1
|
Cui Y, He J, Yu Z, Zhou S, Cao D, Jiang T, Fang B, Li G. Adipose-derived stem cells transplantation improves survival and alleviates contraction of skin grafts via promoting macrophages M2 polarization. Skin Res Technol 2024; 30:e13918. [PMID: 39171846 PMCID: PMC11339854 DOI: 10.1111/srt.13918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Full-thickness skin grafts are widely used in plastic and reconstructive surgery. The main limitation of skin grafting is the poor textural durability and associated contracture, which often needs further corrective surgery. Excessive inflammation is the main reason for skin graft contractions, which involve overactivation of myofibroblasts. These problems have prompted the development of new therapeutic approaches, including macrophage polarization modulation and stem cell-based therapies. Currently, adipose-derived stem cells (ASCs) have shown promise in promoting skin grafts survival and regulating macrophage phenotypes. However, the roles of ASCs on macrophages in decreasing skin grafts contraction remain unknown. MATERIALS AND METHODS Rat adipose-derived stem cells (rASCs) were isolated from rat inguinal adipose tissues. Full-thickness skin graft model was constructed on male rats divided into control group and rASCs treatment group. Skin graft was assessed for concentration, elasticity modulus and stiffness. Rat bone marrow-derived macrophages (rBMDMs) were isolated from rat femurs, and subsequent RT-qPCR and coculture assays were carried out to explore the cellular mechanisms. Immunohistochemical and immunofluorescence staining were used to verify mechanisms in vivo. RESULTS In vivo results showed that after injection of ASCs, improved texture, increased survival and inhibited contraction of skin grafts were seen. Vascularization was also improved as illustrated by laser perfusion image and vascular endothelial growth factor (VEGF) concentration. Histological analysis revealed that ASCs injection significantly reduced expression of pro-inflammatory cytokines (TNF-a, IL-1β) and increased expression of anti-inflammatory (IL-10) and pro-healing cytokines (IGF-1). At cellular level, after co-culturing with rASCs, rat bone marrow derived macrophages (rBMDMs) favored M2 polarization even under inflammatory stimulus. CONCLUSION ASCs treatment enhanced vascularization via angiogenic cytokines secretion and alleviated inflammatory environment in skin grafts by driving M2 macrophages polarization, which improved survival and decreased skin grafts contraction. Our work showed that ASCs transplantation can be harnessed to enhance therapeutic efficacy of skin grafting in cutaneous defects treatment.
Collapse
Affiliation(s)
- Yuying Cui
- Department of Plastic and Reconstructive SurgeryThe First Affiliated Hospital of Zhengzhou UniversityHenanChina
| | - Jiahao He
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zheyuan Yu
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Sizheng Zhou
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Dejun Cao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Taoran Jiang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bin Fang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Guangshuai Li
- Department of Plastic and Reconstructive SurgeryThe First Affiliated Hospital of Zhengzhou UniversityHenanChina
| |
Collapse
|
2
|
Reynolds WJ, Eje N, Christensen P, Li W, Daly SM, Parsa R, Chavan B, Birch‐Machin MA. Biological effects of air pollution on the function of human skin equivalents. FASEB Bioadv 2023; 5:470-483. [PMID: 37936922 PMCID: PMC10626160 DOI: 10.1096/fba.2023-00068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/13/2023] [Accepted: 09/14/2023] [Indexed: 11/09/2023] Open
Abstract
The World Health Organization reports that 99% of the global population are exposed to pollution levels higher than the recommended air quality guidelines. Pollution-induced changes in the skin have begun to surface; however, the effects require further investigation so that effective protective strategies can be developed. This study aimed to investigate some of the aging-associated effects caused by ozone and particulate matter (PM) on human skin equivalents. Full-thickness skin equivalents were exposed to 0.01 μg/μL PM, 0.05 μg/μL PM, 0.3 ppm ozone, or a combination of 0.01 μg/μL PM and 0.3 ppm ozone, before skin equivalents and culture medium were harvested for histological/immunohistochemical staining, gene and protein expression analysis using qPCR, Western blotting, and ELISA. Markers include MMP-1, MMP-3, COL1A1, collagen-I, 4-HNE, HMGCR, and PGE2. PM was observed to induce a decrease in epidermal thickness and an enhanced matrix building phenotype, with increases in COL1A1 and an increase in collagen-I protein expression. By contrast, ozone induced an increase in epidermal thickness and was found to induce a matrix-degrading phenotype, with decreases in collagen-I gene/protein expression and increases in MMP-1 and MMP-3 gene/protein expression. Ozone was also found to induce changes in lipid homeostasis and inflammation induction. Some synergistic damage was also observed when combining ozone and 0.01 μg/μL PM. The results presented in this study identify distinct pollutant-induced effects and show how pollutants may act synergistically to augment damage; given individuals are rarely only exposed to one pollutant type, exposure to multiple pollutant types should be considered to develop effective protective interventions.
Collapse
Affiliation(s)
- Wil J. Reynolds
- Dermatological Sciences, Institute of Translational and Clinical ResearchNewcastle UniversityNewcastle upon TyneUK
| | - Ndubuisi Eje
- Bedson Building, Newcastle UniversityNewcastle upon TyneUK
| | | | - Wen‐Hwa Li
- Johnson and Johnson Consumer Inc.SkillmanNew JerseyUSA
| | - Susan M. Daly
- Johnson and Johnson Consumer Inc.SkillmanNew JerseyUSA
| | - Ramine Parsa
- Johnson and Johnson Consumer Inc.SkillmanNew JerseyUSA
| | | | - Mark A. Birch‐Machin
- Dermatological Sciences, Institute of Translational and Clinical ResearchNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
3
|
Biomimetic nanofiber-enabled rapid creation of skin grafts. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
4
|
Koskinen Holm C, Qu C. Engineering a 3D In Vitro Model of Human Gingival Tissue Equivalent with Genipin/Cytochalasin D. Int J Mol Sci 2022; 23:ijms23137401. [PMID: 35806407 PMCID: PMC9266888 DOI: 10.3390/ijms23137401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 02/05/2023] Open
Abstract
Although three-dimensional (3D) co-culture of gingival keratinocytes and fibroblasts-populated collagen gel can mimic 3D structure of in vivo tissue, the uncontrolled contraction of collagen gel restricts its application in clinical and experimental practices. We here established a stable 3D gingival tissue equivalent (GTE) using hTERT-immortalized gingival fibroblasts (hGFBs)-populated collagen gel directly crosslinked with genipin/cytochalasin D and seeding hTERT-immortalized gingival keratinocytes (TIGKs) on the upper surface for a 2-week air–liquid interface co-culture. MTT assay was used to measure the cell viability of GTEs. GTE size was monitored following culture period, and the contraction was analyzed. Immunohistochemical assay was used to analyze GTE structure. qRT-PCR was conducted to examine the mRNA expression of keratinocyte-specific genes. Fifty µM genipin (G50) or combination (G + C) of G50 and 100 nM cytochalasin D significantly inhibited GTE contraction. Additionally, a higher cell viability appeared in GTEs crosslinked with G50 or G + C. GTEs crosslinked with genipin/cytochalasin D showed a distinct multilayered stratified epithelium that expressed keratinocyte-specific genes similar to native gingiva. Collagen directly crosslinked with G50 or G + C significantly reduced GTE contraction without damaging the epithelium. In summary, the TIGKs and hGFBs can successfully form organotypic multilayered cultures, which can be a valuable tool in the research regarding periodontal disease as well as oral mucosa disease. We conclude that genipin is a promising crosslinker with the ability to reduce collagen contraction while maintaining normal cell function in collagen-based oral tissue engineering.
Collapse
Affiliation(s)
- Cecilia Koskinen Holm
- Department of Odontology, Umeå University, 90185 Umeå, Sweden
- Wallenberg Center for Molecular Medicine, Umeå University, 90187 Umeå, Sweden
- Correspondence: (C.K.H.); (C.Q.)
| | - Chengjuan Qu
- Department of Odontology, Umeå University, 90185 Umeå, Sweden
- Wallenberg Center for Molecular Medicine, Umeå University, 90187 Umeå, Sweden
- Correspondence: (C.K.H.); (C.Q.)
| |
Collapse
|
5
|
Amiri N, Golin AP, Jalili RB, Ghahary A. Roles of cutaneous cell-cell communication in wound healing outcome: An emphasis on keratinocyte-fibroblast crosstalk. Exp Dermatol 2021; 31:475-484. [PMID: 34932841 DOI: 10.1111/exd.14516] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/28/2021] [Accepted: 12/19/2021] [Indexed: 01/13/2023]
Abstract
Tissue repair is a very complex event and involves a continuously orchestrated sequence of signals and responses from platelets, fibroblasts, epithelial, endothelial and immune cells. The details of interaction between these signals, which are mainly growth factors and cytokines, have been widely discussed. However, it is still not clear how activated cells at wound sites lessen their activities after epithelialization is completed. Termination of the wound healing process requires a fine balance between extracellular matrix (ECM) deposition and degradation. Maintaining this balance requires highly accurate epithelial-mesenchymal communication and correct information exchange between keratinocytes and fibroblasts. As it has been reported in the literature, a disruption in epithelialization during the process of wound healing increases the frequency of developing chronic wounds or fibrotic conditions, as seen in a variety of clinical cases. Conversely, the potential stop signal for wound healing should have a regulatory role on both ECM synthesis and degradation to reach a successful wound healing outcome. This review briefly describes the potential roles of growth factors and cytokines in controlling the early phase of wound healing and predominantly explores the role of releasable factors from epithelial-mesenchymal interaction in controlling during and the late stage of the healing process. Emphasis will be given on the crosstalk between keratinocytes and fibroblasts in ECM modulation and the healing outcome following a brief discussion of the wound healing initiation mechanism. In particular, we will review the termination of acute dermal wound healing, which frequently leads to the development of hypertrophic scarring.
