1
|
Wu X, Ma Y, Wang L, Qin X. A Route for Investigating Psoriasis: From the Perspective of the Pathological Mechanisms and Therapeutic Strategies of Cancer. Int J Mol Sci 2023; 24:14390. [PMID: 37762693 PMCID: PMC10532365 DOI: 10.3390/ijms241814390] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Psoriasis is an incurable skin disease that develops in about two-thirds of patients before the age of 40 and requires lifelong treatment; its pathological mechanisms have not been fully elucidated. The core pathological process of psoriasis is epidermal thickening caused by the excessive proliferation of epidermal keratinocytes, which is similar to the key feature of cancer; the malignant proliferation of cancer cells causes tumor enlargement, suggesting that there is a certain degree of commonality between psoriasis and cancer. This article reviews the pathological mechanisms that are common to psoriasis and cancer, including the interaction between cell proliferation and an abnormal immune microenvironment, metabolic reprogramming, and epigenetic reprogramming. In addition, there are common therapeutic agents and drug targets between psoriasis and cancer. Thus, psoriasis and cancer share a common pathological mechanisms-drug targets-therapeutic agents framework. On this basis, it is proposed that investigating psoriasis from a cancer perspective is beneficial to enriching the research strategies related to psoriasis.
Collapse
Affiliation(s)
- Xingkang Wu
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China; (Y.M.); (L.W.)
| | | | | | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China; (Y.M.); (L.W.)
| |
Collapse
|
2
|
Ghaffarinia A, Ayaydin F, Póliska S, Manczinger M, Bolla BS, Flink LB, Balogh F, Veréb Z, Bozó R, Szabó K, Bata-Csörgő Z, Kemény L. Psoriatic Resolved Skin Epidermal Keratinocytes Retain Disease-Residual Transcriptomic and Epigenomic Profiles. Int J Mol Sci 2023; 24:ijms24054556. [PMID: 36901987 PMCID: PMC10002496 DOI: 10.3390/ijms24054556] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
The disease-residual transcriptomic profile (DRTP) within psoriatic healed/resolved skin and epidermal tissue-resident memory T (TRM) cells have been proposed to be crucial for the recurrence of old lesions. However, it is unclear whether epidermal keratinocytes are involved in disease recurrence. There is increasing evidence regarding the importance of epigenetic mechanisms in the pathogenesis of psoriasis. Nonetheless, the epigenetic changes that contribute to the recurrence of psoriasis remain unknown. The aim of this study was to elucidate the role of keratinocytes in psoriasis relapse. The epigenetic marks 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) were visualized using immunofluorescence staining, and RNA sequencing was performed on paired never-lesional and resolved epidermal and dermal compartments of skin from psoriasis patients. We observed diminished 5-mC and 5-hmC amounts and decreased mRNA expression of the ten-eleven translocation (TET) 3 enzyme in the resolved epidermis. SAMHD1, C10orf99, and AKR1B10: the highly dysregulated genes in resolved epidermis are known to be associated with pathogenesis of psoriasis, and the DRTP was enriched in WNT, TNF, and mTOR signaling pathways. Our results suggest that epigenetic changes detected in epidermal keratinocytes of resolved skin may be responsible for the DRTP in the same regions. Thus, the DRTP of keratinocytes may contribute to site-specific local relapse.
Collapse
Affiliation(s)
- Ameneh Ghaffarinia
- HCEMM-USZ Skin Research Group, H-6720 Szeged, Hungary
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
| | - Ferhan Ayaydin
- HCEMM-USZ, Functional Cell Biology and Immunology, Advanced Core Facility, H-6728 Szeged, Hungary
- Laboratory of Cellular Imaging, Biological Research Centre, Eötvös Loránd Research Network, H-6726 Szeged, Hungary
- Institute of Plant Biology, Biological Research Centre, H-6726 Szeged, Hungary
| | - Szilárd Póliska
- Genomic Medicine and Bioinformatics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Máté Manczinger
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
- Systems Immunology Research Group, Institute of Biochemistry, Biological Research Centre, ELKH, H-6726 Szeged, Hungary
- HCEMM-Systems Immunology Research Group, H-6726 Szeged, Hungary
| | - Beáta Szilvia Bolla
- HCEMM-USZ Skin Research Group, H-6720 Szeged, Hungary
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
| | - Lili Borbála Flink
- HCEMM-USZ Skin Research Group, H-6720 Szeged, Hungary
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
| | - Fanni Balogh
- HCEMM-USZ Skin Research Group, H-6720 Szeged, Hungary
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
- ELKH-SZTE Dermatological Research Group, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary
| | - Zoltán Veréb
- Regenerative Medicine and Cellular Pharmacology Laboratory (HECRIN), Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary
- Research Institute of Translational Biomedicine, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary
| | - Renáta Bozó
- HCEMM-USZ Skin Research Group, H-6720 Szeged, Hungary
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
- ELKH-SZTE Dermatological Research Group, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary
| | - Kornélia Szabó
- HCEMM-USZ Skin Research Group, H-6720 Szeged, Hungary
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
- ELKH-SZTE Dermatological Research Group, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary
| | - Zsuzsanna Bata-Csörgő
- HCEMM-USZ Skin Research Group, H-6720 Szeged, Hungary
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
- ELKH-SZTE Dermatological Research Group, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary
| | - Lajos Kemény
- HCEMM-USZ Skin Research Group, H-6720 Szeged, Hungary
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
- ELKH-SZTE Dermatological Research Group, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary
- Correspondence:
| |
Collapse
|
3
|
The critical importance of epigenetics in autoimmune-related skin diseases. Front Med 2023; 17:43-57. [PMID: 36811762 DOI: 10.1007/s11684-022-0980-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/05/2022] [Indexed: 02/24/2023]
Abstract
Autoimmune-related skin diseases are a group of disorders with diverse etiology and pathophysiology involved in autoimmunity. Genetics and environmental factors may contribute to the development of these autoimmune disorders. Although the etiology and pathogenesis of these disorders are poorly understood, environmental variables that induce aberrant epigenetic regulations may provide some insights. Epigenetics is the study of heritable mechanisms that regulate gene expression without changing DNA sequences. The most important epigenetic mechanisms are DNA methylation, histone modification, and noncoding RNAs. In this review, we discuss the most recent findings regarding the function of epigenetic mechanisms in autoimmune-related skin disorders, including systemic lupus erythematosus, bullous skin diseases, psoriasis, and systemic sclerosis. These findings will expand our understanding and highlight the possible clinical applications of precision epigenetics approaches.
Collapse
|
4
|
Beranek M, Borsky P, Fiala Z, Andrys C, Hamakova K, Chmelarova M, Kovarikova H, Karas A, Kremlacek J, Palicka V, Borska L. Telomere length, oxidative and epigenetic changes in blood DNA of patients with exacerbated psoriasis vulgaris. An Bras Dermatol 2023; 98:68-74. [PMID: 36319514 PMCID: PMC9837651 DOI: 10.1016/j.abd.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The pathogenesis of psoriasis vulgaris involves changes in DNA molecules, genomic instability, telomere attrition, and epigenetic alterations among them. These changes are also considered important mechanisms of aging in cells and tissues. OBJECTIVE This study dealt with oxidation damage, telomere length and methylation status in DNA originating from peripheral blood of 41 psoriatic patients and 30 healthy controls. METHODS Oxidative damage of serum DNA/RNA was determined immunochemically. Real-time PCR was used for the analysis of the telomere length. ELISA technique determined levels of 5-methylcytosine in blood cells' DNA. RESULTS Oxidative damage of serum DNA/RNA was higher in patients than in controls (median, 3758 vs. 2286pg/mL, p<0.001). A higher length of telomeres per chromosome was found in patients whole-cell DNA than in controls (3.57 vs. 3.04 kilobases, p=0.011). A negative correlation of the length of telomeres with an age of the control subjects was revealed (Spearman's rho=-0.420, p=0.028). Insignificantly different levels of 5-methylcytosine in patients and controls were observed (33.20 vs. 23.35%, p=0.234). No influences of sex, smoking, BMI, PASI score, and metabolic syndrome on the methylation status were found. STUDY LIMITATIONS i) A relatively small number of the participants, particularly for reliable subgroup analyses, ii) the Caucasian origin of the participants possibly influencing the results of the parameters determined, and iii) Telomerase activity was not directly measured in serum or blood cells. CONCLUSION The study demonstrated increased levels of oxidized DNA/RNA molecules in the serum of patients with exacerbated psoriasis vulgaris. The results were minimally influenced by sex, the presence of metabolic syndrome, or cigarette smoking. In the psoriatic blood cells' DNA, the authors observed longer telomeres compared to healthy controls, particularly in females. Insignificantly higher global DNA methylation in psoriasis cases compared to the controls indicated marginal clinical importance of this epigenetic test performed in the blood cells' DNA.
