1
|
Jussila AR, Zhang B, Caves E, Kirti S, Steele M, Hamburg-Shields E, Lydon J, Ying Y, Lafyatis R, Rajagopalan S, Horsley V, Atit RP. Skin Fibrosis and Recovery Is Dependent on Wnt Activation via DPP4. J Invest Dermatol 2022; 142:1597-1606.e9. [PMID: 34808238 PMCID: PMC9120259 DOI: 10.1016/j.jid.2021.10.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/28/2021] [Accepted: 10/31/2021] [Indexed: 10/19/2022]
Abstract
Fibrosis is the life-threatening, excessive accumulation of the extracellular matrix and is sometimes associated with a loss of lipid-filled cells in the skin and other organs. Understanding the mechanisms of fibrosis and associated lipodystrophy and their reversal may reveal new targets for therapeutic intervention. In vivo genetic models are needed to identify key targets that induce recovery from established fibrosis. Wnt signaling is activated in animal and human fibrotic diseases across organs. Here, we developed a genetically inducible and reversible Wnt activation model and showed that it is sufficient to cause fibrotic dermal remodeling, including extracellular matrix expansion and shrinking of dermal adipocytes. Upon withdrawal from Wnt activation, Wnt-induced fibrotic remodeling was reversed in mouse skin-fully restoring skin architecture. Next, we demonstrated CD26/ DPP4 is a Wnt/β-catenin-responsive gene and a functional mediator of fibrotic transformation. We provide genetic evidence that the Wnt/DPP4 axis is required to drive fibrotic dermal remodeling and is associated with human skin fibrosis severity. Remarkably, DPP4 inhibitors can be repurposed to accelerate recovery from established Wnt-induced fibrosis. Collectively, this study identifies Wnt/DPP4 axis as a key driver of extracellular matrix homeostasis and dermal fat loss, providing therapeutic avenues to manipulate the onset and reversal of tissue fibrosis.
Collapse
Affiliation(s)
- Anna R Jussila
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Brian Zhang
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Elizabeth Caves
- Department of Molecular and Cell Biology, Yale University, New Haven, Connecticut, USA
| | - Sakin Kirti
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Miarasa Steele
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Emily Hamburg-Shields
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - John Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Yan Ying
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sanjay Rajagopalan
- Division of Cardiovascular Medicine, University Hospitals Harrington Heart and Vascular Institute (HHVI), Case Cardiovascular Research Institute, Department of Internal Medicine and Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Valerie Horsley
- Department of Molecular and Cell Biology, Yale University, New Haven, Connecticut, USA
| | - Radhika P Atit
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA; Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Department of Dermatology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
2
|
Impaired collagen fibril assembly in keloids with enhanced expression of lumican and collagen V. Arch Biochem Biophys 2020; 697:108676. [PMID: 33188736 DOI: 10.1016/j.abb.2020.108676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/22/2020] [Accepted: 11/08/2020] [Indexed: 12/17/2022]
Abstract
Keloids are characterized by fibroblast activation and altered architecture of extracellular matrix (ECM). Excessive deposition of ECM molecules and irregular organization of collagen fibers have been observed in keloids. However, the ultrastructural alteration of collagen has not been fully investigated. In this study, the differences in tissue structure, collagen ultrastructure, matrix components, mechanical properties and collagen assembling molecules between keloids and their extra-lesional skins (ELSs) were explored using histology, transmission electron microscope (TEM), qPCR, Western blot, immunohistochemistry and bioinformatics. Histological evaluation showed thinner fibers in keloids with increased contents of collagen III and proteoglycans, which were supported by TEM findings of thinner collagen fibrils and less developed D-band periodicity in keloids than in ELSs (p < 0.05). In addition, total collagen and water contents were significantly increased (p < 0.05) along with richer proteoglycan production in keloids vs ELSs, which also led to increased stiffness and decreased maximal load in keloids compared with ELSs. Mechanism study showed that multiple molecules related to matrix assembly were significantly upregulated in keloids (p < 0.05). In particular, lumican and collagen V showed high degrees in co-expression analysis and their upregulation levels were revealed from microarray data, which were also verified in keloids at both gene and protein levels (p < 0.05). Nevertheless, siRNA knockdown of lumican failed to affect in vitro collagen assembly, but caused upregulated collagen V expression along with the upregulation of focal adhesion kinase, TGF-β1, TGF-β3 and PDGF, among which some are known for capable of enhancing collagen V expression. In conclusion, this study demonstrates impaired collagen assembly along with enhanced expression of lumican and collagen V, both are known for interfering with collagen fibril assembly.
Collapse
|
3
|
Limandjaja GC, Niessen FB, Scheper RJ, Gibbs S. The Keloid Disorder: Heterogeneity, Histopathology, Mechanisms and Models. Front Cell Dev Biol 2020; 8:360. [PMID: 32528951 PMCID: PMC7264387 DOI: 10.3389/fcell.2020.00360] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/22/2020] [Indexed: 12/22/2022] Open
Abstract
Keloids constitute an abnormal fibroproliferative wound healing response in which raised scar tissue grows excessively and invasively beyond the original wound borders. This review provides a comprehensive overview of several important themes in keloid research: namely keloid histopathology, heterogeneity, pathogenesis, and model systems. Although keloidal collagen versus nodules and α-SMA-immunoreactivity have been considered pathognomonic for keloids versus hypertrophic scars, conflicting results have been reported which will be discussed together with other histopathological keloid characteristics. Importantly, histopathological keloid abnormalities are also present in the keloid epidermis. Heterogeneity between and within keloids exists which is often not considered when interpreting results and may explain discrepancies between studies. At least two distinct keloid phenotypes exist, the superficial-spreading/flat keloids and the bulging/raised keloids. Within keloids, the periphery is often seen as the actively growing margin compared to the more quiescent center, although the opposite has also been reported. Interestingly, the normal skin directly surrounding keloids also shows partial keloid characteristics. Keloids are most likely to occur after an inciting stimulus such as (minor and disproportionate) dermal injury or an inflammatory process (environmental factors) at a keloid-prone anatomical site (topological factors) in a genetically predisposed individual (patient-related factors). The specific cellular abnormalities these various patient, topological and environmental factors generate to ultimately result in keloid scar formation are discussed. Existing keloid models can largely be divided into in vivo and in vitro systems including a number of subdivisions: human/animal, explant/culture, homotypic/heterotypic culture, direct/indirect co-culture, and 3D/monolayer culture. As skin physiology, immunology and wound healing is markedly different in animals and since keloids are exclusive to humans, there is a need for relevant human in vitro models. Of these, the direct co-culture systems that generate full thickness keloid equivalents appear the most promising and will be key to further advance keloid research on its pathogenesis and thereby ultimately advance keloid treatment. Finally, the recent change in keloid nomenclature will be discussed, which has moved away from identifying keloids solely as abnormal scars with a purely cosmetic association toward understanding keloids for the fibroproliferative disorder that they are.
