1
|
Affiliation(s)
- Kangjing Chen
- MOE Key Laboratory of Protein Science, Tsinghua University, Beijing, P.R. China,School of Life Sciences, Tsinghua University, Beijing, P.R. China
| | - Junjie Yuan
- MOE Key Laboratory of Protein Science, Tsinghua University, Beijing, P.R. China,School of Life Sciences, Tsinghua University, Beijing, P.R. China,Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing, Beijing, China
| | - Youyang Sia
- MOE Key Laboratory of Protein Science, Tsinghua University, Beijing, P.R. China,School of Life Sciences, Tsinghua University, Beijing, P.R. China
| | - Zhucheng Chen
- MOE Key Laboratory of Protein Science, Tsinghua University, Beijing, P.R. China,School of Life Sciences, Tsinghua University, Beijing, P.R. China,Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing, Beijing, China,CONTACT Zhucheng Chen MOE Key Laboratory of Protein Science, Tsinghua University, Beijing100084, P.R. China
| |
Collapse
|
2
|
Mollapour Sisakht M, Amirkhani MA, Nilforoushzadeh MA. SWI/SNF complex, promising target in melanoma therapy: Snapshot view. Front Med (Lausanne) 2023; 10:1096615. [PMID: 36844227 PMCID: PMC9947295 DOI: 10.3389/fmed.2023.1096615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
Therapeutic strategies based on epigenetic regulators are rapidly increasing in light of recent advances in discovering the role of epigenetic factors in response and sensitivity to therapy. Although loss-of-function mutations in genes encoding the SWItch/Sucrose NonFermentable (SWI/SNF) subunits play an important role in the occurrence of ~34% of melanomas, the potential of using inhibitors and synthetic lethality interactions between key subunits of the complex that play an important role in melanoma progression must be considered. Here, we discuss the importance of the clinical application of SWI/SNF subunits as a promising potential therapeutic in melanoma.
Collapse
Affiliation(s)
- Mahsa Mollapour Sisakht
- Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran,Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands,*Correspondence: Mahsa Mollapour Sisakht ✉ ; ✉
| | | | | |
Collapse
|
3
|
Kuźbicki Ł, Brożyna AA. The markers auxiliary in differential diagnosis of early melanomas and benign nevi sharing some similar features potentially leading to misdiagnosis - a review of immunohistochemical studies. Cancer Invest 2022; 40:852-867. [PMID: 36214582 DOI: 10.1080/07357907.2022.2134415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Although most melanocytic skin lesions are correctly diagnosed, numerous studies have shown interobserver disagreement. This review analyzes 20 molecules as immunohistochemical markers for distinguishing dysplastic and/or Spitz nevi from early melanomas (in situ, Clark level I or II and/or Breslow thickness at most 1 mm). The detected presence and/or level of tested molecules was significantly different in early melanomas than in dysplastic and Spitz nevi for six and seven potential markers, respectively. The most promising results were obtained for 5-hydroxymethylcytosine, cyclooxygenase-2 and PReferentially expressed Antigen in MElanoma whose levels were different in dysplastic and Spitz nevi compared to early melanomas.
Collapse
Affiliation(s)
- Łukasz Kuźbicki
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Anna A Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
4
|
Dreier MR, de la Serna IL. SWI/SNF Chromatin Remodeling Enzymes in Melanoma. EPIGENOMES 2022; 6:epigenomes6010010. [PMID: 35323214 PMCID: PMC8947417 DOI: 10.3390/epigenomes6010010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
Melanoma is an aggressive malignancy that arises from the transformation of melanocytes on the skin, mucosal membranes, and uvea of the eye. SWI/SNF chromatin remodeling enzymes are multi-subunit complexes that play important roles in the development of the melanocyte lineage and in the response to ultraviolet radiation, a key environmental risk factor for developing cutaneous melanoma. Exome sequencing has revealed frequent loss of function mutations in genes encoding SWI/SNF subunits in melanoma. However, some SWI/SNF subunits have also been demonstrated to have pro-tumorigenic roles in melanoma and to affect sensitivity to therapeutics. This review summarizes studies that have implicated SWI/SNF components in melanomagenesis and have evaluated how SWI/SNF subunits modulate the response to current therapeutics.
Collapse
|
5
|
Shi DM, Shi XL, Xing KL, Zhou HX, Lu LL, Wu WZ. miR-296-5p suppresses stem cell potency of hepatocellular carcinoma cells via regulating Brg1/Sall4 axis. Cell Signal 2020; 72:109650. [PMID: 32320856 DOI: 10.1016/j.cellsig.2020.109650] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023]
Abstract
Epithelial-mesenchymal transition (EMT), a pivotal event during cancer progression such as relapse and metastasis, is positively correlated with the stemness potency of tumor cells. Our previous study showed that miR-296-5p attenuated EMT program of hepatocellular carcinoma cells (HCC) through NRG1/ERBB2/ERBB3 signaling. In the present study, we uncovered that miR-296-5p was able to inhibit the stemness potency of HCC by decreasing the number and size of tumorspheres, downregulating the expression of CSC biomarkers and hampering the ability of tumorigenesis in NOD/SCID mice. Brahma-related gene-1 (Brg1), as the target protein of miR-296-5p detected by bioinformatics methods, activates a series of downstream cascades through directly binding to Sall4 promoter and enhancing Sall4 transcription. Importantly, the higher expressions of Brg1 and Sall4 in tumor tissues of HCC patients suggest poorer prognoses after surgical extraction. In conclusion, miR-296-5p exerts an inhibitory effect on stemness potency of HCC cells via Brg1/Sall4 axis.
Collapse
Affiliation(s)
- Dong-Min Shi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, PR China
| | - Xiao-Li Shi
- Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Kai-Lin Xing
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, PR China
| | - Hong-Xin Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, PR China
| | - Li-Li Lu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, PR China
| | - Wei-Zhong Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, PR China.
| |
Collapse
|
6
|
Wang P, Song X, Cao D, Cui K, Wang J, Utpatel K, Shang R, Wang H, Che L, Evert M, Zhao K, Calvisi DF, Chen X. Oncogene-dependent function of BRG1 in hepatocarcinogenesis. Cell Death Dis 2020; 11:91. [PMID: 32019910 PMCID: PMC7000409 DOI: 10.1038/s41419-020-2289-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 02/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is the major type of primary liver cancer. Genomic studies have revealed that HCC is a heterogeneous disease with multiple subtypes. BRG1, encoded by the SMARCA4 gene, is a key component of SWI/SNF chromatin-remodeling complexes. Based on TCGA studies, somatic mutations of SMARCA4 occur in ~3% of human HCC samples. Additional studies suggest that BRG1 is overexpressed in human HCC specimens and may promote HCC growth and invasion. However, the precise functional roles of BRG1 in HCC remain poorly delineated. Here, we analyzed BRG1 in human HCC samples as well as in mouse models. We found that BRG1 is overexpressed in most of human HCC samples, especially in those associated with poorer prognosis. BRG1 expression levels positively correlate with cell cycle and negatively with metabolic pathways in the Cancer Genome Atlas (TCGA) human HCC data set. In a murine HCC model induced by c-MYC overexpression, ablation of the Brg1 gene completely repressed HCC formation. In striking contrast, however, we discovered that concomitant deletion of Brg1 and overexpression of c-Met or mutant NRas (NRASV12) triggered HCC formation in mice. Altogether, the present data indicate that BRG1 possesses both oncogenic and tumor-suppressing roles depending on the oncogenic stimuli during hepatocarcinogenesis.
Collapse
Affiliation(s)
- Pan Wang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Xinhua Song
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Dan Cao
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kairong Cui
- Systems Biology Center, NHLBI, NIH, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Jingxiao Wang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Kirsten Utpatel
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Runze Shang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.,Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Haichuan Wang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.,Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Li Che
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Keji Zhao
- Systems Biology Center, NHLBI, NIH, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany. .,Department of Medical, Surgical, and Experimental Sciences, University of Sassari, Sassari, Italy.
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.
| |
Collapse
|
7
|
Zhou X, Rao Y, Sun Q, Liu Y, Chen J, Bu W. Long noncoding RNA CPS1-IT1 suppresses melanoma cell metastasis through inhibiting Cyr61 via competitively binding to BRG1. J Cell Physiol 2019; 234:22017-22027. [PMID: 31111478 DOI: 10.1002/jcp.28764] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/13/2019] [Accepted: 04/17/2019] [Indexed: 01/24/2023]
Abstract
Long noncoding RNA CPS1-IT1 is recently recognized as a tumor suppressor in several cancers. Here, we investigate the role of CPS1-IT1 in human melanoma. Presently, our study reveals the low expression of CPS1-IT1 in human melanoma tissues and cell lines, which is significantly associated with metastasis and tumor stage. Besides, the potential of CPS1-IT1 as a prognosis-predictor is strongly indicated. Functionally, CPS1-IT1 overexpression inhibits cell migration, invasion, epithelial-mesenchymal transition, and angiogenesis in melanoma cells. CYR61, an angiogenic factor that participates in tumor metastasis as well as a recognized oncogene in melanoma, is shown to be confined under CPS1-IT1 overexpression in melanoma cells. Furthermore, enforced expression of Cyr61 in CPS1-IT1-silenced melanoma cells dramatically normalized the protein level of Cyr61 and that of its downstream targets vascular endothelial growth factor and matrix metalloproteinase-9, as well as the repressive effect of CPS1-IT1 overexpression on melanoma cell metastasis. BRG1, a core component of SWI/SNF complex, is implied to interact with both CPS1-IT1 and Cyr61 in melanoma cells. Moreover, CPS1-IT1 negatively regulates Cyr61 expression by blocking the binding of BRG1 to Cyr61 promoter. Jointly, CPS1-IT1 controls melanoma metastasis through impairing Cyr61 expression via competitively binding with BRG1, uncovering a novel potential therapeutic and prognostic biomarker for patients with melanoma.
Collapse
Affiliation(s)
- Xiaobo Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Center for Specialty Strategy Research of Shanghai JiaoTong University China Hospital Development Institute, Shanghai, China
| | - Yamin Rao
- Department of Pathology, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Center for Specialty Strategy Research of Shanghai JiaoTong University China Hospital Development Institute, Shanghai, China
| | - Qilin Sun
- Department of Dermatology and Dermatologic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai JiaoTong University China Hospital Development Institute, Shanghai, China
| | - Yang Liu
- Department of Dermatology and Dermatologic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai JiaoTong University China Hospital Development Institute, Shanghai, China
| | - Jun Chen
- Department of Dermatology and Dermatologic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai JiaoTong University China Hospital Development Institute, Shanghai, China
| | - Wenbo Bu
- Department of Dermatologic Surgery, Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| |
Collapse
|
8
|
Jancewicz I, Siedlecki JA, Sarnowski TJ, Sarnowska E. BRM: the core ATPase subunit of SWI/SNF chromatin-remodelling complex-a tumour suppressor or tumour-promoting factor? Epigenetics Chromatin 2019; 12:68. [PMID: 31722744 PMCID: PMC6852734 DOI: 10.1186/s13072-019-0315-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023] Open
Abstract
BRM (BRAHMA) is a core, SWI2/SNF2-type ATPase subunit of SWI/SNF chromatin-remodelling complex (CRC) involved in various important regulatory processes including development. Mutations in SMARCA2, a BRM-encoding gene as well as overexpression or epigenetic silencing were found in various human diseases including cancer. Missense mutations in SMARCA2 gene were recently connected with occurrence of Nicolaides-Baraitser genetics syndrome. By contrast, SMARCA2 duplication rather than mutations is characteristic for Coffin-Siris syndrome. It is believed that BRM usually acts as a tumour suppressor or a tumour susceptibility gene. However, other studies provided evidence that BRM function may differ depending on the cancer type and the disease stage, where BRM may play a role in the disease progression. The existence of alternative splicing forms of SMARCA2 gene, leading to appearance of truncated functional, loss of function or gain-of-function forms of BRM protein suggest a far more complicated mode of BRM-containing SWI/SNF CRCs actions. Therefore, the summary of recent knowledge regarding BRM alteration in various types of cancer and highlighting of differences and commonalities between BRM and BRG1, another SWI2/SNF2 type ATPase, will lead to better understanding of SWI/SNF CRCs function in cancer development/progression. BRM has been recently proposed as an attractive target for various anticancer therapies including the use of small molecule inhibitors, synthetic lethality induction or proteolysis-targeting chimera (PROTAC). However, such attempts have some limitations and may lead to severe side effects given the homology of BRM ATPase domain to other ATPases, as well as due to the tissue-specific appearance of BRM- and BRG1-containing SWI/SNF CRC classes. Thus, a better insight into BRM-containing SWI/SNF CRCs function in human tissues and cancers is clearly required to provide a solid basis for establishment of new safe anticancer therapies.