Collapse
Affiliation(s)
- Martin Beranek
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove and Faculty of Medicine, Hradec Kralove, Charles University, Czech Republic,Department of Biochemical Sciences, Faculty of Pharmacy, Hradec Kralove, Charles University, Czech Republic,Corresponding author.
| | - Pavel Borsky
- Institute of Preventive Medicine, Charles University, Faculty of Medicine, Hradec Kralove, Czech Republic
| | - Zdenek Fiala
- Institute of Preventive Medicine, Charles University, Faculty of Medicine, Hradec Kralove, Czech Republic
| | - Ctirad Andrys
- Institute of Clinical Immunology and Allergology, Charles University, Faculty of Medicine, Hradec Kralove, Czech Republic
| | - Kvetoslava Hamakova
- Clinic of Dermatology and Venereology, University Hospital Hradec Kralove, Czech Republic
| | - Marcela Chmelarova
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove and Faculty of Medicine, Hradec Kralove, Charles University, Czech Republic
| | - Helena Kovarikova
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove and Faculty of Medicine, Hradec Kralove, Charles University, Czech Republic
| | - Adam Karas
- Institute of Preventive Medicine, Charles University, Faculty of Medicine, Hradec Kralove, Czech Republic
| | - Jan Kremlacek
- Department of Medical Biophysics, Charles University, Faculty of Medicine, Hradec Kralove, Czech Republic
| | - Vladimir Palicka
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove and Faculty of Medicine, Hradec Kralove, Charles University, Czech Republic
| | - Lenka Borska
- Institute of Preventive Medicine, Charles University, Faculty of Medicine, Hradec Kralove, Czech Republic
| |
Collapse
|
5
|
Antonatos C, Grafanaki K, Asmenoudi P, Xiropotamos P, Nani P, Georgakilas GK, Georgiou S, Vasilopoulos Y. Contribution of the Environment, Epigenetic Mechanisms and Non-Coding RNAs in Psoriasis. Biomedicines 2022; 10:biomedicines10081934. [PMID: 36009480 PMCID: PMC9405550 DOI: 10.3390/biomedicines10081934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Despite the increasing research and clinical interest in the predisposition of psoriasis, a chronic inflammatory skin disease, the multitude of genetic and environmental factors involved in its pathogenesis remain unclear. This complexity is further exacerbated by the several cell types that are implicated in Psoriasis’s progression, including keratinocytes, melanocytes and various immune cell types. The observed interactions between the genetic substrate and the environment lead to epigenetic alterations that directly or indirectly affect gene expression. Changes in DNA methylation and histone modifications that alter DNA-binding site accessibility, as well as non-coding RNAs implicated in the post-transcriptional regulation, are mechanisms of gene transcriptional activity modification and therefore affect the pathways involved in the pathogenesis of Psoriasis. In this review, we summarize the research conducted on the environmental factors contributing to the disease onset, epigenetic modifications and non-coding RNAs exhibiting deregulation in Psoriasis, and we further categorize them based on the under-study cell types. We also assess the recent literature considering therapeutic applications targeting molecules that compromise the epigenome, as a way to suppress the inflammatory cutaneous cascade.
Collapse
Affiliation(s)
- Charalabos Antonatos
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Katerina Grafanaki
- Department of Dermatology, School of Medicine, University Hospital of Patras, University of Patras, 26504 Patras, Greece
| | - Paschalia Asmenoudi
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Panagiotis Xiropotamos
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Paraskevi Nani
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Georgios K. Georgakilas
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
- Laboratory of Hygiene and Epidemiology, Department of Clinical and Laboratory Research, Faculty of Medicine, University of Thessaly, 38334 Volos, Greece
| | - Sophia Georgiou
- Department of Dermatology, School of Medicine, University Hospital of Patras, University of Patras, 26504 Patras, Greece
| | - Yiannis Vasilopoulos
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
- Correspondence:
| |
Collapse
|
6
|
Salvo J, Sandoval C. Role of copper nanoparticles in wound healing for chronic wounds: literature review. BURNS & TRAUMA 2022; 10:tkab047. [PMID: 35071652 PMCID: PMC8778594 DOI: 10.1093/burnst/tkab047] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/15/2021] [Indexed: 12/12/2022]
Abstract
Chronic wounds are defined as wounds that fail to proceed through the normal phases of wound healing in an orderly and timely manner. The most common and inevitable impairment to wound healing is the installation of an infection, usually in the case of chronic wounds. Therefore, the objective of the present review was to identify the importance of copper nanoparticles in dressings for wound healing. Nanoparticles such as silver, gold and copper combat infectious processes through the inhibition of protein synthesis, peroxidation of the cell membrane and destroying the nucleic acids of bacteria and viruses. Among bioactive nanoparticles, copper plays a complex role in various cells, it modulates several cytokines and growth factor mechanisms of action and is essentially involved in all stages of the wound healing process. More importantly, copper plays a key role in skin regeneration and angiogenesis and accelerates the healing process through induction of vascular endothelial growth factor (VEGF) and angiogenesis by hypoxia-induced factor-1-alpha (HIF-1α) action where copper enhances HIF-1α expression and HIF-1α binding to the critical motifs in the promoter and putative enhancer regions of HIF-1-regulated genes.
Collapse
Affiliation(s)
- Jessica Salvo
- Escuela de Enfermería, Facultad de Ciencias, Universidad Mayor, Chile
| | - Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, 5310431, Osorno, Chile
| |
Collapse
|
7
|
Liu Y, Cui S, Sun J, Yan X, Han D. Identification of Potential Biomarkers for Psoriasis by DNA Methylation and Gene Expression Datasets. Front Genet 2021; 12:722803. [PMID: 34512732 PMCID: PMC8427602 DOI: 10.3389/fgene.2021.722803] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/22/2021] [Indexed: 12/30/2022] Open
Abstract
DNA methylation (DNAm) plays an important role in the pathogenesis of psoriasis through regulating mRNA expressions. This study aimed to identify hub genes regulated by DNAm as biomarkers of psoriasis. Psoriatic skin tissues gene expression and methylation datasets were downloaded from Gene Expression Omnibus (GEO) database. Subsequently, multiple computational approaches, including immune infiltration analysis, enrichment analysis, protein-protein interaction (PPI) network establishment, and machine learning algorithm analysis (lasso, random forest, and SVM-RFE), were performed to analyze the regulatory networks, to recognize hub genes, and to clarify the pathogenesis of psoriasis. Finally, the hypermethylated genes were used to immune cell infiltration analysis, which revealed that psoriasis skin tissues were mainly composed of activated dendritic cells, resting mast cells, T follicular helper cells (cTfh), etc. Differentially expressed-methylated genes (DEMGs) were identified and partitioned into four subgroups and the 97 significantly hypermethylated and downregulated (hyper-down) genes accounted for the highest proportion (47%). Hyper-down genes were mainly enriched in glucose homeostasis, AMP-activated protein kinase (AMPK) signaling pathway, lipid storage disease, partial lipodystrophy, and insulin resistance. Furthermore, insulin receptor substrate 1 (IRS1), Rho guanine nucleotide exchange factor 10 (ARHGEF10) and retinoic acid induced 14 (RAI14) were identified as potential targets. These findings provided new ideas for future studies of psoriasis on the occurrence and the molecular mechanisms.
Collapse
Affiliation(s)
- Yong Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.,Department of Dermatology, Shaanxi Hospital of Chinese Medicine, Xi'an, China
| | - Shengnan Cui
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiayi Sun
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoning Yan
- Department of Dermatology, Shaanxi Hospital of Chinese Medicine, Xi'an, China
| | - Dongran Han
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Zeng C, Tsoi LC, Gudjonsson JE. Dysregulated epigenetic modifications in psoriasis. Exp Dermatol 2021; 30:1156-1166. [PMID: 33756010 DOI: 10.1111/exd.14332] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/08/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023]
Abstract
The observed incidence of psoriasis has been gradually increasing over time (J Am Acad Dermatol, 03, 2009, 394), but the underlying pathogenic factors have remained unclear. Recent studies suggest the importance of epigenetic modification in the pathogenesis of psoriasis. Aberrant epigenetic patterns including changes in DNA methylation, histone modifications and non-coding RNA expression are observed in psoriatic skin. Reversing these epigenetic mechanisms has showed improvement in psoriatic phenotypes, making epigenetic therapy a potential avenue for psoriasis treatment. Here, we summarize relevant evidence for epigenetic dysregulation contributing to psoriasis susceptibility and pathogenesis, and the factors responsible for epigenetic modifications, providing directions for potential future clinical avenues.
Collapse
Affiliation(s)
- Chang Zeng
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics and Department of Biostatistics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- A. Alfred Taubman Medical Research Institute, Ann Arbor, MI, USA
| |
Collapse
|
9
|
Luo Y, Qu K, Kuai L, Ru Y, Huang K, Yan X, Xing M. Epigenetics in psoriasis: perspective of DNA methylation. Mol Genet Genomics 2021; 296:1027-1040. [PMID: 34137900 DOI: 10.1007/s00438-021-01804-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/11/2021] [Indexed: 12/21/2022]
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by excessive proliferation of keratinocytes (KCs). Onset of psoriasis is related to genetic, immune and environmental factors. The environment can interact with the genome through epigenetic modifications, including DNA methylation, and this modification is involved in the pathogenesis of psoriasis. In addition to a skin disease, psoriasis is also considered a systemic disease. We reviewed the current literature of psoriatic DNA methylation for studies from several aspects on the DNA methylation distribution patterns in different tissues/cells, single-nucleotide polymorphisms, and candidate disease genes and identified target genes regulated by DNA methylation that have been directly/indirectly validated. This review contributes to a comprehensive understanding of the important a role that DNA methylation plays in psoriasis from a holistic perspective and will promote the implementation of DNA methylation in diagnostic and therapeutic strategies for psoriatic patients.
