) perspective discussed the feasibility of P-gp/BCRP inhibition at the blood-brain barrier and its implications. This ITC perspective elaborates and discusses specifically the hepatic and renal P-gp/BCRP (referred as systemic) inhibition of drugs and whether there is any consequence for substrate drug disposition. This perspective summarizes the clinical evidence-based recommendations regarding systemic P-gp and BCRP inhibition of drugs with a focus on biliary and active renal excretion pathways. Approaches to assess the clinical relevance of systemic P-gp and BCRP inhibition in the liver and kidneys included (i) curation of DDIs involving intravenously administered substrates or inhibitors; (ii) in vitro-to-in vivo extrapolation of P-gp-mediated DDIs at the systemic level; and (iii) curation of drugs with information available about the contribution of biliary excretion and related DDIs. Based on the totality of evidence reported to date, this perspective supports limited clinical DDI risk upon P-gp or BCRP inhibition in the liver or kidneys.
Collapse
Affiliation(s)
- Kunal S. Taskar
- Drug Metabolism and Pharmacokinetics, IVIVT, GlaxoSmithKline, Stevenage, UK
| | - Xinning Yang
- Office of Clinical Pharmacology, Center of Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD
| | - Sibylle Neuhoff
- Certara UK Ltd, Simcyp Division, 1 Concourse Way, Level 2-Acero, Sheffield, S1 2BJ, UK
| | - Mitesh Patel
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Kenta Yoshida
- Clinical Pharmacology, Genentech Early Research and Development, South San Francisco, CA 94080, USA
| | - Mary F. Paine
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA
| | - Kim L.R. Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Xiaoyan Chu
- Department of ADME and Discovery Toxicology, Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ 07033 USA
| | - Yuichi Sugiyama
- Laboratory of Quantitative System PK/Pharmacodynamics, School of Pharmacy, Kioicho campus, Josai International University, Tokyo 102-0093, Japan
| | - Jack Cook
- Clinical Pharmacology, Global Product Development, Pfizer Inc., Groton, Connecticut, USA
| | - Joseph W. Polli
- Global Medical Sciences, ViiV Healthcare, Research Triangle Park NC USA
| | - Imad Hanna
- Pharmacokinetic Sciences-Oncology, Novartis Institute for Biomedical Research, East Hanover, NJ
| | - Yurong Lai
- Drug Metabolism, Gilead Sciences Inc. Foster City, CA USA
| | | |
Collapse
|
4
|
John JV, McCarthy A, Su Y, Ackerman DN, Shahriar SS, Carlson MA, Reid SP, Santarpia JL, Zhu W, Xie J. Nanofiber capsules for minimally invasive sampling of biological specimens from gastrointestinal tract. Acta Biomater 2022; 146:211-221. [PMID: 35513306 DOI: 10.1016/j.actbio.2022.04.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/01/2022]
Abstract
Accurate and rapid point-of-care tissue and microbiome sampling is critical for early detection of cancers and infectious diseases and often result in effective early intervention and prevention of disease spread. In particular, the low prevalence of Barrett's and gastric premalignancy in the Western world makes population-based endoscopic screening unfeasible and cost-ineffective. Herein, we report a method that may be useful for prescreening the general population in a minimally invasive way using a swallowable, re-expandable, ultra-absorbable, and retrievable nanofiber cuboid and sphere produced by electrospinning, gas-foaming, coating, and crosslinking. The water absorption capacity of the cuboid- and sphere-shaped nanofiber objects is shown ∼6000% and ∼2000% of their dry mass. In contrast, unexpanded semicircular and square nanofiber membranes showed <500% of their dry mass. Moreover, the swallowable sphere and cuboid were able to collect and release more bacteria, viruses, and cells/tissues from solutions as compared with unexpanded scaffolds. In addition to that, an expanded sphere shows higher cell collection capacity from the esophagus inner wall as compared with the unexpanded nanofiber membrane. Taken together, the nanofiber capsules developed in this study could provide a minimally invasive method of collecting biological samples from the duodenal, gastric, esophagus, and oropharyngeal sites, potentially leading to timely and accurate diagnosis of many diseases. STATEMENT OF SIGNIFICANCE: Recently, minimally invasive technologies have gained much attention in tissue engineering and disease diagnosis. In this study, we engineered a swallowable and retrievable electrospun nanofiber capsule serving as collection device to collect specimens from internal organs in a minimally invasive manner. The sample collection device could be an alternative endoscopy to collect the samples from internal organs like jejunum, stomach, esophagus, and oropharynx without any sedation. The newly engineered nanofiber capsule could be used to collect, bacteria, virus, fluids, and cells from the abovementioned internal organs. In addition, the biocompatible and biodegradable nanofiber capsule on a string could exhibit a great sample collection capacity for the primary screening of Barret Esophagus, acid reflux, SARS-COVID-19, Helicobacter pylori, and gastric cancer.
Collapse
|
5
|
Liquid Biopsy as a Source of Nucleic Acid Biomarkers in the Diagnosis and Management of Lynch Syndrome. Int J Mol Sci 2022; 23:ijms23084284. [PMID: 35457101 PMCID: PMC9029375 DOI: 10.3390/ijms23084284] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 02/06/2023] Open
Abstract
Lynch syndrome (LS) is an autosomal dominant inherited cancer predisposition disorder, which may manifest as colorectal cancer (CRC), endometrial cancer (EC) or other malignancies of the gastrointestinal and genitourinary tract as well as the skin and brain. Its genetic cause is a defect in one of the four key DNA mismatch repair (MMR) loci. Testing of patients at risk is currently based on the absence of MMR protein staining and detection of mutations in cancer tissue and the germline, microsatellite instability (MSI) and the hypermethylated state of the MLH1 promoter. If LS is shown to have caused CRC, lifetime follow-up with regular screening (most importantly, colonoscopy) is required. In recent years, DNA and RNA markers extracted from liquid biopsies have found some use in the clinical diagnosis of LS. They have the potential to greatly enhance the efficiency of the follow-up process by making it minimally invasive, reproducible, and time effective. Here, we review markers reported in the literature and their current clinical applications, and we comment on possible future directions.
Collapse
|
6
|
Mahar KM, Caltabiano S, Andrews S, Ramanjineyulu B, Chen L, Young G, Pereira A, Lindsay AC, van den Berg F, Cobitz AR. Clinical Pharmacokinetics of Daprodustat: Results of an Absorption, Distribution, and Excretion Study With Intravenous Microtracer and Concomitant Oral Doses for Bioavailability Determination. Clin Pharmacol Drug Dev 2021; 10:1419-1431. [PMID: 34713596 PMCID: PMC9298194 DOI: 10.1002/cpdd.1029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 09/13/2021] [Indexed: 12/19/2022]
Abstract
Daprodustat, an oral hypoxia‐inducible factor prolyl hydroxylase inhibitor, is being investigated for treatment of anemia in chronic kidney disease. This phase 1, nonrandomized, 2‐period, crossover study in 6 healthy men characterized the absorption, distribution, and excretion of daprodustat when administered as oral and intravenous (IV) doses of unlabeled and radiolabeled daprodustat ([14C]‐GSK1278863). Tolerability and pharmacokinetic properties of daprodustat, and its 6 metabolites in the systemic circulation, were also evaluated. The mean recovery of radiolabeled daprodustat was ≈95% by day 5, with the majority in feces and minor renal elimination, indicating that daprodustat and metabolites are primarily eliminated via hepatobiliary and fecal routes. Approximately 40% of total circulating radioactivity in plasma following both IV and oral administration was daprodustat; thus, 60% was attributed to metabolites. It was estimated that ≈80% of daprodustat was absorbed across the gastrointestinal tract, and ≈18% cleared by hepatic extraction. Pharmacokinetics were essentially dose proportional, with moderate (≈66%) oral tablet bioavailability. Following IV administration, daprodustat plasma clearance (19.3 L/h) and volume of distribution (14.6 L) were low, suggesting low tissue distribution outside systemic circulation with likely low penetration into tissues. Daprodustat was generally well tolerated, with no deaths or serious or significant adverse events reported.