Collapse
Affiliation(s)
- Nafise Amiri
- Department of Surgery, International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew P Golin
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Reza B Jalili
- Department of Surgery, International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Aziz Ghahary
- Department of Surgery, International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Increased Collagen Crosslinking in Stiff Clubfoot Tissue: Implications for the Improvement of Therapeutic Strategies. Int J Mol Sci 2021; 22:ijms222111903. [PMID: 34769331 PMCID: PMC8584281 DOI: 10.3390/ijms222111903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/16/2022] Open
Abstract
Congenital clubfoot is a complex musculoskeletal deformity, in which a stiff, contracted tissue forms in the medial part of the foot. Fibrotic changes are associated with increased collagen deposition and lysyl oxidase (LOX)-mediated crosslinking, which impair collagen degradation and increase the tissue stiffness. First, we studied collagen deposition, as well as the expression of collagen and the amount of pyridinoline and deoxypyridinoline crosslinks in the tissue of relapsed clubfoot by immunohistochemistry, real-time PCR, and enzyme-linked immunosorbent assay (ELISA). We then isolated fibroblast-like cells from the contracted tissue to study the potential inhibition of these processes in vitro. We assessed the effects of a LOX inhibitor, β-aminopropionitrile (BAPN), on the cells by a hydroxyproline assay, ELISA, and Second Harmonic Generation imaging. We also evaluated the cell-mediated contraction of extracellular matrix in 3D cell-populated collagen gels. For the first time, we have confirmed significantly increased crosslinking and excessive collagen type I deposition in the clubfoot-contracted tissue. We successfully reduced these processes in vitro in a dose-dependent manner with 10–40 µg/mL of BAPN, and we observed an increasing trend in the inhibition of the cell-mediated contraction of collagen gels. The in vitro inhibitory effects indicate that BAPN has good potential for the treatment of relapsed and resistant clubfeet.
Collapse
|
7
|
Inflammatory Responses in Oro-Maxillofacial Region Expanded Using Anisotropic Hydrogel Tissue Expander. MATERIALS 2020; 13:ma13194436. [PMID: 33036128 PMCID: PMC7579169 DOI: 10.3390/ma13194436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Reconstruction of oral and facial defects often necessitate replacement of missing soft tissue. The purpose of tissue expanders is to grow healthy supplementary tissue under a controlled force. This study investigates the inflammatory responses associated with the force generated from the use of anisotropic hydrogel tissue expanders. METHODS Sprague Dawley rats (n = 7, body weight = 300 g ± 50 g) were grouped randomly into two groups-control (n = 3) and expanded (n = 4). Anisotropic hydrogel tissue expanders were inserted into the frontal maxillofacial region of the rats in the expanded group. The rats were sacrificed, and skin samples were harvested, fixed in formalin, and embedded in paraffin wax for histological investigation. Hematoxylin and eosin staining was performed to detect histological changes between the two groups and to investigate the inflammatory response in the expanded samples. Three inflammatory markers, namely interleukin (IL)-1α, IL-6, and tumor necrosis factor-α (TNF-α), were analyzed by immunohistochemistry. RESULT IL-1-α expression was only observed in the expanded tissue samples compared to the controls. In contrast, there was no significant difference in IL-6, and TNF-α production. Histological analysis showed the absence of inflammatory response in expanded tissues, and a negative non-significant correlation (Spearman's correlation coefficient) between IL-1-α immune-positive cells and the inflammatory cells (r = -0.500). In conclusion, tissues that are expanded and stabilized using an anisotropic self-inflating hydrogel tissue expander might be useful for tissue replacement and engraftment as the expanded tissue does not show any sign of inflammatory responses. Detection of IL-1-α in the expanded tissues warrants further investigation for its involvement without any visible inflammatory response.
Collapse
|
8
|
Alghamdi MA, AL-Eitan LN, Stevenson A, Chaudhari N, Hortin N, Wallace HJ, Danielsen PL, Manzur M, Wood FM, Fear MW. Secreted Factors from Keloid Keratinocytes Modulate Collagen Deposition by Fibroblasts from Normal and Fibrotic Tissue: A Pilot Study. Biomedicines 2020; 8:biomedicines8070200. [PMID: 32650468 PMCID: PMC7400315 DOI: 10.3390/biomedicines8070200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/03/2022] Open
Abstract
Interactions between keratinocytes and fibroblasts in the skin layers are crucial in normal tissue development, wound healing, and scarring. This study has investigated the role of keloid keratinocytes in regulating collagen production by primary fibroblasts in vitro. Keloid cells were obtained from removed patients’ tissue whereas normal skin cells were discarded tissue obtained from elective surgery procedures. Fibroblasts and keratinocytes were isolated, cultured, and a transwell co-culture system were used to investigate the effect of keratinocytes on collagen production using a ‘scar-in-a-jar’ model. Keloid fibroblasts produced significantly more collagen than normal skin fibroblasts in monoculture at the RNA, secreted protein, and stable fibrillar protein level. When keloid keratinocytes were added to normal skin fibroblasts, expression of collagen was significantly upregulated in most samples, but when added to keloid fibroblasts, collagen I production was significantly reduced. Interestingly, keloid keratinocytes appear to decrease collagen production by keloid fibroblasts. This suggests that signaling in both keratinocytes and fibroblasts is disrupted in keloid pathology.
Collapse
Affiliation(s)
- Mansour A. Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia;
- Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Laith N. AL-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan;
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Andrew Stevenson
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia; (A.S.); (N.C.); (N.H.); (H.J.W.); (F.M.W.)
| | - Nutan Chaudhari
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia; (A.S.); (N.C.); (N.H.); (H.J.W.); (F.M.W.)
| | - Nicole Hortin
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia; (A.S.); (N.C.); (N.H.); (H.J.W.); (F.M.W.)
| | - Hilary J. Wallace
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia; (A.S.); (N.C.); (N.H.); (H.J.W.); (F.M.W.)
- School of Medicine, The University of Notre Dame Australia, Fremantle 6959, Australia
| | - Patricia L. Danielsen
- Department of Dermatology and Copenhagen Wound Healing Center, Copenhagen University Hospital, DK-2400 Copenhagen NV, Denmark;
| | - Mitali Manzur
- Telethon Kids Institute, Perth Children’s Hospital, The University of Western Australia, Nedlands 6009, Australia;
| | - Fiona M. Wood
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia; (A.S.); (N.C.); (N.H.); (H.J.W.); (F.M.W.)
- Burns Service of Western Australia, Perth Children’s Hospital and Fiona Stanley Hospital, Department of Health, Perth 6009, Australia
- Fiona Wood Foundation, Fiona Stanley Hospital, Murdoch, Perth 6150, Australia
| | - Mark W. Fear
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia; (A.S.); (N.C.); (N.H.); (H.J.W.); (F.M.W.)
- Correspondence:
| |
Collapse
|
9
|
Ahn HN, Kang HS, Park SJ, Park MH, Chun W, Cho E. Safety and efficacy of basic fibroblast growth factors for deep second-degree burn patients. Burns 2020; 46:1857-1866. [PMID: 33054995 DOI: 10.1016/j.burns.2020.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Burn injuries are common afflictions; however, conservative wound care frequently leads to poor treatment compliance and physical disability in deep burn patients. Therefore, regenerative biologic materials, which are more effective for tissue repair, are required, particularly for deep second-degree burns. A novel spray formulation of basic fibroblast growth factors (bFGF) was produced by synthesizing fibroblast growth factor proteins. In this post-marketing surveillance (PMS) study, we assessed the safety and efficacy of bFGF and indirectly compared this formulation with cultured epidermal autografts (CEAs) for treating deep second-degree burns. MATERIALS AND METHODS A total of 3173 patients treated at 15 hospitals were used for PMS of bFGF in South Korea for six years. In total, 1630 patients with deep second-degree burns were selected for assessing adverse events (AEs) of bFGF treatments. Efficacy was evaluated according to time periods until re-epithelialization, and clinical usefulness of bFGF was indirectly compared with that of CEAs. RESULTS AEs occurred in 37 patients (2.3%) and included application site pain (1.7%) and contact dermatitis (0.6%). All AEs were mild and were evaluated as probably unrelated with bFGF. The average time for re-epithelialization was 8 days; this time span was significantly longer after major burns (9.7 days) than after minor (7.8 days) or moderate burns (7.9 days). Most treated burn wounds (99.8%) were assessed as improved. The indirect comparison included 534 patients using the same inclusion criteria for CEA patients (n = 35). The bFGF treatment demonstrated superior efficacy compared to CEAs by significantly reducing the average day to application (5.4 vs. 8.8 days) and re-epithelialization time (7.1 vs. 13.7 days). CONCLUSION Our study demonstrated that bFGF is a compelling regenerative therapy with competitive clinical efficacy and safety for deep second-degree burns and reduced treatment time, which is expected to reduce medical costs, particularly for deep second-degree burn patients.
Collapse
Affiliation(s)
- Hye-Na Ahn
- Daewoong Pharmaceutical Company HQ, Seoul, 06170, Republic of Korea
| | - Hee-Sung Kang
- Daewoong Pharmaceutical Company HQ, Seoul, 06170, Republic of Korea
| | - Su-Jung Park
- Daewoong Pharmaceutical Company HQ, Seoul, 06170, Republic of Korea
| | - Mi-Hee Park
- Daewoong Pharmaceutical Company HQ, Seoul, 06170, Republic of Korea
| | - Wook Chun
- Department of Burn Surgery, Burn Center, Hangang Sacred Heart Hospital, Hallym University Medical Center, Seoul, 07247, Republic of Korea
| | - Eun Cho
- College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea; College of Pharmacy, University of Texas at Austin, Austin, TX, 78712, United States.
| |
Collapse
|
10
|
Russo B, Brembilla NC, Chizzolini C. Interplay Between Keratinocytes and Fibroblasts: A Systematic Review Providing a New Angle for Understanding Skin Fibrotic Disorders. Front Immunol 2020; 11:648. [PMID: 32477322 PMCID: PMC7232541 DOI: 10.3389/fimmu.2020.00648] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/23/2020] [Indexed: 12/20/2022] Open
Abstract
Background/Objective: Skin fibrosis is the result of aberrant processes leading to abnormal deposition of extracellular matrix (ECM) in the dermis. In healthy skin, keratinocytes participate to maintain skin homeostasis by actively crosstalking with fibroblasts. Within the wide spectrum of fibrotic skin disorders, relatively little attention has been devoted to the role of keratinocytes for their capacity to participate to skin fibrosis. This systematic review aims at summarizing the available knowledge on the reciprocal interplay of keratinocytes with fibroblasts and their soluble mediators in physiological states, mostly wound healing, and conditions associated with skin fibrosis. Methods: We performed a systematic literature search on PubMed to identify in vitro and ex vivo human studies investigating the keratinocyte characteristics and their interplay with fibroblasts in physiological conditions and within fibrotic skin disorders including hypertrophic scars, keloids, and systemic sclerosis. Studies were selected according to pre-specified eligibility criteria. Data on study methods, models, stimuli and outcomes were retrieved and summarized according to pre-specified criteria. Results: Among the 6,271 abstracts retrieved, 73 articles were included, of which 14 were specifically dealing with fibrotic skin pathologies. Fifty-six studies investigated how keratinocyte may affect fibroblast responses in terms of ECM-related genes or protein production, phenotype modification, and cytokine production. Most studies in both physiological conditions and fibrosis demonstrated that keratinocytes stimulate fibroblasts through the production of interleukin 1, inducing keratinocyte growth factor (KGF) and metalloproteinases in the fibroblasts. When the potential of keratinocytes to modulate collagen synthesis by healthy fibroblasts was explored, the results were controversial. Nevertheless, studies investigating keratinocytes from fibrotic skin, including keloids, hypertrophic scar, and scleroderma, suggested their potential involvement in enhancing ECM deposition. Twenty-three papers investigated keratinocyte proliferation differentiation and production of soluble mediators in response to interactions with fibroblasts. Most studies showed that fibroblasts modulate keratinocyte viability, proliferation, and differentiation. The production of KGF by fibroblast was identified as key for these functions. Conclusions: This review condenses evidence for the active interaction between keratinocytes and fibroblasts in maintaining skin homeostasis and the altered homeostatic interplay between keratinocytes and dermal fibroblasts in scleroderma and scleroderma-like disorders.
