1
|
Khudhyer Abbas H, Oied Saleh B, Habeeb Ghali H. Role of Serum Interleukin-10 and Interleukin-27 Levels in the Prognosis of Immune Thrombocytopenia in Iraqi Children. Rep Biochem Mol Biol 2024; 13:99-105. [PMID: 39582823 PMCID: PMC11580127 DOI: 10.61186/rbmb.13.1.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/22/2024] [Indexed: 11/26/2024]
Abstract
Background Several studies provide evidence for a role of serum cytokines imbalance including IL-10 and IL-27 in immune thrombocytopenia pathogenesis and prognosis. The aim of this study was designed to investigate the role of serum levels of IL-10 and IL-27 in prognosis the efficiency of treatment in thrombocytopenic Iraqi children. Methods This case controls study was carried out at Department of Biochemistry, College of Medicine, University of Baghdad, during the period from October 2023 to March 2024. It included 88 children, 63 children previously diagnosed with immune thrombocytopenia, and 25 apparently healthy children who served as control group. The included immune thrombocytopenic children were sub-grouped according to their treatment into three groups: Romiplostim group (group 1), Prednisolone group (group 2), Prednisolone and intravenous immunoglobulin (IVIG) or Prednisolone and mycophenolate group (group 3). Investigations included serum level measurements of IL-10 and IL-27 by using enzyme linked immunosorbent assay ELISA. Platelet count of each included children was measured by Huma Count 30 TS Human, Germany. Results The mean (±SEM) values of serum IL-10 and IL-27 levels of immune thrombocytopenic children were insignificantly lower than that of controls. In addition, there was non- significant differences in serum levels of IL-10 and IL-27 among and between the three groups of patient children. The mean value of platelet count of patient children was significantly increased by all types of treatment in whole immune thrombocytopenic children (117.48±18.15*10^9/L). Conclusions Measurement of serum IL-10 and IL-27 are helpful biomarker in prognosis of thrombocytopenia irrespective of type of treatment.
Collapse
Affiliation(s)
| | | | - Hasanein Habeeb Ghali
- Oncology Unit, Children’s Welfare Teaching Hospital, College of Medicine, University of Baghdad, Baghdad, Iraq.
| |
Collapse
|
2
|
Kim GO, Heo JB, Park DH, Song GY, Bae JS. Antiplatelet Aggregation Properties of Cirsilineol: A Novel Inhibitor of Blood Coagulation Factor Xa. Pharmaceuticals (Basel) 2023; 16:ph16040588. [PMID: 37111345 PMCID: PMC10145360 DOI: 10.3390/ph16040588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
A small natural substance called cirsilineol (CSL), which was discovered in the plant Artemisia vestita, is lethal to many cancer cells and has antioxidant, anticancer, and antibacterial properties. Here, we investigated the underlying mechanisms of the antithrombotic action of CSL. We demonstrated that CSL has antithrombotic efficacy comparable to rivaroxaban, a direct blood coagulation factor Xa (FXa) inhibitor employed as a positive control, in inhibiting the enzymatic activity of FXa and the platelet aggregation induced by adenosine diphosphate (ADP) and U46619, a thromboxane A2 analog. The expression of P-selectin, the phosphorylation of myristoylated alanine-rich C kinase substrate by U46619 or ADP, and the activation of PAC-1 in platelets were inhibited by CSL. Nitric oxide production was increased by CSL in ADP- or U46619-treated human umbilical vein endothelial cells (HUVECs), although excessive endothelin-1 secretion was suppressed. CSL demonstrated strong anticoagulant and antithrombotic effects in a mouse model of arterial and pulmonary thrombosis. Our findings suggest that CSL is a potential pharmacological candidate for a novel class of anti-FXa and antiplatelet medications.