Collapse
Affiliation(s)
- Kelly M Mahar
- Clinical Pharmacology Modeling & Simulation, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Stephen Caltabiano
- Development-Clinical Sciences, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Susan Andrews
- Clinical Science & Study Operations, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | | | - Liangfu Chen
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Graeme Young
- Disposition & Biotransformation, GlaxoSmithKline, Ware, UK
| | - Adrian Pereira
- Disposition & Biotransformation, GlaxoSmithKline, Ware, UK
| | - Alistair C Lindsay
- Development-Clinical Sciences, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | | | - Alexander R Cobitz
- Development-Clinical Sciences, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| |
Collapse
|
7
|
McGowan EC, Aceves SS. Noninvasive tests for eosinophilic esophagitis: Ready for use? Ann Allergy Asthma Immunol 2021; 129:27-34. [PMID: 34706258 DOI: 10.1016/j.anai.2021.10.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To summarize the existing literature for several promising minimally invasive tests to measure disease activity in eosinophilic esophagitis (EoE). DATA SOURCES Literature searches were performed using PubMed. Keyword combinations included eosinophilic esophagitis and minimally invasive techniques, including the esophageal string test, Cytosponge, transnasal endoscopy, technetium-labeled heparin, and noninvasive biomarkers. STUDY SELECTIONS Retrospective and prospective observational studies, peer-reviewed reviews, and systematic reviews were selected. Data were reviewed and summarized. RESULTS Various techniques have been developed in recent years to measure disease activity in EoE without the need for conventional endoscopy. Our review summarizes the data on these techniques, the benefits and limitations, and future directions for implementation in both research and clinical care. CONCLUSION Tremendous progress has been made toward developing minimally invasive techniques to measure disease activity in EoE. Each of the techniques mentioned in this review has advantages and disadvantages, and some are closer to widespread use than others.
Collapse
Affiliation(s)
- Emily C McGowan
- Division of Allergy and Immunology, University of Virginia School of Medicine, Charlottesville, Virginia; Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Seema S Aceves
- Division of Allergy and Immunology, Departments of Pediatrics and Medicine, University of California San Diego, San Diego, California; Rady Children's Hospital-San Diego, San Diego, California
| |
Collapse
|
8
|
Integrating Duodenal Sampling in a Human Mass Balance Study to Quantify the Elimination Pathways of JNJ-53718678, a Respiratory Syncytial Virus Fusion Protein Inhibitor. Adv Ther 2020; 37:578-591. [PMID: 31832988 DOI: 10.1007/s12325-019-01162-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Indexed: 10/25/2022]
Abstract
INTRODUCTION The study objective was to characterize the excretion and metabolic profile of the respiratory syncytial virus fusion protein inhibitor, JNJ-53718678. Prior animal and in vitro studies suggested three main elimination pathways: N-glucuronidation to M8; CYP(3A4) metabolism leading to circulating metabolites M5, M12, M19 and M37; and JNJ-53718678 biliary excretion. To gain insight into the relative contribution of JNJ-53718678 and M8 biliary excretion, duodenal fluid sampling was incorporated into this mass balance study. METHODS A single oral dose of 500 mg 14C-JNJ-53718678 was administered to six healthy male subjects. Four hours after study drug intake, gallbladder contraction was stimulated and duodenal fluid samples were collected. JNJ-53718678, its key circulating metabolites and total radioactivity (TR) were quantified in plasma, feces, urine and duodenal fluid. Safety was monitored throughout. RESULTS JNJ-53718678 and M12 represented 47.4% and 17.8%, respectively, of TR area under the curve (AUC)∞ in plasma. M37 (9.6%), M19 (5.2%), M5 (4.3%) and M8 (1.4%) were minor metabolites; 70.6% of TR was recovered in feces and 19.9% in urine. Duodenal fluid concentrations (% of TR) were highest for JNJ-53718678 (11.6%) followed by M8 (10.4%), M5 (5.9%) and M12 (1.1%). In feces, 10-16% of TR was JNJ-53718678, 5-8% M5, < 1% M12 and < 1% M8. N-glucuronidation to M8 and direct biliary excretion of JNJ-53718678 represented 7% and 8% of drug clearance, respectively. JNJ-53718678 was safe and well tolerated. CONCLUSIONS JNJ-53718678 is primarily eliminated through CYP3A4-mediated metabolism. By integrating duodenal sampling, N-glucuronidation was confirmed as another metabolic pathway despite the low amount of M8 excreted in urine and feces. TRIAL REGISTRATION Eudract no. 2016-002664-14.
Collapse
|
9
|
Harrell AW, Wilson R, Man YL, Riddell K, Jarvis E, Young G, Chambers R, Crossman L, Georgiou A, Pereira A, Kenworthy D, Beaumont C, Marotti M, Wilkes D, Hessel EM, Fahy WA. An Innovative Approach to Characterize Clinical ADME and Pharmacokinetics of the Inhaled Drug Nemiralisib Using an Intravenous Microtracer Combined with an Inhaled Dose and an Oral Radiolabel Dose in Healthy Male Subjects. Drug Metab Dispos 2019; 47:1457-1468. [PMID: 31649125 DOI: 10.1124/dmd.119.088344] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 10/12/2019] [Indexed: 12/22/2022] Open
Abstract
An innovative open-label, crossover clinical study was used to investigate the excretion balance, pharmacokinetics, and metabolism of nemiralisib-an inhaled phosphoinositide 3-kinase delta inhibitor being developed for respiratory diseases. Six healthy men received a single intravenous microtracer of 10 µg [14C]nemiralisib with a concomitant inhaled nonradiolabeled 1000 µg dose followed by an oral 800 µg dose of [14C]nemiralisib 14 days later. Complementary methods including accelerator mass spectrometry allowed characterization of a range of parameters including oral absorption (Fabs), proportion of nemiralisib escaping gut wall metabolism (Fg), hepatic extraction (Eh), fraction of dose absorbed from inhaled dose (Flung), and renal clearance. Intravenous pharmacokinetics of nemiralisib were characterized by low blood clearance (10.0 l/h), long terminal half-life (55 hours), and high volume of distribution at steady state (728 l). Nemiralisib exhibited moderate inhaled and oral bioavailability (38% and 35%) while Flung was 29%. Absorption and first-pass parameters were corrected for blood renal clearance and compared with values without correction. Any swallowed nemiralisib was relatively well absorbed (Fabs, 0.48) with a high fraction escaping gut wall metabolism and low extraction by the liver (Fg and Eh being 0.83 and 0.10, respectively). There were no major human plasma metabolites requiring further qualification in animal studies. Both unchanged nemiralisib and its oxidative/conjugative metabolites were secreted in bile, with nemiralisib likely subject to further metabolism through enterohepatic recirculation. Direct renal clearance and metabolism followed by renal clearance were lesser routes of elimination. SIGNIFICANCE STATEMENT: A number of innovative features have been combined into one small clinical study enabling a comprehensive description of the human pharmacokinetics and metabolism of an inhaled molecule. Design elements included an intravenous 14C tracer administration concomitant with an inhalation dose that enabled derivation of parameters such as fraction absorbed (Fabs), the proportion of drug escaping first-pass extraction through the gut wall and liver (Fg and Fh) and hepatic extraction (Eh). Entero-test bile sampling enabled characterization of biliary elimination pathways.
Collapse
Affiliation(s)
- Andrew W Harrell
- Drug Metabolism and Pharmacokinetics (A.W.H., G.Y., R.C., D.K.) and Bioanalysis, Immunogenicity and Biomarkers (A.G., A.P.), GlaxoSmithKline R&D, Ware, United Kingdom; RD Projects Clinical Platforms & Sciences (R.W.), Drug Metabolism and Pharmacokinetics (C.B.), Discovery Medicine (Y.L.M.), Biostatistics (E.J.), GlaxoSmithKline R&D and Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, United Kingdom (E.M.H.); Safety and Medical Governance (M.M.) and Discovery Medicine (W.A.F.), GlaxoSmithKline R&D, Stockley Park, Uxbridge, United Kingdom; Global Clinical and Data Operations, GlaxoSmithKline R&D, Ermington, Australia (K.R.); Covance Laboratories, Harrogate, United Kingdom (L.C.); and Hammersmith Medicines Research, London, United Kingdom (D.W.)
| | - Robert Wilson
- Drug Metabolism and Pharmacokinetics (A.W.H., G.Y., R.C., D.K.) and Bioanalysis, Immunogenicity and Biomarkers (A.G., A.P.), GlaxoSmithKline R&D, Ware, United Kingdom; RD Projects Clinical Platforms & Sciences (R.W.), Drug Metabolism and Pharmacokinetics (C.B.), Discovery Medicine (Y.L.M.), Biostatistics (E.J.), GlaxoSmithKline R&D and Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, United Kingdom (E.M.H.); Safety and Medical Governance (M.M.) and Discovery Medicine (W.A.F.), GlaxoSmithKline R&D, Stockley Park, Uxbridge, United Kingdom; Global Clinical and Data Operations, GlaxoSmithKline R&D, Ermington, Australia (K.R.); Covance Laboratories, Harrogate, United Kingdom (L.C.); and Hammersmith Medicines Research, London, United Kingdom (D.W.)
| | - Yau Lun Man
- Drug Metabolism and Pharmacokinetics (A.W.H., G.Y., R.C., D.K.) and Bioanalysis, Immunogenicity and Biomarkers (A.G., A.P.), GlaxoSmithKline R&D, Ware, United Kingdom; RD Projects Clinical Platforms & Sciences (R.W.), Drug Metabolism and Pharmacokinetics (C.B.), Discovery Medicine (Y.L.M.), Biostatistics (E.J.), GlaxoSmithKline R&D and Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, United Kingdom (E.M.H.); Safety and Medical Governance (M.M.) and Discovery Medicine (W.A.F.), GlaxoSmithKline R&D, Stockley Park, Uxbridge, United Kingdom; Global Clinical and Data Operations, GlaxoSmithKline R&D, Ermington, Australia (K.R.); Covance Laboratories, Harrogate, United Kingdom (L.C.); and Hammersmith Medicines Research, London, United Kingdom (D.W.)