Collapse
Affiliation(s)
- Barbara Russo
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolò C Brembilla
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland.,Dermatology, School of Medicine, University Hospital, Geneva, Switzerland
| | - Carlo Chizzolini
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
11
|
Ren X, van der Mei HC, Ren Y, Busscher HJ. Keratinocytes protect soft-tissue integration of dental implant materials against bacterial challenges in a 3D-tissue infection model. Acta Biomater 2019; 96:237-246. [PMID: 31302293 DOI: 10.1016/j.actbio.2019.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/02/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022]
Abstract
The soft-tissue seal around dental implants protects the osseo-integrated screw against bacterial challenges. Surface properties of the implant material are crucial for implant survival against bacterial challenges, but there is no adequate in vitro model mimicking the soft-tissue seal around dental implants. Here, we set up a 3D-tissue model of the soft-tissue seal, in order to establish the roles of oral keratinocytes, gingival fibroblasts and materials surface properties in the protective seal. To this end, keratinocytes were grown on membrane filters in a transwell system, while fibroblasts were adhering to TiO2 surfaces underneath the membrane. In absence of keratinocytes on the membrane, fibroblasts growing on the TiO2 surface could not withstand challenges by commensal streptococci or pathogenic staphylococci. Keratinocytes growing on the membrane filters could withstand bacterial challenges, but tight junctions widened to allow invasion of bacteria to the underlying fibroblast layer in lower numbers than in absence of keratinocytes. The challenge of this bacterial invasion to the fibroblast layer on the TiO2 surface negatively affected tissue integration of the surface, demonstrating the protective barrier role of keratinocytes. Streptococci caused less damage to fibroblasts than staphylococci. Importantly, the protection offered by the soft-tissue seal appeared sensitive to surface properties of the implant material. Integration by fibroblasts of a hydrophobic silicone rubber surface was affected more upon bacterial challenges than integration of more hydrophilic hydroxyapatite or TiO2 surfaces. This differential response to different surface-chemistries makes the 3D-tissue infection model presented a useful tool in the development of new infection-resistant dental implant materials. STATEMENT OF SIGNIFICANCE: Failure rates of dental implants due to infection are surprisingly low, considering their functioning in the highly un-sterile oral cavity. This is attributed to the soft-tissue seal, protecting the osseo-integrated implant part against bacterial invasion. The seal consists of a layer of keratinocytes covering gingival fibroblasts, integrating the implant. Implant failure involves high patient discomfort and costs of replacing an infected implant, which necessitates development of improved, infection-resistant dental implant materials. New materials are often evaluated in mono-culture, examining bacterial adhesion or tissue interactions separately and neglecting the 3D-structure of the tissue seal. A 3D-tissue model allows to study new materials in a more relevant way, in which interactions between keratinocytes, gingival fibroblast, bacteria and materials surfaces are accounted for.
Collapse
Affiliation(s)
- Xiaoxiang Ren
- University of Groningen and University Medical Center of Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Henny C van der Mei
- University of Groningen and University Medical Center of Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Yijin Ren
- University of Groningen and University Medical Center of Groningen, Department of Orthodontics, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Henk J Busscher
- University of Groningen and University Medical Center of Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
12
|
Li Q, Zhao H, Chen W, Huang P, Bi J. Human keratinocyte-derived microvesicle miRNA-21 promotes skin wound healing in diabetic rats through facilitating fibroblast function and angiogenesis. Int J Biochem Cell Biol 2019; 114:105570. [PMID: 31302227 DOI: 10.1016/j.biocel.2019.105570] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/24/2019] [Accepted: 07/07/2019] [Indexed: 12/15/2022]
Abstract
Skin wound healing is a complex physiological process that maintains the integrity of the skin tissues, involving a variety of distinct cell types and signaling molecules. The specific signaling pathways or extracellular cues that govern the healing processes remain elusive. Microvesicles (MVs) have recently emerged as critical mediators of cell communication by delivery of genetic materials to target cells. In this study, we found the direct delivery of HEKa-MVs expressing miR-21 mimics significantly promoted the healing of skin wound in diabetic rats. In-depth studies showed that MV miR-21 promoted fibroblast migration, differentiation, and contraction, induced a pro-angiogenic process of endothelial cells and mediated a pro-inflammatory response. Mechanically, MV miR-21 might target specific essential effector mRNA in fibroblasts such as MMP-1, MMP-3, TIMP3, and TIMP4 to increase MMPs expression and enzymatic activities. Moreover, MV miR-21 regulated ɑ-SMA and N-cadherin to induce fibroblast-myofibroblast differentiation. MV miR-21 up-regulated the IL-6 and IL-8 expressions and their secretion to amplify the immune response. Furthermore, MV miR-21 down-regulated PTEN and RECK in protein level, and activate MAPK/ERK signaling cascade, thereby promoting fibroblast functions. Thus, our study has provided for the first time the basis for the potential application of HEKa-MVs, and MV miR-21 in particular for wound healing.
Collapse
Affiliation(s)
- Qian Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Zhao
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weimin Chen
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Huang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jiarui Bi
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
13
|
Crosstalk among adipose tissue, vitamin D level, and biomechanical properties of hypertrophic burn scars. Burns 2019; 45:1430-1437. [PMID: 31076207 DOI: 10.1016/j.burns.2019.04.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/05/2019] [Accepted: 04/16/2019] [Indexed: 12/29/2022]
Abstract
PURPOSE This cross-sectional study aimed to investigate whether adipose tissue loss and reduced vitamin D levels following severe burn injury are associated with pathologic scar formation and biomechanical scar properties. METHODS A total of 492 male subjects with hypertrophic burn scars were enrolled from January 2014 to July 2018 and analyzed. Body fat content was measured using dual-energy X-ray absorptiometry. Values of melanin, erythema, and trans-epidermal water loss (TEWL) and the distensibility and elasticity of hypertrophic scars were examined using pigment- and TEWL-measuring devices and a suction skin elasticity meter. RESULTS Burn patients with higher fat percentage tended to have higher 25(OH) vitamin D levels (P < 0.001). As body fat percentage increased, hypertrophic scars showed higher mean value of Uf (distensibility, P < 0.001) and lower mean value of Uv/Ue (viscoelasticity or interstitial fluid shifting, P < 0.001). Burn patients with higher 25(OH) vitamin D levels tended to have higher mean values of Uf (P < 0.001) and Ua/Uf (gross elasticity, P = 0.013) and lower mean value of Uv/Ue (P = 0.008). CONCLUSION Adipose tissue loss and decreased 25(OH) vitamin D levels following burn injury were related to scar rigidity and slow interstitial fluid shifting in hypertrophic scars.
Collapse
|
14
|
Kilic Bektas C, Kimiz I, Sendemir A, Hasirci V, Hasirci N. A bilayer scaffold prepared from collagen and carboxymethyl cellulose for skin tissue engineering applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:1764-1784. [DOI: 10.1080/09205063.2018.1498718] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Cemile Kilic Bektas
- BIOMATEN Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University (METU), Ankara, Turkey
- Department of Biological Sciences, METU, Ankara, Turkey
- Department of Biotechnology, METU, Ankara, Turkey
| | - Ilgin Kimiz
- Department of Bioengineering, Ege University, Izmir, Turkey
| | - Aylin Sendemir
- Department of Bioengineering, Ege University, Izmir, Turkey
- Department of Biomedical Technologies, Ege University, Izmir, Turkey
| | - Vasif Hasirci
- BIOMATEN Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University (METU), Ankara, Turkey
- Department of Biological Sciences, METU, Ankara, Turkey
- Department of Biotechnology, METU, Ankara, Turkey
| | - Nesrin Hasirci
- BIOMATEN Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University (METU), Ankara, Turkey
- Department of Biotechnology, METU, Ankara, Turkey
- Department of Chemistry, METU, Ankara, Turkey
| |
Collapse
|
15
|
Stunova A, Vistejnova L. Dermal fibroblasts—A heterogeneous population with regulatory function in wound healing. Cytokine Growth Factor Rev 2018; 39:137-150. [DOI: 10.1016/j.cytogfr.2018.01.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/11/2018] [Indexed: 02/06/2023]
|
16
|
Bi S, Chai L, Yuan X, Cao C, Li S. MicroRNA-98 inhibits the cell proliferation of human hypertrophic scar fibroblasts via targeting Col1A1. Biol Res 2017. [PMID: 28629444 PMCID: PMC5477152 DOI: 10.1186/s40659-017-0127-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Hypertrophic scarring (HS) is a severe disease, and results from unusual wound healing. Col1A1 could promote the hypertrophic scar formation, and the expression of Col1A1 in HS tissue was markedly higher than that in the normal. In present study, we aimed to identify miRNAs as post-transcriptional regulators of Col1A1 in HS. Methods MicroRNA-98 was selected as the key miRNA comprised in HS. The mRNA levels of miR-98 in HS tissues and the matched normal skin tissues were determined by qRT-PCR. MTT and flow cytometry were used to determine the influence of miR-98 on cell proliferation and apoptosis of HSFBs, respectively. Col1A1 was found to be the target gene of miR-98 using luciferase reporter assay. Luciferase assay was performed to determine the relative luciferase activity in mimic NC, miR-98 mimic, inhibitor NC and miR-98 inhibitor with Col1A13′-UTR wt or Col1A13′-UTR mt reporter plasmids. The protein expression of Col1A1 in HSFBs after transfection with mimic NC, miR-98 mimic, inhibitor NC and miR-98 inhibitor were determined by western blotting. Results The mRNA level of miR-98 in HS tissues was much higher than that in the control. Transfection of HSFBs with a miR-98 mimic reduced the cell viability of HSFBs and increased the apoptosis portion of HSFBs, while inhibition of miR-98 increased cell viability and decreased apoptosis portion of HSFBs. miR-98 inhibitor increased the relative luciferase activity significantly when cotransfected with the Col1A1-UTR reporter plasmid, while the mutant reporter plasmid abolished the miR-98 inhibitor-mediated increase in luciferase activity. Western blotting revealed that overexpression of miR-98 decreased the expression of Col1A1. Conclusions Overexpression of miR-98 repressed the proliferation of HSFBs by targeting Col1A1.