Collapse
Affiliation(s)
- Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Keshen Qu
- Department of Traditional Chinese Surgery, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Keke Huang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xiaoning Yan
- Department of Dermatology, Shaanxi Hospital of Traditional Chinese Medicine, No. 4 West Glorious Gate, Xi'an, 710003, People's Republic of China.
| | - Meng Xing
- Department of Dermatology, Shaanxi Hospital of Traditional Chinese Medicine, No. 4 West Glorious Gate, Xi'an, 710003, People's Republic of China.
| |
Collapse
|
10
|
Yi JZ, McGee JS. Epigenetic-modifying therapies: An emerging avenue for the treatment of inflammatory skin diseases. Exp Dermatol 2021; 30:1167-1176. [PMID: 33752257 DOI: 10.1111/exd.14334] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/15/2021] [Accepted: 03/18/2021] [Indexed: 12/11/2022]
Abstract
Epigenetic modifications include DNA methylation, histone modification and the action of microRNAs. These mechanisms coordinate in complex networks to control gene expression, thereby regulating key physiological processes in the skin and immune system. Recently, researchers have turned to the epigenome to understand the pathogenesis of inflammatory skin diseases. In psoriasis and atopic dermatitis, epigenetic modifications contribute to key pathogenic events such as immune activation, T-cell polarization and keratinocyte dysfunction. These discoveries have introduced new possibilities for the treatment of skin diseases; unlike genetics, epigenetic alterations are readily modifiable and potentially reversible. In this viewpoint essay, we summarize the current state of epigenetic research in inflammatory skin diseases and propose that targeting the histone machinery is a promising avenue for the development of new therapies for psoriasis and atopic dermatitis. Expanding on the progress that has already been made in the field of cancer epigenetics, we discuss existing epigenetic-modifying tools that can be applied to the treatment of inflammatory skin diseases and consider future directions for investigation in order to allow for the widespread clinical application of such therapies.
Collapse
Affiliation(s)
- Julie Z Yi
- Department of Dermatology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jean S McGee
- Department of Dermatology, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Reolid A, Muñoz-Aceituno E, Abad-Santos F, Ovejero-Benito MC, Daudén E. Epigenetics in Non-tumor Immune-Mediated Skin Diseases. Mol Diagn Ther 2021; 25:137-161. [PMID: 33646564 DOI: 10.1007/s40291-020-00507-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2020] [Indexed: 02/08/2023]
Abstract
Epigenetics is the study of the mechanisms that regulate gene expression without modifying DNA sequences. Knowledge of and evidence about how epigenetics plays a causative role in the pathogenesis of many skin diseases is increasing. Since the epigenetic changes present in tumor diseases have been thoroughly reviewed, we believe that knowledge of the new epigenetic findings in non-tumor immune-mediated dermatological diseases should be of interest to the general dermatologist. Hence, the purpose of this review is to summarize the recent literature on epigenetics in most non-tumor dermatological pathologies, focusing on psoriasis. Hyper- and hypomethylation of DNA methyltransferases and methyl-DNA binding domain proteins are the most common and studied methylation mechanisms. The acetylation and methylation of histones H3 and H4 are the most frequent and well-characterized histone modifications and may be associated with disease severity parameters and serve as therapeutic response markers. Many specific microRNAs dysregulated in non-tumor dermatological disease have been reviewed. Deepening the study of how epigenetic mechanisms influence non-tumor immune-mediated dermatological diseases might help us better understand the role of interactions between the environment and the genome in the physiopathogenesis of these diseases.
Collapse
Affiliation(s)
- Alejandra Reolid
- Dermatology Department, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-IP), Diego de León, 62, 28006, Madrid, Spain.
| | - E Muñoz-Aceituno
- Dermatology Department, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-IP), Diego de León, 62, 28006, Madrid, Spain
| | - F Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - M C Ovejero-Benito
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain
| | - E Daudén
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain
| |
Collapse
|
12
|
Chen L, Lin Z, Liu Y, Cao S, Huang Y, Yang X, Zhu F, Tang W, He S, Zuo J. DZ2002 alleviates psoriasis-like skin lesions via differentially regulating methylation of GATA3 and LCN2 promoters. Int Immunopharmacol 2021; 91:107334. [PMID: 33412493 DOI: 10.1016/j.intimp.2020.107334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/19/2020] [Accepted: 12/19/2020] [Indexed: 10/22/2022]
Abstract
Psoriasis is the most prevalent inflammatory skin disorders, affecting 1-3% of the worldwide population. We previously reported that topical application of methyl 4-(adenin-9-yl)-2-hydroxybutanoate (DZ2002), a reversible S-adenosyl-l-homocysteine hydrolase (SAHH) inhibitor, was a viable treatment in murine psoriatic skin inflammation. In current study, we further explored the mechanisms of DZ2002 on keratinocyte dysfunction and skin infiltration, the key pathogenic events in psoriasis. We conducted genome-wide DNA methylation analysis in skin tissue from imiquimod (IMQ)-induced psoriatic and normal mice, demonstrated that topical administration of DZ2002 directly rectified aberrant DNA methylation pattern in epidermis and dermis of psoriatic skin lesion. Especially, DZ2002 differentially regulated DNA methylation of GATA3 and LCN2 promoters, which maintained keratinocytes differentiation and reduced inflammatory infiltration in psoriatic skin respectively. In vitro studies in TNF-α/IFN-γ-elicited HaCaT manifested that DZ2002 treatment rectified compromised keratinocyte differentiation via GATA3 enhancement and abated chemokine expression by reducing LCN2 production under inflammatory stimulation. Chemotaxis assays conducted on dHL-60 cells confirmed that suppression of LCN2 expression by DZ2002 was accompanied by CXCR1 and CXCR2 downregulation, and contributed to the inhibition of CXCL8-driven neutrophils migration. In conclusion, therapeutic benefits of DZ2002 are achieved through differentially regulating DNA methylation of GATA3 and LCN2 promoters in psoriatic skin lesion, which efficiently interrupt the pathogenic interplay between keratinocytes and infiltrating immune cells, thus maintains epidermal keratinocytes differentiation and prevents dermal immune infiltration in psoriatic skin.
Collapse
Affiliation(s)
- Li Chen
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang, Shanghai 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, China
| | - Zemin Lin
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang, Shanghai 201203, China
| | - Yuting Liu
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang, Shanghai 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, China
| | - Shiqi Cao
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang, Shanghai 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, China
| | - Yueteng Huang
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaoqian Yang
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang, Shanghai 201203, China
| | - Fenghua Zhu
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang, Shanghai 201203, China
| | - Wei Tang
- University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, China; Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shijun He
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang, Shanghai 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, China.
| | - Jianping Zuo
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang, Shanghai 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, China; Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
13
|
Leśniak W. Epigenetic Regulation of Epidermal Differentiation. EPIGENOMES 2021; 5:1. [PMID: 34968254 PMCID: PMC8594726 DOI: 10.3390/epigenomes5010001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 01/22/2023] Open
Abstract
The epidermis is the outer part of the skin that protects the organism from dehydration and shields from external insults. Epidermal cells, called keratinocytes, undergo a series of morphological and metabolic changes that allow them to establish the biochemical and structural elements of an effective epidermal barrier. This process, known as epidermal differentiation, is critical for the maintenance of the epidermis under physiological conditions and also under stress or in various skin pathologies. Epidermal differentiation relies on a highly coordinated program of gene expression. Epigenetic mechanisms, which commonly include DNA methylation, covalent histone modifications, and microRNA (miRNA) activity, modulate various stages of gene expression by altering chromatin accessibility and mRNA stability. Their involvement in epidermal differentiation is a matter of intensive studies, and the results obtained thus far show a complex network of epigenetic factors, acting together with transcriptional regulators, to maintain epidermal homeostasis and counteract adverse effects of environmental stressors.