| | - Kylie Riddell
- Drug Metabolism and Pharmacokinetics (A.W.H., G.Y., R.C., D.K.) and Bioanalysis, Immunogenicity and Biomarkers (A.G., A.P.), GlaxoSmithKline R&D, Ware, United Kingdom; RD Projects Clinical Platforms & Sciences (R.W.), Drug Metabolism and Pharmacokinetics (C.B.), Discovery Medicine (Y.L.M.), Biostatistics (E.J.), GlaxoSmithKline R&D and Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, United Kingdom (E.M.H.); Safety and Medical Governance (M.M.) and Discovery Medicine (W.A.F.), GlaxoSmithKline R&D, Stockley Park, Uxbridge, United Kingdom; Global Clinical and Data Operations, GlaxoSmithKline R&D, Ermington, Australia (K.R.); Covance Laboratories, Harrogate, United Kingdom (L.C.); and Hammersmith Medicines Research, London, United Kingdom (D.W.)
| | - Emily Jarvis
- Drug Metabolism and Pharmacokinetics (A.W.H., G.Y., R.C., D.K.) and Bioanalysis, Immunogenicity and Biomarkers (A.G., A.P.), GlaxoSmithKline R&D, Ware, United Kingdom; RD Projects Clinical Platforms & Sciences (R.W.), Drug Metabolism and Pharmacokinetics (C.B.), Discovery Medicine (Y.L.M.), Biostatistics (E.J.), GlaxoSmithKline R&D and Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, United Kingdom (E.M.H.); Safety and Medical Governance (M.M.) and Discovery Medicine (W.A.F.), GlaxoSmithKline R&D, Stockley Park, Uxbridge, United Kingdom; Global Clinical and Data Operations, GlaxoSmithKline R&D, Ermington, Australia (K.R.); Covance Laboratories, Harrogate, United Kingdom (L.C.); and Hammersmith Medicines Research, London, United Kingdom (D.W.)
| | - Graeme Young
- Drug Metabolism and Pharmacokinetics (A.W.H., G.Y., R.C., D.K.) and Bioanalysis, Immunogenicity and Biomarkers (A.G., A.P.), GlaxoSmithKline R&D, Ware, United Kingdom; RD Projects Clinical Platforms & Sciences (R.W.), Drug Metabolism and Pharmacokinetics (C.B.), Discovery Medicine (Y.L.M.), Biostatistics (E.J.), GlaxoSmithKline R&D and Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, United Kingdom (E.M.H.); Safety and Medical Governance (M.M.) and Discovery Medicine (W.A.F.), GlaxoSmithKline R&D, Stockley Park, Uxbridge, United Kingdom; Global Clinical and Data Operations, GlaxoSmithKline R&D, Ermington, Australia (K.R.); Covance Laboratories, Harrogate, United Kingdom (L.C.); and Hammersmith Medicines Research, London, United Kingdom (D.W.)
| | - Robert Chambers
- Drug Metabolism and Pharmacokinetics (A.W.H., G.Y., R.C., D.K.) and Bioanalysis, Immunogenicity and Biomarkers (A.G., A.P.), GlaxoSmithKline R&D, Ware, United Kingdom; RD Projects Clinical Platforms & Sciences (R.W.), Drug Metabolism and Pharmacokinetics (C.B.), Discovery Medicine (Y.L.M.), Biostatistics (E.J.), GlaxoSmithKline R&D and Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, United Kingdom (E.M.H.); Safety and Medical Governance (M.M.) and Discovery Medicine (W.A.F.), GlaxoSmithKline R&D, Stockley Park, Uxbridge, United Kingdom; Global Clinical and Data Operations, GlaxoSmithKline R&D, Ermington, Australia (K.R.); Covance Laboratories, Harrogate, United Kingdom (L.C.); and Hammersmith Medicines Research, London, United Kingdom (D.W.)
| | - Lee Crossman
- Drug Metabolism and Pharmacokinetics (A.W.H., G.Y., R.C., D.K.) and Bioanalysis, Immunogenicity and Biomarkers (A.G., A.P.), GlaxoSmithKline R&D, Ware, United Kingdom; RD Projects Clinical Platforms & Sciences (R.W.), Drug Metabolism and Pharmacokinetics (C.B.), Discovery Medicine (Y.L.M.), Biostatistics (E.J.), GlaxoSmithKline R&D and Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, United Kingdom (E.M.H.); Safety and Medical Governance (M.M.) and Discovery Medicine (W.A.F.), GlaxoSmithKline R&D, Stockley Park, Uxbridge, United Kingdom; Global Clinical and Data Operations, GlaxoSmithKline R&D, Ermington, Australia (K.R.); Covance Laboratories, Harrogate, United Kingdom (L.C.); and Hammersmith Medicines Research, London, United Kingdom (D.W.)
| | - Alex Georgiou
- Drug Metabolism and Pharmacokinetics (A.W.H., G.Y., R.C., D.K.) and Bioanalysis, Immunogenicity and Biomarkers (A.G., A.P.), GlaxoSmithKline R&D, Ware, United Kingdom; RD Projects Clinical Platforms & Sciences (R.W.), Drug Metabolism and Pharmacokinetics (C.B.), Discovery Medicine (Y.L.M.), Biostatistics (E.J.), GlaxoSmithKline R&D and Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, United Kingdom (E.M.H.); Safety and Medical Governance (M.M.) and Discovery Medicine (W.A.F.), GlaxoSmithKline R&D, Stockley Park, Uxbridge, United Kingdom; Global Clinical and Data Operations, GlaxoSmithKline R&D, Ermington, Australia (K.R.); Covance Laboratories, Harrogate, United Kingdom (L.C.); and Hammersmith Medicines Research, London, United Kingdom (D.W.)
| | - Adrian Pereira
- Drug Metabolism and Pharmacokinetics (A.W.H., G.Y., R.C., D.K.) and Bioanalysis, Immunogenicity and Biomarkers (A.G., A.P.), GlaxoSmithKline R&D, Ware, United Kingdom; RD Projects Clinical Platforms & Sciences (R.W.), Drug Metabolism and Pharmacokinetics (C.B.), Discovery Medicine (Y.L.M.), Biostatistics (E.J.), GlaxoSmithKline R&D and Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, United Kingdom (E.M.H.); Safety and Medical Governance (M.M.) and Discovery Medicine (W.A.F.), GlaxoSmithKline R&D, Stockley Park, Uxbridge, United Kingdom; Global Clinical and Data Operations, GlaxoSmithKline R&D, Ermington, Australia (K.R.); Covance Laboratories, Harrogate, United Kingdom (L.C.); and Hammersmith Medicines Research, London, United Kingdom (D.W.)
| | - David Kenworthy
- Drug Metabolism and Pharmacokinetics (A.W.H., G.Y., R.C., D.K.) and Bioanalysis, Immunogenicity and Biomarkers (A.G., A.P.), GlaxoSmithKline R&D, Ware, United Kingdom; RD Projects Clinical Platforms & Sciences (R.W.), Drug Metabolism and Pharmacokinetics (C.B.), Discovery Medicine (Y.L.M.), Biostatistics (E.J.), GlaxoSmithKline R&D and Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, United Kingdom (E.M.H.); Safety and Medical Governance (M.M.) and Discovery Medicine (W.A.F.), GlaxoSmithKline R&D, Stockley Park, Uxbridge, United Kingdom; Global Clinical and Data Operations, GlaxoSmithKline R&D, Ermington, Australia (K.R.); Covance Laboratories, Harrogate, United Kingdom (L.C.); and Hammersmith Medicines Research, London, United Kingdom (D.W.)
| | - Claire Beaumont
- Drug Metabolism and Pharmacokinetics (A.W.H., G.Y., R.C., D.K.) and Bioanalysis, Immunogenicity and Biomarkers (A.G., A.P.), GlaxoSmithKline R&D, Ware, United Kingdom; RD Projects Clinical Platforms & Sciences (R.W.), Drug Metabolism and Pharmacokinetics (C.B.), Discovery Medicine (Y.L.M.), Biostatistics (E.J.), GlaxoSmithKline R&D and Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, United Kingdom (E.M.H.); Safety and Medical Governance (M.M.) and Discovery Medicine (W.A.F.), GlaxoSmithKline R&D, Stockley Park, Uxbridge, United Kingdom; Global Clinical and Data Operations, GlaxoSmithKline R&D, Ermington, Australia (K.R.); Covance Laboratories, Harrogate, United Kingdom (L.C.); and Hammersmith Medicines Research, London, United Kingdom (D.W.)