Collapse
Affiliation(s)
- Sheng Bi
- Department of Plastic and Reconstructive Surgery, Southwest Hospital, Third Military Medical University, 29 Gaotanyan Main Street, Shapingba District, Chongqing, 400038, China
| | - Linlin Chai
- Department of Plastic and Reconstructive Surgery, Southwest Hospital, Third Military Medical University, 29 Gaotanyan Main Street, Shapingba District, Chongqing, 400038, China
| | - Xi Yuan
- Department of Plastic and Reconstructive Surgery, Southwest Hospital, Third Military Medical University, 29 Gaotanyan Main Street, Shapingba District, Chongqing, 400038, China
| | - Chuan Cao
- Department of Plastic and Reconstructive Surgery, Southwest Hospital, Third Military Medical University, 29 Gaotanyan Main Street, Shapingba District, Chongqing, 400038, China.
| | - Shirong Li
- Department of Plastic and Reconstructive Surgery, Southwest Hospital, Third Military Medical University, 29 Gaotanyan Main Street, Shapingba District, Chongqing, 400038, China
| |
Collapse
|
17
|
Nishimura M, Nishie W, Shirafuji Y, Shinkuma S, Natsuga K, Nakamura H, Sawamura D, Iwatsuki K, Shimizu H. Extracellular cleavage of collagen XVII is essential for correct cutaneous basement membrane formation. Hum Mol Genet 2016; 25:328-39. [PMID: 26604146 DOI: 10.1093/hmg/ddv478] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 11/16/2015] [Indexed: 02/04/2023] Open
Abstract
In skin, basal keratinocytes in the epidermis are tightly attached to the underlying dermis by the basement membrane (BM). The correct expression of hemidesmosomal and extracellular matrix (ECM) proteins is essential for BM formation, and the null-expression of one molecule may induce blistering diseases associated with immature BM formation in humans. However, little is known about the significance of post-translational processing of hemidesmosomal or ECM proteins in BM formation. Here we show that the C-terminal cleavage of hemidesmosomal transmembrane collagen XVII (COL17) is essential for correct BM formation. The homozygous p.R1303Q mutation in COL17 induces BM duplication and blistering in humans. Although laminin 332, a major ECM protein, interacts with COL17 around p.R1303, the mutation leaves the binding of both molecules unchanged. Instead, the mutation hampers the physiological C-terminal cleavage of COL17 in the ECM. Consequently, non-cleaved COL17 ectodomain remnants induce the aberrant deposition of laminin 332 in the ECM, which is thought to be the major pathogenesis of the BM duplication that results from this mutation. As an example of impaired cleavage of COL17, this study shows that regulated processing of hemidesmosomal proteins is essential for correct BM organization in skin.
Collapse
Affiliation(s)
- Machiko Nishimura
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Wataru Nishie
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan,
| | - Yoshinori Shirafuji
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama 700-8558, Japan and
| | - Satoru Shinkuma
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Ken Natsuga
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Hideki Nakamura
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Daisuke Sawamura
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Zaifu-Cho 5, Hirosaki 036-8562, Japan
| | - Keiji Iwatsuki
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama 700-8558, Japan and
| | - Hiroshi Shimizu
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan,
| |
Collapse
|
18
|
Kippenberger S, Zöller N, Kleemann J, Müller J, Kaufmann R, Hofmann M, Bernd A, Meissner M, Valesky E. STAT6-Dependent Collagen Synthesis in Human Fibroblasts Is Induced by Bovine Milk. PLoS One 2015; 10:e0131783. [PMID: 26134630 PMCID: PMC4489876 DOI: 10.1371/journal.pone.0131783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/05/2015] [Indexed: 12/13/2022] Open
Abstract
Since the domestication of the urus, 10.000 years ago, mankind utilizes bovine milk for different purposes. Besides usage as a nutrient also the external application of milk on skin has a long tradition going back to at least the ancient Aegypt with Cleopatra VII as a great exponent. In order to test whether milk has impact on skin physiology, cultures of human skin fibroblasts were exposed to commercial bovine milk. Our data show significant induction of proliferation by milk (max. 2,3-fold, EC50: 2,5% milk) without toxic effects. Surprisingly, bovine milk was identified as strong inducer of collagen 1A1 synthesis at both, the protein (4-fold, EC50: 0,09% milk) and promoter level. Regarding the underlying molecular pathways, we show functional activation of STAT6 in a p44/42 and p38-dependent manner. More upstream, we identified IGF-1 and insulin as key factors responsible for milk-induced collagen synthesis. These findings show that bovine milk contains bioactive molecules that act on human skin cells. Therefore, it is tempting to test the herein introduced concept in treatment of atrophic skin conditions induced e.g. by UV light or corticosteroids.
Collapse
Affiliation(s)
- Stefan Kippenberger
- Department of Dermatology, Venereology and Allergy, Johann Wolfgang Goethe University, Frankfurt/Main, Germany
- * E-mail:
| | - Nadja Zöller
- Department of Dermatology, Venereology and Allergy, Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Johannes Kleemann
- Department of Dermatology, Venereology and Allergy, Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Jutta Müller
- Department of Dermatology, Venereology and Allergy, Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Roland Kaufmann
- Department of Dermatology, Venereology and Allergy, Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Matthias Hofmann
- Department of Dermatology, Venereology and Allergy, Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - August Bernd
- Department of Dermatology, Venereology and Allergy, Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Markus Meissner
- Department of Dermatology, Venereology and Allergy, Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Eva Valesky
- Department of Dermatology, Venereology and Allergy, Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| |
Collapse
|
19
|
Tumor necrosis factor-α-accelerated degradation of type I collagen in human skin is associated with elevated matrix metalloproteinase (MMP)-1 and MMP-3 ex vivo. Eur J Cell Biol 2014; 94:12-21. [PMID: 25457675 PMCID: PMC4300401 DOI: 10.1016/j.ejcb.2014.10.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/09/2014] [Accepted: 10/09/2014] [Indexed: 12/02/2022] Open
Abstract
Tumor necrosis factor (TNF)-α induces matrix metalloproteinases (MMPs) that may disrupt skin integrity. We have investigated the effects and mechanisms of exogenous TNF-α on collagen degradation by incubating human skin explants in defined serum-free media with or without TNF-α (10 ng/ml) in the absence or presence of the nonselective MMP inhibitor GM6001 for 8 days. The basal culture conditions promoted type I collagen catabolism that was accelerated by TNF-α (p < 0.005) and accomplished by MMPs (p < 0.005). Levels of the collagenases MMP-8 and MMP-13 were insignificant and neither MMP-2 nor MMP-14 were associated with increased collagen degradation. TNF-α increased secretion of MMP-1 (p < 0.01) but had no impact on MMP-1 quantities in the tissue. Immunohistochemical analysis confirmed similar tissue MMP-1 expression with or without TNF-α with epidermis being the major source of MMP-1. Increased tissue-derived collagenolytic activity with TNF-α exposure was blocked by neutralizing MMP-1 monoclonal antibody and was not due to down-regulation of tissue inhibitor of metalloproteinase-1. TNF-α increased production (p < 0.01), tissue levels (p < 0.005) and catalytic activity of the endogenous MMP-1 activator MMP-3. Type I collagen degradation correlated with MMP-3 tissue levels (rs = 0.68, p < 0.05) and was attenuated with selective MMP-3 inhibitor. Type I collagen formation was down-regulated in cultured compared with native skin explants but was not reduced further by TNF-α. TNF-α had no significant effect on epidermal apoptosis. Our data indicate that TNF-α augments collagenolytic activity of MMP-1, possibly through up-regulation of MMP-3 leading to gradual loss of type I collagen in human skin.
Collapse
|
20
|
Zöller N, Valesky E, Butting M, Hofmann M, Kippenberger S, Bereiter-Hahn J, Bernd A, Kaufmann R. Clinical application of a tissue-cultured skin autograft: an alternative for the treatment of non-healing or slowly healing wounds? Dermatology 2014; 229:190-8. [PMID: 25227494 DOI: 10.1159/000362927] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 04/17/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The treatment regime of non-healing or slowly healing wounds is constantly improving. One aspect is surgical defect coverage whereby mesh grafts and keratinocyte suspension are applied. OBJECTIVE Tissue-cultured skin autografts may be an alternative for the treatment of full-thickness wounds and wounds that cover large areas of the body surface. METHODS Autologous epidermal and dermal cells were isolated, expanded in vitro and seeded on collagen-elastin scaffolds. The developed autograft was immunohistochemically characterized and subsequently transplanted onto a facial chronic ulceration of a 71-year-old patient with vulnerable atrophic skin. RESULTS Characterization of the skin equivalent revealed comparability to healthy human skin due to the epidermal strata, differentiation and proliferation markers. Within 138 days, the skin structure at the transplantation site closely correlated with the adjacent undisturbed skin. CONCLUSION The present study demonstrates the comparability of the developed organotypic skin equivalent to healthy human skin and the versatility for clinical applications.