Collapse
Affiliation(s)
- Iga Jancewicz
- Department of Molecular and Translational Oncology, The Maria Sklodowska-Curie Institute-Oncology Center in Warsaw, Wawelska 15B, 02-034, Warsaw, Poland
| | - Janusz A Siedlecki
- Department of Molecular and Translational Oncology, The Maria Sklodowska-Curie Institute-Oncology Center in Warsaw, Wawelska 15B, 02-034, Warsaw, Poland
| | - Tomasz J Sarnowski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland.
| | - Elzbieta Sarnowska
- Department of Molecular and Translational Oncology, The Maria Sklodowska-Curie Institute-Oncology Center in Warsaw, Wawelska 15B, 02-034, Warsaw, Poland.
| |
Collapse
|
9
|
Muthuswami R, Bailey L, Rakesh R, Imbalzano AN, Nickerson JA, Hockensmith JW. BRG1 is a prognostic indicator and a potential therapeutic target for prostate cancer. J Cell Physiol 2019; 234:15194-15205. [PMID: 30667054 PMCID: PMC6563042 DOI: 10.1002/jcp.28161] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 02/06/2023]
Abstract
Brahma-related gene 1 (BRG1) is one of two mutually exclusive ATPases that function as the catalytic subunit of human SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeling enzymes. BRG1 has been identified as a tumor suppressor in some cancer types but has been shown to be expressed at elevated levels, relative to normal tissue, in other cancers. Using TCGA (The Cancer Genome Atlas) prostate cancer database, we determined that BRG1 mRNA and protein expression is elevated in prostate tumors relative to normal prostate tissue. Only 3 of 491 (0.6%) sequenced tumors showed amplification of the locus or mutation in the protein coding sequence, arguing against the idea that elevated expression due to amplification or expression of a mutant BRG1 protein is associated with prostate cancer. Kaplan-Meier survival curves showed that BRG1 expression in prostate tumors inversely correlated with survival. However, BRG1 expression did not correlate with Gleason score/International Society of Urological Pathology (ISUP) Grade Group, indicating it is an independent predictor of tumor progression/patient outcome. To experimentally assess BRG1 as a possible therapeutic target, we treated prostate cancer cells with a biologic inhibitor called ADAADi (active DNA-dependent ATPase A Domain inhibitor) that targets the activity of the SNF2 family of ATPases in biochemical assays but showed specificity for BRG1 in prior tissue culture experiments. The inhibitor decreased prostate cancer cell proliferation and induced apoptosis. When directly injected into xenografts established by injection of prostate cancer cells in mouse flanks, the inhibitor decreased tumor growth and increased survival. These results indicate the efficacy of pursuing BRG1 as both an indicator of patient outcome and as a therapeutic target.
Collapse
Affiliation(s)
- Rohini Muthuswami
- Department of Biochemistry and Molecular GeneticsUniversity of Virginia School of MedicineCharlottesvilleVirginia,School of Life Sciences, Jawaharlal Nehru UniversityNew DelhiIndia
| | - LeeAnn Bailey
- Department of Biochemistry and Molecular GeneticsUniversity of Virginia School of MedicineCharlottesvilleVirginia
| | | | - Anthony N. Imbalzano
- Department of Biochemistry and Molecular PharmacologyUniversity of Massachusetts Medical SchoolWorcesterMassachusetts
| | - Jeffrey A. Nickerson
- Department of PediatricsUniversity of Massachusetts Medical SchoolWorcesterMassachusetts
| | - Joel W. Hockensmith
- Department of Biochemistry and Molecular GeneticsUniversity of Virginia School of MedicineCharlottesvilleVirginia
| |
Collapse
|
10
|
Novel Interactions between the Human T-Cell Leukemia Virus Type 1 Antisense Protein HBZ and the SWI/SNF Chromatin Remodeling Family: Implications for Viral Life Cycle. J Virol 2019; 93:JVI.00412-19. [PMID: 31142665 DOI: 10.1128/jvi.00412-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/19/2019] [Indexed: 12/15/2022] Open
Abstract
The human T-cell leukemia virus type 1 (HTLV-1) regulatory proteins Tax and HBZ play indispensable roles in regulating viral and cellular gene expression. BRG1, the ATPase subunit of the SWI/SNF chromatin remodeling complex, has been demonstrated to be essential not only for Tax transactivation but also for viral replication. We sought to investigate the physical interaction between HBZ and BRG1 and to determine the effect of these interactions on Tax-mediated long terminal repeat (LTR) activation. We reveal that HTLV-1 cell lines and adult T-cell leukemia (ATL) cells harbor high levels of BRG1. Using glutathione S-transferase (GST) pulldown and coimmunoprecipitation assays, we have demonstrated physical interactions between BRG1 and HBZ and characterized the protein domains involved. Moreover, we have identified the PBAF signature subunits BAF200 and BAF180 as novel interaction partners of HBZ, suggesting that the PBAF complex may be required for HTLV-1 transcriptional repression by HBZ. Additionally, we found that BRG1 expression translocates HBZ into distinct nuclear foci. We show that HBZ substantially represses HTLV-1 LTR activation by Tax/BRG1. Interestingly, we found that Tax stabilizes the expression of exogenous and endogenous BRG1 and that HBZ reverses this effect. Finally, using a chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) assay, we illustrate that HBZ facilitates the downregulation of HTLV-1 transcription by deregulating the recruitment of SWI/SNF complexes to the promoter. Overall, we conclude that SWI/SNF complexes, in addition to other cellular transcription factors, are involved in HBZ-mediated suppression of HTLV-1 viral gene expression.IMPORTANCE The pathogenic potential of HTLV-1 is linked to the indispensable multifaceted functions of the viral regulatory proteins Tax and HBZ, encoded by the sense and antisense viral transcripts, respectively. The interaction between Tax and the SWI/SNF family of chromatin remodeling complexes has been associated with HTLV-1 transcriptional activation. To date, the relationship between the SWI/SNF chromatin remodeling family and HBZ, the only viral protein that is consistently expressed in infected cells and ATL cells, has not been elucidated. Here, we have characterized the biological significance of the SWI/SNF family in regard to viral transcriptional repression by HBZ. This is important because it provides a better understanding of the function and role of HBZ in downregulating viral transcription and, hence, its contribution to viral latency and persistence in vivo, a process that may ultimately lead to the development of ATL.
Collapse
|
11
|
Laurette P, Coassolo S, Davidson G, Michel I, Gambi G, Yao W, Sohier P, Li M, Mengus G, Larue L, Davidson I. Chromatin remodellers Brg1 and Bptf are required for normal gene expression and progression of oncogenic Braf-driven mouse melanoma. Cell Death Differ 2019; 27:29-43. [PMID: 31065107 DOI: 10.1038/s41418-019-0333-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 03/04/2019] [Accepted: 03/28/2019] [Indexed: 11/09/2022] Open
Abstract
Somatic oncogenic mutation of BRAF coupled with inactivation of PTEN constitute a frequent combination of genomic alterations driving the development of human melanoma. Mice genetically engineered to conditionally express oncogenic BrafV600E and inactivate Pten in melanocytes following tamoxifen treatment rapidly develop melanoma. While early-stage melanomas comprised melanin-pigmented Mitf and Dct-expressing cells, expression of these and other melanocyte identity genes was lost in later stage tumours that showed histological and molecular characteristics of de-differentiated neural crest type cells. Melanocyte identity genes displayed loss of active chromatin marks and RNA polymerase II and gain of heterochromatin marks, indicating epigenetic reprogramming during tumour progression. Nevertheless, late-stage tumour cells grown in culture re-expressed Mitf, and melanocyte markers and Mitf together with Sox10 coregulated a large number of genes essential for their growth. In this melanoma model, somatic inactivation that the catalytic Brg1 (Smarca4) subunit of the SWI/SNF complex and the scaffolding Bptf subunit of the NuRF complex delayed tumour formation and deregulated large and overlapping gene expression programs essential for normal tumour cell growth. Moreover, we show that Brg1 and Bptf coregulated many genes together with Mitf and Sox10. Together these transcription factors and chromatin remodelling complexes orchestrate essential gene expression programs in mouse melanoma cells.
Collapse
Affiliation(s)
- Patrick Laurette
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UNISTRA, 1 Rue Laurent Fries, 67404, Illkirch Cédex, France
| | - Sébastien Coassolo
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UNISTRA, 1 Rue Laurent Fries, 67404, Illkirch Cédex, France
| | - Guillaume Davidson
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UNISTRA, 1 Rue Laurent Fries, 67404, Illkirch Cédex, France
| | - Isabelle Michel
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UNISTRA, 1 Rue Laurent Fries, 67404, Illkirch Cédex, France
| | - Giovanni Gambi
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UNISTRA, 1 Rue Laurent Fries, 67404, Illkirch Cédex, France
| | - Wenjin Yao
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UNISTRA, 1 Rue Laurent Fries, 67404, Illkirch Cédex, France
| | - Pierre Sohier
- INSERM U1021, Normal and Pathological Development of Melanocytes, Institut Curie, PSL Research University, Orsay, France.,Univ. Paris-Sud, Univ. Paris-Saclay, CNRS UMR3347, Orsay, France.,Equipes Labellisées Ligue Contre le Cancer, Paris, France
| | - Mei Li
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UNISTRA, 1 Rue Laurent Fries, 67404, Illkirch Cédex, France
| | - Gabrielle Mengus
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UNISTRA, 1 Rue Laurent Fries, 67404, Illkirch Cédex, France
| | - Lionel Larue
- INSERM U1021, Normal and Pathological Development of Melanocytes, Institut Curie, PSL Research University, Orsay, France.,Univ. Paris-Sud, Univ. Paris-Saclay, CNRS UMR3347, Orsay, France.,Equipes Labellisées Ligue Contre le Cancer, Paris, France
| | - Irwin Davidson
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UNISTRA, 1 Rue Laurent Fries, 67404, Illkirch Cédex, France. .,Equipes Labellisées Ligue Contre le Cancer, Paris, France.