| | - Miriam Marotti
- Drug Metabolism and Pharmacokinetics (A.W.H., G.Y., R.C., D.K.) and Bioanalysis, Immunogenicity and Biomarkers (A.G., A.P.), GlaxoSmithKline R&D, Ware, United Kingdom; RD Projects Clinical Platforms & Sciences (R.W.), Drug Metabolism and Pharmacokinetics (C.B.), Discovery Medicine (Y.L.M.), Biostatistics (E.J.), GlaxoSmithKline R&D and Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, United Kingdom (E.M.H.); Safety and Medical Governance (M.M.) and Discovery Medicine (W.A.F.), GlaxoSmithKline R&D, Stockley Park, Uxbridge, United Kingdom; Global Clinical and Data Operations, GlaxoSmithKline R&D, Ermington, Australia (K.R.); Covance Laboratories, Harrogate, United Kingdom (L.C.); and Hammersmith Medicines Research, London, United Kingdom (D.W.)
| | - Denisa Wilkes
- Drug Metabolism and Pharmacokinetics (A.W.H., G.Y., R.C., D.K.) and Bioanalysis, Immunogenicity and Biomarkers (A.G., A.P.), GlaxoSmithKline R&D, Ware, United Kingdom; RD Projects Clinical Platforms & Sciences (R.W.), Drug Metabolism and Pharmacokinetics (C.B.), Discovery Medicine (Y.L.M.), Biostatistics (E.J.), GlaxoSmithKline R&D and Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, United Kingdom (E.M.H.); Safety and Medical Governance (M.M.) and Discovery Medicine (W.A.F.), GlaxoSmithKline R&D, Stockley Park, Uxbridge, United Kingdom; Global Clinical and Data Operations, GlaxoSmithKline R&D, Ermington, Australia (K.R.); Covance Laboratories, Harrogate, United Kingdom (L.C.); and Hammersmith Medicines Research, London, United Kingdom (D.W.)
| | - Edith M Hessel
- Drug Metabolism and Pharmacokinetics (A.W.H., G.Y., R.C., D.K.) and Bioanalysis, Immunogenicity and Biomarkers (A.G., A.P.), GlaxoSmithKline R&D, Ware, United Kingdom; RD Projects Clinical Platforms & Sciences (R.W.), Drug Metabolism and Pharmacokinetics (C.B.), Discovery Medicine (Y.L.M.), Biostatistics (E.J.), GlaxoSmithKline R&D and Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, United Kingdom (E.M.H.); Safety and Medical Governance (M.M.) and Discovery Medicine (W.A.F.), GlaxoSmithKline R&D, Stockley Park, Uxbridge, United Kingdom; Global Clinical and Data Operations, GlaxoSmithKline R&D, Ermington, Australia (K.R.); Covance Laboratories, Harrogate, United Kingdom (L.C.); and Hammersmith Medicines Research, London, United Kingdom (D.W.)
| | - William A Fahy
- Drug Metabolism and Pharmacokinetics (A.W.H., G.Y., R.C., D.K.) and Bioanalysis, Immunogenicity and Biomarkers (A.G., A.P.), GlaxoSmithKline R&D, Ware, United Kingdom; RD Projects Clinical Platforms & Sciences (R.W.), Drug Metabolism and Pharmacokinetics (C.B.), Discovery Medicine (Y.L.M.), Biostatistics (E.J.), GlaxoSmithKline R&D and Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, United Kingdom (E.M.H.); Safety and Medical Governance (M.M.) and Discovery Medicine (W.A.F.), GlaxoSmithKline R&D, Stockley Park, Uxbridge, United Kingdom; Global Clinical and Data Operations, GlaxoSmithKline R&D, Ermington, Australia (K.R.); Covance Laboratories, Harrogate, United Kingdom (L.C.); and Hammersmith Medicines Research, London, United Kingdom (D.W.)
| |
Collapse
|
10
|
One-Hour Esophageal String Test: A Nonendoscopic Minimally Invasive Test That Accurately Detects Disease Activity in Eosinophilic Esophagitis. Am J Gastroenterol 2019; 114:1614-1625. [PMID: 31567192 PMCID: PMC6784776 DOI: 10.14309/ajg.0000000000000371] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Eosinophilic esophagitis (EoE), a chronic food allergic disease, lacks sensitive and specific peripheral biomarkers. We hypothesized that levels of EoE-related biomarkers captured using a 1-hour minimally invasive Esophageal String Test (EST) would correlate with mucosal eosinophil counts and tissue concentrations of these same biomarkers. We aimed to determine whether a 1-hour EST accurately distinguishes active from inactive EoE or a normal esophagus. METHODS In a prospective, multisite study, children and adults (ages 7-55 years) undergoing a clinically indicated esophagogastroduodenoscopy performed an EST with an esophageal dwell time of 1 hour. Subjects were divided into 3 groups: active EoE, inactive EoE, and normal esophageal mucosa. Eosinophil-associated protein levels were compared between EST effluents and esophageal biopsy extracts. Statistical modeling was performed to select biomarkers that best correlated with and predicted eosinophilic inflammation. RESULTS One hundred thirty-four subjects (74 children, 60 adults) with active EoE (n = 62), inactive EoE (n = 37), and patient controls with a normal esophagus (n = 35) completed the study. EST-captured eosinophil-associated biomarkers correlated significantly with peak eosinophils/high-power field, endoscopic visual scoring, and the same proteins extracted from mucosal biopsies. Statistical modeling, using combined eotaxin-3 and major basic protein-1 concentrations, led to the development of EoE scores that distinguished subjects with active EoE from inactive EoE or normal esophagi. Eighty-seven percent of children, 95% of parents, and 92% of adults preferred the EST over endoscopy if it provided similar information. DISCUSSION The 1-hour EST accurately distinguishes active from inactive EoE in children and adults and may facilitate monitoring of disease activity in a safe and minimally invasive fashion.
Collapse
|
11
|
Dierks EA, Luk CE, Cai H, MacGuire J, Fox M, Smalley J, Fancher RM, Janovitz E, Foster K, Sun Q. Application of ultrasound-guided cholecystocentesis to the evaluation of the metabolite profiling in bile of dogs and cynomolgus monkeys. Pharmacol Res Perspect 2019; 7:e00488. [PMID: 31149343 PMCID: PMC6536413 DOI: 10.1002/prp2.488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 11/07/2022] Open
Abstract
In this study, we describe a novel approach for collecting bile from dogs and cynomolgus monkeys for metabolite profiling, ultrasound-guided cholecystocentesis (UCC). Sampling bile by UCC twice within 24 hours was well tolerated by dogs and monkeys. In studies with atorvastatin (ATV) the metabolite profiles were similar in bile obtained through UCC and from bile duct-cannulated (BDC) dogs. Similar results were observed in UCC and BDC monkeys as well. In both monkey and dog, the primary metabolic pathway observed for ATV was oxidative metabolism. The 2-hydroxy- and 4-hydroxyatorvastatin metabolites were the major oxidation products, which is consistent with previously published metabolite profiles. S-cysteine and glucuronide conjugates were also observed. UCC offers a viable alternative to bile duct cannulation for collection of bile for metabolite profiling of compounds that undergo biliary excretion, given the similar metabolite profiles in bile obtained via each method. Use of UCC for metabolite profiling may reduce the need for studies using BDC animals, a resource-intensive model.
