1
|
Lekhan A, Turner RJ. Exploring antimicrobial interactions between metal ions and quaternary ammonium compounds toward synergistic metallo-antimicrobial formulations. Microbiol Spectr 2024; 12:e0104724. [PMID: 39162494 PMCID: PMC11448152 DOI: 10.1128/spectrum.01047-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/27/2024] [Indexed: 08/21/2024] Open
Abstract
Multi-target antimicrobial agents are considered a viable alternative to target-specific antibiotics, resistance to which emerged as a global threat. Used centuries before the discovery of conventional antibiotics, metal(loid)-based antimicrobials (MBAs), which target multiple biomolecules within the bacterial cell, are regaining research interest. However, there is a significant limiting factor-the balance between cost and efficiency. In this article, we utilize a checkerboard assay approach to explore antimicrobial combinations of MBAs with commonly used quaternary ammonium compound (QAC) antiseptics in order to discover novel combinations with more pronounced antimicrobial properties than would be expected from a simple sum of antimicrobial effects of initial components. This phenomenon, called synergy, was herein demonstrated for several mixtures of Al3+with cetyltrimethylammonium bromide (CTAB) and TeO32- with benzalkonium chloride (BAC) and didecyldimethylammonium bromide (DDAB) against planktonic and biofilm growth of Pseudomonas aeruginosa ATCC27853. Biofilm growth of Escherichia coli ATCC25922 was synergistically inhibited by the Cu2 +and benzalkonium chloride (BAC) mixture. Multiple additive mixtures were identified for both organisms. The current study observed unexpected species and growth state specificities for the synergistic combinations. The benefit of synergistic mixtures will be captured in economy/efficiency optimization for antimicrobial applications in which MBAs and QACs are presently used. IMPORTANCE We are entering the antimicrobial resistance era (AMR), where resistance to antibiotics is becoming more and more prevalent. In order to address this issue, various approaches are being explored. In this article, we explore for synergy between two very different antimicrobials, the antiseptic class of quaternary ammonium compounds and antimicrobial metals. These two antimicrobials have very different actions. Considering a OneHealth approach to the problem, finding synergistic mixtures allows for greater efficacy at lower concentrations, which would also address antimicrobial pollution issues.
Collapse
Affiliation(s)
- Andrii Lekhan
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Raymond J. Turner
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| |
Collapse
|
2
|
Rainey NE, Armand AS, Petit PX. Sodium arsenite and arsenic trioxide differently affect the oxidative stress of lymphoblastoid cells: An intricate crosstalk between mitochondria, autophagy and cell death. PLoS One 2024; 19:e0302701. [PMID: 38728286 PMCID: PMC11086853 DOI: 10.1371/journal.pone.0302701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Although the toxicity of arsenic depends on its chemical forms, few studies have taken into account the ambiguous phenomenon that sodium arsenite (NaAsO2) acts as a potent carcinogen while arsenic trioxide (ATO, As2O3) serves as an effective therapeutic agent in lymphoma, suggesting that NaAsO2 and As2O3 may act via paradoxical ways to either promote or inhibit cancer pathogenesis. Here, we compared the cellular response of the two arsenical compounds, NaAsO2 and As2O3, on the Burkitt lymphoma cell model, the Epstein Barr Virus (EBV)-positive P3HR1 cells. Using flow cytometry and biochemistry analyses, we showed that a NaAsO2 treatment induces P3HR1 cell death, combined with drastic drops in ΔΨm, NAD(P)H and ATP levels. In contrast, As2O3-treated cells resist to cell death, with a moderate reduction of ΔΨm, NAD(P)H and ATP. While both compounds block cells in G2/M and affect their protein carbonylation and lipid peroxidation, As2O3 induces a milder increase in superoxide anions and H2O2 than NaAsO2, associated to a milder inhibition of antioxidant defenses. By electron microscopy, RT-qPCR and image cytometry analyses, we showed that As2O3-treated cells display an overall autophagic response, combined with mitophagy and an unfolded protein response, characteristics that were not observed following a NaAsO2 treatment. As previous works showed that As2O3 reactivates EBV in P3HR1 cells, we treated the EBV- Ramos-1 cells and showed that autophagy was not induced in these EBV- cells upon As2O3 treatment suggesting that the boost of autophagy observed in As2O3-treated P3HR1 cells could be due to the presence of EBV in these cells. Overall, our results suggest that As2O3 is an autophagic inducer which action is enhanced when EBV is present in the cells, in contrast to NaAsO2, which induces cell death. That's why As2O3 is combined with other chemicals, as all-trans retinoic acid, to better target cancer cells in therapeutic treatments.