| |
Collapse
|
12
|
Zaidi SK, Fritz AJ, Tracy KM, Gordon JA, Tye CE, Boyd J, Van Wijnen AJ, Nickerson JA, Imbalzano AN, Lian JB, Stein JL, Stein GS. Nuclear organization mediates cancer-compromised genetic and epigenetic control. Adv Biol Regul 2018; 69:1-10. [PMID: 29759441 PMCID: PMC6102062 DOI: 10.1016/j.jbior.2018.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/13/2018] [Accepted: 05/02/2018] [Indexed: 12/19/2022]
Abstract
Nuclear organization is functionally linked to genetic and epigenetic regulation of gene expression for biological control and is modified in cancer. Nuclear organization supports cell growth and phenotypic properties of normal and cancer cells by facilitating physiologically responsive interactions of chromosomes, genes and regulatory complexes at dynamic three-dimensional microenvironments. We will review nuclear structure/function relationships that include: 1. Epigenetic bookmarking of genes by phenotypic transcription factors to control fidelity and plasticity of gene expression as cells enter and exit mitosis; 2. Contributions of chromatin remodeling to breast cancer nuclear morphology, metabolism and effectiveness of chemotherapy; 3. Relationships between fidelity of nuclear organization and metastasis of breast cancer to bone; 4. Dynamic modifications of higher-order inter- and intra-chromosomal interactions in breast cancer cells; 5. Coordinate control of cell growth and phenotype by tissue-specific transcription factors; 6. Oncofetal epigenetic control by bivalent histone modifications that are functionally related to sustaining the stem cell phenotype; and 7. Noncoding RNA-mediated regulation in the onset and progression of breast cancer. The discovery of components to nuclear organization that are functionally related to cancer and compromise gene expression have the potential for translation to innovative cancer diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Sayyed K Zaidi
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Andrew J Fritz
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Kirsten M Tracy
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Jonathan A Gordon
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Coralee E Tye
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Joseph Boyd
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Andre J Van Wijnen
- Departments of Orthopedic Surgery, Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Jeffrey A Nickerson
- Department of Pediatrics, UMass Medical School, Worcester, MA, United States
| | - Antony N Imbalzano
- Graduate Program in Cell Biology and Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA, United States
| | - Jane B Lian
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Janet L Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States.
| | - Gary S Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States.
| |
Collapse
|
13
|
RNA-seq analysis identifies different transcriptomic types and developmental trajectories of primary melanomas. Oncogene 2018; 37:6136-6151. [PMID: 29995873 DOI: 10.1038/s41388-018-0385-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 12/13/2022]
Abstract
Recent studies revealed trajectories of mutational events in early melanomagenesis, but the accompanying changes in gene expression are far less understood. Therefore, we performed a comprehensive RNA-seq analysis of laser-microdissected melanocytic nevi (n = 23) and primary melanoma samples (n = 57) and characterized the molecular mechanisms of early melanoma development. Using self-organizing maps, unsupervised clustering, and analysis of pseudotime (PT) dynamics to identify evolutionary trajectories, we describe here two transcriptomic types of melanocytic nevi (N1 and N2) and primary melanomas (M1 and M2). N1/M1 lesions are characterized by pigmentation-type and MITF gene signatures, and a high prevalence of NRAS mutations in M1 melanomas. N2/M2 lesions are characterized by inflammatory-type and AXL gene signatures with an equal distribution of wild-type and mutated BRAF and low prevalence of NRAS mutations in M2 melanomas. Interestingly, N1 nevi and M1 melanomas and N2 nevi and M2 melanomas, respectively, cluster together, but there is no clustering in a stage-dependent manner. Transcriptional signatures of M1 melanomas harbor signatures of BRAF/MEK inhibitor resistance and M2 melanomas harbor signatures of anti-PD-1 antibody treatment resistance. Pseudotime dynamics of nevus and melanoma samples are suggestive for a switch-like immune-escape mechanism in melanoma development with downregulation of immune genes paralleled by an increasing expression of a cell cycle signature in late-stage melanomas. Taken together, the transcriptome analysis identifies gene signatures and mechanisms underlying development of melanoma in early and late stages with relevance for diagnostics and therapy.
Collapse
|
14
|
Lin S, Jiang T, Ye L, Han Z, Liu Y, Liu C, Yuan C, Zhao S, Chen J, Wang J, Tang H, Lu S, Yang L, Wang X, Yan D, Peng Z, Fan J. The chromatin-remodeling enzyme BRG1 promotes colon cancer progression via positive regulation of WNT3A. Oncotarget 2018; 7:86051-86063. [PMID: 27852072 PMCID: PMC5349896 DOI: 10.18632/oncotarget.13326] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/07/2016] [Indexed: 02/06/2023] Open
Abstract
In this study, we aimed to elucidate the clinical significance and underlying mechanisms of BRG1 in colon cancer. In the clinical analysis, overexpression of BRG1 correlates with colon cancer progression in two cohorts (n = 191 and n = 75). Kaplan-Meier survival analysis revealed that BRG1 is a prognosis predictor for overall survival (P < 0.001) and disease-free survival (P = 0.001). Knocking down BRG1 expression significantly suppressed the proliferation and invasion in colon cancer cells. The expression pattern of WNT3A is consistent with BRG1 in colon cancer tissues and WNT3A expression was inhibited in BRG1 knockdown cells. In addition, restoring WNT3A expression rescues the inhibition of cell proliferation and invasion induced by BRG1. In this study, we demonstrate that BRG1 may contribute to colon cancer progression through upregulating WNT3A expression.
Collapse
Affiliation(s)
- Shengtao Lin
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080,China
| | - Tao Jiang
- Department of Anal-Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Ling Ye
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080,China
| | - Zhongbo Han
- Department of General Surgery, Central Hospital of Zi Bo, Zi Bo, Shandong 255000, China
| | - Yuan Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080,China
| | - Chenchen Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080,China
| | - Chenwei Yuan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080,China
| | - Senlin Zhao
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080,China
| | - Jian Chen
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080,China
| | - Jingtao Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080,China
| | - Huamei Tang
- Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Su Lu
- Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Liguang Yang
- Key Lab of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoliang Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080,China
| | - Dongwang Yan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080,China
| | - Zhihai Peng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080,China
| | - Junwei Fan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080,China
| |
Collapse
|
15
|
Savas S, Skardasi G. The SWI/SNF complex subunit genes: Their functions, variations, and links to risk and survival outcomes in human cancers. Crit Rev Oncol Hematol 2018; 123:114-131. [PMID: 29482773 DOI: 10.1016/j.critrevonc.2018.01.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/24/2017] [Accepted: 01/17/2018] [Indexed: 02/06/2023] Open
Abstract
SWI/SNF is a multiprotein complex essential for regulation of eukaryotic gene expression. In this article, we review the function and characteristics of this complex and its subunits in cancer-related phenotypes. We also present and discuss the publically available survival analysis data for TCGA patient cohorts, revealing novel relationships between the expression levels of the SWI/SNF subunit genes and patient survival times in several cancers. Overall, multiple lines of research point to a wide-spread role for the SWI/SNF complex genes in human cancer susceptibility and patient survival times. Examples include the mutations in ARID1A with cancer-driving effects, associations of tumor SWI/SNF gene expression levels and patient survival times, and two BRM promoter region polymorphisms linked to risk or patient outcomes in multiple human cancers. These findings should motivate comprehensive studies in order to fully dissect these relationships and verify the potential clinical utility of the SWI/SNF genes in controlling cancer.
Collapse
Affiliation(s)
- Sevtap Savas
- Discipline of Genetics, Faculty of Medicine, Memorial University, St. John's, NL, Canada; Discipline of Oncology, Faculty of Medicine, Memorial University, St. John's, NL, Canada.
| | - Georgia Skardasi
- Discipline of Genetics, Faculty of Medicine, Memorial University, St. John's, NL, Canada
| |
Collapse
|
16
|
Guerrero-Martínez JA, Reyes JC. High expression of SMARCA4 or SMARCA2 is frequently associated with an opposite prognosis in cancer. Sci Rep 2018; 8:2043. [PMID: 29391527 PMCID: PMC5794756 DOI: 10.1038/s41598-018-20217-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/16/2018] [Indexed: 12/21/2022] Open
Abstract
The gene encoding the ATPase of the chromatin remodeling SWI/SNF complexes SMARCA4 (BRG1) is often mutated or silenced in tumors, suggesting a role as tumor suppressor. Nonetheless, recent reports show requirement of SMARCA4 for tumor cells growth. Here, we performed a computational meta-analysis using gene expression, prognosis, and clinicopathological data to clarify the role of SMARCA4 and the alternative SWI/SNF ATPase SMARCA2 (BRM) in cancer. We show that while the SMARCA4 gene is mostly overexpressed in tumors, SMARCA2 is almost invariably downexpressed in tumors. High SMARCA4 expression was associated with poor prognosis in many types of tumors, including liver hepatocellular carcinoma (LIHC), and kidney renal clear cell carcinoma (KIRC). In contrast, high SMARCA2 expression was associated with good prognosis. We compared tumors with high versus low expression of SMARCA4 or SMARCA2 in LIHC and KIRC cohorts from The Cancer Genome Atlas. While a high expression of SMARCA4 is associated with aggressive tumors, a high expression of SMARCA2 is associated with benign differentiated tumors, suggesting that SMARCA4 and SMARCA2 play opposite roles in cancer. Our results demonstrate that expression of SMARCA4 and SMARCA2 have a high prognostic value and challenge the broadly accepted general role of SMARCA4 as a tumor suppressor.
Collapse
Affiliation(s)
- Jose A Guerrero-Martínez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO). Av. Americo Vespucio 24, 41092, Seville, Spain
| | - Jose C Reyes
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO). Av. Americo Vespucio 24, 41092, Seville, Spain.
| |
Collapse
|
17
|
Pyo JS, Son BK, Oh D, Kim EK. BRG1 is correlated with poor prognosis in colorectal cancer. Hum Pathol 2017; 73:66-73. [PMID: 29288038 DOI: 10.1016/j.humpath.2017.12.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/05/2017] [Accepted: 12/13/2017] [Indexed: 12/20/2022]
Abstract
Brahma-related gene 1 (BRG1), a component of the chromatin-remodeling complex, regulates transcription by remodeling the chromatin structure. The present study aimed to elucidate the clinicopathological significance and prognostic role of BRG1 in colorectal cancer (CRC). We investigated the correlation between BRG1 expression and clinicopathological parameters, including prognosis, using immunohistochemistry on 266 archival paraffin-embedded CRC tissues. In addition, to confirm the prognostic role of BRG1 in malignant tumors, we performed a meta-analysis of 9 eligible studies and the current study. BRG1 was highly expressed in 67.7% of the 266 CRCs analyzed. High BRG1 expression significantly correlated with poor overall and recurrence-free survival (P < .001 and P < .001, respectively). The high expression of BRG1 also significantly correlated with high expression of SNAI (P < .001) but not E-cadherin (P = .432). However, there was no significant correlation between BRG1 expression and other clinicopathological parameters. The meta-analysis also demonstrated that high BRG1 expression positively correlated with poor overall and recurrence-free survival (hazard ratio 1.572, 95% confidence interval 1.106-2.235 and hazard ratio 2.050, 95% confidence interval 1.610-2.610, respectively). However, subgroup analysis based on tumor type showed that the correlation between BRG1 expression and poor prognosis was only prevalent in CRC and breast cancer. Taken together, the results of this study suggest that high BRG1 expression was associated with high SNAI expression and was significantly correlated with poor prognosis.