Collapse
Affiliation(s)
- Grace C. Limandjaja
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center (location VUmc), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Frank B. Niessen
- Department of Plastic Surgery, Amsterdam University Medical Center (location VUmc), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Rik J. Scheper
- Department of Pathology, Amsterdam University Medical Center (location VUmc), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center (location VUmc), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
4
|
Tan S, Khumalo N, Bayat A. Understanding Keloid Pathobiology From a Quasi-Neoplastic Perspective: Less of a Scar and More of a Chronic Inflammatory Disease With Cancer-Like Tendencies. Front Immunol 2019; 10:1810. [PMID: 31440236 PMCID: PMC6692789 DOI: 10.3389/fimmu.2019.01810] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 07/17/2019] [Indexed: 01/01/2023] Open
Abstract
Keloids are considered as benign fibroproliferative skin tumors growing beyond the site of the original dermal injury. Although traditionally viewed as a form of skin scarring, keloids display many cancer-like characteristics such as progressive uncontrolled growth, lack of spontaneous regression and extremely high rates of recurrence. Phenotypically, keloids are consistent with non-malignant dermal tumors that are due to the excessive overproduction of collagen which never metastasize. Within the remit of keloid pathobiology, there is increasing evidence for the various interplay of neoplastic-promoting and suppressing factors, which may explain its aggressive clinical behavior. Amongst the most compelling parallels between keloids and cancer are their shared cellular bioenergetics, epigenetic methylation profiles and epithelial-to-mesenchymal transition amongst other disease biological (genotypic and phenotypic) behaviors. This review explores the quasi-neoplastic or cancer-like properties of keloids and highlights areas for future study.
Collapse
Affiliation(s)
- Silvian Tan
- Plastic and Reconstructive Surgery Research, Centre for Dermatology Research, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester, United Kingdom
| | - Nonhlanhla Khumalo
- Hair and Skin Research Laboratory, Department of Dermatology, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Ardeshir Bayat
- Plastic and Reconstructive Surgery Research, Centre for Dermatology Research, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester, United Kingdom
- Hair and Skin Research Laboratory, Department of Dermatology, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
5
|
Fuller E, Little CB, Melrose J. Interleukin-1α induces focal degradation of biglycan and tissue degeneration in an in-vitro ovine meniscal model. Exp Mol Pathol 2016; 101:214-220. [PMID: 27615609 DOI: 10.1016/j.yexmp.2016.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 10/21/2022]
Abstract
We have developed an ovine meniscal explant model where the focal degradative events leading to characteristic fragmentation patterns of biglycan in human OA of the knee and hip, and evident in animal models of knee OA and IVD degeneration are reproduced in culture. Lateral and medial menisci were dissected into outer, mid and inner zones and established in explant culture±IL-1 (10ng/ml). The biglycan species present in conditioned media samples and in GuHCl extracts of tissues were examined by Western blotting using two C-terminal antibodies PR-85 and EF-Bgn. Clear differences were evident in the biglycan species in each meniscal tissue zone with the medial outer meniscus having lower biglycan levels and major fragments of 20, 28, 33 and 36, 39kDa. Similar fragmentation was detected in articular cartilage samples, 42-45kDa core protein species were also detected. Biglycan fragmentation was not as extensive in the IL-1 stimulated meniscal cultures with 36, 39, 42 and 45kDa biglycan species evident. Thus the medial meniscus outer zone displayed the highest levels of biglycan processing in this model and correlated with a major zone of meniscal remodelling in OA in man. Significantly, enzymatic digests of meniscal tissues with MMP-13, ADAMTS-4 and ADAMTS-5 have also generated similar biglycan species in-vitro. Zymography confirmed that the medial outer zone was the region of maximal MMP activity. This model represents a convenient system to recapitulate matrix remodelling events driven by IL-1 in pathological cartilages and in animal models of joint degeneration.
Collapse
Affiliation(s)
- Emily Fuller
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia; Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, Australia
| | - James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia; Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, Australia; School of Biomedical Engineering, University of New South Wales, Kensington, NSW 2052, Australia.
| |
Collapse
|
6
|
Tracy LE, Minasian RA, Caterson E. Extracellular Matrix and Dermal Fibroblast Function in the Healing Wound. Adv Wound Care (New Rochelle) 2016; 5:119-136. [PMID: 26989578 DOI: 10.1089/wound.2014.0561] [Citation(s) in RCA: 555] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Significance: Fibroblasts play a critical role in normal wound healing. Various extracellular matrix (ECM) components, including collagens, fibrin, fibronectin, proteoglycans, glycosaminoglycans, and matricellular proteins, can be considered potent protagonists of fibroblast survival, migration, and metabolism. Recent Advances: Advances in tissue culture, tissue engineering, and ex vivo models have made the examination and precise measurements of ECM components in wound healing possible. Likewise, the development of specific transgenic animal models has created the opportunity to characterize the role of various ECM molecules in healing wounds. In addition, the recent characterization of new ECM molecules, including matricellular proteins, dermatopontin, and FACIT collagens (Fibril-Associated Collagens with Interrupted Triple helices), further demonstrates our cursory knowledge of the ECM in coordinated wound healing. Critical Issues: The manipulation and augmentation of ECM components in the healing wound is emerging in patient care, as demonstrated by the use of acellular dermal matrices, tissue scaffolds, and wound dressings or topical products bearing ECM proteins such as collagen, hyaluronan (HA), or elastin. Once thought of as neutral structural proteins, these molecules are now known to directly influence many aspects of cellular wound healing. Future Directions: The role that ECM molecules, such as CCN2, osteopontin, and secreted protein, acidic and rich in cysteine, play in signaling homing of fibroblast progenitor cells to sites of injury invites future research as we continue investigating the heterotopic origin of certain populations of fibroblasts in a healing wound. Likewise, research into differently sized fragments of the same polymeric ECM molecule is warranted as we learn that fragments of molecules such as HA and tenascin-C can have opposing effects on dermal fibroblasts.