Collapse
Affiliation(s)
- Nadja Zöller
- Department of Dermatology, Venereology and Allergology, Goethe University Medical School, Frankfurt/Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Vaz Patto MC, Rubiales D. Lathyrus diversity: available resources with relevance to crop improvement--L. sativus and L. cicera as case studies. ANNALS OF BOTANY 2014; 113:895-908. [PMID: 24623333 PMCID: PMC3997641 DOI: 10.1093/aob/mcu024] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/04/2014] [Indexed: 05/09/2023]
Abstract
BACKGROUND The Lathyrus genus includes 160 species, some of which have economic importance as food, fodder and ornamental crops (mainly L. sativus, L. cicera and L. odoratus, respectively) and are cultivated in >1·5 Mha worldwide. However, in spite of their well-recognized robustness and potential as a source of calories and protein for populations in drought-prone and marginal areas, cultivation is in decline and there is a high risk of genetic erosion. SCOPE In this review, current and past taxonomic treatments of the Lathyrus genus are assessed and its current status is examined together with future prospects for germplasm conservation, characterization and utilization. A particular emphasis is placed on the importance of diversity analysis for breeding of L. sativus and L. cicera. CONCLUSIONS Efforts for improvement of L. sativus and L. cicera should concentrate on the development of publicly available joint core collections, and on high-resolution genotyping. This will be critical for permitting decentralized phenotyping. Such a co-ordinated international effort should result in more efficient and faster breeding approaches, which are particularly needed for these neglected, underutilized Lathyrus species.
Collapse
Affiliation(s)
- M. C. Vaz Patto
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República (EAN), Apartado 127, 2781-901 Oeiras, Portugal
| | - D. Rubiales
- Institute for Sustainable Agriculture, CSIC, Apdo. 4084, E-14080 Córdoba, Spain
| |
Collapse
|
22
|
Hartwell R, Lai A, Ghahary A. Modulation of extracellular matrix through keratinocyte–fibroblast crosstalk. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/edm.09.55] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Varkey M, Ding J, Tredget EE. Fibrotic remodeling of tissue-engineered skin with deep dermal fibroblasts is reduced by keratinocytes. Tissue Eng Part A 2013; 20:716-27. [PMID: 24090416 DOI: 10.1089/ten.tea.2013.0434] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Two-thirds of burn patients with deep dermal injuries are affected by hypertrophic scars, and currently, there are no clinically effective therapies. Tissue-engineered skin is a very promising model for the elucidation of the role of matrix microenvironment and biomechanical characteristics and could help in the identification of new therapeutic targets for hypertrophic scars. Conventionally, tissue-engineered skin is made of heterogeneous dermal fibroblasts and keratinocytes; however, recent work has shown that superficial and deep dermal fibroblasts are antifibrotic and profibrotic, respectively. Furthermore, keratinocytes are believed to regulate the development and remodeling of fibrosis in skin. This study aimed to assess the influence of keratinocytes and layered fibroblasts on the characteristics of tissue-engineered skin. Layered fibroblasts and keratinocytes isolated from superficial and deep dermis and epidermis, respectively, of the lower abdominal tissue were independently co-cultured on collagen-glycosaminoglycan scaffolds, and the resulting tissue-engineered skin was assessed for differences in tissue remodeling based on the underlying specific dermal fibroblast subpopulation. Collagen production by deep fibroblasts but not by superficial fibroblasts was significantly reduced upon co-culture with keratinocytes. Also, keratinocytes in the tissue-engineered skin resulted in significantly reduced expression of profibrotic connective tissue growth factor and fibronectin, and increased expression of the antifibrotic matrix metalloproteinase-1 by deep fibroblasts but not by superficial fibroblasts. Tissue-engineered skin made of deep fibroblasts and keratinocytes had lower levels of small proteoglycans, decorin, and fibromodulin, and higher levels of large proteoglycan, versican, compared to tissue-engineered skin made of superficial fibroblasts and keratinocytes. Tissue-engineered skin made of deep fibroblasts and keratinocytes had lower expression of transforming growth factor (TGF)-α, interleukin (IL)-1, and keratinocyte growth factor but higher expression of platelet-derived growth factor and IL-6, compared to tissue-engineered skin made of superficial fibroblasts and keratinocytes. Furthermore, co-culture with keratinocytes reduced TGF-β1 production of deep but not superficial fibroblasts. Additionally, keratinocytes reduced the differentiation of deep fibroblasts to myofibroblasts in tissue-engineered skin constructs, but not that of superficial fibroblasts. Taken together, keratinocytes reduce fibrotic remodeling of the scaffolds by deep dermal fibroblasts. Our results therefore demonstrate that tissue-engineered skin made specifically with a homogeneous population of superficial fibroblasts and keratinocytes is less fibrotic than that with a heterogeneous population of fibroblasts and keratinocytes.
Collapse
Affiliation(s)
- Mathew Varkey
- 1 Wound Healing Research Group, Division of Plastic and Reconstructive Surgery, University of Alberta , Edmonton, Canada
| | | | | |
Collapse
|
24
|
Hoeksema H, De Vos M, Verbelen J, Pirayesh A, Monstrey S. Scar management by means of occlusion and hydration: a comparative study of silicones versus a hydrating gel-cream. Burns 2013; 39:1437-48. [PMID: 23639224 DOI: 10.1016/j.burns.2013.03.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 01/23/2013] [Accepted: 03/29/2013] [Indexed: 11/29/2022]
Abstract
Despite the worldwide use of silicones in scar management, its exact working mechanism based on a balanced occlusion and hydration, is still not completely elucidated. Moreover, it seems peculiar that silicones with completely different occlusive and hydrating properties still could provide a similar therapeutic effect. The objective of the first part of this study was to compare the occlusive and hydrating properties of three fluid silicone gels and a hydrating gel-cream. In a second part of the study these results were compared with those of silicone gel sheets. Tape stripped skin was used as a standardized scar like model on both forearms of 40 healthy volunteers. At specific times, trans epidermal water loss (TEWL) and the hydration state of the stratum corneum were measured and compared with intact skin and a scar-like control over a 3-4h period. Our study clearly demonstrated that fluid silicone gels and a hydrating gel-cream have comparable occlusive and hydrating properties while silicone gel sheets are much more occlusive, reducing TEWL values far below those of normal skin. A well-balanced, hydrating gel-cream can provide the same occlusive and hydrating properties as fluid silicone gels, suggesting that it could eventually replace silicones in scar treatment.
Collapse
Affiliation(s)
- Henk Hoeksema
- Department of Plastic and Reconstructive Surgery - Burn Centre, Ghent University Hospital, Ghent, Belgium.
| | | | | | | | | |
Collapse
|
25
|
Menon SN, Flegg JA, McCue SW, Schugart RC, Dawson RA, McElwain DLS. Modelling the interaction of keratinocytes and fibroblasts during normal and abnormal wound healing processes. Proc Biol Sci 2012; 279:3329-38. [PMID: 22628464 PMCID: PMC3385718 DOI: 10.1098/rspb.2012.0319] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 04/27/2012] [Indexed: 12/20/2022] Open
Abstract
The crosstalk between fibroblasts and keratinocytes is a vital component of the wound healing process, and involves the activity of a number of growth factors and cytokines. In this work, we develop a mathematical model of this crosstalk in order to elucidate the effects of these interactions on the regeneration of collagen in a wound that heals by second intention. We consider the role of four components that strongly affect this process: transforming growth factor-β, platelet-derived growth factor, interleukin-1 and keratinocyte growth factor. The impact of this network of interactions on the degradation of an initial fibrin clot, as well as its subsequent replacement by a matrix that is mainly composed of collagen, is described through an eight-component system of nonlinear partial differential equations. Numerical results, obtained in a two-dimensional domain, highlight key aspects of this multifarious process, such as re-epithelialization. The model is shown to reproduce many of the important features of normal wound healing. In addition, we use the model to simulate the treatment of two pathological cases: chronic hypoxia, which can lead to chronic wounds; and prolonged inflammation, which has been shown to lead to hypertrophic scarring. We find that our model predictions are qualitatively in agreement with previously reported observations and provide an alternative pathway for gaining insight into this complex biological process.
Collapse
Affiliation(s)
- Shakti N. Menon
- School of Mathematical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
- Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
| | - Jennifer A. Flegg
- School of Mathematical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
- Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
| | - Scott W. McCue
- School of Mathematical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
| | - Richard C. Schugart
- Department of Mathematics and Computer Science, Western Kentucky University, 1906 College Heights Boulevard, Bowling Green, KY 42101-1078, USA
| | - Rebecca A. Dawson
- Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
| | - D. L. Sean McElwain
- School of Mathematical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
- Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
| |
Collapse
|
26
|
Chavez-Muñoz C, Hartwell R, Jalili RB, Jafarnejad SM, Lai A, Nabai L, Ghaffari A, Hojabrpour P, Kanaan N, Duronio V, Guns E, Cherkasov A, Ghahary A. SPARC/SFN interaction, suppresses type I collagen in dermal fibroblasts. J Cell Biochem 2012; 113:2622-32. [DOI: 10.1002/jcb.24137] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
27
|
Yang L, Hashimoto K, Tohyama M, Okazaki H, Dai X, Hanakawa Y, Sayama K, Shirakata Y. Interactions between myofibroblast differentiation and epidermogenesis in constructing human living skin equivalents. J Dermatol Sci 2012; 65:50-7. [DOI: 10.1016/j.jdermsci.2011.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 10/26/2011] [Accepted: 10/28/2011] [Indexed: 11/26/2022]
|
28
|
Fu X, Wang H. Rapid fabrication of biomimetic nanofiber-enabled skin grafts. Nanomedicine (Lond) 2012. [DOI: 10.1533/9780857096449.3.428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
29
|
Comparison of healing parameters in porcine full-thickness wounds transplanted with skin micrografts, split-thickness skin grafts, and cultured keratinocytes. J Am Coll Surg 2011; 213:728-35. [PMID: 22018809 DOI: 10.1016/j.jamcollsurg.2011.08.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 08/31/2011] [Indexed: 11/21/2022]
Abstract
BACKGROUND Transplantation of skin micrografts (MGs), split-thickness skin grafts (STSGs), or cultured autologous keratinocytes (CKs) enhances the healing of large full-thickness wounds. This study compares these methods in a porcine wound model, investigating the utility of micrograft transplantation in skin restoration. STUDY DESIGN Full-thickness wounds were created on Yorkshire pigs and assigned to one of the following treatment groups: MGs, STSGs, CKs, wet nontransplanted, or dry nontransplanted. Dry wounds were covered with gauze and the other groups' wounds were enclosed in a polyurethane chamber containing saline. Biopsies were collected 6, 12, and 18 days after wounding. Quantitative and qualitative wound healing parameters including macroscopic scar appearance, wound contraction, neoepidermal maturation, rete ridge formation, granulation tissue thickness and width, and scar tissue formation were studied. RESULTS Transplanted wounds scored lower on the Vancouver Scar Scale compared with nontransplanted wounds, indicating a better healing outcome. All transplanted wounds exhibited significantly lower contraction compared with nontransplanted wounds. Wounds transplanted with either MGs, STSGs, or CKs showed a significant increase in re-epithelialization compared with nontransplanted wounds. Wounds transplanted with MGs or STSGs exhibited improved epidermal healing compared with nongrafted wounds. Furthermore, transplantation with STSGs or MGs led to less scar tissue formation compared with the nontransplanted wounds. No significant impact on scar formation was observed after transplantation of CKs. CONCLUSIONS Qualitative and quantitative measurements collected from full-thickness porcine wounds show that transplantation of MGs improve wound healing parameters and is comparable to treatment with STSGs.