Collapse
Affiliation(s)
- Jung-Soo Pyo
- Department of Pathology, Eulji University Hospital, Eulji University School of Medicine, Daejeon 35233, Republic of Korea
| | - Byoung Kwan Son
- Department of Internal Medicine, Eulji Hospital, Eulji University School of Medicine, Seoul 01830, Republic of Korea.
| | - Dongwook Oh
- Department of Internal Medicine, Eulji Hospital, Eulji University School of Medicine, Seoul 01830, Republic of Korea
| | - Eun Kyung Kim
- Department of Pathology, Eulji Hospital, Eulji University School of Medicine, Seoul 01830, Republic of Korea
| |
Collapse
|
18
|
Wu Q, Sharma S, Cui H, LeBlanc SE, Zhang H, Muthuswami R, Nickerson JA, Imbalzano AN. Targeting the chromatin remodeling enzyme BRG1 increases the efficacy of chemotherapy drugs in breast cancer cells. Oncotarget 2017; 7:27158-75. [PMID: 27029062 PMCID: PMC5053639 DOI: 10.18632/oncotarget.8384] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/16/2016] [Indexed: 12/31/2022] Open
Abstract
Brahma related gene product 1 (BRG1) is an ATPase that drives the catalytic activity of a subset of the mammalian SWI/SNF chromatin remodeling enzymes. BRG1 is overexpressed in most human breast cancer tumors without evidence of mutation and is required for breast cancer cell proliferation. We demonstrate that knockdown of BRG1 sensitized triple negative breast cancer cells to chemotherapeutic drugs used to treat breast cancer. An inhibitor of the BRG1 bromodomain had no effect on breast cancer cell viability, but an inhibitory molecule that targets the BRG1 ATPase activity recapitulated the increased drug efficacy observed in the presence of BRG1 knockdown. We further demonstrate that inhibition of BRG1 ATPase activity blocks the induction of ABC transporter genes by these chemotherapeutic drugs and that BRG1 binds to ABC transporter gene promoters. This inhibition increased intracellular concentrations of the drugs, providing a likely mechanism for the increased chemosensitivity. Since ABC transporters and their induction by chemotherapy drugs are a major cause of chemoresistance and treatment failure, these results support the idea that targeting the enzymatic activity of BRG1 would be an effective adjuvant therapy for breast cancer.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Soni Sharma
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Hang Cui
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, USA.,Abace Biotech Co Ltd., Yi Zhuang Biomedical Park, BDA, Beijing, China
| | - Scott E LeBlanc
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Hong Zhang
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Rohini Muthuswami
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Jeffrey A Nickerson
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Anthony N Imbalzano
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
19
|
Kaufmann B, Wang B, Zhong S, Laschinger M, Patil P, Lu M, Assfalg V, Cheng Z, Friess H, Hüser N, von Figura G, Hartmann D. BRG1 promotes hepatocarcinogenesis by regulating proliferation and invasiveness. PLoS One 2017; 12:e0180225. [PMID: 28700662 PMCID: PMC5507512 DOI: 10.1371/journal.pone.0180225] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/12/2017] [Indexed: 02/03/2023] Open
Abstract
The chromatin remodeler complex SWI/SNF plays an important role in physiological and pathological processes. Brahma related gene 1(BRG1), a catalytic subunit of the SWI/SNF complex, is known to be mutated in hepatocellular carcinoma (HCC). However, its role in HCC remains unclear. Here, we investigate the role of BRG1 on cell growth and invasiveness as well as its effect on the expression of putative target genes. Expression of BRG1 was examined in human liver tissue samples and in HCC cell lines. In addition, BRG1 was silenced in human HCC cell lines to analyse cell growth and invasiveness by growth curves, colony formation assay, invasion assay and the expression of putative target genes. BRG1 was found to be significantly increased in HCC samples compared to non-HCC samples. In addition, a declined proliferation rate of BRG1-silenced human HCC cell lines was associated with a decrease of expression of cyclin family members. In line with a decreased invasiveness of BRG1-siRNA-treated human HCC cell lines, down-regulation of MMP7 was detected. These results support the hypothesis that overexpression of BRG1 increases cell growth and invasiveness in HCC. Furthermore, the data highlight cyclin B, E and MMP7 to be associated with BRG1 during hepatocarcinogenesis.
Collapse
Affiliation(s)
- Benedikt Kaufmann
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Baocai Wang
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Suyang Zhong
- II. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Melanie Laschinger
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Pranali Patil
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Miao Lu
- Department of General Surgery, the Affiliated Zhongda Hospital, Southeast University, Nanjing, China
| | - Volker Assfalg
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Zhangjun Cheng
- Department of General Surgery, the Affiliated Zhongda Hospital, Southeast University, Nanjing, China
| | - Helmut Friess
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Norbert Hüser
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Guido von Figura
- II. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Daniel Hartmann
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
20
|
Zhang H, Sun Z, Yu L, Sun J. MiR-139-5p inhibits proliferation and promoted apoptosis of human airway smooth muscle cells by downregulating the Brg1 gene. Respir Physiol Neurobiol 2017; 246:9-16. [PMID: 28711603 DOI: 10.1016/j.resp.2017.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 12/27/2022]
Abstract
MicroRNAs have emerged as critical regulators in the pathogenesis of asthma. However, the role of microRNAs in asthma needs to be further elucidated. In this study, we found that miR-139-5p was greatly decreased in airway smooth muscle (ASM) cells from asthmatic humans as well as ASM cells stimulated with cytokines. Overexpression of miR-139-5p markedly suppressed ASM cell proliferation and promoted cell apoptosis, whereas knockdown of miR-139-5p had the opposite effect. Further study verified that Brg1, a chromatin remodeling factor, was upregulated in ASM cells treated with cytokines and acted as a direct target of miR-139-5p. Ectopic expression of Brg1 partially reversed the effect of miR-139-5p on cell proliferation and apoptosis. Moreover, overexpression of Brg1 restored miR-139-5p-induced downregulation of Akt and p70S6K phosphorylation. Together, these data indicate that miR-139-5p may function as a key regulator of ASM cell proliferation and apoptosis, potentially by targeting the Brg1 gene, and thus suggesting a potential role of miR-139-5p in the pathogenesis of asthma.
Collapse
Affiliation(s)
- Huanying Zhang
- Department of Respiration, Affiliated Hospital of Shandong Medical College, Linyi, 276000, China
| | - Zhongmei Sun
- Department of Respiration, Chinese Medicine Hospital of Rizhao City, Rizhao, 276800, China
| | - Lianfeng Yu
- Department of Anatomy, Shandong Medical College, No. 6 Jucai Road, Lanshan District, Linyi, 276000, China.
| | - Jie Sun
- Department of Traditional Chinese Medicine, Shandong Medical College, Linyi, 276000, China
| |
Collapse
|
21
|
Wu Q, Lian JB, Stein JL, Stein GS, Nickerson JA, Imbalzano AN. The BRG1 ATPase of human SWI/SNF chromatin remodeling enzymes as a driver of cancer. Epigenomics 2017; 9:919-931. [PMID: 28521512 PMCID: PMC5705788 DOI: 10.2217/epi-2017-0034] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mammalian SWI/SNF enzymes are ATP-dependent remodelers of chromatin structure. These multisubunit enzymes are heterogeneous in composition; there are two catalytic ATPase subunits, BRM and BRG1, that are mutually exclusive, and additional subunits are incorporated in a combinatorial manner. Recent findings indicate that approximately 20% of human cancers contain mutations in SWI/SNF enzyme subunits, leading to the conclusion that the enzyme subunits are critical tumor suppressors. However, overexpression of specific subunits without apparent mutation is emerging as an alternative mechanism by which cellular transformation may occur. Here we highlight recent evidence linking elevated expression of the BRG1 ATPase to tissue-specific cancers and work suggesting that inhibiting BRG1 may be an effective therapeutic strategy.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Pediatrics, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Jane B Lian
- Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Janet L Stein
- Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Gary S Stein
- Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Jeffrey A Nickerson
- Department of Pediatrics, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Anthony N Imbalzano
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
22
|
Nickerson JA, Wu Q, Imbalzano AN. Mammalian SWI/SNF Enzymes and the Epigenetics of Tumor Cell Metabolic Reprogramming. Front Oncol 2017; 7:49. [PMID: 28421159 PMCID: PMC5378717 DOI: 10.3389/fonc.2017.00049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/09/2017] [Indexed: 01/27/2023] Open
Abstract
Tumor cells reprogram their metabolism to survive and grow in a challenging microenvironment. Some of this reprogramming is performed by epigenetic mechanisms. Epigenetics is in turn affected by metabolism; chromatin modifying enzymes are dependent on substrates that are also key metabolic intermediates. We have shown that the chromatin remodeling enzyme Brahma-related gene 1 (BRG1), an epigenetic regulator, is necessary for rapid breast cancer cell proliferation. The mechanism for this requirement is the BRG1-dependent transcription of key lipogenic enzymes and regulators. Reduction in lipid synthesis lowers proliferation rates, which can be restored by palmitate supplementation. This work has established BRG1 as an attractive target for breast cancer therapy. Unlike genetic alterations, epigenetic mechanisms are reversible, promising gentler therapies without permanent off-target effects at distant sites.
Collapse
Affiliation(s)
- Jeffrey A Nickerson
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Qiong Wu
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, USA
| | - Anthony N Imbalzano
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
23
|
BRG1 regulation by miR-155 in human leukemia and lymphoma cell lines. Clin Transl Oncol 2017; 19:1010-1017. [PMID: 28251496 DOI: 10.1007/s12094-017-1633-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/18/2017] [Indexed: 02/01/2023]
Abstract
INTRODUCTION/PURPOSE BRG1 is a key regulator of leukemia stem cells. Indeed, it has been observed that this type of cells is unable to divide, survive and develop new tumors when BRG1 is down-regulated. MATERIALS AND METHODS We assessed BRG1 and miR-155 expression in 23 leukemia cell lines, and two no pathological lymphocyte samples using qPCR. MiR-155 transfection and western blot were used to analyze the relationship between miR-155 and its validated target, BRG1, by measuring protein expression levels. The effect of miR-155 on cell proliferation and prednisolone sensitivity were studied with resazurin assay. RESULTS BRG1 expression levels could correlate negatively with miR-155 expression levels, at least in Burkitt's lymphoma and diffuse large B cell lymphoma (DLBCL) cell lines. To clarify the role of miR-155 in the regulation of BRG1 expression, we administrated miR-155 mimics in different leukemia/lymphoma cell lines. Our results suggest that miR-155 regulate negatively and significantly the BRG1 expression at least in the MOLT4 cell line. CONCLUSION Our study revealed a previously unknown miR-155 heterogeneity that could result in differences in the treatment with miRNAs in our attempt to inhibit BRG1. However, the expression levels of BRG1 and miR-155, before prednisolone treatment were not statistically significantly associated prednisolone sensitive leukemia cells.