Collapse
Affiliation(s)
- Wiesława Leśniak
- Laboratory of Calcium Binding Proteins, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| |
Collapse
|
14
|
Lewis CJ, Stevenson A, Fear MW, Wood FM. A review of epigenetic regulation in wound healing: Implications for the future of wound care. Wound Repair Regen 2020; 28:710-718. [DOI: 10.1111/wrr.12838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/25/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Christopher J. Lewis
- State Adult Burn Service of Western Australia Fiona Stanley Hospital Perth Western Australia Australia
| | - Andrew Stevenson
- State Adult Burn Service of Western Australia Fiona Stanley Hospital Perth Western Australia Australia
| | - Mark W. Fear
- State Adult Burn Service of Western Australia Fiona Stanley Hospital Perth Western Australia Australia
| | - Fiona M. Wood
- State Adult Burn Service of Western Australia Fiona Stanley Hospital Perth Western Australia Australia
| |
Collapse
|
15
|
Aydin B, Arga KY, Karadag AS. Omics-Driven Biomarkers of Psoriasis: Recent Insights, Current Challenges, and Future Prospects. Clin Cosmet Investig Dermatol 2020; 13:611-625. [PMID: 32922059 PMCID: PMC7456337 DOI: 10.2147/ccid.s227896] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/07/2020] [Indexed: 12/17/2022]
Abstract
Advances in omics technologies have made it possible to unravel biomarkers from different biological levels. Intensive studies have been carried out to uncover the dysregulations in psoriasis and to identify molecular signatures associated with the pathogenesis of psoriasis. In this review, we presented an overview of the current status of the omics-driven biomarker research and emphasized the transcriptomic, epigenomic, proteomic, metabolomic, and glycomic signatures proposed as psoriasis biomarkers. Furthermore, insights on the limitations and future directions of the current biomarker discovery strategies were discussed, which will continue to comprehend broader visions of psoriasis research, diagnosis, and therapy especially in the context of personalized medicine.
Collapse
Affiliation(s)
- Busra Aydin
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Kazim Yalcin Arga
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Ayse Serap Karadag
- Department of Dermatology, Istanbul Medeniyet University, School of Medicine, Goztepe Research and Training Hospital, Istanbul, Turkey
| |
Collapse
|
16
|
Liu SG, Luo GP, Qu YB, Chen YF. Indirubin inhibits Wnt/β-catenin signal pathway via promoter demethylation of WIF-1. BMC Complement Med Ther 2020; 20:250. [PMID: 32795328 PMCID: PMC7427955 DOI: 10.1186/s12906-020-03045-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Background Psoriasis is a common inflammatory skin disease. Abnormal proliferation of keratinocytes is one of the psoriatic histopathological features. Indirubin has an essential effect on the proliferation and activation of keratinocytes; however, in psoriasis, the specific mechanism of action of indirubin on keratinocytes is unclear. In the present study, we revealed the effects of indirubin on DNA methyltransferase 1 (DNMT1), wnt inhibitory factor 1 (wif-1), and wnt/β-catenin signal pathway, in the meantime, we explored the effects of indirubin on proliferation, cell cycle and the apoptosis of HaCaT cells. Methods The expression of DNMT1, wif-1, Frizzled2, Frizzled5, and β-catenin in HaCaT cells treated with different concentrations of indirubin were detected by Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR). The expression levels of DNMT1 and wif-1 were observed after treated with different concentrations of indirubin by enzyme-linked immunosorbent assay (ELISA). The wif-1 promoter methylation status was detected by DNA methylation-specific PCR (MSP). The transcriptional activities of wif-1 and β-catenin were discovered by a luciferase reporter gene system. Cell viability was determined by Cell Counting Kit-8 (CCK8) method. The cell cycle was detected by flow cytometry. The apoptotic cells were surveyed by the apoptosis kit. The expression of Inolucrin, Loricrin, Filaggrin, Keratin 17, and transcriptional activation of transglutaminase 1(TGase1) were detected by Western blotting. Results Indirubin inhibited the expression of DNMT1 and the methylation of the wif-1 promoter. In the wnt signal pathway, indirubin restored the protein expression of wif-1 and inhibited expression of Frizzled2, Frizzled5, and β-catenin. Besides, indirubin inhibited the proliferation of HaCaT cells, induced apoptosis, and arrest cell cycle. We also reported that indirubin could down-regulate the expression of Involucrin, TGase 1, and keratin 17, but the expression of Filaggrin and Loricrin had no significant effect. Conclusion Our research showed that indirubin promoted the demethylation of wif-1 and suppressed the wnt/β-catenin signal pathway, thereby exerted an anti-proliferative effect. This study reveals the anti-proliferation mechanism of indirubin, which may provide an effective option for the treatment of proliferative diseases.
Collapse
Affiliation(s)
- Shou Gang Liu
- Dermatology Hospital, Southern Medical University, 2, lujing Road, Yuexiu District, Guangzhou, Guangdong, 510091, People's Republic of China
| | - Guang Pu Luo
- Dermatology Hospital, Southern Medical University, 2, lujing Road, Yuexiu District, Guangzhou, Guangdong, 510091, People's Republic of China
| | - Yong Bin Qu
- Dermatology Hospital, Southern Medical University, 2, lujing Road, Yuexiu District, Guangzhou, Guangdong, 510091, People's Republic of China
| | - Yong Feng Chen
- Dermatology Hospital, Southern Medical University, 2, lujing Road, Yuexiu District, Guangzhou, Guangdong, 510091, People's Republic of China.
| |
Collapse
|
17
|
Epigenetic factors involved in the pathophysiology of inflammatory skin diseases. J Allergy Clin Immunol 2020; 145:1049-1060. [DOI: 10.1016/j.jaci.2019.10.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/23/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022]
|
18
|
Abstract
Psoriasis is a chronic and recurrent inflammatory skin disease, involving the rapid proliferation and abnormal differentiation of keratinocytes and activation of T cells. It is generally accepted that the central pathogenesis of psoriasis is a T cell-dominant immune disorder affected by multiple factors including genetic susceptibility, environmental factors, innate and adaptive immune responses, etc. However, the exact etiology is largely unknown. In recent years, epigenetic involvements, such as the DNA methylation, chromatin modifications, and noncoding RNA regulation are reported to be critical for the pathogenesis of psoriasis. However, the interplay between these factors has only recently been started to be unraveled. Notably, inhibitors of enzymes that work in epigenetic modifications, such as DNA methyltransferases and histone deacetylases, are beginning to appear in the clinical setting to restore normal epigenetic patterns (Generali et al. in J Autoimmun 83:51-61, 2017), providing novel therapeutic potential as novel treatment targets for psoriasis. Indeed, medications previously used to treat autoimmune diseases have later been discovered to exert their action via epigenetic mechanisms. Herein, we review the findings on epigenetics associated with psoriasis, and discuss future perspectives in this field.
Collapse
Affiliation(s)
- Shuai Shao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi, China
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
19
|
Mervis JS, McGee JS. DNA methylation and inflammatory skin diseases. Arch Dermatol Res 2019; 312:461-466. [PMID: 31696298 DOI: 10.1007/s00403-019-02005-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 08/25/2019] [Accepted: 10/19/2019] [Indexed: 12/29/2022]
Abstract
Epigenetics is the study of heritable changes in gene expression that do not originate from alternations in the DNA sequence. Epigenetic modifications include DNA methylation, histone modification, and gene silencing via the action of microRNAs. Epigenetic dysregulation has been implicated in many disease processes. In the field of dermatology, epigenetic regulation has been extensively explored as a pathologic mechanism in cutaneous T-cell lymphoma (CTCL), which has led to the successful development of epigenetic therapies for CTCL. In recent years, the potential role of epigenetic regulation in the pathogeneses of inflammatory skin diseases has gained greater appreciation. In particular, epigenetic changes in psoriasis and atopic dermatitis have been increasingly studied, with DNA methylation the most rigorously investigated to date. In this review, we provide an overview of DNA methylation in inflammatory skin diseases with an emphasis on psoriasis and atopic dermatitis.
Collapse
Affiliation(s)
- Joshua S Mervis
- Department of Dermatology, Boston University School of Medicine, 609 Albany Street, J-505, Boston, MA, 02118, USA
| | - Jean S McGee
- Department of Dermatology, Boston University School of Medicine, 609 Albany Street, J-505, Boston, MA, 02118, USA.