Collapse
Affiliation(s)
- Nathan Earl Rainey
- CNRS UMR 8003 Paris University, SSPIN, Neuroscience Institute, Team “Mitochondria, Apoptosis and Autophagy Signaling”, Campus Saint-Germain, Paris, France
| | - Anne-Sophie Armand
- INSERM U1151, Institut Necker Enfants Malades (INEM), Campus Necker, Université Paris Cité, Paris, France
| | - Patrice X. Petit
- CNRS UMR 8003 Paris University, SSPIN, Neuroscience Institute, Team “Mitochondria, Apoptosis and Autophagy Signaling”, Campus Saint-Germain, Paris, France
| |
Collapse
|
3
|
Fleifel M, Fleifel B, El Alam A. Diabetes Mellitus across the Arabo-Islamic World: A Revolution. Int J Endocrinol 2023; 2023:5541808. [PMID: 38021083 PMCID: PMC10656201 DOI: 10.1155/2023/5541808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Background Mankind continues to suffer from the ever-growing diabetes epidemic and the rapid rise of type 2 diabetes mellitus (T2DM). This metabolic disease has been studied since ancient civilizations. The Arabo-Islamic civilization excelled in establishing some of the most notable discoveries and teachings that remained the blueprint for years to come in the field of diabetology. Aim This article aimed to review the ancient history of diabetes mellitus, with its main focus on the Arabo-Islamic civilization, and to report our subjective views and analysis of some of the past recommendations based on modern-day findings. Discussion. It is natural to have the teachings of medicine dynamically inspired by one civilization to another, as various fields continue to expand and evolve. This also applies to diabetology as the Arabo-Islamic world used the outlines of prior civilizations to revolutionize the understanding of the disease. Al-Razi and Ibn Sina are probably two of the most renowned polymaths in history, and their contributions to diabetology are well documented. Ibn Maymun's postulation about the higher prevalence of diabetes in Egypt as compared to Andalusia is something to be carefully studied. It could be that diabetes mellitus' underdiagnosis and late-stage detection are some of the major reasons for the disparity between the two mentioned regions. Modern-day Arabo-Islamic scholars continue to excel in revolutionizing diabetology. Conclusion The Arabo-Islamic world houses an impressive bout of scholars who have contributed since the ancient times to diabetology. This scientific locomotion shows no signs of stopping, as it continues to shine during the present day, and likely in the future.