Collapse
Affiliation(s)
- Lauren E. Tracy
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Raquel A. Minasian
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - E.J. Caterson
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
7
|
Hamburg-Shields E, DiNuoscio GJ, Mullin NK, Lafyatis R, Atit RP. Sustained β-catenin activity in dermal fibroblasts promotes fibrosis by up-regulating expression of extracellular matrix protein-coding genes. J Pathol 2015; 235:686-97. [PMID: 25385294 DOI: 10.1002/path.4481] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 11/02/2014] [Accepted: 11/05/2014] [Indexed: 12/11/2022]
Abstract
Fibrosis is an end-stage response to tissue injury that is associated with loss of organ function as a result of excess extracellular matrix (ECM) production by fibroblasts. In skin, pathological fibrosis is evident during keloid scar formation, systemic sclerosis (SSc) and morphea. Dermal fibroblasts in these fibrotic diseases exhibit increased Wnt/β-catenin signalling, a pathway that is sufficient to cause fibrosis in mice. However, in the context of this complex pathology, the precise pro-fibrotic consequences of Wnt/β-catenin signalling are not known. We found that expression of stabilized β-catenin in mouse dermal fibroblasts resulted in spontaneous, progressive skin fibrosis with thickened collagen fibres and altered collagen fibril morphology. The fibrotic phenotype was predominated by resident dermal fibroblasts. Genome-wide profiling of the fibrotic mouse dermis revealed elevated expression of matrix-encoding genes, and the promoter regions of these genes were enriched for Tcf/Lef family transcription factor binding sites. Additionally, we identified 32 β-catenin-responsive genes in our mouse model that are also over-expressed in human fibrotic tissues and poised for regulation by Tcf/Lef family transcription factors. Therefore, we have uncovered a matrix-regulatory role for stabilized β-catenin in fibroblasts in vivo and have defined a set of β-catenin-responsive genes with relevance to fibrotic disease.
Collapse
|
8
|
Li H, Nahas Z, Feng F, Elisseeff JH, Boahene K. Tissue engineering for in vitro analysis of matrix metalloproteinases in the pathogenesis of keloid lesions. JAMA FACIAL PLAST SU 2014; 15:448-56. [PMID: 24052042 DOI: 10.1001/jamafacial.2013.1211] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Keloid lesions form because of alterations in the mechanisms that govern cutaneous wound healing. Although matrix metalloproteinases (MMPs) have been implicated in keloid pathophysiology, many questions still remain about their involvement. Our incomplete understanding of keloid pathophysiology has led to high recurrence rates in current treatments. No reliable animal model is available for studying keloids. OBJECTIVE To gain a better understanding of the disease mechanisms involved in keloid lesions in the hopes of identifying therapeutic options. DESIGN Fibroblasts derived from keloid tissue were incorporated in either Matrigel or polyethylene glycol diacrylate mixed with type I collagen to create 3-dimensional models to investigate the role MMPs play in keloid formation. The MMP gene expressions were also compared between fibroblasts isolated from different sites within the same keloid lesion. SETTING The Johns Hopkins School of Medicine, Baltimore, Maryland. PARTICIPANTS Keloid fibroblasts were received from the Baylor College of Medicine, and additional keloid fibroblasts were enzymatically isolated from the dermal layer of lesions removed from consenting patients at The Johns Hopkins Hospital. RESULTS In the Matrigel system, MMP9 and MMP13 were observed to be significantly upregulated in keloid fibroblasts. The addition of decorin resulted in a significant decrease of type I collagen and MMP1, MMP9, and MMP13 gene expressions from keloid fibroblasts. Higher MMP gene expressions were observed in fibroblasts isolated from the margins of the original keloid wound. CONCLUSIONS AND RELEVANCE MMP9 and MMP13 are expressed significantly more in keloid-derived cells, thus making them 2 potential targets for disease modification. Molecules that target organization of the lesion's matrix can be beneficial in downregulating increased markers during the disease. In addition, heterogeneity is observed with the varying MMP gene expressions from site-specific fibroblasts within the same keloid lesion.
Collapse
Affiliation(s)
- Hanwei Li
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland
| | | | | | | | | |
Collapse
|
9
|
Frey H, Schroeder N, Manon-Jensen T, Iozzo RV, Schaefer L. Biological interplay between proteoglycans and their innate immune receptors in inflammation. FEBS J 2013; 280:2165-79. [PMID: 23350913 DOI: 10.1111/febs.12145] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/12/2013] [Accepted: 01/18/2013] [Indexed: 02/07/2023]
Abstract
An emerging body of evidence indicates that secreted proteoglycans act as signaling molecules, in addition to their canonical function in maintaining and regulating the architecture of various extracellular matrices. Proteoglycans interact with a number of receptors that regulate growth, motility and immune response. In part, as a consequence of their complex structure, proteoglycans can induce crosstalk among various families of receptors and can also interact with natural receptor ligands, often blocking and sequestering their bioactivity. In their soluble form, originating from either partial proteolytic processing or through de novo synthesis by activated cells, some proteoglycans can become potent danger signals, denoting tissue stress and injury. Recently, it has been shown that proteoglycans, especially those belonging to the small leucine-rich and hyaluronan-binding gene families as well as the glycosaminoglycan hyaluronan, act as endogenous ligands of the toll-like receptors, a group of central receptors regulating innate immunity. Furthermore, proteoglycans can activate intracellular inflammasomes and trigger sterile inflammation. In this review, we critically assess the signaling events induced by the proteoglycans biglycan, decorin, lumican and versican as well as hyaluronan during inflammation. We discuss the intriguing emerging notion that, in spite of structural diversity of biglycan, decorin, versican and hyaluronan, all of them signal through the same toll-like receptors, albeit triggering differential responses and biological outcomes. Finally, we review the modes of action of these endogenous ligands of toll-like receptors and their ability to specifically modify the final signaling events and the inflammatory response.
Collapse
Affiliation(s)
- Helena Frey
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie/ZAFES, Klinikum der JW Goethe-Universität Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
10
|
Nastase MV, Young MF, Schaefer L. Biglycan: a multivalent proteoglycan providing structure and signals. J Histochem Cytochem 2012; 60:963-75. [PMID: 22821552 PMCID: PMC3527886 DOI: 10.1369/0022155412456380] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Research over the past few years has provided fascinating results indicating that biglycan, besides being a ubiquitous structural component of the extracellular matrix (ECM), may act as a signaling molecule. Proteolytically released from the ECM, biglycan acts as a danger signal signifying tissue stress or injury. As a ligand of innate immunity receptors and activator of the inflammasome, biglycan stimulates multifunctional proinflammatory signaling linking the innate to the adaptive immune response. By clustering several types of receptors on the cell surface and orchestrating their downstream signaling events, biglycan is capable to autonomously trigger sterile inflammation and to potentiate the inflammatory response to microbial invasion. Besides operating in a broad biological context, biglycan also displays tissue-specific affinities to certain receptors and structural components, thereby playing a crucial role in bone formation, muscle integrity, and synapse stability at the neuromuscular junction. This review attempts to provide a concise summary of recent data regarding the involvement of biglycan in the regulation of inflammation and the musculoskeletal system, pointing out both a signaling and a structural role for this proteoglycan. The potential of biglycan as a novel therapeutic target or agent for the treatment of inflammatory diseases and skeletal muscular dystrophies is also addressed.