| |
Collapse
|
20
|
Wu H, Chen Y, Zhu H, Zhao M, Lu Q. The Pathogenic Role of Dysregulated Epigenetic Modifications in Autoimmune Diseases. Front Immunol 2019; 10:2305. [PMID: 31611879 PMCID: PMC6776919 DOI: 10.3389/fimmu.2019.02305] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/11/2019] [Indexed: 12/21/2022] Open
Abstract
Autoimmune diseases can be chronic with relapse of inflammatory symptoms, but it can be also acute and life-threatening if immune cells destroy life-supporting organs, such as lupus nephritis. The etiopathogenesis of autoimmune diseases has been revealed as that genetics and environmental factors-mediated dysregulated immune responses contribute to the initiation and development of autoimmune disorders. However, the current understanding of pathogenesis is limited and the underlying mechanism has not been well defined, which lows the development of novel biomarkers and new therapeutic strategies for autoimmune diseases. To improve this, broadening and deepening our understanding of pathogenesis is an unmet need. As genetic susceptibility cannot explain the low accordance rate of incidence in homozygous twins, epigenetic regulations might be an additional explanation. Therefore, this review will summarize current progress of studies on epigenetic dysregulations contributing to autoimmune diseases, including SLE, rheumatoid arthritis (RA), psoriasis, type 1 diabetes (T1D), and systemic sclerosis (SSc), hopefully providing opinions on orientation of future research, as well as discussing the clinical utilization of potential biomarkers and therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Haijing Wu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yongjian Chen
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Huan Zhu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming Zhao
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Qianjin Lu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
21
|
Whyte JM, Ellis JJ, Brown MA, Kenna TJ. Best practices in DNA methylation: lessons from inflammatory bowel disease, psoriasis and ankylosing spondylitis. Arthritis Res Ther 2019; 21:133. [PMID: 31159831 PMCID: PMC6547594 DOI: 10.1186/s13075-019-1922-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Advances in genomic technology have enabled a greater understanding of the genetics of common immune-mediated diseases such as ankylosing spondylitis (AS), inflammatory bowel disease (IBD) and psoriasis. The substantial overlap in genetically identified pathogenic pathways has been demonstrated between these diseases. However, to date, gene discovery approaches have only mapped a minority of the heritability of these common diseases, and most disease-associated variants have been found to be non-coding, suggesting mechanisms of disease-association through transcriptional regulatory effects. Epigenetics is a major interface between genetic and environmental modifiers of disease and strongly influence transcription. DNA methylation is a well-characterised epigenetic mechanism, and a highly stable epigenetic marker, that is implicated in disease pathogenesis. DNA methylation is an under-investigated area in immune-mediated diseases, and many studies in the field are affected by experimental design limitations, related to study design, technical limitations of the methylation typing methods employed, and statistical issues. This has resulted in both sparsity of investigations into disease-related changes in DNA methylation, a paucity of robust findings, and difficulties comparing studies in the same disease. In this review, we cover the basics of DNA methylation establishment and control, and the methods used to examine it. We examine the current state of DNA methylation studies in AS, IBD and psoriasis; the limitations of previous studies; and the best practices for DNA methylation studies. The purpose of this review is to assist with proper experimental design and consistency of approach in future studies to enable a better understanding of the functional role of DNA methylation in immune-mediated disease.
Collapse
Affiliation(s)
- Jessica M Whyte
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, Queensland, Australia
| | - Jonathan J Ellis
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, Queensland, Australia
| | - Matthew A Brown
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, Queensland, Australia. .,Translational Research Institute, Princess Alexandra Hospital, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia.
| | - Tony J Kenna
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, Queensland, Australia
| |
Collapse
|
22
|
Chandra A, Senapati S, Roy S, Chatterjee G, Chatterjee R. Epigenome-wide DNA methylation regulates cardinal pathological features of psoriasis. Clin Epigenetics 2018; 10:108. [PMID: 30092825 PMCID: PMC6085681 DOI: 10.1186/s13148-018-0541-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/29/2018] [Indexed: 02/05/2023] Open
Abstract
Background Psoriasis is a chronic inflammatory autoimmune skin disorder. Several studies suggested psoriasis to be a complex multifactorial disease, but the exact triggering factor is yet to be determined. Evidences suggest that in addition to genetic factors, epigenetic reprogramming is also involved in psoriasis development. Major histopathological features, like increased proliferation and abnormal differentiation of keratinocytes, and immune cell infiltrations are characteristic marks of psoriatic skin lesions. Following therapy, histopathological features as well as aberrant DNA methylation reversed to normal levels. To understand the role of DNA methylation in regulating these crucial histopathologic features, we investigated the genome-wide DNA methylation profile of psoriasis patients with different histopathological features. Results Genome-wide DNA methylation profiling of psoriatic and adjacent normal skin tissues identified several novel differentially methylated regions associated with psoriasis. Differentially methylated CpGs were significantly enriched in several psoriasis susceptibility (PSORS) regions and epigenetically regulated the expression of key pathogenic genes, even with low-CpG promoters. Top differentially methylated genes overlapped with PSORS regions including S100A9, SELENBP1, CARD14, KAZN and PTPN22 showed inverse correlation between methylation and gene expression. We identified differentially methylated genes associated with characteristic histopathological features in psoriasis. Psoriatic skin with Munro’s microabscess, a distinctive feature in psoriasis including parakeratosis and neutrophil accumulation at the stratum corneum, was enriched with differentially methylated genes involved in neutrophil chemotaxis. Rete peg elongation and focal hypergranulosis were also associated with epigenetically regulated genes, supporting the reversible nature of these characteristic features during remission and relapse of the lesions. Conclusion Our study, for the first time, indicated the possible involvement of DNA methylation in regulating the cardinal pathophysiological features in psoriasis. Common genes involved in regulation of these pathologies may be used to develop drugs for better clinical management of psoriasis. Electronic supplementary material The online version of this article (10.1186/s13148-018-0541-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aditi Chandra
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, West Bengal, 700108, India
| | | | - Sudipta Roy
- MDDC, Lansdowne Place, Kolkata, West Bengal, India
| | - Gobinda Chatterjee
- Department of Dermatology, IPGMER/SSKM Hospital, Kolkata, West Bengal, India
| | - Raghunath Chatterjee
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, West Bengal, 700108, India.
| |
Collapse
|
23
|
Woo YR, Cho DH, Park HJ. Molecular Mechanisms and Management of a Cutaneous Inflammatory Disorder: Psoriasis. Int J Mol Sci 2017; 18:ijms18122684. [PMID: 29232931 PMCID: PMC5751286 DOI: 10.3390/ijms18122684] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 12/11/2022] Open
Abstract
Psoriasis is a complex chronic inflammatory cutaneous disorder. To date, robust molecular mechanisms of psoriasis have been reported. Among diverse aberrant immunopathogenetic mechanisms, the current model emphasizes the role of Th1 and the IL-23/Th17 axis, skin-resident immune cells and major signal transduction pathways involved in psoriasis. The multiple genetic risk loci for psoriasis have been rapidly revealed with the advent of a novel technology. Moreover, identifying epigenetic modifications could bridge the gap between genetic and environmental risk factors in psoriasis. This review will provide a better understanding of the pathogenesis of psoriasis by unraveling the complicated interplay among immunological abnormalities, genetic risk foci, epigenetic modification and environmental factors of psoriasis. With advances in molecular biology, diverse new targets are under investigation to manage psoriasis. The recent advances in treatment modalities for psoriasis based on targeted molecules are also discussed.
Collapse
Affiliation(s)
- Yu Ri Woo
- Department of Dermatology, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 07345, Korea.
| | - Dae Ho Cho
- Department of Life Science, Sookmyung Women's University, Seoul 04310, Korea.
| | - Hyun Jeong Park
- Department of Dermatology, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 07345, Korea.
| |
Collapse
|
24
|
Zong W, Ge Y, Han Y, Yang X, Li Q, Chen M. Hypomethylation of HLA-DRB1 and its clinical significance in psoriasis. Oncotarget 2017; 8:12323-12332. [PMID: 27713139 PMCID: PMC5355347 DOI: 10.18632/oncotarget.12468] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/29/2016] [Indexed: 12/15/2022] Open
Abstract
Increasing evidences indicate that the abnormal DNA methylation is involved in the pathogenesis of psoriasis. A number of SNPs in HLA-DRB1 have been found being associated with the risk of psoriasis, however it is unclear that metylation status within HLA-DRB1 in psoriasis. Here, DNA and RNA were obtained from epidermis of 56 patients with plaque psoriasis and 28 healthy volunteers served as the control group. For the first time, we discovered mean methylation rate for HLA-DRB1 is 52.2%, 64.3% and 68.1% in epidermis from psoriatic lesions, psoriatic non-lesions and healthy controls, respectively. HLA-DRB1 methylation in psoriatic lesions is significantly lower than in psoriatic non-lesions (t = 13.077, p < 0.001). However, there is no significant difference for HLA-DRB1 methylation between in psoriatic non-lesions and in healthy controls (t = 1.046, p = 0.299). HLA-DRB1 methylation in psoriatic lesions is negatively correlated to PASI score (r = -0.431, p = 0.001). HLA-DRB1 methylation in psoriatic lesions of the patients with onset age≤18 years is significantly lower than the other patients (t = 3.968, p < 0.001). Meanwhile, HLA-DRB1 mRNA expression is significantly increased in psoriatic lesions comparing to psoriatic non-lesions (t = 12.119, p < 0.001). There are no significant difference for HLA-DRB1 mRNA expression between in psoriatic non-lesions and in healthy controls (t = 1.172, p = 0,245). Moreover, HLA-DRB1 mRNA expression is negatively associated with HLA-DRB1 methylation in psoriatic lesions (r = 0.932, p < 0.001). In conclusions, our results showed hypomethylation of HLA-DRB1 is associated with HLA-DRB1 mRNA expression and severity of the disease, indicating that hypomethylation of HLA-DRB1 may play roles in the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Wenkai Zong
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yiping Ge
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yue Han
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Xueyuan Yang
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Qi Li
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Min Chen
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| |
Collapse
|
25
|
Pollock RA, Abji F, Gladman DD. Epigenetics of psoriatic disease: A systematic review and critical appraisal. J Autoimmun 2017; 78:29-38. [DOI: 10.1016/j.jaut.2016.12.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/22/2016] [Accepted: 12/04/2016] [Indexed: 12/20/2022]
|
26
|
Deng Y, Chang C, Lu Q. The Inflammatory Response in Psoriasis: a Comprehensive Review. Clin Rev Allergy Immunol 2017; 50:377-89. [PMID: 27025861 DOI: 10.1007/s12016-016-8535-x] [Citation(s) in RCA: 266] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Psoriasis is a chronic inflammatory autoimmune disease characterized by an excessively aberrant hyperproliferation of keratinocytes. The pathogenesis of psoriasis is complex and the exact mechanism remains elusive. However, psoriasis is thought to result from a combination of genetic, epigenetic, and environmental influences. Recent studies have identified that epigenetic factors including dysregulated DNA methylation levels, abnormal histone modification and microRNAs expressions are involved in the development of psoriasis. The interplay of immune cells and cytokines is another critical factor in the pathogenesis of psoriasis. These factors or pathways include Th1/Th2 homeostasis, the Th17/Treg balance and the IL-23/Th17 axis. Th17 is believed particularly important in psoriasis due to its pro-inflammatory effects and its involvement in an integrated inflammatory loop with dendritic cells and keratinocytes, contributing to an overproduction of antimicrobial peptides, inflammatory cytokines, and chemokines that leads to amplification of the immune response. In addition, other pathways and signaling molecules have been found to be involved, including Th9, Th22, regulatory T cells, γδ T cells, CD8(+) T cells, and their related cytokines. Understanding the pathogenesis of psoriasis will allow us to develop increasingly efficient targeted treatment by blocking relevant inflammatory signaling pathways and molecules. There is no cure for psoriasis at the present time, and much of the treatment involves managing the symptoms. The biologics, while lacking the adverse effects associated with some of the traditional medications such as corticosteroids and methotrexate, have their own set of side effects, which may include reactivation of latent infections. Significant challenges remain in developing safe and efficacious novel targeted therapies that depend on a better understanding of the immunological dysfunction in psoriasis.