Collapse
Affiliation(s)
- Go Oun Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jong Beom Heo
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejon 34134, Republic of Korea
| | - Dong Ho Park
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Gyu Yong Song
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejon 34134, Republic of Korea
| | - Jong-Sup Bae
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
3
|
How snake venom disintegrins affect platelet aggregation and cancer proliferation. Toxicon 2022; 221:106982. [DOI: 10.1016/j.toxicon.2022.106982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
|
4
|
Liu Q, Liu Y. Role of IL-10 and IL-22 cytokines in patients with primary immune thrombocytopenia and their clinical significance. J Clin Lab Anal 2022; 36:e24573. [PMID: 35808925 PMCID: PMC9396176 DOI: 10.1002/jcla.24573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Immune thrombocytopenia purpura (ITP) is an autoimmune disease that leads to accelerated platelet clearance. The objective of this study was to examine the clinical role of cytokines in ITP patients and to correlate them with disease stages. MATERIALS AND METHODS A total of 110 ITP patients were enrolled, including 55 with active ITP, 55 with remission ITP, and 55 with healthy controls. The enzyme-linked immunosorbent assay technique was used to examine IL-10 and IL-22 serum levels in all subjects. Real-time quantitative PCR was used to assess the mRNA expression of IL-10 and IL-22 in PBMC. The clinical significance of both cytokines was assessed using ROC analysis. RESULTS IL-10 serum levels in active ITP patients were significantly lower than in control and remission ITP subjects (p < 0.05). IL-22 serum levels were elevated in active ITP patients compared to the control and remission group (p < 0.05). mRNA expressions of IL-10 and IL-22 in active ITP patients were also having a significant difference from than control and remission ITP group (p < 0.05). ROC analysis showed that IL-10 and IL-22 can differentiate the ITP patients from controls. A positive correlation between serum IL-10 and PBMC IL-10 with statistical significance was observed. Similarly, the serum IL-22 and PBMC IL-22 were correlated positively with statistical significance. CONCLUSION IL-10 and IL-22 seem to predict the clinical course of ITP, as a significant imbalance of these cytokines was detected in active ITP patients.
Collapse
Affiliation(s)
- Qifeng Liu
- Emergency DepartmentWest China Second University Hospital, Sichuan UniversityChengduChina
| | - Yan Liu
- Emergency DepartmentWest China Second University Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
5
|
Kim N, Jeon C, Kim C, Ryu SH, Lee W, Bae JS. Inhibition of factor Xa activity, platelet aggregation, and experimentally induced thrombosis by Sparstolonin B. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153987. [PMID: 35183932 DOI: 10.1016/j.phymed.2022.153987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/26/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Sparstolonin B (SsnB) is an isocumarin compound extracted from medicinal plants such as Sparganium stoloniferum and Scirpus yagara with well documented anti-inflammatory activity. Here we examined if SsnB also possesses antithrombotic activity and the underlying mechanisms. METHODS Anti-thrombotic effects of SsnB were determined by measuring in vitro/ex vivo/in vivo clotting times, platelet aggregation assay, production and activity of factor Xa, nitric oxide, and expressions of relative proteins. RESULTS Treatment with SsnB prolonged the clotting time of human platelet-poor serum at concentrations comparable to the clinical anticoagulant rivaroxaban (as a positive control) and inhibited human platelet aggregation induced by adenosine diphosphate (ADP) or the thromboxane A2 analog U46619. SsnB also inhibited U46619-induced and ADP-induced phosphorylation of phospholipase C (PLC)γ2/protein kinase C (PKC) and intracellular calcium mobilization, both of which are required for platelet aggregation. In addition, SsnB inhibited expression of the cell adhesion factors P-selectin and PAC-1. SsnB increased production of the vasodilator nitric oxide and suppressed secretion of the vasoconstrictor endothelin-1 from ADP- or U46619-treated human umbilical vein endothelial cells. Further, SsnB reduced coagulation factor Xa (FXa) catalytic activity and production by endothelial cells as well as FXa-induced platelet aggregation. CONCLUSION Finally, SsnB injection reduced thrombus formation time, number, size, and related mortality in mouse models of thromboembolism. SsnB is a promising antithrombotic agent targeting both FXa and platelet aggregation pathways, which can overcome the side effects of existing antithrombotic agents.