Collapse
|
30
|
Abstract
The principles of scar evolution and control are recognized and defined. Further clarity has been shed on these principles with the elucidation and elaboration of the sequence of events occurring at a molecular level. Cellular cross-talk among structures in the cell cytosol, in the cellular nucleus, and outside the cell within in the extracellular matrix is continuous and controlling in nature. This interaction or "dynamic reciprocity" takes place via a series of signals, ionic messenger shifts, protein activation, and receptor transactions. The described principles are now able to be defined in terms of cellular/extracellular matrix interactions and the identification of the cross-talk involved in scar evolution and maturation presents the possibility of influencing the "wording" of this cross-talk to improve scar outcome. The principles of mechanostimulation and scar support, hydration occlusion, controlled inflammation, and collagen/extracellular remodeling are discussed with possible interventions in each category.
Collapse
Affiliation(s)
- Alan D Widgerow
- Plastic Surgery Department, University of Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
31
|
Quan T, Qin Z, Shao Y, Xu Y, Voorhees JJ, Fisher GJ. Retinoids suppress cysteine-rich protein 61 (CCN1), a negative regulator of collagen homeostasis, in skin equivalent cultures and aged human skin in vivo. Exp Dermatol 2011; 20:572-6. [PMID: 21488975 DOI: 10.1111/j.1600-0625.2011.01278.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Alterations in connective tissue collagen are prominent features of both chronologically aged and photoaged (ageing because of sun exposure) human skin. These age-related abnormalities are mediated in part by cysteine-rich protein 61 (CCN1). CCN1 is elevated in the dermis of both chronologically aged and photoaged human skin in vivo and promotes aberrant collagen homeostasis by down-regulating type I collagen, the major structural protein in skin, and promoting collagen degradation. Vitamin A and its metabolites have been shown to improve chronologically aged and photoaged skin by promoting deposition of new collagen and preventing its degradation. Here, we investigated regulation of CCN1 expression by retinoids in skin equivalent cultures and chronologically aged and photoaged human skin in vivo. In skin equivalent cultures, all-trans retinoic acid (RA), the major bioactive form of vitamin A in skin, significantly increased type I procollagen and reduced collagenase (matrix metalloproteinases-1, MMP-1). Addition of recombinant human CCN1 to skin equivalent cultures significantly reduced type I procollagen and increased MMP-1. Importantly, RA significantly reduced CCN1 expression in skin equivalent cultures. Topical treatment with retinol (vitamin A, 0.4%) for 7days significantly reduced CCN1 mRNA and protein expression in both chronologically aged (80+years) and photoaged human skin in vivo, compared to vehicle-treated skin. These data indicate that the mechanism by which retinoids improve aged skin, through increased collagen production, involves down-regulation of CCN1.
Collapse
Affiliation(s)
- Taihao Quan
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109-5609, USA
| | | | | | | | | | | |
Collapse
|
32
|
Coulibaly MO, Sietsema DL, Burgers TA, Mason J, Williams BO, Jones CB. Recent advances in the use of serological bone formation markers to monitor callus development and fracture healing. Crit Rev Eukaryot Gene Expr 2011; 20:105-27. [PMID: 21133841 DOI: 10.1615/critreveukargeneexpr.v20.i2.20] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The failure of an osseous fracture to heal, or the development of a nonunion, is common; however, current diagnostic measures lack the capability of early and reliable detection of such events. Analyses of radiographic imaging and clinical examination, in combination, remain the gold standard for diagnosis; however, these methods are not reliable for early detection. Delayed diagnosis of a nonunion is costly from both the patient and treatment standpoints. In response, repeated efforts have been made to identify bone metabolic markers as diagnostic or prognostic tools for monitoring bone healing. Thus far, the evidence regarding a correlation between the kinetics of most bone metabolic markers and nonunion is very limited. With the aim of classifying the role of biological pathways of bone metabolism and of understanding bone conditions in the development of osteoporosis, advances have been made in our knowledge of the molecular basis of bone remodeling, fracture healing, and its failure. Procollagen type I amino-terminal propeptide has been shown to be a reliable bone formation marker in osteoporosis therapy and its kinetics during fracture healing has been recently described. In this article, we suggest that procollagen type I amino-terminal propeptide presents a good opportunity for early detection of nonunion. We also review the role and potential of serum PINP, as well as other markers, as indications of fracture healing.
Collapse
|
33
|
Koskela A, Engström K, Hakelius M, Nowinski D, Ivarsson M. Regulation of fibroblast gene expression by keratinocytes in organotypic skin culture provides possible mechanisms for the antifibrotic effect of reepithelialization. Wound Repair Regen 2010; 18:452-9. [PMID: 20731800 DOI: 10.1111/j.1524-475x.2010.00605.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To investigate the mechanisms behind the antifibrotic effect associated with epidermal regeneration, the expression of 12 fibroblast genes important for the modulation of the extracellular matrix (ECM), as well as α-smooth muscle actin, was studied in a keratinocyte-fibroblast organotypic skin culture model. The study was performed over time during epidermal generation and in the presence or absence of the profibrotic factor transforming growth factor-β. the Presence of epidermal differentiation markers in the model was essentially coherent with that of native skin. Fibroblast gene expression was analyzed with real-time polymerase chain reaction after removal of the epidermal layer. After 2 days of air-exposed culture, 11 out of the 13 genes studied were significantly regulated by keratinocytes in the absence or presence of transforming growth factor-β. The regulation of connective tissue growth factor, collagen I and III, fibronectin, plasmin system regulators, matrix metalloproteinases and their inhibitors as well as α-smooth muscle actin was consistent with a suppression of ECM formation or contraction. Overall, the results support a view that keratinocytes regulate fibroblasts to act catabolically on the ECM in epithelialization processes. This provides possible mechanisms for the clinical observations that reepithelialization and epidermal wound coverage counteract excessive scar formation.
Collapse
Affiliation(s)
- Anita Koskela
- Clinical Research Center, University Hospital and Orebro Life Science Center, University Hospital Orebro, Orebro, Sweden
| | | | | | | | | |
Collapse
|
34
|
Ghaffari A, Li Y, Kilani RT, Ghahary A. 14-3-3 sigma associates with cell surface aminopeptidase N in the regulation of matrix metalloproteinase-1. J Cell Sci 2010; 123:2996-3005. [PMID: 20699358 DOI: 10.1242/jcs.069484] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are implicated in the degradation of the extracellular matrix during development and tissue repair, as well as in pathological conditions such as tumor invasion and fibrosis. MMP expression by stromal cells is partly regulated by signals from the neighboring epithelial cells. Keratinocyte-releasable 14-3-3sigma, or stratifin, acts as a potent MMP-1-stimulatory factor in fibroblasts. However, its mechanism of transmembrane signaling remains unknown. Ectodomain biotin labeling, serial affinity purification and mass spectroscopy analysis revealed that the stratifin associates with aminopeptidase N (APN), or CD13, at the cell surface. The transient knockdown of APN in fibroblasts eliminated the stratifin-mediated p38 MAP kinase activation and MMP-1 expression, implicating APN in a receptor-mediated transmembrane signaling event. Stratifin deletion studies implicated its C-terminus as a potential APN-binding site. Furthermore, the dephosphorylation of APN ectodomains reduced its binding affinity to the stratifin. The presence of a phosphorylated serine or threonine residue in APN has been implicated. Together, these findings provide evidence that APN is a novel cell surface receptor for stratifin and a potential target in the regulation of MMP-1 expression in epithelial-stromal cell communication.
Collapse
Affiliation(s)
- Abdi Ghaffari
- Department of Surgery, BC Professional Firefighter's Burn and Wound Healing Research Laboratory, University of British Columbia, 344A JBRC, 2660 Oak Street, Vancouver, Canada, BC V6H 3Z6
| | | | | | | |
Collapse
|
35
|
Mujaj S, Manton K, Upton Z, Richards S. Serum-free primary human fibroblast and keratinocyte coculture. Tissue Eng Part A 2010; 16:1407-20. [PMID: 19929322 DOI: 10.1089/ten.tea.2009.0251] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Research has shown that the inclusion of a fibroblast cell support layer is required for the isolation and expansion of primary keratinocytes. Recent advances have provided keratinocyte culture with fibroblast-free alternatives. However, these technologies are often undefined and rely on the incorporation of purified proteins/components. To address this problem we developed a medium that used recombinant proteins to support the serum-free isolation and expansion of human dermal fibroblasts and keratinocytes. The human dermal fibroblasts were able to be isolated serum free by adding recombinant human albumin to a collagenase solution. These fibroblasts were then expanded using a serum-free medium containing recombinant proteins: epidermal growth factor, basic fibroblast growth factor, chimeric vitronectin:insulin-like growth factor-I protein, and recombinant human albumin. These fibroblasts maintained a typical morphology and expressed fibroblast markers during their serum-free isolation, expansion, and freezing. Moreover, these fibroblasts were able to support the serum-free isolation and expansion of primary keratinocytes using these recombinant proteins. Real-time polymerase chain reaction and immunofluorescence analysis confirmed that there were no differences in expression levels of p63 or keratins 1, 6, and 10 when keratinocytes were grown in either serum-supplemented or serum-free medium. Using a three-dimensional human skin equivalent model we demonstrated that these keratinocytes also maintained their ability to reform an epidermal layer. In summary, the techniques described provide a valuable alternative for culturing fibroblasts and keratinocytes using recombinant proteins.