Collapse
|
24
|
Marquez-Vilendrer SB, Rai SK, Gramling SJ, Lu L, Reisman DN. BRG1 and BRM loss selectively impacts RB and P53, respectively: BRG1 and BRM have differential functions in vivo. Oncoscience 2016; 3:337-350. [PMID: 28105458 PMCID: PMC5235922 DOI: 10.18632/oncoscience.333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 09/23/2016] [Indexed: 12/11/2022] Open
Abstract
The SWI/SNF complex is an important regulator of gene expression that functions by interacting with a diverse array of cellular proteins. The catalytic subunits of SWI/SNF, BRG1 and BRM, are frequently lost alone or concomitantly in a range of different cancer types. This loss abrogates SWI/SNF complex function as well as the functions of proteins that are required for SWI/SNF function, such as RB1 and TP53. Yet while both proteins are known to be dependent on SWI/SNF, we found that BRG1, but not BRM, is functionally linked to RB1, such that loss of BRG1 can directly or indirectly inactivate the RB1 pathway. This newly discovered dependence of RB1 on BRG1 is important because it explains why BRG1 loss can blunt the growth-inhibitory effect of tyrosine kinase inhibitors (TKIs). We also observed that selection for Trp53 mutations occurred in Brm-positive tumors but did not occur in Brm-negative tumors. Hence, these data indicate that, during cancer development, Trp53 is functionally dependent on Brm but not Brg1. Our findings show for the first time the key differences in Brm- and Brg1-specific SWI/SNF complexes and help explain why concomitant loss of Brg1 and Brm frequently occurs in cancer, as well as how their loss impacts cancer development.
Collapse
Affiliation(s)
| | - Sudhir K Rai
- Department of Hematology/Oncology, Medicine, University of Florida, Gainesville, FL, USA
| | - Sarah Jb Gramling
- Department of Hematology/Oncology, Medicine, University of Florida, Gainesville, FL, USA
| | - Li Lu
- Department of Hematology/Oncology, Medicine, University of Florida, Gainesville, FL, USA; Department of Pathology, University of Florida, Gainesville, FL, USA
| | - David N Reisman
- Department of Hematology/Oncology, Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
25
|
Sun JM, Guo CC, Wang CQ, Cao K, Liu H, Han WC, Zheng MJ. Expression of BRG1 in colorectal cancer: Correlation with prognosis and MMP-2 expression. Shijie Huaren Xiaohua Zazhi 2016; 24:4691-4699. [DOI: 10.11569/wcjd.v24.i35.4691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To analyze the relationship of the expression of BRG1 with clinicopathologic characters and prognosis of colorectal cancer.
METHODS Tissue microarray and immunohistochemical method were used to detect the expression of BRG1 in 112 cases of colorectal cancer and 71 cases of matched normal intestinal mucosa tissue. The relationship of BRG1 expression with clinicopathologic characters, prognosis, and matrix metalloproteinase-2 (MMP-2) expression was statistically analyzed.
RESULTS The positive expression rate of BRG1 in colorectal cancer was significantly higher than that in normal intestine mucosa tissue (66.1% vs 35.2%, P < 0.01). The positive expression rate of MMP-2 was also significantly higher in colorectal cancer than in normal intestine mucosa tissue (61.2% vs 3.3%, P < 0.01). The expression of BRG1 showed no significant correlation with clinicopathologic characters including gender, age, tumor size, invasive depth, differentiation degree, lymph node metastasis, and clinical stage, but was significantly correlated with 5-year survival rate of colorectal cancer patients. The prognosis of colorectal cancer patients with high BRG1 expression was much worse than that of patients with low BRG1 expression. There was a positive correlation between BRG1 and MMP-2 expression (r = 0.307, P < 0.05).
CONCLUSION BRG1 is highly expressed in colorectal cancer tissue. BRG1 is an independent prognostic factor in colorectal cancer. Increased expression of MMP-2 may be a probable reason of worse prognosis of colorectal cancer.
Collapse
|
26
|
MicroRNA-139-5p regulates proliferation of hematopoietic progenitors and is repressed during BCR-ABL-mediated leukemogenesis. Blood 2016; 128:2117-2129. [PMID: 27605510 DOI: 10.1182/blood-2016-02-702464] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 09/02/2016] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) have emerged as important regulators of the immune system. However, despite this prominence, our understanding of the function of miRNAs in the early hematopoietic stages is incomplete. In this study, we found that miR-139-5p negatively regulated the proliferation of hematopoietic stem cells and progenitor cells and that downregulation of miR-139-5p expression was associated with hematopoietic malignancy, such as chronic myeloid leukemia (CML). Knockdown of miR-139-5p resulted in myeloid-biased differentiation with expansion of myeloid progenitor cells. In contrast, miR-139-5p expression inhibited the proliferation of hematopoietic progenitors and resulted in the remission of a CML-like disease that is induced by breakpoint cluster region-Abelson (BCR-ABL) transformation. We also found that Brg1 is a functional target of miR-139-5p and that Brg1 is involved in BCR-ABL-induced leukemogenesis. Thus, our results identify miR-139-5p as a key regulator of cellular proliferation during early hematopoiesis and suggest that it is a potent antileukemic molecule.
Collapse
|
27
|
Jubierre L, Soriano A, Planells-Ferrer L, París-Coderch L, Tenbaum SP, Romero OA, Moubarak RS, Almazán-Moga A, Molist C, Roma J, Navarro S, Noguera R, Sánchez-Céspedes M, Comella JX, Palmer HG, Sánchez de Toledo J, Gallego S, Segura MF. BRG1/SMARCA4 is essential for neuroblastoma cell viability through modulation of cell death and survival pathways. Oncogene 2016; 35:5179-90. [PMID: 26996667 DOI: 10.1038/onc.2016.50] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 10/29/2015] [Accepted: 02/01/2016] [Indexed: 12/16/2022]
Abstract
Neuroblastoma (NB) is a neoplasm of the sympathetic nervous system, and is the most common solid tumor of infancy. NBs are very heterogeneous, with a clinical course ranging from spontaneous regression to resistance to all current forms of treatment. High-risk patients need intense chemotherapy, and only 30-40% will be cured. Relapsed or metastatic tumors acquire multi-drug resistance, raising the need for alternative treatments. Owing to the diverse mechanisms that are responsible of NB chemoresistance, we aimed to target epigenetic factors that control multiple pathways to bypass therapy resistance. We found that the SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a, member 4 (SMARCA4/BRG1) was consistently upregulated in advanced stages of NB, with high BRG1 levels being indicative of poor outcome. Loss-of-function experiments in vitro and in vivo showed that BRG1 is essential for the proliferation of NB cells. Furthermore, whole-genome transcriptome analysis revealed that BRG1 controls the expression of key elements of oncogenic pathways such as PI3K/AKT and BCL2, which offers a promising new combination therapy for high-risk NB.
Collapse
Affiliation(s)
- L Jubierre
- Laboratory of Translational Research in Child and Adolescent Cancer. Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, Spain
| | - A Soriano
- Laboratory of Translational Research in Child and Adolescent Cancer. Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, Spain
| | | | - L París-Coderch
- Laboratory of Translational Research in Child and Adolescent Cancer. Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, Spain
| | - S P Tenbaum
- Vall d'Hebron Institut of Oncology (VHIO), Stem Cell and Cancer Laboratory, Barcelona, Spain
| | - O A Romero
- Epigenetic and Cancer Biology Program-PEBC/Bellvitge Biomedical Research Institute-IDIBELL Barcelona, Barcelona, Spain
| | - R S Moubarak
- Cell Signaling and Apoptosis Group, VHIR-UAB, Barcelona, Spain
| | - A Almazán-Moga
- Laboratory of Translational Research in Child and Adolescent Cancer. Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, Spain
| | - C Molist
- Laboratory of Translational Research in Child and Adolescent Cancer. Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, Spain
| | - J Roma
- Laboratory of Translational Research in Child and Adolescent Cancer. Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, Spain
| | - S Navarro
- School of Medicine, University of Valencia, Valencia, Spain
| | - R Noguera
- School of Medicine, University of Valencia, Valencia, Spain
| | | | - J X Comella
- Cell Signaling and Apoptosis Group, VHIR-UAB, Barcelona, Spain
| | - H G Palmer
- Vall d'Hebron Institut of Oncology (VHIO), Stem Cell and Cancer Laboratory, Barcelona, Spain
| | - J Sánchez de Toledo
- Laboratory of Translational Research in Child and Adolescent Cancer. Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, Spain
| | - S Gallego
- Laboratory of Translational Research in Child and Adolescent Cancer. Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, Spain
| | - M F Segura
- Laboratory of Translational Research in Child and Adolescent Cancer. Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, Spain
| |
Collapse
|
28
|
Epigenomic regulation of oncogenesis by chromatin remodeling. Oncogene 2016; 35:4423-36. [PMID: 26804164 DOI: 10.1038/onc.2015.513] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/27/2015] [Accepted: 12/07/2015] [Indexed: 02/08/2023]
Abstract
Disruption of the intricate gene expression program represents one of major driving factors for the development, progression and maintenance of human cancer, and is often associated with acquired therapeutic resistance. At the molecular level, cancerous phenotypes are the outcome of cellular functions of critical genes, regulatory interactions of histones and chromatin remodeling complexes in response to dynamic and persistent upstream signals. A large body of genetic and biochemical evidence suggests that the chromatin remodelers integrate the extracellular and cytoplasmic signals to control gene activity. Consequently, widespread dysregulation of chromatin remodelers and the resulting inappropriate expression of regulatory genes, together, lead to oncogenesis. We summarize the recent developments and current state of the dysregulation of the chromatin remodeling components as the driving mechanism underlying the growth and progression of human tumors. Because chromatin remodelers, modifying enzymes and protein-protein interactions participate in interpreting the epigenetic code, selective chromatin remodelers and bromodomains have emerged as new frontiers for pharmacological intervention to develop future anti-cancer strategies to be used either as single-agent or in combination therapies with chemotherapeutics or radiotherapy.