Collapse
Affiliation(s)
- Madalina V Nastase
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | | | | |
Collapse
|
11
|
Sidgwick GP, Bayat A. Extracellular matrix molecules implicated in hypertrophic and keloid scarring. J Eur Acad Dermatol Venereol 2011; 26:141-52. [PMID: 21838832 DOI: 10.1111/j.1468-3083.2011.04200.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tissue regeneration repairs the fabric of the skin to maintain homeostasis after injury. The expression and proliferation of extracellular matrix (ECM) molecules in the dermis, mediated by a range of growth factors and cytokines, is a fundamental element of wound repair. Previous work focused on how these complex molecular mechanisms relate to the formation of raised dermal scars, including keloid and hypertrophic scars, characterized by excessive deposition of ECM molecules. However, the mechanisms in the wound repair pathway which lead to the differential expression and organization of ECM molecules observed in different types of scar tissue are not fully understood. To summarize what is known about the expression and composition of ECM molecules in abnormal scarring, an extensive search of the literature was conducted, focusing on keywords connected to skin scarring, hypertrophic scars and keloid disease. The transcription and translation of collagen I and III, fibronectin, laminin, periostin and tenascin are all increased in raised dermal scar tissue. However, hyaluronic acid, dermatopontin and decorin are decreased, and the expression and localisation of fibrillin and elastin fibres in the dermis are altered compared with normal skin and scars. Recent whole genome profiling and proteomic studies have led to the identification of regulatory elements with different expression profiles in hypertrophic and keloid tissue. If the mechanisms of raised dermal scar formation are to be elucidated and effective therapeutic treatments developed, an integrated approach to research is required, focussing on the interactions between ECM molecules, regulatory elements and pathways.
Collapse
Affiliation(s)
- G P Sidgwick
- Plastic and Reconstructive Surgery Research, School of Translational Medicine, Manchester Interdisciplinary Biocentre, University of Manchester, Manchester, UK
| | | |
Collapse
|
12
|
Merline R, Schaefer RM, Schaefer L. The matricellular functions of small leucine-rich proteoglycans (SLRPs). J Cell Commun Signal 2009; 3:323-35. [PMID: 19809894 PMCID: PMC2778586 DOI: 10.1007/s12079-009-0066-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Accepted: 09/02/2009] [Indexed: 12/11/2022] Open
Abstract
The small leucine-rich proteoglycans (SLRPs) are biologically active components of the extracellular matrix (ECM), consisting of a protein core with leucine rich-repeat (LRR) motifs covalently linked to glycosaminoglycan (GAG) side chains. The diversity in composition resulting from the various combinations of protein cores substituted with one or more GAG chains along with their pericellular localization enables SLRPs to interact with a host of different cell surface receptors, cytokines, growth factors, and other ECM components, leading to modulation of cellular functions. SLRPs are capable of binding to: (i) different types of collagens, thereby regulating fibril assembly, organization, and degradation; (ii) Toll-like receptors (TLRs), complement C1q, and tumor necrosis factor-alpha (TNFalpha), regulating innate immunity and inflammation; (iii) epidermal growth factor receptor (EGF-R), insulin-like growth factor receptor (IGF-IR), and c-Met, influencing cellular proliferation, survival, adhesion, migration, tumor growth and metastasis as well as synthesis of other ECM components; (iv) low-density lipoprotein receptor-related protein (LRP-1) and TGF-beta, modulating cytokine activity and fibrogenesis; and (v) growth factors such as bone morphogenic protein (BMP-4) and Wnt-I-induced secreted protein-1 (WISP-1), controlling cell proliferation and differentiation. Thus, the ability of SLRPs, as ECM components, to directly or indirectly regulate cell-matrix crosstalk, resulting in the modulation of various biological processes, aptly qualifies these compounds as matricellular proteins.
Collapse
|
13
|
Meenakshi J, Vidyameenakshi S, Ananthram D, Ramakrishnan KM, Jayaraman V, Babu M. Low decorin expression along with inherent activation of ERK1,2 in ear lobe keloids. Burns 2009; 35:519-26. [DOI: 10.1016/j.burns.2008.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 07/18/2008] [Indexed: 11/25/2022]
|
14
|
Sallo FB, Bereczki E, Csont T, Luthert PJ, Munro P, Ferdinandy P, Sántha M, Lengyel I. Bruch's membrane changes in transgenic mice overexpressing the human biglycan and apolipoprotein b-100 genes. Exp Eye Res 2009; 89:178-86. [PMID: 19324038 DOI: 10.1016/j.exer.2009.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 03/11/2009] [Accepted: 03/11/2009] [Indexed: 11/18/2022]
Abstract
Age-Related Macular Degeneration (AMD) is characterized by the accumulation of lipid- and protein-rich deposits in Bruch's Membrane (BrM). A consequent decrease in hydraulic conductivity and impairment of transport through BrM may play a central role in the pathogenesis of AMD. The mechanism of deposit formation in AMD had been suggested to show similarities to the formation of atherosclerotic plaques in which the interactions of extracellular matrix proteoglycans with apolipoprotein-B 100 (apoB-100) play an important role. A prime candidate for this interaction is the small leucin-rich proteoglycan biglycan. The aim of our study was to test the effect of the simultaneous overexpression of human apoB-100 and biglycan genes in combination with a high-cholesterol diet on BrM morphology in transgenic mice. Six-weeks-old homozygous apoB-100 or biglycan, hemizygous apoB-100/biglycan transgenic and wild-type C57Bl/6 mice were fed either a standard chow or a diet supplemented with 2% cholesterol for 17 weeks. Animals were sacrificed, serum lipid levels were measured and eyes were processed for transmission electron microscopy (TEM) according to standard protocol. Morphometric analysis of digitally acquired TEM images of BrM showed that in apoB-100 and double transgenic animals fed a high-cholesterol diet, the BrM thickness was significantly increased compared to wild-type animals. Both groups had electron-lucent profiles in clusters, scattered throughout the collagenous layers of BrM, and focal nodules of an amorphous material of intermediate electron-density between the plasma and basement membranes of the retinal pigment epithelium (RPE). BrM thickness in these two groups correlated well with elevated cholesterol levels. Unexpectedly, animals overexpressing biglycan alone showed a marked, diet-independent increase in BrM thickness associated with a layer of a basement membrane-like material in outer BrM. The effects of biglycan overexpression are intriguing and further investigations are needed to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Ferenc B Sallo
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Aberrant wound healing results in unsightly scarring, hypertrophic scarring, and keloid formation, causing functional and cosmetic deformities, discomfort, psychological stress, and patient dissatisfaction. Scar prevention and management continue to be important issues for the facial plastic surgeon. This article presents an overview on the pathogenesis of a scar and of the different types of scars. Differences between keloids, hypertrophic scars and normal scars include distinct scar appearance, histologic morphology and cellular function in response to growth factors. Recent advances in our understanding of the wound healing process reveal possible causes for hypertrophic scars and keloids. This information might assist in the development of efficacious prevention and treatment for hypertrophic scar and keloid formation. This article also describes the strategies available for scar prevention. Recommendations focus on the management of hypertrophic scars and keloids.