Collapse
Affiliation(s)
- Yaxiong Deng
- Department of Dermatology, Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Central South University, Changsha, Hunan, China
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, 451 Health Sciences Drive, Suite 6510, Davis, CA, 95616, USA
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Central South University, Changsha, Hunan, China. .,Second Xiangya Hospital, Central South University, #139 Renmin Middle Rd, Changsha, Hunan, 410011, China.
| |
Collapse
|
27
|
Epigenetic Changes in Chronic Inflammatory Diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 106:139-189. [DOI: 10.1016/bs.apcsb.2016.09.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Epigenetic Modulation as a Therapeutic Prospect for Treatment of Autoimmune Rheumatic Diseases. Mediators Inflamm 2016; 2016:9607946. [PMID: 27594771 PMCID: PMC4995328 DOI: 10.1155/2016/9607946] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/12/2016] [Indexed: 12/21/2022] Open
Abstract
Systemic inflammatory rheumatic diseases are considered as autoimmune diseases, meaning that the balance between recognition of pathogens and avoidance of self-attack is impaired and the immune system attacks and destroys its own healthy tissue. Treatment with conventional Disease Modifying Antirheumatic Drugs (DMARDs) and/or Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) is often associated with various adverse reactions due to unspecific and toxic properties of those drugs. Although biologic drugs have largely improved the outcome in many patients, such drugs still pose significant problems and fail to provide a solution to all patients. Therefore, development of more effective treatments and improvements in early diagnosis of rheumatic diseases are badly needed in order to increase patient's functioning and quality of life. The reversible nature of epigenetic mechanisms offers a new class of drugs that modulate the immune system and inflammation. In fact, epigenetic drugs are already in use in some types of cancer or cardiovascular diseases. Therefore, epigenetic-based therapeutics that control autoimmunity and chronic inflammatory process have broad implications for the pathogenesis, diagnosis, and management of rheumatic diseases. This review summarises the latest information about potential therapeutic application of epigenetic modification in targeting immune abnormalities and inflammation of rheumatic diseases.
Collapse
|
29
|
Chen M, Wang Y, Yao X, Li C, Jiang M, Cui P, Wang B. Hypermethylation of HLA-C may be an epigenetic marker in psoriasis. J Dermatol Sci 2016; 83:10-6. [DOI: 10.1016/j.jdermsci.2016.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/13/2016] [Accepted: 04/13/2016] [Indexed: 10/22/2022]
|
30
|
Nobeyama Y, Umezawa Y, Nakagawa H. Less-invasive analysis of DNA methylation using psoriatic scales. J Dermatol Sci 2016; 83:70-3. [PMID: 27138624 DOI: 10.1016/j.jdermsci.2016.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/01/2016] [Accepted: 03/31/2016] [Indexed: 10/21/2022]
Affiliation(s)
- Yoshimasa Nobeyama
- Department of Dermatology, The Jikei University School of Medicine, 25-8 Nishi-Shimbashi 3-chome, Minato-ku, Tokyo 105-8461, Japan.
| | - Yoshinori Umezawa
- Department of Dermatology, The Jikei University School of Medicine, 25-8 Nishi-Shimbashi 3-chome, Minato-ku, Tokyo 105-8461, Japan
| | - Hidemi Nakagawa
- Department of Dermatology, The Jikei University School of Medicine, 25-8 Nishi-Shimbashi 3-chome, Minato-ku, Tokyo 105-8461, Japan
| |
Collapse
|
31
|
Aslani S, Mahmoudi M, Karami J, Jamshidi AR, Malekshahi Z, Nicknam MH. Epigenetic alterations underlying autoimmune diseases. Autoimmunity 2016; 49:69-83. [DOI: 10.3109/08916934.2015.1134511] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
32
|
Kazlouskaya V, Shustef E, Blochin E. Expression of p16 in psoriasis and chronic spongiotic dermatitis. Indian Dermatol Online J 2015. [PMID: 26225346 PMCID: PMC4513421 DOI: 10.4103/2229-5178.160289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Elina Shustef
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, NY, USA
| | | |
Collapse
|
33
|
Yooyongsatit S, Ruchusatsawat K, Noppakun N, Hirankarn N, Mutirangura A, Wongpiyabovorn J. Patterns and functional roles of LINE-1 and Alu methylation in the keratinocyte from patients with psoriasis vulgaris. J Hum Genet 2015; 60:349-55. [PMID: 25833468 DOI: 10.1038/jhg.2015.33] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 03/01/2015] [Accepted: 03/02/2015] [Indexed: 12/11/2022]
Abstract
Alterations in LINE-1 methylation are related to many diseases. The levels and patterns of LINE-1 hypomethylation were associated with a higher risk in developing several cancers, having a poorer prognosis and more aggressiveness. To evaluate the LINE-methylated status in psoriasis, LINE-1 methylation in various cells from patients with psoriasis, squamous cell carcinoma and normal controls were assessed by combined bisulfite restriction analysis of LINE-1. The results of the epigenetic changes for intragenic LINE-1 gene expression were also tested on two known expression microarrays. In patients with psoriasis, hypomethylation of LINE-1 and increase in %(u)C(u)C were prominent in the keratinocytes when compared with normal controls (P=0.014 and P=0.020, respectively). Alternatively, %(u)C(m)C was significantly lower in patients with severe psoriasis compared with mild psoriasis (P=0.022). The receiver-operating characteristic curve analysis indicated the high specificity and sensitivity of (u)C(u)C and (u)C(m)C in detecting psoriasis and severity of psoriasis. From expression array analysis, genes with LINE-1 were downregulated more than those genes without LINE-1 (P=3.84 × 10(-27) and P=2.14 × 10(-21), respectively). Modification in LINE-1 methylation may alter the gene expression resulting in a phenotypic change of the psoriatic skin. %(u)C(u)C and %(u)C(m)C may be used as biomarkers for psoriasis.
Collapse
Affiliation(s)
- Surasak Yooyongsatit
- Medical Microbiology, Interdisciplinary Program, Graduate School Chulalongkorn University, Bangkok, Thailand
| | | | - Nopadon Noppakun
- Division of Dermatology, Department of medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Apiwat Mutirangura
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jongkonnee Wongpiyabovorn
- Center of Excellence in Immunology and Immune Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
34
|
Chandra A, Ray A, Senapati S, Chatterjee R. Genetic and epigenetic basis of psoriasis pathogenesis. Mol Immunol 2015; 64:313-23. [PMID: 25594889 DOI: 10.1016/j.molimm.2014.12.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 12/20/2014] [Accepted: 12/26/2014] [Indexed: 01/06/2023]
Abstract
Psoriasis is a chronic inflammatory skin disease whose prevalence varies among different populations worldwide. It is a complex multi-factorial disease and the exact etiology is largely unknown. Family based studies have indicated a genetic predisposition; however they cannot fully explain the disease pathogenesis. In addition to genetic susceptibility, environmental as well as gender and age related factors were also been found to be associated. Recently, imbalances in epigenetic networks are indicated to be causative elements in psoriasis. The present knowledge of epigenetic involvement, mainly the DNA methylation, chromatin modifications and miRNA deregulation is surveyed here. An integrated approach considering genetic and epigenetic anomalies in the light of immunological network may explore the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Aditi Chandra
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Aditi Ray
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | | | - Raghunath Chatterjee
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India.
| |
Collapse
|
35
|
Abstract
The skin is composed of a variety of cell types expressing specific molecules and possessing different properties that facilitate the complex interactions and intercellular communication essential for maintaining the structural integrity of the skin. Importantly, a single mutation in one of these molecules can disrupt the entire organization and function of these essential networks, leading to cell separation, blistering, and other striking phenotypes observed in inherited skin diseases. Over the past several decades, the genetic basis of many monogenic skin diseases has been elucidated using classical genetic techniques. Importantly, the findings from these studies has shed light onto the many classes of molecules and essential genetic as well as molecular interactions that lend the skin its rigid, yet flexible properties. With the advent of the human genome project, next-generation sequencing techniques, as well as several other recently developed methods, tremendous progress has been made in dissecting the genetic architecture of complex, non-Mendelian skin diseases.