Collapse
|
29
|
Wu Q, Madany P, Akech J, Dobson JR, Douthwright S, Browne G, Colby JL, Winter GE, Bradner JE, Pratap J, Sluder G, Bhargava R, Chiosea SI, van Wijnen AJ, Stein JL, Stein GS, Lian JB, Nickerson JA, Imbalzano AN. The SWI/SNF ATPases Are Required for Triple Negative Breast Cancer Cell Proliferation. J Cell Physiol 2015; 230:2683-94. [PMID: 25808524 PMCID: PMC4516601 DOI: 10.1002/jcp.24991] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 03/18/2015] [Indexed: 12/30/2022]
Abstract
The Brahma (BRM) and Brahma-related Gene 1 (BRG1) ATPases are highly conserved homologs that catalyze the chromatin remodeling functions of the multi-subunit human SWI/SNF chromatin remodeling enzymes in a mutually exclusive manner. SWI/SNF enzyme subunits are mutated or missing in many cancer types, but are overexpressed without apparent mutation in other cancers. Here, we report that both BRG1 and BRM are overexpressed in most primary breast cancers independent of the tumor's receptor status. Knockdown of either ATPase in a triple negative breast cancer cell line reduced tumor formation in vivo and cell proliferation in vitro. Fewer cells in S phase and an extended cell cycle progression time were observed without any indication of apoptosis, senescence, or alterations in migration or attachment properties. Combined knockdown of BRM and BRG1 showed additive effects in the reduction of cell proliferation and time required for completion of cell cycle, suggesting that these enzymes promote cell cycle progression through independent mechanisms. Knockout of BRG1 or BRM using CRISPR/Cas9 technology resulted in the loss of viability, consistent with a requirement for both enzymes in triple negative breast cancer cells.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Pasil Madany
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jacqueline Akech
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jason R Dobson
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Molecular Biology, Cell Biology and Biochemistry, Center for Computational Molecular Biology, Brown University, Providence, Rhode Island
- Department of Computer Science, Brown University, Providence, Rhode Island
| | - Stephen Douthwright
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Gillian Browne
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Biochemistry and Vermont Cancer Center for Basic and Translational Research, University of Vermont College of Medicine, Burlington, Vermont
| | - Jennifer L Colby
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Georg E Winter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Jitesh Pratap
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Anatomy and Cell Biology, Rush University, Chicago, Illinois
| | - Greenfield Sluder
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Rohit Bhargava
- Department of Pathology, Magee-Womens Hospital, Pittsburgh, Pennsylvania
| | - Simion I Chiosea
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Andre J van Wijnen
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
- Departments of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Janet L Stein
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Biochemistry and Vermont Cancer Center for Basic and Translational Research, University of Vermont College of Medicine, Burlington, Vermont
| | - Gary S Stein
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Biochemistry and Vermont Cancer Center for Basic and Translational Research, University of Vermont College of Medicine, Burlington, Vermont
| | - Jane B Lian
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Biochemistry and Vermont Cancer Center for Basic and Translational Research, University of Vermont College of Medicine, Burlington, Vermont
- Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jeffrey A Nickerson
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Anthony N Imbalzano
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
30
|
Roy N, Malik S, Villanueva KE, Urano A, Lu X, Von Figura G, Seeley ES, Dawson DW, Collisson EA, Hebrok M. Brg1 promotes both tumor-suppressive and oncogenic activities at distinct stages of pancreatic cancer formation. Genes Dev 2015; 29:658-71. [PMID: 25792600 PMCID: PMC4378197 DOI: 10.1101/gad.256628.114] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pancreatic Ductal Adenocarcinoma (PDA) develops predominantly through pancreatic intraepithelial neoplasia (PanIN) and intraductal papillary mucinous neoplasm (IPMN) precursor lesions. Roy et al. identify critical antagonistic roles for Brg1, a catalytic subunit of the SWI/SNF complexes, during IPMN-PDA development. In mature duct cells Brg1 inhibits the dedifferentiation that precedes neoplastic transformation. In contrast, Brg1 promotes tumorigenesis in full-blown PDA by supporting a mesenchymal-like transcriptional landscape. JQ1 impairs PDA tumorigenesis by both mimicking some and inhibiting other Brg1-mediated functions. Pancreatic ductal adenocarcinoma (PDA) develops predominantly through pancreatic intraepithelial neoplasia (PanIN) and intraductal papillary mucinous neoplasm (IPMN) precursor lesions. Pancreatic acinar cells are reprogrammed to a “ductal-like” state during PanIN-PDA formation. Here, we demonstrate a parallel mechanism operative in mature duct cells during which functional cells undergo “ductal retrogression” to form IPMN-PDA. We further identify critical antagonistic roles for Brahma-related gene 1 (Brg1), a catalytic subunit of the SWI/SNF complexes, during IPMN-PDA development. In mature duct cells, Brg1 inhibits the dedifferentiation that precedes neoplastic transformation, thus attenuating tumor initiation. In contrast, Brg1 promotes tumorigenesis in full-blown PDA by supporting a mesenchymal-like transcriptional landscape. We further show that JQ1, a drug that is currently being tested in clinical trials for hematological malignancies, impairs PDA tumorigenesis by both mimicking some and inhibiting other Brg1-mediated functions. In summary, our study demonstrates the context-dependent roles of Brg1 and points to potential therapeutic treatment options based on epigenetic regulation in PDA.
Collapse
Affiliation(s)
- Nilotpal Roy
- Diabetes Center, Department of Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| | - Shivani Malik
- Department of Medicine/Hematology and Oncology, University of California at San Francisco, San Francisco, California 94143, USA
| | - Karina E Villanueva
- Diabetes Center, Department of Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| | - Atsushi Urano
- Diabetes Center, Department of Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| | - Xinyuan Lu
- Department of Medicine/Hematology and Oncology, University of California at San Francisco, San Francisco, California 94143, USA
| | - Guido Von Figura
- II. Medizinische Klinik und Poliklinik, Klinikum Rechts der Isar der Technischen Universität München, 81675 Munich, Germany
| | - E Scott Seeley
- Department of Pathology, University of California at San Francisco, San Francisco, California 94143, USA
| | - David W Dawson
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Eric A Collisson
- Department of Medicine/Hematology and Oncology, University of California at San Francisco, San Francisco, California 94143, USA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California at San Francisco, San Francisco, California 94143, USA;
| |
Collapse
|
31
|
Gallagher SJ, Tiffen JC, Hersey P. Histone Modifications, Modifiers and Readers in Melanoma Resistance to Targeted and Immune Therapy. Cancers (Basel) 2015; 7:1959-82. [PMID: 26426052 PMCID: PMC4695870 DOI: 10.3390/cancers7040870] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/17/2015] [Accepted: 09/18/2015] [Indexed: 02/06/2023] Open
Abstract
The treatment of melanoma has been revolutionized by new therapies targeting MAPK signaling or the immune system. Unfortunately these therapies are hindered by either primary resistance or the development of acquired resistance. Resistance mechanisms involving somatic mutations in genes associated with resistance have been identified in some cases of melanoma, however, the cause of resistance remains largely unexplained in other cases. The importance of epigenetic factors targeting histones and histone modifiers in driving the behavior of melanoma is only starting to be unraveled and provides significant opportunity to combat the problems of therapy resistance. There is also an increasing ability to target these epigenetic changes with new drugs that inhibit these modifications to either prevent or overcome resistance to both MAPK inhibitors and immunotherapy. This review focuses on changes in histones, histone reader proteins and histone positioning, which can mediate resistance to new therapeutics and that can be targeted for future therapies.
Collapse
Affiliation(s)
- Stuart J Gallagher
- Melanoma Immunology and Oncology Group, Centenary Institute, University of Sydney, Camperdown 2050, Australia.
- Melanoma Institute Australia, Crow's Nest 2065, Sydney, Australia.
| | - Jessamy C Tiffen
- Melanoma Immunology and Oncology Group, Centenary Institute, University of Sydney, Camperdown 2050, Australia.
- Melanoma Institute Australia, Crow's Nest 2065, Sydney, Australia.
| | - Peter Hersey
- Melanoma Immunology and Oncology Group, Centenary Institute, University of Sydney, Camperdown 2050, Australia.
- Melanoma Institute Australia, Crow's Nest 2065, Sydney, Australia.
| |
Collapse
|
32
|
Brg-1 targeting of novel miR550a-5p/RNF43/Wnt signaling axis regulates colorectal cancer metastasis. Oncogene 2015; 35:651-61. [PMID: 25961913 DOI: 10.1038/onc.2015.124] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/07/2015] [Accepted: 03/12/2015] [Indexed: 12/25/2022]
Abstract
Metastasis is one of the main causes of death in patients with colorectal cancer (CRC). Brg-1 is a central component of the SWItch/Sucrose NonFermentable chromatin-remodeling complex, which features a bromodomain and helicase/ATPase activity. The gene encoding Brg-1 is frequently mutated or silenced in human cancers. Several reports have proposed Brg-1 as a tumor suppressor; however, little is known about its role in oncogenesis and metastasis. Here we demonstrated that decreased Brg-1 regulates a novel miR-550a-5p/RNF43/Wnt/β-catenin signaling pathway, to promote CRC metastasis in vitro and in vivo. In particular, we used high-throughput RNA-sequencing analysis to show that Brg-1 negatively regulates miR-550a-5p in CRC cells. We further found that Brg-1 inhibits the transcriptional activity of miR-550a-5p promoter, and that decreased Brg-1 expression increased miR-550a-5p expression. We also identified ring finger 43 (RNF43), an inhibitor of Wnt/β-catenin signaling, as a target of miR-550a-5p. Knockdown of Brg-1 by small interfering RNA led to decreased RNF43 expression, increased Wnt signaling and increased CRC cell migration and invasion. This novel pathway defines a new function for Brg-1 and provides potential targets for the treatment of Brg-1 mutant and loss-of-function tumors.
Collapse
|
33
|
Marquez SB, Thompson KW, Lu L, Reisman D. Beyond Mutations: Additional Mechanisms and Implications of SWI/SNF Complex Inactivation. Front Oncol 2015; 4:372. [PMID: 25774356 PMCID: PMC4343012 DOI: 10.3389/fonc.2014.00372] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/11/2014] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED SWI/SNF is a major regulator of gene expression. Its role is to facilitate the shifting and exposure of DNA segments within the promoter and other key domains to transcription factors and other essential cellular proteins. This complex interacts with a wide range of proteins and does not function within a single, specific pathway; thus, it is involved in a multitude of cellular processes, including DNA repair, differentiation, development, cell adhesion, and growth control. Given SWI/SNF's prominent role in these processes, many of which are important for blocking cancer development, it is not surprising that the SWI/SNF complex is targeted during cancer initiation and progression both by mutations and by non-mutational mechanisms. Currently, the understanding of the types of alterations, their frequency, and their impact on the SWI/SNF subunits is an area of intense research that has been bolstered by a recent cadre of NextGen sequencing studies. These studies have revealed mutations in SWI/SNF subunits, indicating that this complex is thus important for cancer development. The purpose of this review is to put into perspective the role of mutations versus other mechanisms in the silencing of SWI/SNF subunits, in particular, BRG1 and BRM. In addition, this review explores the recent development of synthetic lethality and how it applies to this complex, as well as how BRM polymorphisms are becoming recognized as potential clinical biomarkers for cancer risk. SIGNIFICANCE Recent reviews have detailed the occurrence of mutations in nearly all SWI/SNF subunits, which indicates that this complex is an important target for cancer. However, when the frequency of mutations in a given tumor type is compared to the frequency of subunit loss, it becomes clear that other non-mutational mechanisms must play a role in the inactivation of SWI/SNF subunits. Such data indicate that epigenetic mechanisms that are known to regulate BRM may also be involved in the loss of expression of other SWI/SNF subunits. This is important since epigenetically silenced genes are inducible, and thus, the reversal of the silencing of these non-mutationally suppressed subunits may be a viable mode of targeted therapy.
Collapse
Affiliation(s)
- Stefanie B Marquez
- Department of Medicine, Division of Hematology/Oncology, University of Florida , Gainesville, FL , USA
| | - Kenneth W Thompson
- Department of Medicine, Division of Hematology/Oncology, University of Florida , Gainesville, FL , USA
| | - Li Lu
- Department of Pathology, University of Florida , Gainesville, FL , USA
| | - David Reisman
- Department of Medicine, Division of Hematology/Oncology, University of Florida , Gainesville, FL , USA
| |
Collapse
|
34
|
Mehrotra A, Mehta G, Aras S, Trivedi A, de la Serna IL. SWI/SNF chromatin remodeling enzymes in melanocyte differentiation and melanoma. Crit Rev Eukaryot Gene Expr 2015; 24:151-61. [PMID: 24940768 DOI: 10.1615/critreveukaryotgeneexpr.2014007882] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Epidermal melanocytes are pigment-producing cells derived from the neural crest that protects skin from the damaging effects of solar radiation. Malignant melanoma, a highly aggressive cancer, arises from melanocytes. SWI/SNF enzymes are multiprotein complexes that remodel chromatin structure and have extensive roles in cellular differentiation. Components of the complex have been found to be mutated or lost in several human cancers. This review focuses on studies that implicate SWI/SNF enzymes in melanocyte differentiation and in melanoma.