Collapse
Affiliation(s)
- Elizabeth A. Dierks
- Pharmaceutical Candidate OptimizationBristol‐Myers SquibbPrincetonNew Jersey
| | - Chiuwa E. Luk
- Pharmaceutical Candidate OptimizationBristol‐Myers SquibbPrincetonNew Jersey
| | - Hong Cai
- Pharmaceutical Candidate OptimizationBristol‐Myers SquibbPrincetonNew Jersey
| | - Jamus MacGuire
- Veterinary SciencesBristol‐Myers SquibbPrincetonNew Jersey
| | - Maxine Fox
- Veterinary SciencesBristol‐Myers SquibbPrincetonNew Jersey
| | - James Smalley
- Pharmaceutical Candidate OptimizationBristol‐Myers SquibbPrincetonNew Jersey
| | - R. Marc Fancher
- Pharmaceutical Candidate OptimizationBristol‐Myers SquibbPrincetonNew Jersey
| | - Evan Janovitz
- Pharmaceutical Candidate OptimizationBristol‐Myers SquibbPrincetonNew Jersey
| | - Kimberly Foster
- Pharmaceutical Candidate OptimizationBristol‐Myers SquibbPrincetonNew Jersey
| | - Qin Sun
- Pharmaceutical Candidate OptimizationBristol‐Myers SquibbPrincetonNew Jersey
| |
Collapse
|
12
|
Takahashi RH, Chang JH, Pang J, Liang X, Ma S. Unequal Absorption of Radiolabeled and Nonradiolabeled Drug from the Oral Dose Leads to Incorrect Estimates of Drug Absorption and Circulating Metabolites in a Mass Balance Study. Drug Metab Lett 2018; 13:37-44. [PMID: 30499424 DOI: 10.2174/1872312813666181129162237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/21/2018] [Accepted: 11/27/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mass balance studies conducted using radiolabeled material (14C or 3H) definitively characterize the Absorption, Metabolism, and Excretion (AME) of a drug. A critical aspect of these studies is that the radiotracer maintains its proportion to total drug from its administration to its complete elimination from the body. In the study of GDC-0276 in beagle dogs, we observed that the 14C radiotracer proportion (specific activity) varied through the study. METHOD High resolution-accurate mass spectrometric measurements of 12C and 14C isotopes of GDC- 0276 and its metabolites in plasma and excreta samples were used to determine the apparent specific activities, which were higher than the specific activity of the dosing formulation. Drug concentrations were adjusted to the observed specific activities to correct the readouts for GDC-0276 AME and PK. RESULTS The enrichment of 14C, which resulted in higher specific activities, was consistent with faster and more extensive absorption of the radiotracer from the dosing formulation. This resulted in overestimating the dose absorbed, the extent of elimination in urine and bile, and the exposures to circulating metabolites. These biases were corrected by the specific activities determined for study samples by mass spectrometry. CONCLUSION Assuming that the radiotracer was proportional to total drug throughout a radiolabeled study was not valid in a 14C study in beagle dogs. This presumably resulted from unequal absorption of the radiotracer and nonradiolabeled test articles from the oral dose due to inequivalent solid forms. We were able to provide a more accurate description of the AME of GDC-0276 in dogs by characterizing the differential absorption of the radiotracer.
Collapse
Affiliation(s)
- Ryan H Takahashi
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, United States
| | - Jae H Chang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, United States
| | - Jodie Pang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, United States
| | - Xiaorong Liang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, United States
| | - Shuguang Ma
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, United States
| |
Collapse
|
13
|
Ambery C, Young G, Fuller T, Lazaar AL, Pereira A, Hughes A, Ramsay D, van den Berg F, Daley-Yates P. Pharmacokinetics, Excretion, and Mass Balance of [ 14 C]-Batefenterol Following a Single Microtracer Intravenous Dose (Concomitant to an Inhaled Dose) or Oral Dose of Batefenterol in Healthy Men. Clin Pharmacol Drug Dev 2018; 7:901-910. [PMID: 30230263 PMCID: PMC6282586 DOI: 10.1002/cpdd.616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 08/16/2018] [Indexed: 12/16/2022]
Abstract
Inhaled batefenterol is an investigational bifunctional molecule for the treatment of chronic obstructive pulmonary disease. The excretion balance and pharmacokinetics of batefenterol using [14C]‐radiolabeled drug administered orally and as intravenous (IV) infusion were assessed. In this 2‐period, open‐label study, 6 healthy male subjects received a single IV microtracer 1‐hour infusion of 4 μg [14C]‐batefenterol concomitant with inhaled nonradiolabeled batefenterol (1200 μg) followed by oral [14C]‐batefenterol (200 μg) in period 2 after a 14‐day washout. The primary end points included: the area under the concentration‐time curve from time zero to last time of quantifiable concentration (AUC0‐t); maximum observed concentration (Cmax); and time of occurrence of maximum observed concentration. Following IV administration, the geometric mean AUC0‐t of [14C]‐batefenterol was 121.9 pgEq • h/mL; maximum observed concentration and time of occurrence of maximum observed concentration were 92.7 pgEq/mL and 0.8 hours, respectively; absolute oral bioavailability was 0.012%. The mean AUC0‐t ratio indicated that [14C]‐batefenterol accounted for 85% of total circulating radioactivity in the plasma initially and declined rapidly following IV administration, but only ∼0.2% of total circulating radioactivity following oral administration. Cumulative mean recovery of total radioactive [14C]‐batefenterol in urine and feces was 6.31% and 77.6%, respectively. Overall, batefenterol exhibited low systemic bioavailability after inhaled and oral administration, and high fecal excretion and low urinary excretion following IV and oral administration.
Collapse
Affiliation(s)
- Claire Ambery
- Clinical Pharmacology Modelling and Simulation, GSK, Stockley Park West, Uxbridge, Middlesex, UK
| | - Graeme Young
- Bioanalysis, Immunogenicity and Biomarkers (BIB), GSK, Ware, Hertfordshire, UK
| | - Teresa Fuller
- GSK, Medicines Research Centre, Stevenage, Hertfordshire, UK
| | - Aili L Lazaar
- Respiratory Therapy Area Unit, GSK, R&D, King of Prussia, PA, USA
| | - Adrian Pereira
- Bioanalysis, Immunogenicity and Biomarkers (BIB), GSK, Ware, Hertfordshire, UK
| | - Adam Hughes
- Bioanalysis, Immunogenicity and Biomarkers (BIB), GSK, Ware, Hertfordshire, UK
| | | | | | - Peter Daley-Yates
- Clinical Development, GSK, Research and Development, Uxbridge, Middlesex, UK
| |
Collapse
|
14
|
Weisel K, Scott NE, Tompson DJ, Votta BJ, Madhavan S, Povey K, Wolstenholme A, Simeoni M, Rudo T, Richards-Peterson L, Sahota T, Wang JG, Lich J, Finger J, Verticelli A, Reilly M, Gough PJ, Harris PA, Bertin J, Wang ML. Randomized clinical study of safety, pharmacokinetics, and pharmacodynamics of RIPK1 inhibitor GSK2982772 in healthy volunteers. Pharmacol Res Perspect 2018; 5. [PMID: 29226626 PMCID: PMC5723699 DOI: 10.1002/prp2.365] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 09/25/2017] [Indexed: 12/22/2022] Open
Abstract
GSK2982772 is a highly selective inhibitor of receptor‐interacting protein kinase 1 (RIPK1) being developed to treat chronic inflammatory diseases. This first‐in‐human study evaluated safety, tolerability, pharmacokinetics (PK), and exploratory pharmacodynamics (PD) of GSK2982772 administered orally to healthy male volunteers. This was a Phase I, randomized, placebo‐controlled, double‐blind study. In Part A, subjects received single ascending doses of GSK2982772 (0.1‐120 mg) or placebo in a crossover design during each of 4 treatment periods. In Part B, subjects received repeat doses of GSK2982772 (20 mg once daily [QD] to up to 120 mg twice daily [BID]) or placebo for 14 days. Part C was an open‐label relative bioavailability study comparing 20‐mg tablets vs capsules. Safety, tolerability, pharmacokinetics (PK), RIPK1 target engagement (TE), and pharmacodynamics (PD) were assessed. The most common adverse events (AEs) were contact dermatitis and headache. Most AEs were mild in intensity, and there were no deaths or serious AEs. The PK of GSK2982772 was approximately linear over the dose range studied (up to 120 mg BID). There was no evidence of drug accumulation upon repeat dosing. Greater than 90% RIPK1 TE was achieved over a 24‐hour period for the 60‐mg and 120‐mg BID dosing regimens. Single and repeat doses of GSK2982772 were safe and well tolerated. PK profiles showed dose linearity. The high levels of RIPK1 TE support progression into Phase II clinical trials for further clinical development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Todd Rudo
- GlaxoSmithKline, Collegeville, PA, USA
| | | | | | | | - John Lich
- GlaxoSmithKline, Collegeville, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
von Richter O, Massimini G, Scheible H, Udvaros I, Johne A. Pimasertib, a selective oral MEK1/2 inhibitor: absolute bioavailability, mass balance, elimination route, and metabolite profile in cancer patients. Br J Clin Pharmacol 2016; 82:1498-1508. [PMID: 27483391 DOI: 10.1111/bcp.13078] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 07/18/2016] [Accepted: 07/30/2016] [Indexed: 01/21/2023] Open
Abstract
AIM This trial (NCT: 01713036) investigated the absolute bioavailability, mass balance and metabolite profile of pimasertib in a new design combining these investigations in a single group of patients. METHODS Six male patients with pathologically confirmed, locally advanced or metastatic solid tumours were enrolled. Exclusion criteria included Eastern Cooperative Oncology Group performance status >1. In Part A of the trial, patients received a 60 mg oral dose of unlabelled pimasertib followed by an intravenous (i.v.) tracer dose of [14 C]pimasertib 2 μg (equalling 9 kBq) as a bolus injection, one hour after the oral dose, on Day 1. On Day 8, all patients received 60 mg pimasertib capsules spiked with 2.6 MBq of [14 C]pimasertib. Patients received 60 mg oral unlabelled pimasertib twice daily from Day 3 to Day 21 of Part A and in subsequent 21-day cycles in Part B. RESULTS Following i.v. administration, [14 C]pimasertib exhibited a geometric mean total body clearance of 45.7 l h-1 (geometric coefficient of variation [geometric CV]: 47.2%) and a volume of distribution of 229 l (geometric CV: 42.0%). Absolute bioavailability was 73%. The majority of the oral [14 C] dose (85.1%) was recovered in excreta. Total radioactivity was mainly excreted into urine (52.8%) and faeces (30.7%) with 78.9% of the [14 C] dose recovered as metabolites. Two major circulating metabolites were identified in plasma: a carboxylic acid (M445) and a phosphoethanolamine conjugate (M554). The safety profile was in line with the published pimasertib trials. CONCLUSION Pimasertib showed a favourable pharmacokinetic profile with high absolute bioavailability and a unique metabolic pathway (conjugation with phosphoethanolamine).