Collapse
Affiliation(s)
- Gina M DeStefano
- Department of Genetics and Development, Columbia University, New York, New York 10032
| | - Angela M Christiano
- Department of Genetics and Development, Columbia University, New York, New York 10032 Department of Dermatology, Columbia University, New York, New York 10032
| |
Collapse
|
36
|
Pucci M, Rapino C, Di Francesco A, Dainese E, D'Addario C, Maccarrone M. Epigenetic control of skin differentiation genes by phytocannabinoids. Br J Pharmacol 2014; 170:581-91. [PMID: 23869687 DOI: 10.1111/bph.12309] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 06/28/2013] [Accepted: 07/03/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Endocannabinoid signalling has been shown to have a role in the control of epidermal physiology, whereby anandamide is able to regulate the expression of skin differentiation genes through DNA methylation. Here, we investigated the possible epigenetic regulation of these genes by several phytocannabinoids, plant-derived cannabinoids that have the potential to be novel therapeutics for various human diseases. EXPERIMENTAL APPROACH The effects of cannabidiol, cannabigerol and cannabidivarin on the expression of skin differentiation genes keratins 1 and 10, involucrin and transglutaminase 5, as well as on DNA methylation of keratin 10 gene, were investigated in human keratinocytes (HaCaT cells). The effects of these phytocannabinoids on global DNA methylation and the activity and expression of four major DNA methyltransferases (DNMT1, 3a, 3b and 3L) were also examined. KEY RESULTS Cannabidiol and cannabigerol significantly reduced the expression of all the genes tested in differentiated HaCaT cells, by increasing DNA methylation of keratin 10 gene, but cannabidivarin was ineffective. Remarkably, cannabidiol reduced keratin 10 mRNA through a type-1 cannabinoid (CB1 ) receptor-dependent mechanism, whereas cannabigerol did not affect either CB1 or CB2 receptors of HaCaT cells. In addition, cannabidiol, but not cannabigerol, increased global DNA methylation levels by selectively enhancing DNMT1 expression, without affecting DNMT 3a, 3b or 3L. CONCLUSIONS AND IMPLICATIONS These findings show that the phytocannabinoids cannabidiol and cannabigerol are transcriptional repressors that can control cell proliferation and differentiation. This indicates that they (especially cannabidiol) have the potential to be lead compounds for the development of novel therapeutics for skin diseases.
Collapse
Affiliation(s)
- Mariangela Pucci
- Department of Biomedical Sciences, University of Teramo, Teramo, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Lewis CJ, Mardaryev AN, Sharov AA, Fessing MY, Botchkarev VA. The Epigenetic Regulation of Wound Healing. Adv Wound Care (New Rochelle) 2014; 3:468-475. [PMID: 25032066 DOI: 10.1089/wound.2014.0522] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/06/2014] [Indexed: 12/19/2022] Open
Abstract
Significance: Epigenetic regulatory mechanisms are essential for epidermal homeostasis and contribute to the pathogenesis of many skin diseases, including skin cancer and psoriasis. However, while the epigenetic regulation of epidermal homeostasis is now becoming active area of research, the epigenetic mechanisms controlling the wound healing response remain relatively untouched. Recent Advances: Substantial progress achieved within the last two decades in understanding epigenetic mechanisms controlling gene expression allowed defining several levels, including covalent DNA and histone modifications, ATP-dependent and higher-order chromatin chromatin remodeling, as well as noncoding RNA- and microRNA-dependent regulation. Research pertained over the last few years suggests that epigenetic regulatory mechanisms play a pivotal role in the regulation of skin regeneration and control an execution of reparative gene expression programs in both skin epithelium and mesenchyme. Critical Issues: Epigenetic regulators appear to be inherently involved in the processes of skin repair, and are able to dynamically regulate keratinocyte proliferation, differentiation, and migration, together with influencing dermal regeneration and neoangiogenesis. This is achieved through a series of complex regulatory mechanisms that are able to both stimulate and repress gene activation to transiently alter cellular phenotype and behavior, and interact with growth factor activity. Future Directions: Understanding the molecular basis of epigenetic regulation is a priority as it represents potential therapeutic targets for the treatment of both acute and chronic skin conditions. Future research is, therefore, imperative to help distinguish epigenetic modulating drugs that can be used to improve wound healing.
Collapse
Affiliation(s)
- Christopher J. Lewis
- Plastic Surgery and Burns Research Unit, University of Bradford, Bradford, United Kingdom
| | | | - Andrey A. Sharov
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts
| | - Michael Y. Fessing
- Centre for Skin Sciences, University of Bradford, Bradford, United Kingdom
| | - Vladimir A. Botchkarev
- Centre for Skin Sciences, University of Bradford, Bradford, United Kingdom
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
38
|
Abstract
DNA methylation is a heritable, stable, and also reversible way of DNA modification; it can regulate gene expression without changing the nucleotide sequences. Because it takes part in regulation of immune responses, the loss of methylation homeostasis in immune cells will result in autoimmune disease by inducing aberrant gene expression. Primary immune thrombocytopenia (ITP) is an acquired autoimmune disease with many immune deficiencies. Recently, it was well documented that abnormal DNA methylation is also involved in the etiology of ITP. In this review, we elucidate the role of DNA methylation in autoimmune diseases by summarizing the DNA methylation-sensitive genes and the relationship between DNA methylation and ITP.
Collapse
Affiliation(s)
- Huiyuan Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, PR China
| | | | | |
Collapse
|
39
|
Rodríguez-Cerdeira C, Molares-Vila A, Sánchez-Blanco E, Sánchez-Blanco B. Study on Certain Biomarkers of Inflammation in Psoriasis Through "OMICS" Platforms. Open Biochem J 2014; 8:21-34. [PMID: 24688608 PMCID: PMC3970352 DOI: 10.2174/1874091x01408010021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 12/11/2013] [Accepted: 12/14/2013] [Indexed: 12/14/2022] Open
Abstract
Background: In recent years, research on psoriasis has focused on the identification of biomarkers for the diagnosis, pathogenesis, prognosis, or therapeutic response of the disease. These studies could provide insights into the susceptibility and natural history of psoriasis. The identification of biomarkers related to comorbidities in psoriasis, such as arthritis, cardiovascular disease, and the metabolic syndrome, is of special clinical interest. Materials and Methods: We performed an extensive review on psoriasis biomarkers, including cytokine and growth factors, in the literature published between 1997 and 2013, including cross-references of any retrieved articles. We also included some data from our own studies. Results: This review presents current knowledge of soluble biomarkers in psoriasis, including cytokines, chemokines, proangiogenic mediators, growth factors, antimicrobial proteins, neuropeptides, and oxidative stress markers. Conclusion: In conclusion, a number of studies have been conducted with the aim of establishing soluble biomarkers for psoriasis. Most of the biomarkers that have been studied do not meet the criteria for a clinically useful biomarker. Further work is needed to establish a role for soluble biomarkers in the diagnosis and treatment of psoriasis, with a special focus on biomarkers for psoriasis comorbidities, such as arthritis, cardiovascular disease, and the metabolic syndrome.
Collapse
Affiliation(s)
| | - A Molares-Vila
- Department of Analytical Chemistry, University of Vigo, Spain
| | | | - B Sánchez-Blanco
- Postgraduate researcher, Department of Emergency, CHUVI, Vigo, Spain
| |
Collapse
|
40
|
Hou R, Yin G, An P, Wang C, Liu R, Yang Y, Yan X, Li J, Li X, Zhang K. DNA methylation of dermal MSCs in psoriasis: identification of epigenetically dysregulated genes. J Dermatol Sci 2013; 72:103-9. [PMID: 23916410 DOI: 10.1016/j.jdermsci.2013.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 06/25/2013] [Accepted: 07/04/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are likely involved in pathological processes of immune-related diseases, including psoriasis, because of their immunoregulatory and pro-angiogenic effects. DNA methylation plays an essential role in regulating gene expression and maintaining cell function. OBJECTIVE This study aimed to investigate the gene methylation profile of dermal MSCs from patients with psoriasis. METHODS We isolated and expanded dermal MSCs from psoriatic patients and normal controls using the attachment assay and conducted genome-wide DNA methylation profile and gene ontology analyses using microarray. RESULTS The cultured cells were indentified as MSCs by surface marker and differentiation assays. The genome-wide promoter methylation profile of MSCs from psoriatic derma was markedly different from the normal derma derived MSCs. Genes involved in cell communication, surface receptor signaling pathway, cellular response to stimulus, and cell migration were differently methylated. Several aberrantly methylated genes related epidermal proliferation, angiogenesis, and inflammation were found differently expressed in psoriatic patients. CONCLUSIONS These results indicated that the MSCs from dermal of psoriasis are probably participant in the pathogenesis and development of psoriasis through an extraordinarily complex mechanism.