Collapse
Affiliation(s)
- Sally Mujaj
- School of Life Science, Queensland University of Technology , Brisbane, Australia .
| | | | | | | |
Collapse
|
36
|
The role of three-dimensional polymeric scaffold configuration on the uniformity of connective tissue formation by adipose stromal cells. Biomaterials 2010; 31:4322-9. [DOI: 10.1016/j.biomaterials.2010.02.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 02/03/2010] [Indexed: 11/18/2022]
|
37
|
Huang L, Haylor JL, Hau Z, Jones RA, Vickers ME, Wagner B, Griffin M, Saint RE, Coutts IGC, El Nahas AM, Johnson TS. Transglutaminase inhibition ameliorates experimental diabetic nephropathy. Kidney Int 2009; 76:383-94. [PMID: 19553913 DOI: 10.1038/ki.2009.230] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Diabetic nephropathy is characterized by excessive extracellular matrix accumulation resulting in renal scarring and end-stage renal disease. Previous studies have suggested that transglutaminase type 2, by formation of its protein crosslink product epsilon-(gamma-glutamyl)lysine, alters extracellular matrix homeostasis, causing basement membrane thickening and expansion of the mesangium and interstitium. To determine whether transglutaminase inhibition can slow the progression of chronic experimental diabetic nephropathy over an extended treatment period, the inhibitor NTU281 was given to uninephrectomized streptozotocin-induced diabetic rats for up to 8 months. Effective transglutaminase inhibition significantly reversed the increased serum creatinine and albuminuria in the diabetic rats. These improvements were accompanied by a fivefold decrease in glomerulosclerosis and a sixfold reduction in tubulointerstitial scarring. This was associated with reductions in collagen IV accumulation by 4 months, along with reductions in collagens I and III by 8 months. This inhibition also decreased the number of myofibroblasts, suggesting that tissue transglutaminase may play a role in myofibroblast transformation. Our study suggests that transglutaminase inhibition ameliorates the progression of experimental diabetic nephropathy and can be considered for clinical application.
Collapse
Affiliation(s)
- Linghong Huang
- Academic Nephrology Unit, Sheffield Kidney Institute, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Akita S, Akino K, Imaizumi T, Hirano A. Basic fibroblast growth factor accelerates and improves second-degree burn wound healing. Wound Repair Regen 2009; 16:635-41. [PMID: 19128258 DOI: 10.1111/j.1524-475x.2008.00414.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Second-degree burns are sometimes a concern for shortening patient suffering time as well as the therapeutic choice. Thus, adult second-degree burn patients (average 57.8 +/- 13.9 years old), mainly with deep dermal burns, were included. Patients receiving topical basic fibroblast growth factor (bFGF) or no bFGF were compared for clinical scar extent, passive scar hardness and elasticity using a Cutometer, direct scar hardness using a durometer, and moisture analysis of the stratum corneum at 1 year after complete wound healing. There was significantly faster wound healing with bFGF, as early as 2.2 +/- 0.9 days from the burn injury, compared with non-bFGF use (12.0 +/- 2.2 vs. 15.0 +/- 2.7 days, p<0.01). Clinical evaluation of Vancouver scale scores showed significant differences between bFGF-treated and non-bFGF-treated scars (p<0.01). Both maximal scar extension and the ratio of scar retraction to maximal scar extension, elasticity, by Cutometer were significantly greater in bFGF-treated scars than non-bFGF-treated scars (0.23 +/- 0.10 vs. 0.14 +/- 0.06 mm, 0.59 +/- 0.20 vs. 0.49 +/- 0.15 mm: scar extension, scar elasticity, bFGF vs. non-bFGF, p<0.01). The durometer reading was significantly lower in bFGF-treated scars than in non-bFGF-treated scars (16.2 +/- 3.8 vs. 29.3 +/- 5.1, p<0.01). Transepidermal water loss, water content, and corneal thickness were significantly less in bFGF-treated than in non-bFGF-treated scars (p<0.01).
Collapse
Affiliation(s)
- Sadanori Akita
- Division of Plastic and Reconstructive Surgery, Department of Developmental and Reconstructive Medicine, Graduate School of Biomedical and Sciences, Nagasaki University, 1-7-1 Sakamoto machi, Nagasaki, Japan.
| | | | | | | |
Collapse
|
39
|
Xia L, Tian-You L, Yi-Jun G, Dong-sheng T, Wen-Hui L. Arecoline and oral keratinocytes may affect the collagen metabolism of fibroblasts. J Oral Pathol Med 2009; 38:422-6. [DOI: 10.1111/j.1600-0714.2009.00758.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
40
|
Ghaffari A, Kilani RT, Ghahary A. Keratinocyte-Conditioned Media Regulate Collagen Expression in Dermal Fibroblasts. J Invest Dermatol 2009; 129:340-7. [DOI: 10.1038/jid.2008.253] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
van der Veer WM, Bloemen MCT, Ulrich MMW, Molema G, van Zuijlen PP, Middelkoop E, Niessen FB. Potential cellular and molecular causes of hypertrophic scar formation. Burns 2008; 35:15-29. [PMID: 18952381 DOI: 10.1016/j.burns.2008.06.020] [Citation(s) in RCA: 243] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2008] [Accepted: 06/30/2008] [Indexed: 02/06/2023]
Abstract
A scar is an expected result of wound healing. However, in some individuals, and particularly in burn victims, the wound healing processes may lead to a fibrotic hypertrophic scar, which is raised, red, inflexible and responsible for serious functional and cosmetic problems. It seems that a wide array of subsequent processes are involved in hypertrophic scar formation, like an affected haemostasis, exaggerated inflammation, prolonged reepithelialization, overabundant extracellular matrix production, augmented neovascularization, atypical extracellular matrix remodeling and reduced apoptosis. Platelets, macrophages, T-lymphocytes, mast cells, Langerhans cells and keratinocytes are directly and indirectly involved in the activation of fibroblasts, which in turn produce excess extracellular matrix. Following the chronology of normal wound healing, we unravel, clarify and reorganize the complex molecular and cellular key processes that may be responsible for hypertrophic scars. It remains unclear whether these processes are a cause or a consequence of unusual scar tissue formation, but raising evidence exists that immunological responses early following wounding play an important role. Therefore, when developing preventive treatment modalities, one should aim to put the early affected wound healing processes back on track as quickly as possible.
Collapse
Affiliation(s)
- Willem M van der Veer
- Department of Plastic and Reconstructive Surgery, VU University Medical Centre, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
42
|
Harada N, Okajima K, Narimatsu N, Kurihara H, Nakagata N. Effect of topical application of raspberry ketone on dermal production of insulin-like growth factor-I in mice and on hair growth and skin elasticity in humans. Growth Horm IGF Res 2008; 18:335-344. [PMID: 18321745 DOI: 10.1016/j.ghir.2008.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 12/21/2007] [Accepted: 01/12/2008] [Indexed: 11/19/2022]
Abstract
Sensory neurons release calcitonin gene-related peptide (CGRP) on activation. We recently reported that topical application of capsaicin increases facial skin elasticity and promotes hair growth by increasing dermal insulin-like growth factor-I (IGF-I) production through activation of sensory neurons in mice and humans. Raspberry ketone (RK), a major aromatic compound contained in red raspberries (Rubus idaeus), has a structure similar to that of capsaicin. Thus, it is possible that RK activates sensory neurons, thereby increasing skin elasticity and promoting hair growth by increasing dermal IGF-I production. In the present study, we examined this possibility in mice and humans. RK, at concentrations higher than 1 microM, significantly increased CGRP release from dorsal root ganglion neurons (DRG) isolated from wild-type (WT) mice and this increase was completely reversed by capsazepine, an inhibitor of vanilloid receptor-1 activation. Topical application of 0.01% RK increased dermal IGF-I levels at 30 min after application in WT mice, but not in CGRP-knockout mice. Topical application of 0.01% RK increased immunohistochemical expression of IGF-I at dermal papillae in hair follicles and promoted hair re-growth in WT mice at 4 weeks after the application. When applied topically to the scalp and facial skin, 0.01% RK promoted hair growth in 50.0% of humans with alopecia (n=10) at 5 months after application and increased cheek skin elasticity at 2 weeks after application in 5 females (p<0.04). These observations strongly suggest that RK might increase dermal IGF-I production through sensory neuron activation, thereby promoting hair growth and increasing skin elasticity.
Collapse
Affiliation(s)
- Naoaki Harada
- Department of Translational Medical Science Research, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | | | | | | | | |
Collapse
|
43
|
Edward M, Quinn JA, Mukherjee S, Jensen MBV, Jardine AG, Mark PB, Burden AD. Gadodiamide contrast agent 'activates' fibroblasts: a possible cause of nephrogenic systemic fibrosis. J Pathol 2008; 214:584-93. [PMID: 18220317 DOI: 10.1002/path.2311] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nephrogenic systemic fibrosis (NSF) is a fibrotic disease generating intense interest due to its recent discovery, and unknown cause. It appears confined to patients with renal disease and presents as grossly thickened, indurated, tight skin that is woody to palpation. Histologically, the dermis contains thickened collagen bundles, numerous plump fibroblast-like cells, and elevated hyaluronan expression. Recent data suggest a link between the use of gadolinium chelate as an MRI contrast agent and the onset of the disease. Fibroblasts from the lesions of six NSF patients, all of whom were exposed to gadodiamide, were compared with control fibroblasts for hyaluronan and collagen synthesis. Serum from NSF patients was assessed for fibroblast hyaluronan-stimulating activity, collagen synthesis, and gadodiamide for its effect on fibroblast proliferation and matrix synthesis. NSF fibroblasts synthesized excess levels of hyaluronan and collagen compared with control fibroblasts, with up to 2.8-fold and 3.3-fold increases, respectively. NSF patient serum stimulated control fibroblast hyaluronan synthesis by up to 7-fold, and collagen synthesis by up to 2.4-fold. 1 mM gadodiamide added to culture medium stimulated fibroblast growth in a dose-dependent manner, decreasing their doubling time from 28 h to 22 h, and increasing the maximum cell density. Even a short exposure to gadodiamide stimulated cell growth, suggesting that the cells were activated by the gadodiamide. The growth of fibroblasts within contracted collagen lattices was also significantly stimulated by gadodiamide, while fibroblasts exposed to gadodiamide synthesized increased levels of hyaluronan. Control fibroblasts exposed to gadodiamide, and NSF fibroblasts exhibited an extensive pericellular coat of hyaluronan, and expressed alpha-smooth muscle actin. Gadolinium chloride did not affect fibroblast growth. This report demonstrates that NSF fibroblasts synthesize excess levels of hyaluronan and collagen, and that gadodiamide stimulates control fibroblast growth, matrix synthesis, and differentiation into myofibroblasts, suggesting a possible role for gadodiamide in the pathophysiology of NSF.