Collapse
Affiliation(s)
- Nayeon Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - CheLynn Jeon
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Chaeyeong Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Soo Ho Ryu
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Wonhwa Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jong-Sup Bae
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
6
|
Phenanthrenes isolated from diocorea batatas Decne peel with anti-platelet aggregation activity via direct factor Xa inhibitory activity. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
7
|
How Fungal Glycans Modulate Platelet Activation via Toll-Like Receptors Contributing to the Escape of Candida albicans from the Immune Response. Antibiotics (Basel) 2020; 9:antibiotics9070385. [PMID: 32645848 PMCID: PMC7399910 DOI: 10.3390/antibiotics9070385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/23/2020] [Accepted: 07/06/2020] [Indexed: 12/20/2022] Open
Abstract
Platelets are essential for vascular repair and for the maintenance of blood homeostasis. They contribute to the immune defence of the host against many infections caused by bacteria, viruses and fungi. Following infection, platelet function is modified, and these cells form aggregates with microorganisms leading, to a decrease in the level of circulating platelets. During candidaemia, mannans, β-glucans and chitin, exposed on the cell wall of Candida albicans, an opportunistic pathogenic yeast of humans, play an important role in modulation of the host response. These fungal polysaccharides are released into the circulation during infection and their detection allows the early diagnosis of invasive fungal infections. However, their role in the modulation of the immune response and, in particular, that of platelets, is not well understood. The structure and solubility of glycans play an important role in the orientation of the immune response of the host. This short review focuses on the effect of fungal β-glucans and chitin on platelet activation and how these glycans modulate platelet activity via Toll-like receptors, contributing to the escape of C. albicans from the immune response.
Collapse
|
8
|
Gant P, McBride D, Humm K. Abnormal platelet activity in dogs and cats - impact and measurement. J Small Anim Pract 2020; 61:3-18. [PMID: 31919851 DOI: 10.1111/jsap.13092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/06/2019] [Accepted: 10/28/2019] [Indexed: 01/08/2023]
Abstract
Abnormal platelet activity can either lead to bleeding tendencies or inappropriate thrombus formation and can occur secondarily to a wide variety of disease processes, with a range of clinical consequences and severity. This article will discuss the pathophysiology of platelet function abnormalities and consider a logical diagnostic approach applicable to veterinary practice. Recent advances in platelet function testing will then be discussed, with regards to detection of platelet dysfunction and tailoring of pharmacological manipulation. Although many of these tests are still confined to research or academic institutions, techniques for indirectly assessing platelet function are starting to become more widely available. Although we still require further research to develop guidelines for the use of these tests in clinical decision-making, the recent advances in this field are an exciting step forward in being able to detect and manage platelet dysfunction in both primary care and referral practice.
Collapse
Affiliation(s)
- P Gant
- Queen Mother Hospital for Animals (QMHA), The Royal Veterinary College, Hatfield, Hertfordshire, AL9 7TA, UK
| | - D McBride
- Queen Mother Hospital for Animals (QMHA), The Royal Veterinary College, Hatfield, Hertfordshire, AL9 7TA, UK
| | - K Humm
- Queen Mother Hospital for Animals (QMHA), The Royal Veterinary College, Hatfield, Hertfordshire, AL9 7TA, UK
| |
Collapse
|
9
|
Kim KM, Kim J, Baek MC, Bae JS. Novel factor Xa inhibitor, maslinic acid, with antiplatelet aggregation activity. J Cell Physiol 2020; 235:9445-9456. [PMID: 32356316 DOI: 10.1002/jcp.29749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/01/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
Abstract
As antithrombotic effects of maslinic acid (MA) have not yet been studied, MA-mediated downregulation of coagulation factor Xa (FXa) and platelet aggregation was studied. We show that MA inhibited the enzymatic activity of FXa and platelet aggregation, induced by adenosine diphosphate (ADP) and a thromboxane A2 (TXA2 ) analog, U46619 with a similar antithrombotic efficacy to rivaroxaban, a direct FXa inhibitor used as a positive control. Mechanistically, MA suppressed U46619- or ADP-induced phosphorylation of myristoylated alanine-rich C kinase substrate, and the expression of P-selectin, and activated PAC-1 in platelets. MA increased generation of nitric oxide, but downregulated excessive secretion of endothelin-1 in ADP- or U46619-treated human umbilical vein endothelial cells. In arterial and pulmonary thrombosis mouse model, MA showed prominent anticoagulant and antithrombotic effects. Our data suggest MA as a candidate molecule for a new class of drugs targeting anti-FXa and antiplatelet.