Collapse
Affiliation(s)
- Mohamad Fleifel
- Endocrinology and Metabolism Division, American University of Beirut Medical Center, Beirut, Lebanon
| | | | - Andrew El Alam
- Endocrinology Division, Centre Hospitalier de Chartres, Louis Pasteur Hospital, Chartres, France
| |
Collapse
|
4
|
Paul NP, Galván AE, Yoshinaga-Sakurai K, Rosen BP, Yoshinaga M. Arsenic in medicine: past, present and future. Biometals 2023; 36:283-301. [PMID: 35190937 PMCID: PMC8860286 DOI: 10.1007/s10534-022-00371-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/05/2022] [Indexed: 12/17/2022]
Abstract
Arsenicals are one of the oldest treatments for a variety of human disorders. Although infamous for its toxicity, arsenic is paradoxically a therapeutic agent that has been used since ancient times for the treatment of multiple diseases. The use of most arsenic-based drugs was abandoned with the discovery of antibiotics in the 1940s, but a few remained in use such as those for the treatment of trypanosomiasis. In the 1970s, arsenic trioxide, the active ingredient in a traditional Chinese medicine, was shown to produce dramatic remission of acute promyelocytic leukemia similar to the effect of all-trans retinoic acid. Since then, there has been a renewed interest in the clinical use of arsenicals. Here the ancient and modern medicinal uses of inorganic and organic arsenicals are reviewed. Included are antimicrobial, antiviral, antiparasitic and anticancer applications. In the face of increasing antibiotic resistance and the emergence of deadly pathogens such as the severe acute respiratory syndrome coronavirus 2, we propose revisiting arsenicals with proven efficacy to combat emerging pathogens. Current advances in science and technology can be employed to design newer arsenical drugs with high therapeutic index. These novel arsenicals can be used in combination with existing drugs or serve as valuable alternatives in the fight against cancer and emerging pathogens. The discovery of the pentavalent arsenic-containing antibiotic arsinothricin, which is effective against multidrug-resistant pathogens, illustrates the future potential of this new class of organoarsenical antibiotics.
Collapse
Affiliation(s)
- Ngozi P Paul
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Adriana E Galván
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Kunie Yoshinaga-Sakurai
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| | - Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
5
|
Hollow SE, Johnstone TC. Realgar and arsenene nanomaterials as arsenic-based anticancer agents. Curr Opin Chem Biol 2023; 72:102229. [PMID: 36413888 DOI: 10.1016/j.cbpa.2022.102229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/21/2022]
Abstract
Arsenic trioxide (ATO) is an approved therapy for the treatment of acute promyelocytic leukemia, but the extension of arsenic-based therapies to other types of malignancies, notably tumor-forming cancers, has been slow. Nanodelivery vehicles offer a means of effectively delivering ATO to tumors. Very recently, there has been a series of developments in the formulation of arsenic-based nanomedicines that are not simply loaded with ATO. Realgar nanoparticles are comprised of molecular As4S4 units. Current studies suggest that realgar nanoparticles ultimately act in a manner similar to ATO, but with greatly attenuated toxic side effects. A drastically different approach is taken with arsenene nanosheets, a 2-dimensional form of elemental As. The electronic properties of this material allow it to mediate both photothermal therapy and photodynamic therapy. The exploration of these nanomaterials is still in its infancy but is poised to allow arsenic-based therapy to make yet another significant impact on cancer treatment.
Collapse
Affiliation(s)
- Sophia E Hollow
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Timothy C Johnstone
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States.
| |
Collapse
|
6
|
De Francisco P, Martín-González A, Rodriguez-Martín D, Díaz S. Interactions with Arsenic: Mechanisms of Toxicity and Cellular Resistance in Eukaryotic Microorganisms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:12226. [PMID: 34831982 PMCID: PMC8618186 DOI: 10.3390/ijerph182212226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/27/2022]
Abstract
Arsenic (As) is quite an abundant metalloid, with ancient origin and ubiquitous distribution, which represents a severe environmental risk and a global problem for public health. Microbial exposure to As compounds in the environment has happened since the beginning of time. Selective pressure has induced the evolution of various genetic systems conferring useful capacities in many microorganisms to detoxify and even use arsenic, as an energy source. This review summarizes the microbial impact of the As biogeochemical cycle. Moreover, the poorly known adverse effects of this element on eukaryotic microbes, as well as the As uptake and detoxification mechanisms developed by yeast and protists, are discussed. Finally, an outlook of As microbial remediation makes evident the knowledge gaps and the necessity of new approaches to mitigate this environmental challenge.