Collapse
Affiliation(s)
- A Baisch
- Universitäts-Hals-Nasen-Ohren-Klinik Mannheim
| | | |
Collapse
|
16
|
Abstract
Dermatopontin is a widely distributed small molecular weight protein in the extracellular matrix (ECM) and today its homologues are known in five mammals and several invertebrates. The structures of these homologues are relatively well conserved among the species. In the skin, dermatopontin is located mainly on the surface of the collagen fibers. It is found in the conditioned medium and also in the cytoplasm of cultured fibroblasts. Early studies focused on ECM assembly (collagen fibrillogenesis) and interactions (with the proteoglycan decorin). Subsequently, a targeted disruption of dermatopontin resulted in a phenotype similar to Ehlers-Danlos syndrome. In addition, a cell adhesion activity of this protein for dermal fibroblasts and several other cells was found, and this activity might suggest this protein's involvement in wound healing. The expression of dermatopontin around an infarct zone of experimental myocardial infarction may support this possibility. In invertebrates, dermatopontin homologues act mainly as adhesion/agglutination molecules. In addition, we found that transforming growth factor-beta1 interacts with dermatopontin and the function of this cytokine is modified by dermatopontin. Recently, the involvement of this protein in cell proliferation has been indicated. In this review we describe the reported functions of this protein and speculate on the multiple roles of this largely uncharacterized matrix molecule.
Collapse
Affiliation(s)
- Osamu Okamoto
- Department of Anatomy, Biology and Medicine (Dermatology), Faculty of Medicine, Oita University, Oita, Japan.
| | | |
Collapse
|
17
|
Abstract
BACKGROUND Keloid management can be difficult and frustrating, and the mechanisms underlying keloid formation are only partially understood. METHODS Using original and current literature in this field, this comprehensive review presents the major concepts of keloid pathogenesis and the treatment options stemming from them. RESULTS Mechanisms for keloid formation include alterations in growth factors, collagen turnover, tension alignment, and genetic and immunologic contributions. Treatment strategies for keloids include established (e.g., surgery, steroid, radiation) and experimental (e.g., interferon, 5-fluorouracil, retinoid) regimens. CONCLUSION The scientific basis and empiric evidence supporting the use of various agents is presented. Combination therapy, using surgical excision followed by intradermal steroid or other adjuvant therapy, currently appears to be the most efficacious and safe current regimen for keloid management.
Collapse
Affiliation(s)
- Ali Al-Attar
- Division of Dermatology, Department of Plastic Surgery, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | | | |
Collapse
|
18
|
Abstract
LEARNING OBJECTIVES After studying this article, the participant should be able to: 1. Have a greater appreciation of the extent of differences and similarities between keloid and hypertrophic scarring. 2. Have a greater appreciation of the significance of the stage of maturation of a keloid or hypertrophic scar with regard to its morphologic, biochemical, and molecular profile. 3. More critically review basic science research that is based on poorly characterized scar tissue. 4. More critically review clinical studies that are based on poorly characterized scar tissue. BACKGROUND Hypertrophic and keloid scars remain extremely challenging, particularly in their variable response to treatment. The understanding of hypertrophic and keloid scarring is evolving from a position where they were regarded as different stages of the same process to the contemporary perspective of two separate entities. This article reviews the differences in the two forms of scarring and discusses the implications for future research. METHODS The authors conducted a MEDLINE search of all English language reviews linking key words "hypertrophic," "keloid," and "scarring." RESULTS Over the past four decades, there has been considerable clinical and experimental research looking at the biological nature and therapeutic response of keloid and hypertrophic scarring. As more differences are emerging regarding the fundamental biology of the scars, investigators are giving more detailed characterization of their source material. It is evident that even within the broad categories of hypertrophic and keloid scarring there is a heterogenous distribution of pathologic connective tissue matrix biology. CONCLUSION Considerable advances have been made in our understanding of the fundamental biology of scarring. As research methodology becomes even more sophisticated, it will be even more crucial to extensively characterize source material, recognizing major differences not only between keloid and hypertrophic scar but also between scars of varying stages of maturation and histomorphological, biochemical, and molecular variations within individual scars.
Collapse
Affiliation(s)
- Andrew Burd
- Division of Plastic and Reconstructive Surgery, Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong.
| | | |
Collapse
|
19
|
Lo IKY, Boorman R, Marchuk L, Hollinshead R, Hart DA, Frank CB. Matrix molecule mRNA levels in the bursa and rotator cuff of patients with full-thickness rotator cuff tears. Arthroscopy 2005; 21:645-51. [PMID: 15944617 DOI: 10.1016/j.arthro.2005.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE The purpose of this study was to evaluate at the mRNA level a subset of extracellular matrix molecules relevant during healing and remodeling of rotator cuff tears. TYPE OF STUDY Controlled laboratory study. METHODS Bursal and rotator cuff tissue from the margin of the rotator cuff tear were harvested from 10 patients (mean age, 57.5 +/- 7.3 years) undergoing surgical repair of full-thickness rotator cuff tears. There were six male and four female patients with a mean duration of symptoms of 14.6 months (range, 2 to 60 months). The mean tear size was 4.4 cm. In addition, tissue was obtained from 6 cadaveric specimens with no gross evidence of rotator cuff tearing. Reverse transcription polymerase chain reaction (RT-PCR) was performed for type I, II, and III collagen, biglycan, decorin, and aggrecan, and normalized to the housekeeping gene GAPDH. RESULTS RT-PCR showed that both the bursa and rotator cuff margin had increased mRNA levels for type I and type III collagen in patients with full-thickness rotator cuff tears when compared with normal cadaveric controls. In addition, there was a significant decrease in decorin mRNA levels and an increase in aggrecan mRNA levels in the rotator cuff margin of torn rotator cuff tendons when compared with normal cadaveric controls. CONCLUSIONS These results suggest that both the bursa and rotator cuff margin of patients with rotator cuff tears are actively remodeling after injury and that both tissues may potentially contribute to the healing process following repair. CLINICAL RELEVANCE These findings may help clinicians determine what aspects of the repair process can be manipulated to affect optimal ruptured tendon repair.