Collapse
Affiliation(s)
- Kyung-Min Kim
- Division of Plant Biosciences, School of Applied BioSciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, Republic of Korea
| | - Jaehong Kim
- Department of Biochemistry, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Moon-Chang Baek
- Department of Molecular Medicine, CMRI, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jong-Sup Bae
- Department of Pharmacy, College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
10
|
Abstract
After vascular injury and exposure of subendothelial matrix proteins to the intravascular space, mediators of hemostasis are triggered and allow for clot formation and restoration of vascular integrity. Platelets are the mediators of primary hemostasis, creating a platelet plug and allowing for initial cessation of bleeding. Platelet disorders, qualitative and quantitative, may result in bleeding signs and symptoms, particularly mucocutaneous bleeding such as epistaxis, bruising, petechiae, and heavy menstrual bleeding. Increasing evidence suggests that platelets have functional capabilities beyond hemostasis, but this review focuses solely on platelet hemostatic properties. Herein, normal platelet function as well as the effects of abnormal function and thrombocytopenia are reviewed.
Collapse
Affiliation(s)
- Kristina M Haley
- Department of Pediatrics, Oregon Health & Science University, Portland, OR
| |
Collapse
|
11
|
Cleary SJ, Hobbs C, Amison RT, Arnold S, O'Shaughnessy BG, Lefrançais E, Mallavia B, Looney MR, Page CP, Pitchford SC. LPS-induced Lung Platelet Recruitment Occurs Independently from Neutrophils, PSGL-1, and P-Selectin. Am J Respir Cell Mol Biol 2020; 61:232-243. [PMID: 30768917 DOI: 10.1165/rcmb.2018-0182oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Platelets are recruited to inflammatory foci and contribute to host defense and inflammatory responses. Compared with platelet recruitment in hemostasis and thrombosis, the mechanisms of platelet recruitment in inflammation and host defense are poorly understood. Neutrophil recruitment to lung airspaces after inhalation of bacterial LPS requires platelets and PSGL-1 in mice. Given this association between platelets and neutrophils, we investigated whether recruitment of platelets to lungs of mice after LPS inhalation was dependent on PSGL-1, P-selectin, or interaction with neutrophils. BALB/c mice were administered intranasal LPS (O55:B5, 5 mg/kg) and, 48 hours later, lungs were collected and platelets and neutrophils quantified in tissue sections by immunohistochemistry. The effects of functional blocking antibody treatments targeting the platelet-neutrophil adhesion molecules, P-selectin or PSGL-1, or treatment with a neutrophil-depleting antibody targeting Ly6G, were tested on the extent of LPS-induced lung platelet recruitment. Separately in Pf4-Cre × mTmG mice, two-photon intravital microscopy was used to image platelet adhesion in live lungs. Inhalation of LPS caused both platelet and neutrophil recruitment to the lung vasculature. However, decreasing lung neutrophil recruitment by blocking PSGL-1, P-selectin, or depleting blood neutrophils had no effect on lung platelet recruitment. Lung intravital imaging revealed increased adhesion of platelets in the lung microvasculature which was not associated with thrombus formation. In conclusion, platelet recruitment to lungs in response to LPS occurs through mechanisms distinct from those mediating neutrophil recruitment, or the occurrence of pulmonary emboli.