Collapse
Affiliation(s)
| | - Ana Martín-González
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, C/José Antonio Novais, 12, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain;
| | - Daniel Rodriguez-Martín
- Animal Health Research Centre (CISA), National Institute for Agricultural and Food Research and Technology (INIA-CSIC), 28130 Madrid, Spain;
| | - Silvia Díaz
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, C/José Antonio Novais, 12, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain;
| |
Collapse
|
7
|
Ahmad K, Shah HUR, Ashfaq M, Nawaz H. Removal of decidedly lethal metal arsenic from water using metal organic frameworks: a critical review. REV INORG CHEM 2021. [DOI: 10.1515/revic-2021-0005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abstract
Water contamination is worldwide issue, undermining whole biosphere, influencing life of a large number of individuals all over the world. Water contamination is one of the chief worldwide danger issues for death, sickness, and constant decrease of accessible drinkable water around the world. Among the others, presence of arsenic, is considered as the most widely recognized lethal contaminant in water bodies and poses a serious threat not exclusively to humans but also towards aquatic lives. Hence, steps must be taken to decrease quantity of arsenic in water to permissible limits. Recently, metal-organic frameworks (MOFs) with outstanding stability, sorption capacities, and ecofriendly performance have empowered enormous improvements in capturing substantial metal particles. MOFs have been affirmed as good performance adsorbents for arsenic removal having extended surface area and displayed remarkable results as reported in literature. In this review we look at MOFs which have been recently produced and considered for potential applications in arsenic metal expulsion. We have delivered a summary of up-to-date abilities as well as significant characteristics of MOFs used for this removal. In this review conventional and advanced materials applied to treat water by adsorptive method are also discussed briefly.
Collapse
Affiliation(s)
- Khalil Ahmad
- Institute of Chemistry, Baghdad ul Jadeed Campus, The Islamia University of Bahawalpur , Bahawalpur 63100 , Pakistan
| | - Habib-Ur-Rehman Shah
- Institute of Chemistry, Baghdad ul Jadeed Campus, The Islamia University of Bahawalpur , Bahawalpur 63100 , Pakistan
| | - Muhammad Ashfaq
- Institute of Chemistry, Baghdad ul Jadeed Campus, The Islamia University of Bahawalpur , Bahawalpur 63100 , Pakistan
| | - Haq Nawaz
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences (CAS) , Beijing 100190 , China
| |
Collapse
|
8
|
Deidda I, Russo R, Bonaventura R, Costa C, Zito F, Lampiasi N. Neurotoxicity in Marine Invertebrates: An Update. BIOLOGY 2021; 10:161. [PMID: 33670451 PMCID: PMC7922589 DOI: 10.3390/biology10020161] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/20/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022]
Abstract
Invertebrates represent about 95% of existing species, and most of them belong to aquatic ecosystems. Marine invertebrates are found at intermediate levels of the food chain and, therefore, they play a central role in the biodiversity of ecosystems. Furthermore, these organisms have a short life cycle, easy laboratory manipulation, and high sensitivity to marine pollution and, therefore, they are considered to be optimal bioindicators for assessing detrimental chemical agents that are related to the marine environment and with potential toxicity to human health, including neurotoxicity. In general, albeit simple, the nervous system of marine invertebrates is composed of neuronal and glial cells, and it exhibits biochemical and functional similarities with the vertebrate nervous system, including humans. In recent decades, new genetic and transcriptomic technologies have made the identification of many neural genes and transcription factors homologous to those in humans possible. Neuroinflammation, oxidative stress, and altered levels of neurotransmitters are some of the aspects of neurotoxic effects that can also occur in marine invertebrate organisms. The purpose of this review is to provide an overview of major marine pollutants, such as heavy metals, pesticides, and micro and nano-plastics, with a focus on their neurotoxic effects in marine invertebrate organisms. This review could be a stimulus to bio-research towards the use of invertebrate model systems other than traditional, ethically questionable, time-consuming, and highly expensive mammalian models.