Collapse
Affiliation(s)
- Ruixia Hou
- Institute of Dermatology, Taiyuan City Central Hospital, 1 Dong San Dao Xiang, Taiyuan 030009, Shanxi Province, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Whole-genome DNA methylation in skin lesions from patients with psoriasis vulgaris. J Autoimmun 2013; 41:17-24. [DOI: 10.1016/j.jaut.2013.01.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 01/02/2013] [Indexed: 11/15/2022]
|
42
|
The critical importance of epigenetics in autoimmunity. J Autoimmun 2013; 41:1-5. [PMID: 23375849 DOI: 10.1016/j.jaut.2013.01.010] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 01/13/2013] [Indexed: 11/21/2022]
Abstract
Autoimmune diseases are characterized by aberrant immune responses against healthy cells and tissues, in which a given individual's genetic susceptibilities play a central role; however, the exact mechanisms underlying the development of these conditions remain for the most part unknown. In recent years, accumulating evidence has demonstrated that, in addition to genetics, other complementary mechanisms are involved in the pathogenesis of autoimmunity, in particular, epigenetics. Epigenetics is defined as stable and heritable patterns of gene expression that do not entail any alterations to the original DNA sequence. Epigenetic mechanisms primarily consist of DNA methylation, histone modifications and small non-coding RNA transcripts. Epigenetic marks can be affected by age and other environmental triggers, providing a plausible link between environmental factors and the onset and development of various human diseases. Because of their primary function in regulating timely gene expression, epigenetic mechanisms offer potential advantages in terms of interpreting the molecular basis of complicated diseases and providing new promising therapeutic avenues for their treatment. The present review focuses on recent progress made in elucidating the relationship between epigenetics and the pathogenesis of autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, systemic sclerosis, primary Sjögren's syndrome, primary biliary cirrhosis, psoriasis and type 1 diabetes.
Collapse
|
43
|
Back SJ, Im M, Sohn KC, Choi DK, Shi G, Jeong NJ, Lee Y, Seo YJ, Kim CD, Lee JH. Epigenetic Modulation of Gene Expression during Keratinocyte Differentiation. Ann Dermatol 2012; 24:261-6. [PMID: 22879708 PMCID: PMC3412233 DOI: 10.5021/ad.2012.24.3.261] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 07/26/2011] [Accepted: 08/01/2011] [Indexed: 02/03/2023] Open
Abstract
Background Epigenetic modulation of gene expression occurs by various methods, including DNA methylation and histone modification. DNA methylation of specific genes may affect the chromatin structure, preventing access by the transcriptional machinery. Although gene expression is dramatically changed during keratinocyte differentiation, there is no evidence of epigenetic modulation during the process of epidermal stratification. Objective We investigated whether epigenetic modulation is involved in keratinocyte differentiation-specific gene regulation. Methods We used trypsin to produce epidermal fragmentation (named T1-T4) and performed a morphological analysis using hematoxylin-eosin stain and cytokeratin expression based on reverse transcription polymerase chain reaction. We then constructed a DNA methylation microarray. Results Each epidermal fragment showed morphological features of the epithelial layer. T1 represented the basal layer, T2 was the spinous layer, T3 was the granular layer, and T4 was the cornified layer. The level of the K14 proliferation marker was increased in the T1 fraction, and the level of K10 differentiation marker was increased in the T2-T4 fractions. Using a methylation microarray with the T1 and T4 fractions, we obtained many hypermethylated and hypomethylated genes from differentiated keratinocytes. Conclusion The importance of epigenetic modulation in target gene expression during keratinocyte differentiation is identified.
Collapse
Affiliation(s)
- Seung Ju Back
- Department of Dermatology, Chungnam National University School of Medicine, Daejeon, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Rodriguez-Cortez VC, Hernando H, de la Rica L, Vento R, Ballestar E. Epigenomic deregulation in the immune system. Epigenomics 2011; 3:697-713. [PMID: 22126290 DOI: 10.2217/epi.11.99] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Proper immune function is the result of multiple cell commitment and differentiation steps, and adequate control of activation mechanisms. Deregulation of transcriptional programs in immune cells leads to the development of hematological malignancies, autoimmune diseases or immunodeficiencies. In this sense, epigenetic control of gene expression plays an essential role in the correct function of the immune system and the integrity of identity of relevant cell types. Epigenetic deregulation can result as a consequence of genetic changes in transcription factors, elements of signaling pathways or epigenetic enzymes, or as an effect of a variety of environmental factors. On top of genetic predisposition, viral infection and other external factors influence the development of immune-related diseases. In recent years, major strides have been made towards understanding the contribution of genetics in these immune disorders. Less progress has been made in dissecting the contribution of epigenetic factors in their etiology. Herein, it is presented what is currently known about epigenetic alterations in immune system associated disorders. It is also discussed how epigenomic analysis can help to understand the molecular basis of these diseases and how this information can be used in the clinical setting.
Collapse
Affiliation(s)
- Virginia C Rodriguez-Cortez
- Cancer Epigenetics & Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | |
Collapse
|
45
|
|
46
|
Zhang P, Su Y, Chen H, Zhao M, Lu Q. Abnormal DNA methylation in skin lesions and PBMCs of patients with psoriasis vulgaris. J Dermatol Sci 2010; 60:40-2. [PMID: 20800455 DOI: 10.1016/j.jdermsci.2010.07.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 07/24/2010] [Accepted: 07/26/2010] [Indexed: 11/27/2022]
|
47
|
Yue X, Fu J, Xue X, Gao H, Liu D, Zong Z, Wang W, Li H, Yuan Z. Detection of p16 promoter methylation in premature rats with chronic lung disease induced by hyperoxia. Pediatr Int 2010; 52:520-6. [PMID: 20113419 DOI: 10.1111/j.1442-200x.2010.03089.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The aim of the present study was to investigate p16 promoter methylation in premature rats with chronic lung disease (CLD) induced by hyperoxia. METHODS Eighty Wistar rats were randomized into the hyperoxia group (fraction of inspired oxygen [FiO(2)] = 900 mL/L) or the control group (FiO(2) = 210 mL/L), 40 for each group. Semi-nested methylation-specific polymerase chain reaction (sn-MSP) was applied to detect p16 promoter hypermethylation in lung tissues. Additionally, p16 mRNA and protein expression was detected on reverse transcription-polymerase chain reaction (RT-PCR), western blot and the strept actividin-biotin complex method. RESULTS Extended exposure to hyperoxia led to increased methylation, and the methylation level reached a peak in the period of maximum pulmonary fibrosis in the hyperoxia group, while the methylation did not occur in the control group. The methylation rates on semi-nested PCR (sn-PCR) and nested-MSP were, respectively, 52.5% and 42.5% in the hyperoxia group. There was no statistically significant difference between the two methods. The p16 mRNA and protein expression was significantly higher in those with p16 promoter hypermethylation than those without. CONCLUSION Exposure to hyperoxia may induce p16 promoter hypermethylation in lung tissues in premature rats, and methylation risk increases as exposure extends. p16 promoter methylation induced by hyperoxia may be one of the mechanisms for low p16 mRNA and protein expression.
Collapse
Affiliation(s)
- Xiaohong Yue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Feramisco JD, Tsao H, Siegel DH. Genetics for the Practicing Dermatologist. ACTA ACUST UNITED AC 2010; 29:127-36. [DOI: 10.1016/j.sder.2010.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Alexandroff A, Graham-Brown R. Report from the 67th Annual Meeting of the American Academy of Dermatology. Br J Dermatol 2009; 162:12-21. [DOI: 10.1111/j.1365-2133.2009.09395.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
50
|
Li Y, Sawalha AH, Lu Q. Aberrant DNA methylation in skin diseases. J Dermatol Sci 2009; 54:143-9. [PMID: 19395242 DOI: 10.1016/j.jdermsci.2009.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 01/16/2009] [Accepted: 01/29/2009] [Indexed: 12/21/2022]
Abstract
Epigenetic mechanisms are involved in regulating cell growth and differentiation without inducing changes in the gene sequence. The main epigenetic mechanisms include DNA methylation, histone modification, and microRNA. Recent studies indicate that aberrant DNA methylation is a common feature of many human disorders, including cancer, autoimmune diseases, heart diseases, skin diseases, and others. Skin diseases comprise various diseases that have a complex etiology and pathogenesis, including genetics and acquired factors such as environment and diet. These acquired factors often have pathogenic effects through modification of DNA and histones, of which DNA methylation is the most common mechanism. Aberrant DNA methylation has been demonstrated in skin diseases, including skin tumors and autoimmune-related skin disorders. Herein, we review the role of DNA methylation in the pathogenesis of skin diseases.
Collapse
Affiliation(s)
- Yaping Li
- Department of Dermatology and Epigenetic Research Center, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | | |
Collapse
|