Collapse
Affiliation(s)
- Ian K Y Lo
- McCaig Centre for Joint Injury and Arthritis Research, University of Calgary, Calgary, Alberta, Canada.
| | | | | | | | | | | |
Collapse
|
20
|
Dalkowski A, Fimmel S, Beutler C, Zouboulis CC. Cryotherapy modifies synthetic activity and differentiation of keloidal fibroblastsin vitro. Exp Dermatol 2003; 12:673-81. [PMID: 14705809 DOI: 10.1034/j.1600-0625.2003.00015.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In order to obtain a persuasive explanation for the beneficial clinical effect of cryotherapy on keloids, we developed a reproducible model to apply freezing temperatures on cell cultures, and investigated their influence on proliferation, viability, synthetic activity and differentiation of dermal fibroblasts in vitro. Cell cultures were established from 13 untreated keloids and 10 healthy skin specimens matched for age and skin localization to the donors. No significant influence of cell freezing on the proliferation rates of both keloidal and normal fibroblasts was documented, but mechanical cell destruction with a wide variation in lethality rates (29% average lethal effect on keloidal fibroblasts and 41% on normal ones) was observed. When comparing specimens of keloidal and normal tissue derived from the same four donors, the keloidal fibroblasts were similar regarding their synthetic activity but presented enhanced tenascin-C expression compared with the normal fibroblasts. After cryotherapy, delayed collagen III increase was detected in both cell types (P = 0.03). The collagen II/collagen I ratio increased from 1.6 to 2.8 in the keloidal and only from 1.9 to 2.2 in the normal fibroblasts after subcultivation. Normal fibroblasts exhibited a significantly lasting increase in fibronectin synthesis after freezing (P = 0.03). The intensity of staining against tenascin-C was decreased in five of nine keloidal fibroblast cultures after cryotherapy (P < 0.05) but increased in four of five normal fibroblast cultures (P = 0.016), so that the intensity of tenascin-C staining after freezing became identical in both cell types. Immunoblot studies in four patients and two controls confirmed a temporary decrease of tenascin-C in keloidal but not in normal fibroblasts immediately after freezing. Significantly decreased staining with two markers of myogenic differentiation, myosin in keloidal fibroblasts (P = 0.002) and desmin (P = 0.007) in normal fibroblasts, could also be detected after treatment. In summary, with the help of a model for controlled cell freezing in vitro, cryotherapy was found to modify collagen synthesis and differentiation of keloidal fibroblasts.
Collapse
Affiliation(s)
- A Dalkowski
- Department Dermatology, University Medical Center Benjamin Franklin, The Free University of Berlin, Fabeckstrasse 60-62, 14195 Berlin, Germany
| | | | | | | |
Collapse
|
21
|
Lo IKY, Marchuk L, Hart DA, Frank CB. Messenger ribonucleic acid levels in disrupted human anterior cruciate ligaments. Clin Orthop Relat Res 2003:249-58. [PMID: 12567153 DOI: 10.1097/00003086-200302000-00034] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Thirty patients had anterior cruciate ligament reconstruction for ongoing instability. Two groups were defined according to gross morphologic features identified during reconstruction: anterior cruciate ligament disruptions with scars attached to a structure in the joint and disruptions without reattachments. Reverse transcription polymerase chain reaction for a subset of extracellular matrix molecules, proteinases, and proteinase inhibitors was done on samples of scarred anterior cruciate ligament tissue removed during reconstructive surgery. Results of the nonattached scar group showed significantly increased mRNA levels for Type I collagen, and an increased Type I to Type III collagen ratio compared with that for the attached scar group. In the first year after injury, decorin mRNA levels in the nonattached scar group also were significantly higher than in the attached scar group. Biglycan mRNA levels in the nonattached scar group correlated closely with Type I collagen mRNA levels. These results suggest differences in cellular expression in torn anterior cruciate ligaments that attach to structures in the joint versus those which do not. Although the molecular mechanisms responsible for these differences have not been delineated, different molecular signals may influence the gross morphologic features of anterior cruciate ligament disruptions or alternatively, differing gross morphologic features may be subject to different mechanical loads leading to altered molecular expression. However, the finding of endogenous cellular activity in injured anterior cruciate ligaments raises the possibility that this activity may be enhanced to improve outcomes.
Collapse
Affiliation(s)
- Ian K Y Lo
- Department of Surgery, University of Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
22
|
Szulgit G, Rudolph R, Wandel A, Tenenhaus M, Panos R, Gardner H. Alterations in fibroblast alpha1beta1 integrin collagen receptor expression in keloids and hypertrophic scars. J Invest Dermatol 2002; 118:409-15. [PMID: 11874478 DOI: 10.1046/j.0022-202x.2001.01680.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Keloids and hypertrophic scars are significant symptomatic clinical problems characterized by excess collagen. Although extensive research has focused on fibroblasts and collagen turnover in these aberrant scars, little work has been done on the expression of integrins (cell membrane structures that link cells to extracellular matrix) within these lesions. Integrin-mediated regulation of collagen synthesis has previously been observed in explanted fibroblasts from normal and fibrotic dermis, and integrin alpha1 knockout mice maintain increased collagen synthesis consistent with a role for alpha1beta1 in providing negative feedback on collagen synthesis. These findings suggested the need to evaluate integrin roles in keloids and hypertrophic scars. In this study we examined integrin expression in keloids (n = 11), hypertrophic scars (n = 5), radiation ulcers (n = 2), and normal skin specimens (n = 8). We used a novel approach to analysis by isolating dermal fibroblasts directly from tissue (without explant culture) and determining surface integrin expression by flow cytometry. We found that keloids and hypertrophic scars have marked alterations in fibroblast integrin expression and contain several distinct populations of fibroblasts. One of these populations expresses high levels of alpha1 integrin, and the proportion of these cells is higher in keloids (63% +/- 3.6% SEM) and hypertrophic scars (45% +/- 2.7% SEM) than in normal skin tissues (28% +/- 4.7% SEM). The different populations of fibroblasts defined by integrin expression merge, however, when the cells are serially cultured, suggesting that there may be aspects of the dermal microenvironment that maintain the integrin phenotypic heterogeneity in dermal fibroblasts.