Collapse
|
9
|
Gilad Y, Gellerman G, Lonard DM, O’Malley BW. Drug Combination in Cancer Treatment-From Cocktails to Conjugated Combinations. Cancers (Basel) 2021; 13:669. [PMID: 33562300 PMCID: PMC7915944 DOI: 10.3390/cancers13040669] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
It is well recognized today that anticancer drugs often are most effective when used in combination. However, the establishment of chemotherapy as key modality in clinical oncology began with sporadic discoveries of chemicals that showed antiproliferative properties and which as a first attempt were used as single agents. In this review we describe the development of chemotherapy from its origins as a single drug treatment with cytotoxic agents to polydrug therapy that includes targeted drugs. We discuss the limitations of the first chemotherapeutic drugs as a motivation for the establishment of combined drug treatment as standard practice in spite of concerns about frequent severe, dose limiting toxicities. Next, we introduce the development of targeted treatment as a concept for advancement within the broader field of small-molecule drug combination therapy in cancer and its accelerating progress that was boosted by recent scientific and technological progresses. Finally, we describe an alternative strategy of drug combinations using drug-conjugates for selective delivery of cytotoxic drugs to tumor cells that potentiates future improvement of drug combinations in cancer treatment. Overall, in this review we outline the development of chemotherapy from a pharmacological perspective, from its early stages to modern concepts of using targeted therapies for combinational treatment.
Collapse
Affiliation(s)
- Yosi Gilad
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Gary Gellerman
- Department of Chemical Sciences, Ariel University, Ariel 40700, Israel;
| | - David M. Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Bert W. O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
| |
Collapse
|
10
|
Paithankar JG, Saini S, Dwivedi S, Sharma A, Chowdhuri DK. Heavy metal associated health hazards: An interplay of oxidative stress and signal transduction. CHEMOSPHERE 2021; 262:128350. [PMID: 33182141 DOI: 10.1016/j.chemosphere.2020.128350] [Citation(s) in RCA: 285] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 05/20/2023]
Abstract
Heavy metal-induced cellular and organismal toxicity have become a major health concern in biomedical science. Indiscriminate use of heavy metals in different sectors, such as, industrial-, agricultural-, healthcare-, cosmetics-, and domestic-sectors has contaminated environment matrices and poses a severe health concern. Xenobiotics mediated effect is a ubiquitous cellular response. Oxidative stress is one such prime cellular response, which is the result of an imbalance in the redox system. Further, oxidative stress is associated with macromolecular damages and activation of several cell survival and cell death pathways. Epidemiological as well as laboratory data suggest that oxidative stress-induced cellular response following heavy metal exposure is linked with an increased risk of neoplasm, neurological disorders, diabetes, infertility, developmental disorders, renal failure, and cardiovascular disease. During the recent past, a relation among heavy metal exposure, oxidative stress, and signaling pathways have been explored to understand the heavy metal-induced toxicity. Heavy metal-induced oxidative stress and its connection with different signaling pathways are complicated; therefore, the systemic summary is essential. Herein, an effort has been made to decipher the interplay among heavy metals/metalloids (Arsenic, Chromium, Cadmium, and Lead) exposures, oxidative stress, and signal transduction, which are essential to mount the cellular and organismal response. The signaling pathways involved in this interplay include NF-κB, NRF2, JAK-STAT, JNK, FOXO, and HIF.
Collapse
Affiliation(s)
- Jagdish Gopal Paithankar
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Sanjay Saini
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Shiwangi Dwivedi
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Anurag Sharma
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India.