Collapse
Affiliation(s)
- A Mehrotra
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - G Mehta
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - S Aras
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - A Trivedi
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - I L de la Serna
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| |
Collapse
|
35
|
Essential role of BRG, the ATPase subunit of BAF chromatin remodeling complexes, in leukemia maintenance. Blood 2014; 123:1720-8. [PMID: 24478402 DOI: 10.1182/blood-2013-02-483495] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In mammals, combinatorial assembly of alternative families of subunits confers functional specificity to adenosine triphosphate (ATP)-dependent SWI/SNF-like Brg/Brm-associated factor (BAF) chromatin remodeling complexes by creating distinct polymorphic surfaces for interaction with regulatory elements and DNA-binding factors. Although redundant in terms of biochemical activity, the core ATPase subunits, BRG/SMARCA4 and BRM/SMARCA2, are functionally distinct and may contribute to complex specificity. Here we show using quantitative proteomics that BAF complexes expressed in leukemia are specifically assembled around the BRG ATPase. Moreover, using a mouse model of acute myeloid leukemia, we demonstrate that BRG is essential for leukemia maintenance, as leukemic cells lacking BRG rapidly undergo cell-cycle arrest and apoptosis. Most importantly, we show that BRG is dispensable for the maintenance of immunophenotypic long-term repopulating hematopoietic stem cells, suggesting that adroit targeting of BRG in leukemia may have potent and specific therapeutic effects.
Collapse
|
36
|
Li L, Liu D, Bu D, Chen S, Wu J, Tang C, Du J, Jin H. Brg1-dependent epigenetic control of vascular smooth muscle cell proliferation by hydrogen sulfide. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1347-55. [DOI: 10.1016/j.bbamcr.2013.03.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 03/02/2013] [Accepted: 03/03/2013] [Indexed: 12/19/2022]
|
37
|
Saladi SV, Wong PG, Trivedi AR, Marathe HG, Keenen B, Aras S, Liew ZQ, Setaluri V, de la Serna IL. BRG1 promotes survival of UV-irradiated melanoma cells by cooperating with MITF to activate the melanoma inhibitor of apoptosis gene. Pigment Cell Melanoma Res 2013; 26:377-91. [PMID: 23480510 PMCID: PMC3633630 DOI: 10.1111/pcmr.12088] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 03/02/2013] [Indexed: 01/19/2023]
Abstract
Microphthalmia-associated transcription factor (MITF) is a survival factor in melanocytes and melanoma cells. MITF regulates expression of antiapoptotic genes and promotes lineage-specific survival in response to ultraviolet (UV) radiation and to chemotherapeutics. SWI/SNF chromatin-remodeling enzymes interact with MITF to regulate MITF target gene expression. We determined that the catalytic subunit, BRG1, of the SWI/SNF complex protects melanoma cells against UV-induced death. BRG1 prevents apoptosis in UV-irradiated melanoma cells by activating expression of the melanoma inhibitor of apoptosis (ML-IAP). Down-regulation of ML-IAP compromises BRG1-mediated survival of melanoma cells in response to UV radiation. BRG1 regulates ML-IAP expression by cooperating with MITF to promote transcriptionally permissive chromatin structure on the ML-IAP promoter. The alternative catalytic subunit, BRM, and the BRG1-associated factor, BAF180, were found to be dispensable for elevated expression of ML-IAP in melanoma cells. Thus, we illuminate a lineage-specific mechanism by which a specific SWI/SNF subunit, BRG1, modulates the cellular response to DNA damage by regulating an antiapoptotic gene and implicate this subunit of the SWI/SNF complex in mediating the prosurvival function of MITF.
Collapse
Affiliation(s)
- Srinivas V Saladi
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine, Toledo, OH, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
BRG1 is a prognostic marker and potential therapeutic target in human breast cancer. PLoS One 2013; 8:e59772. [PMID: 23533649 PMCID: PMC3606107 DOI: 10.1371/journal.pone.0059772] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/18/2013] [Indexed: 02/06/2023] Open
Abstract
BRG1, a core component of the SWI/SNF chromatin-remodeling complex, has been implicated in cancer development; however, the biological significance of BRG1 in breast cancer remains unknown. We explored the role of BRG1 in human breast cancer pathogenesis. Using tissue microarray and immunohistochemistry, we evaluated BRG1 staining in 437 breast cancer specimens and investigated its role in breast cancer cell proliferation, migration and invasion. Our Kaplan-Meier survival curves showed that high BRG1 expression is inversely correlated with both overall (P = 0.000) and disease-specific (P = 0.000) 5-year patient survival. Furthermore, we found that knockdown of BRG1 by RNA interference markedly inhibits cell proliferation and causes cessation of cell cycle. This reduced cell proliferation is due to G1 phase arrest as cyclin D1 and cyclin E are diminished whereas p27 is upregulated. Moreover, BRG1 depletion induces the expression of TIMP-2 but reduces MMP-2, thereby inhibiting the ability of cells to migrate and to invade. These results highlight the importance of BRG1 in breast cancer pathogenesis and BRG1 may serve as a prognostic marker as well as a potentially selective therapeutic target.
Collapse
|
39
|
Imbalzano KM, Cohet N, Wu Q, Underwood JM, Imbalzano AN, Nickerson JA. Nuclear shape changes are induced by knockdown of the SWI/SNF ATPase BRG1 and are independent of cytoskeletal connections. PLoS One 2013; 8:e55628. [PMID: 23405182 PMCID: PMC3566038 DOI: 10.1371/journal.pone.0055628] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 01/02/2013] [Indexed: 11/24/2022] Open
Abstract
Changes in nuclear morphology occur during normal development and have been observed during the progression of several diseases. The shape of a nucleus is governed by the balance of forces exerted by nuclear-cytoskeletal contacts and internal forces created by the structure of the chromatin and nuclear envelope. However, factors that regulate the balance of these forces and determine nuclear shape are poorly understood. The SWI/SNF chromatin remodeling enzyme ATPase, BRG1, has been shown to contribute to the regulation of overall cell size and shape. Here we document that immortalized mammary epithelial cells show BRG1-dependent nuclear shape changes. Specifically, knockdown of BRG1 induced grooves in the nuclear periphery that could be documented by cytological and ultrastructural methods. To test the hypothesis that the observed changes in nuclear morphology resulted from altered tension exerted by the cytoskeleton, we disrupted the major cytoskeletal networks and quantified the frequency of BRG1-dependent changes in nuclear morphology. The results demonstrated that disruption of cytoskeletal networks did not change the frequency of BRG1-induced nuclear shape changes. These findings suggest that BRG1 mediates control of nuclear shape by internal nuclear mechanisms that likely control chromatin dynamics.
Collapse
Affiliation(s)
- Karen M Imbalzano
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | | | | | | | | | | |
Collapse
|
40
|
Ondrušová L, Vachtenheim J, Réda J, Žáková P, Benková K. MITF-independent pro-survival role of BRG1-containing SWI/SNF complex in melanoma cells. PLoS One 2013; 8:e54110. [PMID: 23349796 PMCID: PMC3547967 DOI: 10.1371/journal.pone.0054110] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 12/10/2012] [Indexed: 11/20/2022] Open
Abstract
Metastasized malignant melanoma has a poor prognosis because of its intrinsic resistance to chemotherapy and radiotherapy. The central role in the melanoma transcriptional network has the transcription factor MITF (microphthalmia-associated transcription factor). It has been shown recently that the expression of MITF and some of its target genes require the SWI/SNF chromatin remodeling complex. Here we demonstrate that survival of melanoma cells requires functional SWI/SNF complex not only by supporting expression of MITF and its targets and but also by activating expression of prosurvival proteins not directly regulated by MITF. Microarray analysis revealed that besides the MITF-driven genes, expression of proteins like osteopontin, IGF1, TGFß2 and survivin, the factors known to be generally associated with progression of tumors and the antiapoptotic properties, were reduced in acute BRG1-depleted 501mel cells. Western blots and RT-PCR confirmed the microarray findings. These proteins have been verified to be expressed independently of MITF, because MITF depletion did not impair their expression. Because these genes are not regulated by MITF, the data suggests that loss of BRG1-based SWI/SNF complexes negatively affects survival pathways beyond the MITF cascade. Immunohistochemistry showed high expression of both BRM and BRG1 in primary melanomas. Exogenous CDK2, osteopontin, or IGF1 each alone partly relieved the block of proliferation imposed by BRG1 depletion, implicating that more factors, besides the MITF target genes, are involved in melanoma cell survival. Together these results demonstrate an essential role of SWI/SNF for the expression of MITF-dependent and MITF-independent prosurvival factors in melanoma cells and suggest that SWI/SNF may be a potential and effective target in melanoma therapy.
Collapse
Affiliation(s)
- Lubica Ondrušová
- Laboratory of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Jiri Vachtenheim
- Laboratory of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
- * E-mail:
| | - Jiri Réda
- Laboratory of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Petra Žáková
- Laboratory of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Kamila Benková
- Department of Pathology, Hospital Bulovka, Prague, Czech Republic
| |
Collapse
|
41
|
Di Paola D, Rampakakis E, Chan MK, Zannis-Hadjopoulos M. Differential chromatin structure encompassing replication origins in transformed and normal cells. Genes Cancer 2012; 3:152-76. [PMID: 23050047 DOI: 10.1177/1947601912457026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/10/2012] [Indexed: 12/23/2022] Open
Abstract
This study examines the chromatin structure encompassing replication origins in transformed and normal cells. Analysis of the global levels of histone H3 acetylated at K9&14 (open chromatin) and histone H3 trimethylated at K9 (closed chromatin) revealed a higher ratio of open to closed chromatin in the transformed cells. Also, the trithorax and polycomb group proteins, Brg-1 and Bmi-1, respectively, were overexpressed and more abundantly bound to chromatin in the transformed cells. Quantitative comparative analyses of episomal and in situ chromosomal replication origin activity as well as chromatin immunoprecipitation (ChIP) assays, using specific antibodies targeting members of the pre-replication complex (pre-RC) as well as open/closed chromatin markers encompassing both episomal and chromosomal origins, revealed that episomal origins had similar levels of in vivo activity, nascent DNA abundance, pre-RC protein association, and elevated open chromatin structure at the origin in both cell types. In contrast, the chromosomal origins corresponding to 20mer1, 20mer2, and c-myc displayed a 2- to 3-fold higher activity and pre-RC protein abundance as well as higher ratios of open to closed chromatin and of Brg-1 to Bmi-1 in the transformed cells, whereas the origin associated with the housekeeping lamin B2 gene exhibited similar levels of activity, pre-RC protein abundance, and higher ratios of open to closed chromatin and of Brg-1 to Bmi-1 in both cell types. Nucleosomal positioning analysis, using an MNase-Southern blot assay, showed that all the origin regions examined were situated within regions of inconsistently positioned nucleosomes, with the nucleosomes being spaced farther apart from each other prior to the onset of S phase in both cell types. Overall, the results indicate that cellular transformation is associated with differential epigenetic regulation, whereby chromatin structure is more open, rendering replication origins more accessible to initiator proteins, thus allowing increased origin activity.