Collapse
Affiliation(s)
| | | | | | - Istvan Udvaros
- PRA International, EDS Patient Pharmacology, 1076, Budapest, Hungary
| | - Andreas Johne
- Merck KGaA, Clinical Pharmacology, 64293, Darmstadt, Germany
| |
Collapse
|
16
|
Seymour MA. Adding value through accelerator mass spectrometry-enabled first in human studies. J Labelled Comp Radiopharm 2016; 59:640-647. [PMID: 27444819 DOI: 10.1002/jlcr.3420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/03/2016] [Accepted: 05/26/2016] [Indexed: 12/16/2022]
Abstract
Accelerator mass spectrometry (AMS) is an ultra-sensitive technique for the analysis of radiocarbon. It is applicable to bioanalysis of any 14 C-labelled analyte and any sample type. The increasing body of data generated using LC+AMS indicates that the methodology is robust and reliable, and capable of meeting the same validation criteria as conventional bioanalytical techniques. Because it is a tracer technique, AMS is capable of discriminating between an administered radiolabelled dose and endogenous compound or non-radiolabelled compound administered separately. This paper discusses how it can be used to enhance the design of first in human (FIH) clinical studies and generate significant additional data, including: fundamental pharmacokinetics (CL and V), absolute bioavailability, mass balance, routes and rates of excretion, metabolic fate (including first-pass metabolism, identification of biliary metabolites and quantitative data to address metabolite safety testing issues), and tissue disposition of parent compound and metabolites. Because the 14 C-labelled microtracer dose is administered at the same time as a pharmacologically relevant non-radiolabelled dose, there is no concern about dose-linearity. However the mass of the microtracer dose itself is negligible and therefore does not affect the outcome of the FIH study. The addition of microtracer doses to a FIH study typically requires little additional expense, apart from the AMS analytics, making the approach cost-effective. It can also save significant time, compared to conventional approaches, and, by providing reliable human in vivo data as early as possible, prevent unnecessary expenditure later in drug development.
Collapse
|
17
|
Bohnert T, Patel A, Templeton I, Chen Y, Lu C, Lai G, Leung L, Tse S, Einolf HJ, Wang YH, Sinz M, Stearns R, Walsky R, Geng W, Sudsakorn S, Moore D, He L, Wahlstrom J, Keirns J, Narayanan R, Lang D, Yang X. Evaluation of a New Molecular Entity as a Victim of Metabolic Drug-Drug Interactions-an Industry Perspective. ACTA ACUST UNITED AC 2016; 44:1399-423. [PMID: 27052879 DOI: 10.1124/dmd.115.069096] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/31/2016] [Indexed: 12/15/2022]
Abstract
Under the guidance of the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ), scientists from 20 pharmaceutical companies formed a Victim Drug-Drug Interactions Working Group. This working group has conducted a review of the literature and the practices of each company on the approaches to clearance pathway identification (fCL), estimation of fractional contribution of metabolizing enzyme toward metabolism (fm), along with modeling and simulation-aided strategy in predicting the victim drug-drug interaction (DDI) liability due to modulation of drug metabolizing enzymes. Presented in this perspective are the recommendations from this working group on: 1) strategic and experimental approaches to identify fCL and fm, 2) whether those assessments may be quantitative for certain enzymes (e.g., cytochrome P450, P450, and limited uridine diphosphoglucuronosyltransferase, UGT enzymes) or qualitative (for most of other drug metabolism enzymes), and the impact due to the lack of quantitative information on the latter. Multiple decision trees are presented with stepwise approaches to identify specific enzymes that are involved in the metabolism of a given drug and to aid the prediction and risk assessment of drug as a victim in DDI. Modeling and simulation approaches are also discussed to better predict DDI risk in humans. Variability and parameter sensitivity analysis were emphasized when applying modeling and simulation to capture the differences within the population used and to characterize the parameters that have the most influence on the prediction outcome.
Collapse
Affiliation(s)
- Tonika Bohnert
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Aarti Patel
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Ian Templeton
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Yuan Chen
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Chuang Lu
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - George Lai
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Louis Leung
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Susanna Tse
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Heidi J Einolf
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Ying-Hong Wang
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Michael Sinz
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Ralph Stearns
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Robert Walsky
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Wanping Geng
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Sirimas Sudsakorn
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - David Moore
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Ling He
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Jan Wahlstrom
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Jim Keirns
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Rangaraj Narayanan
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Dieter Lang
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Xiaoqing Yang
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | | |
Collapse
|
18
|
Malik MY, Jaiswal S, Sharma A, Shukla M, Lal J. Role of enterohepatic recirculation in drug disposition: cooperation and complications. Drug Metab Rev 2016; 48:281-327. [PMID: 26987379 DOI: 10.3109/03602532.2016.1157600] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Enterohepatic recirculation (EHC) concerns many physiological processes and notably affects pharmacokinetic parameters such as plasma half-life and AUC as well as estimates of bioavailability of drugs. Also, EHC plays a detrimental role as the compounds/drugs are allowed to recycle. An in-depth comprehension of this phenomenon and its consequences on the pharmacological effects of affected drugs is important and decisive in the design and development of new candidate drugs. EHC of a compound/drug occurs by biliary excretion and intestinal reabsorption, sometimes with hepatic conjugation and intestinal deconjugation. EHC leads to prolonged elimination half-life of the drugs, altered pharmacokinetics and pharmacodynamics. Study of the EHC of any drug is complicated due to unavailability of the apposite model, sophisticated procedures and ethical concerns. Different in vitro and in vivo methods for studies in experimental animals and humans have been devised, each having its own merits and demerits. Involvement of the different transporters in biliary excretion, intra- and inter-species, pathological and biochemical variabilities obscure the study of the phenomenon. Modeling of drugs undergoing EHC has always been intricate and exigent models have been exploited to interpret the pharmacokinetic profiles of drugs witnessing multiple peaks due to EHC. Here, we critically appraise the mechanisms of bile formation, factors affecting biliary drug elimination, methods to estimate biliary excretion of drugs, EHC, multiple peak phenomenon and its modeling.
Collapse
Affiliation(s)
- Mohd Yaseen Malik
- a Department of Pharmaceutics , National Institute of Pharmaceutical Education and Research (NIPER) , Raebareli , India ;,b Pharmacokinetics & Metabolism Division , CSIR-Central Drug Research Institute , Lucknow , India
| | - Swati Jaiswal
- b Pharmacokinetics & Metabolism Division , CSIR-Central Drug Research Institute , Lucknow , India ;,c Academy of Scientific and Innovative Research , New Delhi , India
| | - Abhisheak Sharma
- b Pharmacokinetics & Metabolism Division , CSIR-Central Drug Research Institute , Lucknow , India ;,c Academy of Scientific and Innovative Research , New Delhi , India ;,d Department of Pharmaceutics and Drug Delivery, School of Pharmacy , The University of Mississippi , Oxford , USA
| | - Mahendra Shukla
- b Pharmacokinetics & Metabolism Division , CSIR-Central Drug Research Institute , Lucknow , India ;,c Academy of Scientific and Innovative Research , New Delhi , India
| | - Jawahar Lal
- b Pharmacokinetics & Metabolism Division , CSIR-Central Drug Research Institute , Lucknow , India ;,c Academy of Scientific and Innovative Research , New Delhi , India
| |
Collapse
|
19
|
Negash K, Andonian C, Felgate C, Chen C, Goljer I, Squillaci B, Nguyen D, Pirhalla J, Lev M, Schubert E, Tiffany C, Hossain M, Ho M. The metabolism and disposition of GSK2140944 in healthy human subjects. Xenobiotica 2015; 46:683-702. [DOI: 10.3109/00498254.2015.1112933] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Beaumont C, Young GC, Cavalier T, Young MA. Human absorption, distribution, metabolism and excretion properties of drug molecules: a plethora of approaches. Br J Clin Pharmacol 2015; 78:1185-200. [PMID: 25041729 DOI: 10.1111/bcp.12468] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 07/07/2014] [Indexed: 01/19/2023] Open
Abstract
Human radiolabel studies are traditionally conducted to provide a definitive understanding of the human absorption, distribution, metabolism and excretion (ADME) properties of a drug. However, advances in technology over the past decade have allowed alternative methods to be employed to obtain both clinical ADME and pharmacokinetic (PK) information. These include microdose and microtracer approaches using accelerator mass spectrometry, and the identification and quantification of metabolites in samples from classical human PK studies using technologies suitable for non-radiolabelled drug molecules, namely liquid chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy. These recently developed approaches are described here together with relevant examples primarily from experiences gained in support of drug development projects at GlaxoSmithKline. The advantages of these study designs together with their limitations are described. We also discuss special considerations which should be made for a successful outcome to these new approaches and also to the more traditional human radiolabel study in order to maximize knowledge around the human ADME properties of drug molecules.