| | - Debapratim Kar Chowdhuri
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
11
|
Making good use of arsenic’s toxicity to control pests and diseases. CHEMTEXTS 2020. [DOI: 10.1007/s40828-020-00122-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Oral Cancer Treatment Through the Ages: Part 1. J Oral Maxillofac Surg 2019; 77:1480-1483. [PMID: 30794812 DOI: 10.1016/j.joms.2019.01.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/17/2018] [Accepted: 01/15/2019] [Indexed: 11/19/2022]
Abstract
PURPOSE Understanding how oral cancer treatment evolved can pave the way for future management. The literature holds an expansive collection of historical findings regarding oral cancer, yet the authors were unable to find a comprehensive review of oral cancer treatment throughout the ages. METHODS A thorough literature review was carried out using multiple scientific databases and languages, as well as examination of historical archives. Articles were included for their relevance and their findings were assimilated. RESULTS Part one of this article reveals a rich history of oral cancer treatment commencing in ancient times, with discussion of Egyptian, Greek and Roman practices, and travelling through the age of discovery to arrive at the dawn of scientific medicine in the 19th century. CONCLUSION Part one demonstrates how fundamental concepts of oral cancer were discovered, and the significant impact medical innovation had on the success of oral cancer treatment.
Collapse
|
13
|
Arsenic trioxide: insights into its evolution to an anticancer agent. J Biol Inorg Chem 2018; 23:313-329. [DOI: 10.1007/s00775-018-1537-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/22/2018] [Indexed: 01/01/2023]
|
14
|
George GN, Gailer J, Ponomarenko O, La Porte PF, Strait K, Alauddin M, Ahsan H, Ahmed S, Spallholz J, Pickering IJ. Observation of the seleno bis-(S-glutathionyl) arsinium anion in rat bile. J Inorg Biochem 2016; 158:24-29. [DOI: 10.1016/j.jinorgbio.2016.01.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 12/30/2015] [Accepted: 01/18/2016] [Indexed: 12/01/2022]
|
15
|
Wallau WM. Das Phänomen der steirischen Arsenikesser aus literarischer, chemisch‐toxikologischer und wissenschaftshistorischer Sicht – “Strong Poison” oder “Milchmädchenrechnung”? Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- W. Martin Wallau
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário Capão do Leão, 96010, 900 Pelotas ‐ RS (Brasilien)
| |
Collapse
|
16
|
Wallau WM. The Phenomenon of the Styrian Arsenic Eaters from the Perspective of Literature, Chemistry, Toxicology, and History of Science—“Strong Poison” or “Simple‐Minded Reasoning”? Angew Chem Int Ed Engl 2015; 54:15622-31. [DOI: 10.1002/anie.201505675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Indexed: 11/07/2022]
Affiliation(s)
- W. Martin Wallau
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário Capão do Leão, 96010, 900 Pelotas ‐ RS (Brasil)
| |
Collapse
|
17
|
Chen B, Liu Q, Popowich A, Shen S, Yan X, Zhang Q, Li XF, Weinfeld M, Cullen WR, Le XC. Therapeutic and analytical applications of arsenic binding to proteins. Metallomics 2015; 7:39-55. [DOI: 10.1039/c4mt00222a] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Knowledge of arsenic binding to proteins advances the development of bioanalytical techniques and therapeutic drugs.
Collapse
Affiliation(s)
- Beibei Chen
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
| | - Qingqing Liu
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
| | | | - Shengwen Shen
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
| | - Xiaowen Yan
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
| | - Qi Zhang
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
| | | | - William R. Cullen
- Department of Chemistry
- University of British Columbia
- Vancouver, Canada
| | - X. Chris Le
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
- Department of Chemistry
| |
Collapse
|
18
|
Maier NK, Crown D, Liu J, Leppla SH, Moayeri M. Arsenic trioxide and other arsenical compounds inhibit the NLRP1, NLRP3, and NAIP5/NLRC4 inflammasomes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:763-70. [PMID: 24337744 PMCID: PMC3884817 DOI: 10.4049/jimmunol.1301434] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Inflammasomes are large cytoplasmic multiprotein complexes that activate caspase-1 in response to diverse intracellular danger signals. Inflammasome components termed nucleotide-binding oligomerization domain-like receptor (NLR) proteins act as sensors for pathogen-associated molecular patterns, stress, or danger stimuli. We discovered that arsenicals, including arsenic trioxide and sodium arsenite, inhibited activation of the NLRP1, NLRP3, and NAIP5/NLRC4 inflammasomes by their respective activating signals, anthrax lethal toxin, nigericin, and flagellin. These compounds prevented the autoproteolytic activation of caspase-1 and the processing and secretion of IL-1β from macrophages. Inhibition was independent of protein synthesis induction, proteasome-mediated protein breakdown, or kinase signaling pathways. Arsenic trioxide and sodium arsenite did not directly modify or inhibit the activity of preactivated recombinant caspase-1. Rather, they induced a cellular state inhibitory to both the autoproteolytic and substrate cleavage activities of caspase-1, which was reversed by the reactive oxygen species scavenger N-acetylcysteine but not by reducing agents or NO pathway inhibitors. Arsenicals provided protection against NLRP1-dependent anthrax lethal toxin-mediated cell death and prevented NLRP3-dependent neutrophil recruitment in a monosodium urate crystal inflammatory murine peritonitis model. These findings suggest a novel role in inhibition of the innate immune response for arsenical compounds that have been used as therapeutics for a few hundred years.