Collapse
Affiliation(s)
- M Edward
- Section of Dermatology, Division of Cancer Sciences, Faculty of Medicine, University of Glasgow, Glasgow, UK.
| | | | | | | | | | | | | |
Collapse
|
44
|
Evaluation of beneficial and adverse effects of glucocorticoids on a newly developed full-thickness skin model. Toxicol In Vitro 2008; 22:747-59. [DOI: 10.1016/j.tiv.2007.11.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 11/13/2007] [Accepted: 11/28/2007] [Indexed: 11/21/2022]
|
45
|
Amjad SB, Carachi R, Edward M. Keratinocyte regulation of TGF-beta and connective tissue growth factor expression: a role in suppression of scar tissue formation. Wound Repair Regen 2008; 15:748-55. [PMID: 17971021 DOI: 10.1111/j.1524-475x.2007.00281.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Allogeneic keratinocytes applied to large full-thickness wounds promote healing while suppressing scar tissue formation. This effect may be mediated in part by their effect on the levels of transforming growth factor-betas (TGF-betas) and connective tissue growth factor (CTGF) in the wound and subsequent modulation of fibroblast activity. We have examined the levels of TGF-beta and CTGF produced by keratinocytes and fibroblasts, and the effect of keratinocyte-conditioned medium using monolayer and living skin-equivalent cultures. Keratinocyte monolayers did not release any detectable TGF-beta1, but released moderate levels of TGF-beta2 into culture medium, and stained strongly for TGF-beta1, but only weakly for TGF-beta2. Fibroblasts released large amounts of TGF-beta1, no TGF-beta2, and stained strongly for TGF-beta1. Neither cell type released TGF-beta3, but both stained strongly for TGF-beta3. Keratinocyte-conditioned medium suppressed the levels of TGF-betas and CTGF associated with the fibroblasts compared with fibroblasts incubated in Dulbecco's minimal essential medium and fibroblast-conditioned medium. In living skin equivalents, keratinocytes stained very strongly for TGF-beta1 and CTGF, moderately strongly for TGF-beta3, and only weakly for TGF-beta2. Fibroblasts stained strongly for TGF-beta1 and 3 and CTGF. These observations suggest that keratinocytes may affect the TGF-beta profile in such a way as to suppress the formation of scar tissue.
Collapse
Affiliation(s)
- Syed Basith Amjad
- University Department of Surgical Paediatrics, Royal Hospital for Sick Children, Yorkhill, Glasgow, United Kingdom
| | | | | |
Collapse
|
46
|
Evolution of silicone therapy and mechanism of action in scar management. Aesthetic Plast Surg 2008; 32:82-92. [PMID: 17968615 DOI: 10.1007/s00266-007-9030-9] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Accepted: 07/17/2007] [Indexed: 01/29/2023]
Abstract
Silicone-based products are widely used in the management of hypertrophic scarring and keloids. This review discusses the range of products available and the clinical evidence of their efficacy in preventing excessive scarring and improving established scars. Silicone gel sheeting has been used successfully for more than 20 years in scar management. A new formulation of silicone gel applied from a tube forms a thin flexible sheet over the newly epithelialized wound or more mature scar. Results from clinical trials and clinical experience suggest that silicone gel is equivalent in efficacy to traditional silicone gel sheeting but easier to use. The mechanism of action of silicone therapy has not been completely determined but is likely to involve occlusion and hydration of the stratum corneum with subsequent cytokine-mediated signaling from keratinocytes to dermal fibroblasts.
Collapse
|
47
|
Kobayashi K, Suzuki T, Nomoto Y, Tada Y, Miyake M, Hazama A, Nakamura T, Omori K. Potential of Heterotopic Fibroblasts as Autologous Transplanted Cells for Tracheal Epithelial Regeneration. ACTA ACUST UNITED AC 2007; 13:2175-84. [PMID: 17539734 DOI: 10.1089/ten.2007.0008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The tracheal epithelium maintains the health of the respiratory tract through mucociliary clearance and regulation of ion and water balance. When the trachea is surgically removed, artificial grafts have been clinically used by our group to regenerate the trachea. In such cases, the tracheal epithelium needs 2 months for functional regeneration. Previous study has shown that fibroblasts facilitate tracheal epithelial regeneration. In this study, heterotopic fibroblasts originating from the dermis, nasal, and gingival mucosa were cocultured with tracheal epithelial cells to evaluate their potential as autologous transplanted cells for tracheal epithelial regeneration. The epithelia induced by the heterotopic fibroblasts showed differences in structure, cilia development, mucin secretion, and expression of ion and water channels. These results indicated that nasal fibroblasts could not induce mature tracheal epithelium and that dermal fibroblasts induced epidermis-like epithelium. Only the gingival fibroblasts (GFBs) could induce morphologically and functionally normalized tracheal epithelium comparable to the epithelium induced by tracheal fibroblasts. Epithelial cell proliferation and migration were also upregulated by GFBs. These results indicate that GFBs are useful as autologous transplant cells for tracheal epithelial regeneration.
Collapse
Affiliation(s)
- Ken Kobayashi
- Department of Otolaryngology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Pollins AC, Friedman DB, Nanney LB. Proteomic investigation of human burn wounds by 2D-difference gel electrophoresis and mass spectrometry. J Surg Res 2007; 142:143-52. [PMID: 17604053 PMCID: PMC2696121 DOI: 10.1016/j.jss.2007.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 12/29/2006] [Accepted: 01/03/2007] [Indexed: 11/22/2022]
Abstract
BACKGROUND In humans, thermal cutaneous injury represents a serious traumatic event that induces a host of dynamic alterations. Unfortunately the molecular mechanisms that underlie these serious perturbations remain poorly understood. We applied a global analysis method to identify dynamically changing proteins within the burn environment, which could eventually become biomarkers or targets for treatment. MATERIALS AND METHODS Protein extracts of normal/unwounded skin and burn wounds were assayed by 2D-difference gel electrophoresis (DIGE), a proteomic technology by which abundance levels of intact proteins (including isoforms) were simultaneously quantified from multiple samples with statistical confidence. Through unsupervised multivariate principal component analysis, protein expression patterns from individual samples were appropriately clustered into their correct temporal healing periods grouped into postburn periods of 1-3 days, 4-6 days, or 7-10 days after injury. Forty-six proteins were subsequently selected for identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. RESULTS Proteins identified with differential temporal patterns of expression included predictable cytoskeletal proteins such as vimentin, and keratins 1, 5, 6, 16, and 17. Other candidate proteins with potential involvement in healing included heat shock protein 90, members of the serpin family (Serpin B1, SCCA1 and -2), haptoglobin, gelsolin, eIF4A1, IQGAP1, and translationally controlled tumor protein. CONCLUSIONS We have used the combined technique, DIGE/mass spectrometry, to capture new insights into cutaneous responses to burn trauma and subsequent processes of early wound healing in humans. This pilot study provides a proteomic snapshot of temporal events that can be used to weave together the interconnected processes that define the response to serious cutaneous injury.
Collapse
Affiliation(s)
- Alonda C. Pollins
- Department of Plastic Surgery, Vanderbilt School of Medicine, Nashville, TN USA
| | - David B. Friedman
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt School of Medicine, Nashville, TN USA
| | - Lillian B. Nanney
- Department of Plastic Surgery, Vanderbilt School of Medicine, Nashville, TN USA
- Department of Cell & Developmental Biology, Vanderbilt School of Medicine, Nashville, TN USA
| |
Collapse
|
49
|
Harrison CA, Gossiel F, Layton CM, Bullock AJ, Johnson T, Blumsohn A, MacNeil S. Use of an in vitro model of tissue-engineered skin to investigate the mechanism of skin graft contraction. ACTA ACUST UNITED AC 2007; 12:3119-33. [PMID: 17518627 DOI: 10.1089/ten.2006.12.3119] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Skin graft contraction leading to loss of joint mobility and cosmetic deformity remains a major clinical problem. In this study we used a tissue-engineered model of human skin, based on sterilized human adult dermis seeded with keratinocytes and fibroblasts, which contracts by up to 60% over 28 days in vitro, as a model to investigate the mechanism of skin contraction. Pharmacologic agents modifying collagen synthesis, degradation, and cross-linking were examined for their effect on contraction. Collagen synthesis and degradation were determined using immunoassay techniques. The results show that skin contraction was not dependent on inhibition of collagen synthesis or stimulation of collagen degradation, but was related to collagen remodelling. Thus, reducing dermal pliability with glutaraldehyde inhibited the ability of cells to contract the dermis. So did inhibition of matrix metalloproteinases and inhibition of lysyl oxidase-mediated collagen cross-linking, but not transglutaminase-mediated cross-linking. In summary, this in vitro model of human skin has allowed us to identify specific cross-linking pathways as possible pharmacologic targets for prevention of graft contracture in vivo.
Collapse
Affiliation(s)
- Caroline A Harrison
- Department of Tissue Engineering, Kroto Institute, University of Sheffield, UK.
| | | | | | | | | | | | | |
Collapse
|
50
|
Harada N, Okajima K. Effect of topical application of capsaicin and its related compounds on dermal insulin-like growth factor-I levels in mice and on facial skin elasticity in humans. Growth Horm IGF Res 2007; 17:171-176. [PMID: 17307377 DOI: 10.1016/j.ghir.2006.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 12/12/2006] [Accepted: 12/15/2006] [Indexed: 11/20/2022]
Abstract
Capsaicin increases calcitonin gene-related peptide (CGRP) release from sensory neurons by stimulating vanilloid receptor-1 (VR-1). Since CGRP increases production of insulin-like growth factor-I (IGF-I) in fetal osteoblasts in vitro, it is possible that sensory neuron activation by capsaicin increases production of IGF-I. In the present study, we attempted to determine whether topical application of capsaicin and related compounds increases dermal IGF-I level in mice and whether it increases facial skin elasticity in humans. Topical application of 0.01% capsaicin significantly increased dermal IGF-I levels from 30 to 180min (p<0.01), but not at 360min, after application in mice. Topical application of 0.01% capsaicinoids (dihydrocapsaicin and nordihydrocapsaicin), 0.01% capsinoids (capsiate, dihydrocapsiate and nordihydrocapsiate), 0.01% anandamide (an endogenous agonist of VR-1), and 0.01% nonylic acid vanillylamide (a synthetic capsaicin) significantly increased dermal IGF-I levels at 30min after topical application in mice (p<0.01). Topical application of 0.01% capsaicin to faces of 17 healthy female volunteers for seven days significantly increased cheek skin elasticity (p<0.01). These observations suggest that topical application of capsaicin and related compounds might be useful in the treatment of detrimental morphological changes of the skin in patients with growth hormone deficiency and those in the elderly by increasing dermal IGF-I levels.
Collapse
Affiliation(s)
- Naoaki Harada
- Department of Biodefense Medicine, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Nagoya, Japan
| | | |
Collapse
|