Collapse
Affiliation(s)
- Claire Beaumont
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Park Road, Ware, Hertfordshire, SG12 0DP, UK
| | | | | | | |
Collapse
|
21
|
Bowers GD, Culp A, Reese MJ, Tabolt G, Moss L, Piscitelli S, Huynh P, Wagner D, Ford SL, Gould EP, Pan R, Lou Y, Margolis DA, Spreen WR. Disposition and metabolism of cabotegravir: a comparison of biotransformation and excretion between different species and routes of administration in humans. Xenobiotica 2015; 46:147-62. [PMID: 26134155 DOI: 10.3109/00498254.2015.1060372] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1. Cabotegravir [(3S,11aR)-N-[(2,4-difluorophenyl)methyl]-6-hydroxy-3-methyl-5,7-dioxo-2,3,5,7,11,11a-hexahydro[1,3]oxazolo[3,2-a]pyrido[1,2-d]pyrazine-8-carboxamide] is an HIV-1 integrase inhibitor under development as a tablet for both oral lead-in therapy and long-acting (LA) injectable for intramuscular dosing. 2. Metabolism, pharmacokinetics and excretion were investigated in healthy human subjects who received either a single oral dose (28.2 mg) of [(14)C]cabotegravir in a mass balance study, or LA formulations of unlabeled cabotegravir (200-800 mg), intramuscularly or subcutaneously, in a separate study. Metabolism, distribution and excretion of [(14)C]cabotegravir were also investigated in mice, rats and monkeys. 3. Recovery of radioactivity in humans represented a mean total of 85.3% of the dose, including 26.8% in the urine. The mean apparent terminal phase half-life was similar for both cabotegravir and radioactivity, 39 h compared to 41 h. 4. Following oral, intramuscular and subcutaneous administration, cabotegravir was the major component in plasma and the glucuronic acid conjugate (M1) represented the predominant component in urine. Cabotegravir was present in bile along with its major metabolite (M1). 5. The primary metabolite of [(14)C]cabotegravir in mouse, rat and monkey was the same as that in human. In vitro phenotyping experiments demonstrated that cabotegravir was metabolized by UDP-glucuronosyltransferase (UGT) 1A1 and UGT1A9.
Collapse
Affiliation(s)
- Gary David Bowers
- a Department of Drug Metabolism and Pharmacokinetics , GlaxoSmithKline, Research Triangle Park , NC , USA
| | - Amanda Culp
- a Department of Drug Metabolism and Pharmacokinetics , GlaxoSmithKline, Research Triangle Park , NC , USA
| | - Melinda J Reese
- a Department of Drug Metabolism and Pharmacokinetics , GlaxoSmithKline, Research Triangle Park , NC , USA
| | - Glenn Tabolt
- a Department of Drug Metabolism and Pharmacokinetics , GlaxoSmithKline, Research Triangle Park , NC , USA
| | - Lee Moss
- a Department of Drug Metabolism and Pharmacokinetics , GlaxoSmithKline, Research Triangle Park , NC , USA
| | - Stephen Piscitelli
- b Infectious Diseases Medicines Discovery and Development, GlaxoSmithKline, Research Triangle Park , NC , USA
| | - Phuong Huynh
- a Department of Drug Metabolism and Pharmacokinetics , GlaxoSmithKline, Research Triangle Park , NC , USA
| | - David Wagner
- a Department of Drug Metabolism and Pharmacokinetics , GlaxoSmithKline, Research Triangle Park , NC , USA
| | - Susan L Ford
- c Project Clinical Platforms & Sciences, GlaxoSmithKline, Research Triangle Park , NC , USA , and
| | - Elizabeth P Gould
- c Project Clinical Platforms & Sciences, GlaxoSmithKline, Research Triangle Park , NC , USA , and
| | - Rennan Pan
- d Product Development, GlaxoSmithKline, Upper Providence , PA , USA
| | - Yu Lou
- c Project Clinical Platforms & Sciences, GlaxoSmithKline, Research Triangle Park , NC , USA , and
| | - David A Margolis
- b Infectious Diseases Medicines Discovery and Development, GlaxoSmithKline, Research Triangle Park , NC , USA
| | - William R Spreen
- b Infectious Diseases Medicines Discovery and Development, GlaxoSmithKline, Research Triangle Park , NC , USA
| |
Collapse
|
22
|
Mamaril-Fishman D, Zhu J, Lin M, Felgate C, Jones L, Stump P, Pierre E, Bowen C, Naderer O, Dumont E, Patel P, Gorycki PD, Wen B, Chen L, Deng Y. Investigation of metabolism and disposition of GSK1322322, a peptidase deformylase inhibitor, in healthy humans using the entero-test for biliary sampling. Drug Metab Dispos 2014; 42:1314-25. [PMID: 24872378 DOI: 10.1124/dmd.114.058420] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
GSK1322322 (N-((R)-2-(cyclopentylmethyl)-3-(2-(5-fluoro-6-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-methylpyrimidin-4-yl)hydrazinyl)-3-oxopropyl)-N-hydroxy-formamide) is an antibiotic in development by GlaxoSmithKline. In this study, we investigated the metabolism and disposition of [(14)C]GSK1322322 in healthy humans and demonstrated the utility of the Entero-Test in a human radiolabel study. We successfully collected bile from five men using this easy-to-use device after single i.v. (1000 mg) or oral administration (1200 mg in a solution) of [(14)C]GSK1322322. GSK1322322 had low plasma clearance (23.6 liters/hour) with a terminal elimination half-life of ∼4 hours after i.v. administration. After oral administration, GSK1322322 was readily and almost completely absorbed (time of maximal concentration of 0.5 hour; bioavailability 97%). GSK1322322 predominated in the systemic circulation (>64% of total plasma radioactivity). An O-glucuronide of GSK1322322 (M9) circulated at levels between 10% and 15% of plasma radioactivity and was pharmacologically inactive. Humans eliminated the radioactive dose in urine and feces at equal proportions after both i.v. and oral doses (∼45%-48% each). Urine contained mostly unchanged GSK1322322, accounting for 30% of the dose. Bile contained mostly M9, indicating that glucuronidation was likely a major pathway in humans (up to 30% of total dose). In contrast, M9 was found in low amounts in feces, indicating its instability in the gastrointestinal tract. Therefore, without the Entero-Test bile data, the contribution of glucuronidation would have been notably underestimated. An unusual N-dehydroxylated metabolite (a secondary amide) of GSK1322322 was observed primarily in the feces and was most likely formed by gut microbes.
Collapse
Affiliation(s)
- Donna Mamaril-Fishman
- Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, King of Prussia, Pennsylvania (D.M.F., M.L., E.P., C.B., P.D.G., B.W., L.C., Y.D.) and Ware, United Kingdom (C.F.); Department of Clinical Pharmacology Modeling and Simulation, GlaxoSmithKline, King of Prussia, Pennsylvania (J.Z.); Department of Projects Clinical Pharmacology and Sciences, GlaxoSmithKline, Research Triangle Park, North Carolina (L.J., P.S., O.N., P.P.) and Collegeville, Pennsylvania (E.D.)
| | - John Zhu
- Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, King of Prussia, Pennsylvania (D.M.F., M.L., E.P., C.B., P.D.G., B.W., L.C., Y.D.) and Ware, United Kingdom (C.F.); Department of Clinical Pharmacology Modeling and Simulation, GlaxoSmithKline, King of Prussia, Pennsylvania (J.Z.); Department of Projects Clinical Pharmacology and Sciences, GlaxoSmithKline, Research Triangle Park, North Carolina (L.J., P.S., O.N., P.P.) and Collegeville, Pennsylvania (E.D.)
| | - Min Lin
- Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, King of Prussia, Pennsylvania (D.M.F., M.L., E.P., C.B., P.D.G., B.W., L.C., Y.D.) and Ware, United Kingdom (C.F.); Department of Clinical Pharmacology Modeling and Simulation, GlaxoSmithKline, King of Prussia, Pennsylvania (J.Z.); Department of Projects Clinical Pharmacology and Sciences, GlaxoSmithKline, Research Triangle Park, North Carolina (L.J., P.S., O.N., P.P.) and Collegeville, Pennsylvania (E.D.)