Collapse
Affiliation(s)
- Nolan K. Maier
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Devorah Crown
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jie Liu
- Center for Molecular Medicine, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephen H. Leppla
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mahtab Moayeri
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
19
|
Kritharis A, Bradley TP, Budman DR. The evolving use of arsenic in pharmacotherapy of malignant disease. Ann Hematol 2013; 92:719-30. [DOI: 10.1007/s00277-013-1707-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 02/11/2013] [Indexed: 12/01/2022]
|
20
|
Falnoga I, Zelenik Pevec A, Šlejkovec Z, Žnidarič MT, Zajc I, Mlakar SJ, Marc J. Arsenic trioxide (ATO) influences the gene expression of metallothioneins in human glioblastoma cells. Biol Trace Elem Res 2012; 149:331-9. [PMID: 22555517 DOI: 10.1007/s12011-012-9431-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 04/17/2012] [Indexed: 10/28/2022]
Abstract
Arsenic trioxide (As(2)O(3); ATO, TRISENOX®) is used to treat patients with refractory or relapsed acute promyelocytic leukaemia while its application for treatment of solid cancers like glioblastoma is still under evaluation. In the present study, we investigated the interaction of arsenic trioxide with metallothionein (MT) isoforms as a possible (protective response) resistance of glioblastoma cells to arsenic-induced cytotoxicity. Special attention was focused on MT3, the isoform expressed mainly in the brain. MT3 has low metal inducibility, fast metal binding/releasing properties and outstanding neuronal inhibitory activity. The human astrocytoma (glioblastoma) cell line U87 MG was treated with 0.6, 2 and 6-7 μM arsenic (equivalent to 0.3, 1 and 3-3.5 μM As(2)O(3)) for 12, 24 or 48 h and gene expression for different MT isoforms, namely MT2A, MT1A, MT1F, MT1X, MT1E and MT3, was measured by real time qPCR using SYBR Green I and Taqman® gene expression assays. TfR, 18S rRNA, GAPDH and AB were tested as reference genes, and the last two evaluated to be appropriate in conditions of low (GAPDH) and high (AB) arsenic exposure. The gene expression of MT3 gene was additionally tested and confirmed by restriction enzyme analysis with PvuII. In the given conditions the mRNAs of six MT isoforms were identified in human glioblastoma cell line U87 MG. Depending on arsenic exposure conditions, an increase or decrease of MT gene expression was observed for each isoform, with the highest increase for isoforms MT1X, MT1F and MT2A mRNA (up to 13-fold) and more persistent decreases for MT1A, MT1E and MT3 mRNA. Despite the common assumption of the noninducibility of MT3, the evident MT3 mRNA increase was observed during high As exposure (up to 4-fold). In conclusion, our results clearly demonstrate the influence of As on MT isoform gene expression. The MT1X, MT1F and MT2A increase could represent brain tumour acquired resistance to As cytotoxicity while the MT3 increase is more enigmatic, with its possible involvement in arsenic-related induction of type II cell death.
Collapse
|