Collapse
Affiliation(s)
- Greg Szulgit
- Department of Biology, Hiram College, Hiram, Ohio, USA
| | | | | | | | | | | |
Collapse
|
23
|
Di Lullo GA, Sweeney SM, Korkko J, Ala-Kokko L, San Antonio JD. Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J Biol Chem 2002; 277:4223-31. [PMID: 11704682 DOI: 10.1074/jbc.m110709200] [Citation(s) in RCA: 575] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type I collagen is the most abundant protein in humans, and it helps to maintain the integrity of many tissues via its interactions with cell surfaces, other extracellular matrix molecules, and growth and differentiation factors. Nearly 50 molecules have been found to interact with type I collagen, and for about half of them, binding sites on this collagen have been elucidated. In addition, over 300 mutations in type I collagen associated with human connective tissue disorders have been described. However, the spatial relationships between the known ligand-binding sites and mutation positions have not been examined. To this end, here we have created a map of type I collagen that includes all of its ligand-binding sites and mutations. The map reveals the existence of several hot spots for ligand interactions on type I collagen and that most of the binding sites locate to its C-terminal half. Moreover, on the collagen fibril some potentially relevant relationships between binding sites were observed including the following: fibronectin- and certain integrin-binding regions are near neighbors, which may mechanistically relate to fibronectin-dependent cell-collagen attachment; proteoglycan binding may potentially impact upon collagen fibrillogenesis, cell-collagen attachment, and collagen glycation seen in diabetes and aging; and mutations associated with osteogenesis imperfecta and other disorders show apparently nonrandom distribution patterns within both the monomer and fibril, implying that mutation positions correlate with disease phenotype. These and other observations presented here may provide novel insights into evaluating type I collagen functions and the relationships between its binding partners and mutations.
Collapse
Affiliation(s)
- Gloria A Di Lullo
- Department of Medicine and the Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
24
|
Louw L. Keloids in rural black South Africans. Part 3: a lipid model for the prevention and treatment of keloid formations. Prostaglandins Leukot Essent Fatty Acids 2000; 63:255-62. [PMID: 11090251 DOI: 10.1054/plef.2000.0209] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the third part of this study a basic lipid model (regarding phospholipids, triglycerides, cholesterol esters and free fatty acids) for keloids (n=20), compared with normal skin of keloid prone and non-keloid prone patients (n=20 of each), was constructed according to standard methods, to serve as a sound foundation for essential fatty acid supplementation strategies in the prevention and treatment of keloid formations. Essential fatty acid deficiency (EFAD) of the omega-6 series (linoleic acid (LA), g-linolenic acid (GLA), and dihomo-g-linolenic acid (DGLA)) and the omega-3 series (a-linolenic acid (ALA) and eicosapentaenoic acid (EPA)), but enhanced arachidonic acid (AA) levels, were prevalent in keloid formations. Enhanced AA, but a deficiency of AA precursors (LA, GLA and DGLA) and inflammatory competitors (DGLA and EPA), are inevitably responsible for the overproduction of pro-inflammatory metabolites (prostaglandin E(2)(PGE(2))) participating in the pathogenesis of inflammation. Of particular interest was the extremely high free oleic acid (OA) levels present, apart from the high free AA levels, in the keloid formations. OA stimulates PKC activity which, in turn, activates PLA(2)activity for the release or further release of AA from membrane pools. Interactions between EFAs, eicosanoids, cytokines, growth factors and free radicals can modulate the immune response and the immune system in undoubtedly involved in keloid formation. The histopathology of keloids can be adequately explained by: persistence of inflammatory- and cytokine-mediated reactions in the keloid/dermal interface and peripheral areas, where fibroblast proliferation and continuous depletion of membrane linoleic acid occur; microvascular regeneration and circulation of sufficient EFAs in the interface and peripheral areas, where maintenance of metabolic active fibroblasts for collagen production occur; microvessel occlusion and hypoxia in the central areas, where deprivation of EFAs and oxygen with consequent fibroblast apoptosis occur, while excessive collagen remain. All these factors contribute to different fibroblast populations present in: the keloid / dermal interface and peripheral areas where increases in fibroblast proliferation and endogenous TGF-b occur, and these metabolic active fibroblast populations are responsible for enhanced collagen production: the central areas where fibroblast populations under hypoxic conditions occur, and these fibroblasts are responsible for excessive collagen production. It was concluded that: fibroblast membrane EFAD of AA precursors and inflammatory competitors, but prevailing enhanced AA levels, can contribute to a chain of reactions eventually responsible for keloid formations.
Collapse
Affiliation(s)
- L Louw
- Department of Anatomy and Cell Morphology, University of the Orange Free State, Bloemfontein, South Africa
| |
Collapse
|
25
|
Chipev CC, Simman R, Hatch G, Katz AE, Siegel DM, Simon M. Myofibroblast phenotype and apoptosis in keloid and palmar fibroblasts in vitro. Cell Death Differ 2000; 7:166-76. [PMID: 10713731 DOI: 10.1038/sj.cdd.4400605] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Keloid formation is a wound healing response, which fails to resolve and leads to formation of a raised collagen mass extending beyond the original wound margins. Keloids are typically excluded from palms and soles. Therefore we compared keloid and palmar fibroblasts in vitro using fibroblasts from nonaffected individuals as controls. Collagen I, alpha-smooth muscle actin and thrombospondin-1 were found at higher levels in keloid than in palmar fibroblasts. These differences were ameliorated by addition of TGFbeta1. The potential for resolution of the wound healing response was estimated analyzing apoptosis during serum starvation. Annexin V and TUNEL assays showed that palmar fibroblasts underwent faster apoptosis, than did the keloid fibroblasts, and started detaching. Addition of TGFbeta1 counteracted this effect. The weak expression of the myofibroblast phenotype and the advanced apoptosis of palmar fibroblasts suggest mechanisms for the exclusion of keloids from palmar sites.