| | - Clive Felgate
- Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, King of Prussia, Pennsylvania (D.M.F., M.L., E.P., C.B., P.D.G., B.W., L.C., Y.D.) and Ware, United Kingdom (C.F.); Department of Clinical Pharmacology Modeling and Simulation, GlaxoSmithKline, King of Prussia, Pennsylvania (J.Z.); Department of Projects Clinical Pharmacology and Sciences, GlaxoSmithKline, Research Triangle Park, North Carolina (L.J., P.S., O.N., P.P.) and Collegeville, Pennsylvania (E.D.)
| | - Lori Jones
- Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, King of Prussia, Pennsylvania (D.M.F., M.L., E.P., C.B., P.D.G., B.W., L.C., Y.D.) and Ware, United Kingdom (C.F.); Department of Clinical Pharmacology Modeling and Simulation, GlaxoSmithKline, King of Prussia, Pennsylvania (J.Z.); Department of Projects Clinical Pharmacology and Sciences, GlaxoSmithKline, Research Triangle Park, North Carolina (L.J., P.S., O.N., P.P.) and Collegeville, Pennsylvania (E.D.)
| | - Patrick Stump
- Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, King of Prussia, Pennsylvania (D.M.F., M.L., E.P., C.B., P.D.G., B.W., L.C., Y.D.) and Ware, United Kingdom (C.F.); Department of Clinical Pharmacology Modeling and Simulation, GlaxoSmithKline, King of Prussia, Pennsylvania (J.Z.); Department of Projects Clinical Pharmacology and Sciences, GlaxoSmithKline, Research Triangle Park, North Carolina (L.J., P.S., O.N., P.P.) and Collegeville, Pennsylvania (E.D.)
| | - Esaie Pierre
- Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, King of Prussia, Pennsylvania (D.M.F., M.L., E.P., C.B., P.D.G., B.W., L.C., Y.D.) and Ware, United Kingdom (C.F.); Department of Clinical Pharmacology Modeling and Simulation, GlaxoSmithKline, King of Prussia, Pennsylvania (J.Z.); Department of Projects Clinical Pharmacology and Sciences, GlaxoSmithKline, Research Triangle Park, North Carolina (L.J., P.S., O.N., P.P.) and Collegeville, Pennsylvania (E.D.)
| | - Chester Bowen
- Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, King of Prussia, Pennsylvania (D.M.F., M.L., E.P., C.B., P.D.G., B.W., L.C., Y.D.) and Ware, United Kingdom (C.F.); Department of Clinical Pharmacology Modeling and Simulation, GlaxoSmithKline, King of Prussia, Pennsylvania (J.Z.); Department of Projects Clinical Pharmacology and Sciences, GlaxoSmithKline, Research Triangle Park, North Carolina (L.J., P.S., O.N., P.P.) and Collegeville, Pennsylvania (E.D.)
| | - Odin Naderer
- Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, King of Prussia, Pennsylvania (D.M.F., M.L., E.P., C.B., P.D.G., B.W., L.C., Y.D.) and Ware, United Kingdom (C.F.); Department of Clinical Pharmacology Modeling and Simulation, GlaxoSmithKline, King of Prussia, Pennsylvania (J.Z.); Department of Projects Clinical Pharmacology and Sciences, GlaxoSmithKline, Research Triangle Park, North Carolina (L.J., P.S., O.N., P.P.) and Collegeville, Pennsylvania (E.D.)
| | - Etienne Dumont
- Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, King of Prussia, Pennsylvania (D.M.F., M.L., E.P., C.B., P.D.G., B.W., L.C., Y.D.) and Ware, United Kingdom (C.F.); Department of Clinical Pharmacology Modeling and Simulation, GlaxoSmithKline, King of Prussia, Pennsylvania (J.Z.); Department of Projects Clinical Pharmacology and Sciences, GlaxoSmithKline, Research Triangle Park, North Carolina (L.J., P.S., O.N., P.P.) and Collegeville, Pennsylvania (E.D.)
| | - Parul Patel
- Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, King of Prussia, Pennsylvania (D.M.F., M.L., E.P., C.B., P.D.G., B.W., L.C., Y.D.) and Ware, United Kingdom (C.F.); Department of Clinical Pharmacology Modeling and Simulation, GlaxoSmithKline, King of Prussia, Pennsylvania (J.Z.); Department of Projects Clinical Pharmacology and Sciences, GlaxoSmithKline, Research Triangle Park, North Carolina (L.J., P.S., O.N., P.P.) and Collegeville, Pennsylvania (E.D.)
| | - Peter D Gorycki
- Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, King of Prussia, Pennsylvania (D.M.F., M.L., E.P., C.B., P.D.G., B.W., L.C., Y.D.) and Ware, United Kingdom (C.F.); Department of Clinical Pharmacology Modeling and Simulation, GlaxoSmithKline, King of Prussia, Pennsylvania (J.Z.); Department of Projects Clinical Pharmacology and Sciences, GlaxoSmithKline, Research Triangle Park, North Carolina (L.J., P.S., O.N., P.P.) and Collegeville, Pennsylvania (E.D.)
| | - Bo Wen
- Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, King of Prussia, Pennsylvania (D.M.F., M.L., E.P., C.B., P.D.G., B.W., L.C., Y.D.) and Ware, United Kingdom (C.F.); Department of Clinical Pharmacology Modeling and Simulation, GlaxoSmithKline, King of Prussia, Pennsylvania (J.Z.); Department of Projects Clinical Pharmacology and Sciences, GlaxoSmithKline, Research Triangle Park, North Carolina (L.J., P.S., O.N., P.P.) and Collegeville, Pennsylvania (E.D.)
| | - Liangfu Chen
- Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, King of Prussia, Pennsylvania (D.M.F., M.L., E.P., C.B., P.D.G., B.W., L.C., Y.D.) and Ware, United Kingdom (C.F.); Department of Clinical Pharmacology Modeling and Simulation, GlaxoSmithKline, King of Prussia, Pennsylvania (J.Z.); Department of Projects Clinical Pharmacology and Sciences, GlaxoSmithKline, Research Triangle Park, North Carolina (L.J., P.S., O.N., P.P.) and Collegeville, Pennsylvania (E.D.)
| | - Yanli Deng
- Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, King of Prussia, Pennsylvania (D.M.F., M.L., E.P., C.B., P.D.G., B.W., L.C., Y.D.) and Ware, United Kingdom (C.F.); Department of Clinical Pharmacology Modeling and Simulation, GlaxoSmithKline, King of Prussia, Pennsylvania (J.Z.); Department of Projects Clinical Pharmacology and Sciences, GlaxoSmithKline, Research Triangle Park, North Carolina (L.J., P.S., O.N., P.P.) and Collegeville, Pennsylvania (E.D.)
| |
Collapse
|
23
|
Zamek-Gliszczynski MJ, Chu X, Polli JW, Paine MF, Galetin A. Understanding the Transport Properties of Metabolites: Case Studies and Considerations for Drug Development. Drug Metab Dispos 2013; 42:650-64. [DOI: 10.1124/dmd.113.055558] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
24
|
Bloomer JC, Nash M, Webb A, Miller BE, Lazaar AL, Beaumont C, Guiney WJ. Assessment of potential drug interactions by characterization of human drug metabolism pathways using non-invasive bile sampling. Br J Clin Pharmacol 2013; 75:488-96. [PMID: 22670830 DOI: 10.1111/j.1365-2125.2012.04352.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 05/15/2012] [Indexed: 11/30/2022] Open
Abstract
AIM Characterization of the biliary disposition of GSK1325756, using a non-invasive bile sampling technique and spectrometric analyses, to inform the major routes of metabolic elimination and to enable an assessment of victim drug interaction risk. METHOD Sixteen healthy, elderly subjects underwent non-invasive bile capture using a peroral string device (Entero-Test(®)) prior to and following a single oral dose of GSK1325756 (100 mg). The device was swallowed by each subject and once the weighted string was judged to have reached the duodenum, gallbladder contraction was stimulated in order to release bile. The string was then retrieved via the mouth and bile samples were analyzed for drug-related material using spectrometric and spectroscopic techniques following solvent extraction. RESULTS Nuclear magnetic resonance spectroscopy (NMR) indicated that the O-glucuronide metabolite was the major metabolite of GSK1325756, representing approximately 80% of drug-related material in bile. As bile is the major clearance route for GSK1325756 (only 4% of the administered dose was excreted in human urine), this result indicates that uridine 5'-diphospho-glucuronosyltransferases (UGTs) are the major drug metabolizing enzymes responsible for drug clearance. The relatively minor contribution made by oxidative routes reduces the concern of CYP-mediated victim drug interactions. CONCLUSION The results from this study demonstrate the utility of deploying the Entero-Test® in early human studies to provide information on the biliary disposition of drugs and their metabolites. This technique can be readily applied in early clinical development studies to provide information on the risk of interactions for drugs that are metabolized and eliminated in bile.
Collapse
|