Collapse
Affiliation(s)
- Domenic Di Paola
- Goodman Cancer Center and Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
42
|
Novel multiple markers to distinguish melanoma from dysplastic nevi. PLoS One 2012; 7:e45037. [PMID: 23028750 PMCID: PMC3459895 DOI: 10.1371/journal.pone.0045037] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 08/11/2012] [Indexed: 12/31/2022] Open
Abstract
Background Distinguishing melanoma from dysplastic nevi can be challenging. Objective To assess which putative molecular biomarkers can be optimally combined to aid in the clinical diagnosis of melanoma from dysplastic nevi. Methods Immunohistochemical expressions of 12 promising biomarkers (pAkt, Bim, BRG1, BRMS1, CTHRC1, Cul1, ING4, MCL1, NQO1, SKP2, SNF5 and SOX4) were studied in 122 melanomas and 33 dysplastic nevi on tissue microarrays. The expression difference between melanoma and dysplastic nevi was performed by univariate and multiple logistic regression analysis, diagnostic accuracy of single marker and optimal combinations were performed by receiver operating characteristic (ROC) curve and artificial neural network (ANN) analysis. Classification and regression tree (CART) was used to examine markers simultaneous optimizing the accuracy of melanoma. Ten-fold cross-validation was analyzed for estimating generalization error for classification. Results Four (Bim, BRG1, Cul1 and ING4) of 12 markers were significantly differentially expressed in melanoma compared with dysplastic nevi by both univariate and multiple logistic regression analysis (p < 0.01). These four combined markers achieved 94.3% sensitivity, 81.8% specificity and attained 84.3% area under the ROC curve (AUC) and the ANN classified accuracy with training of 83.2% and testing of 81.2% for distinguishing melanoma from dysplastic nevi. The classification trees identified ING4, Cul1 and BRG1 were the most important classification parameters in ranking top-performing biomarkers with cross-validation error of 0.03. Conclusions The multiple biomarkers ING4, Cul1, BRG1 and Bim described here can aid in the discrimination of melanoma from dysplastic nevi and provide a new insight to help clinicians recognize melanoma.
Collapse
|
43
|
Abstract
Different cell types within a single organism are generally distinguished by strikingly different patterns of gene expression, which are dynamic throughout development and adult life. Distal enhancer elements are key drivers of spatiotemporal specificity in gene regulation. Often located tens of kilobases from their target promoters and functioning in an orientation-independent manner, the identification of bona fide enhancers has proved a formidable challenge. With the development of ChIP-seq, global cataloging of putative enhancers has become feasible. Here, we review the current understanding of the chromatin landscape at enhancers and how these chromatin features enable robust identification of tissue-specific enhancers.
Collapse
Affiliation(s)
- Gabriel E Zentner
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
44
|
|
45
|
Chung CW. Small molecule bromodomain inhibitors: extending the druggable genome. PROGRESS IN MEDICINAL CHEMISTRY 2012; 51:1-55. [PMID: 22520470 DOI: 10.1016/b978-0-12-396493-9.00001-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Chun-Wa Chung
- Computational and Structural Sciences, GlaxoSmithKline R&D, Stevenage, SG1 2NY, UK
| |
Collapse
|
46
|
Bai J, Mei PJ, Liu H, Li C, Li W, Wu YP, Yu ZQ, Zheng JN. BRG1 expression is increased in human glioma and controls glioma cell proliferation, migration and invasion in vitro. J Cancer Res Clin Oncol 2012; 138:991-8. [PMID: 22362300 DOI: 10.1007/s00432-012-1172-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 02/07/2012] [Indexed: 10/28/2022]
Abstract
PURPOSE The purposes of our study were to elucidate the role of BRG1 in the development of human glioma and to determine the effect of BRG1 on glioma cell growth, migration and invasion. METHODS Using tissue microarray and immunohistochemistry, we evaluated BRG1 staining in 190 glioma tissues, 8 normal brain tissues and 8 tumor adjacent normal brain tissues. We studied glioma cell proliferative ability with reduced BRG1 expression by siRNA using CCK-8 cell proliferation assay and cell cycle analysis. We studied the role of BRG1 in glioma cell migration and invasion by cell migration assay and matrigel invasion assay. We performed western blot to detect cyclin D1, cyclin B1 and MMP-2 protein expression. We also detected MMP-2 enzyme activity by gelatin zymography. RESULTS Our results showed that BRG1 expression was increased in benign tumor and malignant tumor compared with tumor adjacent normal brain tissue (P < 0.01 for both). We did not find any correlation between BRG1 expression and clinicopathological parameters. In addition, we found that knockdown of BRG1 in glioma cell lines inhibits cell growth due to the G1 phase arrest by downregulating cyclin D1. We further demonstrated that silencing of BRG1 in glioma cells inhibited the cell migration and invasion abilities, and downregulation of MMP-2 expression greatly contributed to the reduced cell invasion and migration abilities. CONCLUSIONS Our data indicated that BRG1 expression is significantly increased in human glioma and it may be involved in the process of glioma cell proliferation, migration and invasion.
Collapse
Affiliation(s)
- Jin Bai
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou 221002, China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Wu JI. Diverse functions of ATP-dependent chromatin remodeling complexes in development and cancer. Acta Biochim Biophys Sin (Shanghai) 2012; 44:54-69. [PMID: 22194014 DOI: 10.1093/abbs/gmr099] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mammalian SWI/SNF like Brg1/Brm associated factors (BAF) chromatin-remodeling complexes are able to use energy derived from adenosine triphosphate (ATP) hydrolysis to change chromatin structures and regulate nuclear processes such as transcription. BAF complexes contain multiple subunits and the diverse subunit compositions provide functional specificities to BAF complexes. In this review, we summarize the functions of BAF subunits during mammalian development and in progression of various cancers. The mechanisms underlying the functional diversity and specificities of BAF complexes will be discussed.
Collapse
Affiliation(s)
- Jiang I Wu
- Department of Physiology and Developmental Biology, University of Texas Southwestern Medical Center at Dallas, 75390-9133, USA.
| |
Collapse
|
48
|
Bock VL, Lyons JG, Huang XXJ, Jones AM, McDonald LA, Scolyer RA, Moloney FJ, Barnetson RS, Halliday GM. BRM and BRG1 subunits of the SWI/SNF chromatin remodelling complex are downregulated upon progression of benign skin lesions into invasive tumours. Br J Dermatol 2011; 164:1221-7. [PMID: 21564052 DOI: 10.1111/j.1365-2133.2011.10267.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background Nonmelanoma skin cancer is caused by exposure to ultraviolet radiation within sunlight. Actinic keratoses (AKs) are benign precursor lesions that can develop into invasive squamous cell carcinoma (SCC). Little is known about the molecular events that lead to human skin cancer progression from benign to invasive. Objectives To determine novel genes that may be involved in skin cancer progression based on data from an initial microarray screen of human skin cancers. Methods The SWI/SNF chromatin remodelling ATPase subunit BRM was identified as being downregulated in SCC but not AK compared with normal skin in our microarray screen. Therefore reverse transcription-polymerase chain reaction, gene methylation and protein expression was used to study BRM and its alternative ATPase subunit BRG1 in a range of human skin cancers. Results We found reduced levels of mRNA coding for BRM but not BRG1 in SCC. BRM mRNA levels in AK were similar to those in normal skin. Deregulation of BRM did not result from hypermethylation of CpG regions in the promoter of these genes. Both BRM and BRG1 protein was reduced by about 10-fold in 100% of SCC and basal cell carcinoma, but not in AK specimens examined. Conclusions BRM protein may be decreased due to low levels of mRNA, while BRG1 protein loss appears to be post-translational. BRM and BRG1 may be novel tumour suppressor genes for human skin cancer. They appear to be involved after development of benign lesions, and are downregulated during progression towards invasion.
Collapse
Affiliation(s)
- V L Bock
- Discipline of Dermatology, Bosch Institute, Sydney Cancer Centre, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Li J, Zhang Z, Li G. Patient outcome prediction using multiple biomarkers in human melanoma: A clinicopathological study of 118 cases. Exp Ther Med 2010; 2:131-135. [PMID: 22977480 DOI: 10.3892/etm.2010.169] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 11/09/2010] [Indexed: 01/03/2023] Open
Abstract
The application of biomarkers in melanoma prognosis has been well recognized. However the ability of a single biomarker to predict melanoma patient outcome is usually limited. We previously examined the expression of ten biomarkers (Bim, BRG1, BRMS1, CTHRC1, ING4, NQO1, NF-κB-p50, PUMA, SNF5 and SOX4) in melanomas. To assess the value of a combined multiple biomarker system in melanoma prognosis, we compared the expression of each biomarker between various stages of melanoma, and determined the best combination of biomarkers for melanoma prognosis. Although the expression of six biomarkers (Bim, BRMS1, ING4, NQO1, PUMA and SOX4) was significantly decreased in AJCC III-IV stages of melanoma compared to AJCC I-II stages, the combined 6-biomarker index score exhibited higher variations than any individual biomarker in the same comparison. Moreover, the 6-biomarker index score was correlated with melanoma thickness, location and subtype, and predicted the outcome of melanoma patients more accurately than the individual biomarkers. Multivariate Cox regression analysis demonstrated that the 6-biomarker index score is an independent prognostic factor for melanoma. In conclusion, our study suggests that a multi-biomarker system test is valuable for improved outcome prediction in melanoma patients and for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Jun Li
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, B.C., Canada
| | | | | |
Collapse
|
50
|
Watanabe T, Semba S, Yokozaki H. Regulation of PTEN expression by the SWI/SNF chromatin-remodelling protein BRG1 in human colorectal carcinoma cells. Br J Cancer 2010; 104:146-54. [PMID: 21102582 PMCID: PMC3039810 DOI: 10.1038/sj.bjc.6606018] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background: Aberrant expression of Brahma-related gene-1 (BRG1), a core component of the SWI/SNF chromatin-remodelling complex, has been implicated in cancer development; however, the biological significance of BRG1 in colorectal carcinoma (CRC) remains unknown. Methods: In CRC tissues, expression of BRG1 and Brahma (BRM) was investigated immunohistochemically. Colorectal carcinoma-derived DLD-1 cells were used for knockdown of BRG1 and PTEN with small interfering RNA (siRNA) and transduction of Akt. Complementary DNA (cDNA) microarray analysis was performed to explore the genes affected by BRG1. Results: Expression of BRG1, but not BRM, was frequently elevated in CRC specimens, and knockdown of BRG1 suppressed cell proliferation of DLD-1 cells. By cDNA microarray, we determined that PTEN expression was negatively regulated by BRG1 in DLD-1 cells, which subsequently influenced the cyclin D1 levels via the phosphoinositide 3-OH kinase (PI3K)–Akt signalling pathway. The interplay of BRG1 on cyclin D1 expression was confirmed by the introduction of Akt and knockdown of PTEN in the BRG1 siRNA-transduced DLD-1 cells. Interestingly, this positive correlation between BRG1 and cyclin D1 expression was also observed in CRC specimens. Conclusion: Brahma-related gene-1 has an important role in the process of CRC development by activating the PI3K–Akt signalling pathway and resultant upregulation of cyclin D1 levels.
Collapse
Affiliation(s)
- T Watanabe
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | | | | |
Collapse
|