Collapse
Affiliation(s)
- C C Chipev
- Living Skin Bank, SUNY at Stony Brook, NY 11794, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Stokes MB, Holler S, Cui Y, Hudkins KL, Eitner F, Fogo A, Alpers CE. Expression of decorin, biglycan, and collagen type I in human renal fibrosing disease. Kidney Int 2000; 57:487-98. [PMID: 10652025 DOI: 10.1046/j.1523-1755.2000.00868.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The extracellular matrix proteoglycans decorin and biglycan may have a pathogenic role in renal fibrosing disease via regulation of the activity of growth factors, such as transforming growth factor-beta, and effects on collagen type I fibrillogenesis. The expression of decorin and biglycan in human glomerular diseases characterized by mesangial sclerosis is unknown. METHODS Decorin, biglycan, and collagen type I were localized immunohistochemically in human renal biopsy cases of amyloidosis (N = 18), diabetic nephropathy (N = 11), fibrillary glomerulonephritis (N = 5), immunotactoid glomerulopathy (N = 5), light-chain deposition disease (N = 4), idiopathic mesangial sclerosis (N = 4), and nephrosclerosis (N = 6), and in morphologically normal tissues obtained from tumor nephrectomies (N = 8). Decorin and biglycan mRNA synthesis was evaluated by in situ hybridization. RESULTS Decorin and biglycan protein were not identified in normal glomeruli. Decorin accumulated in amyloid deposits, but not in deposits of fibrillary glomerulonephritis or immunotactoid glomerulopathy. Biglycan weakly accumulated in amyloid deposits, and both decorin and biglycan weakly stained mesangial nodules in cases of morphologically advanced light-chain deposition disease and diabetic nephropathy. In all analyzed cases, irrespective of the underlying disease, decorin and biglycan accumulated in glomeruli in areas of fibrous organization of the urinary space and in areas of tubulointerstitial fibrosis. Biglycan, but not decorin, accumulated in the neointima of arteriosclerotic blood vessels. Decorin and biglycan mRNA synthesis was detected at sites of proteoglycan accumulation in glomeruli, interstitium, and neointima. Collagen type I colocalized with decorin and biglycan deposits. CONCLUSIONS Differences in extracellular matrix proteoglycan composition may be diagnostically useful in distinguishing morphologically similar diseases. Distinct patterns of proteoglycan expression may be related to modulation of specific growth factor activity in different glomerular diseases.
Collapse
Affiliation(s)
- M B Stokes
- Department of Pathology, University of Washington Medical Center, Seattle, WA 98195-6100, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Niessen FB, Spauwen PH, Schalkwijk J, Kon M. On the nature of hypertrophic scars and keloids: a review. Plast Reconstr Surg 1999; 104:1435-58. [PMID: 10513931 DOI: 10.1097/00006534-199910000-00031] [Citation(s) in RCA: 547] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- F B Niessen
- Department of Plastic, Reconstructive and Hand Surgery, University Hospital of Groningen, The Netherland.
| | | | | | | |
Collapse
|
28
|
Gutierrez PS, Reis MM, Higuchi ML, Aiello VD, Stolf NA, Lopes EA. Distribution of hyaluronan and dermatan/chondroitin sulfate proteoglycans in human aortic dissection. Connect Tissue Res 1998; 37:151-61. [PMID: 9862217 DOI: 10.3109/03008209809002435] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Aortic dissections (AD) are characterized by the separation of the artery into two sheets, possibly due to fragility of the vessel wall. A mucoid histological pattern, imparted to the tissues mainly by hyaluronan and proteoglycans, can be seen in "cysts" and, in chronic cases, in a band of repair tissue. We studied the localization of hyaluronan, versican, decorin and biglycan in situ in aortas of 21 patients with recent AD, 8 with chronic AD and in 15 control cases. None of these substances was increased in the areas of mucoid "cysts" that possibly contain anomalous material. Similar distributions were seen in normal and dissected aortas: versican and hyaluronan were more prominent in the external half of the medial layer where the dissection usually occurs. Since these molecules play a role in resistance to compression, disorders not detected by our method may be involved in aortic dissection. Hyaluronan was seen adjacent to fibrin at the dissection tear, probably as an early wound repair phenomenon. Biglycan, hyaluronan and mostly versican are seen during advanced repairing. The mucoid deposits may represent various compounds which reflect different disorders in vascular biology.
Collapse
Affiliation(s)
- P S Gutierrez
- Serviço de Anatomia Patológica, Instituto do Coração-HC FMUSP, São Paulo SP, Brazil.
| | | | | | | | | | | |
Collapse
|
29
|
Heegaard AM, Gehron Robey P, Vogel W, Just W, Widom RL, Schøller J, Fisher LW, Young MF. Functional characterization of the human biglycan 5'-flanking DNA and binding of the transcription factor c-Krox. J Bone Miner Res 1997; 12:2050-60. [PMID: 9421237 DOI: 10.1359/jbmr.1997.12.12.2050] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The transcriptional regulation of human biglycan expression under normal and pathological conditions was studied. The 5'-flanking regions of the human and mouse genes were isolated and analyzed; the two promoter regions share 81% identity. Both promoters are without a TATA and CAT box and contain multiple Sp1 sites. Human dermal fibroblasts were transiently transfected with progressive deletional human biglycan 5'-flanking DNA-CAT constructs, and a significant variation in activity among the individual constructs was found. A small deletion in several cases caused a more than 2-fold increase or decrease in promoter activity, thereby mapping the target sites for repressors or activators. Human biglycan expression is reduced in females with Ullrich-Turner syndrome (45,X) and increased in individuals with supernumerary sex chromosomes, and it has been speculated that biglycan plays a role in the short stature phenotype of Turner syndrome. Analysis of the transcriptional regulation of biglycan in individuals with sex chromosome anomalies showed that a -262 to -218 region of the biglycan promoter was differentially regulated. This region was extensively analyzed by DNAse footprinting and electrophoretic mobility shift assays, and a putative binding site for the transcription factor c-Krox was discovered. The binding of c-Krox to a site located at approximately -248 to -230 in the human biglycan promoter was confirmed by using extracts from COS cells expressing recombinant human c-Krox. The expression of c-Krox in bone was then examined by reverse-transcribed polymerase chain reaction and Northern blotting analysis; an approximately 3.4 kb transcript was detected in primary osteoblastic cells, in MG-63 cells, and in human bone marrow stromal cells. This is the first detection of c-Krox in bone cells, and it suggests that c-Krox, like another member of the Krox family, Krox-20, might play a regulatory role in bone.
Collapse
Affiliation(s)
- A M Heegaard
- Center for Clinical and Basic Research, Ballerup, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Normal wound healing in skin embraces several reparative processes, many of which directly involve components of the extracellular matrix and the cutaneous basement membrane zone. Proteoglycans are a group of extracellular matrix macromolecules that have both structural and regulatory properties. In wound healing, certain proteoglycans fulfill a mechanical function of absorbing water and preventing tissue compression. However, proteoglycans may also have other roles in wound healing including a direct influence on inflammation, cell attachment and migration, and growth factor binding. Furthermore, proteoglycans may help to determine other aspects of the long-term quality of wound healing in skin through regulation of basement membrane permeability, epidermal hyperproliferation, and dermal fibrosis.
Collapse
|