Collapse
Affiliation(s)
- Simon J Cleary
- 1Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science and
| | - Carl Hobbs
- 2the Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom; and
| | - Richard T Amison
- 1Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science and
| | - Stephanie Arnold
- 1Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science and
| | - Blaze G O'Shaughnessy
- 1Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science and
| | - Emma Lefrançais
- 3Department of Medicine, University of California San Francisco, San Francisco, California
| | - Beñat Mallavia
- 3Department of Medicine, University of California San Francisco, San Francisco, California
| | - Mark R Looney
- 3Department of Medicine, University of California San Francisco, San Francisco, California
| | - Clive P Page
- 1Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science and
| | - Simon C Pitchford
- 1Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science and
| |
Collapse
|
12
|
Baaten CCFMJ, Meacham S, de Witt SM, Feijge MAH, Adams DJ, Akkerman JWN, Cosemans JMEM, Grassi L, Jupe S, Kostadima M, Mattheij NJA, Prins MH, Ramirez-Solis R, Soehnlein O, Swieringa F, Weber C, White JK, Ouwehand WH, Heemskerk JWM. A synthesis approach of mouse studies to identify genes and proteins in arterial thrombosis and bleeding. Blood 2018; 132:e35-e46. [PMID: 30275110 PMCID: PMC6293874 DOI: 10.1182/blood-2018-02-831982] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 09/19/2018] [Indexed: 12/25/2022] Open
Abstract
Antithrombotic therapies reduce cardiovascular diseases by preventing arterial thrombosis and thromboembolism, but at expense of increased bleeding risks. Arterial thrombosis studies using genetically modified mice have been invaluable for identification of new molecular targets. Because of low sample sizes and heterogeneity in approaches or methodologies, a formal meta-analysis to compare studies of mice with single-gene defects encountered major limitations. To overcome these, we developed a novel synthesis approach to quantitatively scale 1514 published studies of arterial thrombus formation (in vivo and in vitro), thromboembolism, and tail-bleeding of genetically modified mice. Using a newly defined consistency parameter (CP), indicating the strength of published data, comparisons were made of 431 mouse genes, of which 17 consistently contributed to thrombus formation without affecting hemostasis. Ranking analysis indicated high correlations between collagen-dependent thrombosis models in vivo (FeCl3 injury or ligation/compression) and in vitro. Integration of scores and CP values resulted in a network of protein interactions in thrombosis and hemostasis (PITH), which was combined with databases of genetically linked human bleeding and thrombotic disorders. The network contained 2946 nodes linked to modifying genes of thrombus formation, mostly with expression in megakaryocytes. Reactome pathway analysis and network characteristics revealed multiple novel genes with potential contribution to thrombosis/hemostasis. Studies with additional knockout mice revealed that 4 of 8 (Apoe, Fpr2, Ifnar1, Vps13a) new genes were modifying in thrombus formation. The PITH network further: (i) revealed a high similarity of murine and human hemostatic and thrombotic processes and (ii) identified multiple new candidate proteins regulating these processes.
Collapse
Affiliation(s)
- Constance C F M J Baaten
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Stuart Meacham
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge, United Kingdom
| | - Susanne M de Witt
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Marion A H Feijge
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - David J Adams
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Jan-Willem N Akkerman
- Laboratory of Clinical Chemistry and Haematology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Judith M E M Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Luigi Grassi
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge, United Kingdom
| | - Steve Jupe
- EMBL-European Bioinformatics Institute, Cambridge, United Kingdom
| | - Myrto Kostadima
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge, United Kingdom
| | - Nadine J A Mattheij
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Martin H Prins
- Department of Clinical Epidemiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | | | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University, Munich, Germany
- DZHK, Partner Site Munich Heart Alliance, Munich, Germany; and
- Department of Pathology, AMC, Amsterdam, The Netherlands
| | - Frauke Swieringa
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University, Munich, Germany
- DZHK, Partner Site Munich Heart Alliance, Munich, Germany; and
| | | | - Willem H Ouwehand
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge, United Kingdom
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
13
|
Sut C, Hamzeh-Cognasse H, Arthaud CA, Eyraud MA, Chettab K, Dumontet C, Laradi S, Burnouf T, Garraud O, Cognasse F. Platelet concentrate supernatants alter endothelial cell mRNA and protein expression patterns as a function of storage length. Transfusion 2018; 58:2635-2644. [PMID: 30325037 DOI: 10.1111/trf.14973] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Platelet transfusions are safe but can nevertheless cause serious adverse reactions (SARs). This study investigated the effects of platelet biological response modifiers (BRMs) that accumulate during storage and are commonly associated with transfusion adverse reactions. STUDY DESIGN AND METHODS Endothelial cells (ECs), that is, EA.hy926, were exposed in vitro to supernatants of platelet components (PCs) that had been either implicated or not in SARs. The EC Biology RT2 Profiler PCR Array was used at the same time to study 84 genes related to functions of ECs. Soluble cytokines and surface expression of EC markers were determined by Luminex/enzyme-linked immunosorbent assay technology and flow cytometry, respectively. Apoptosis and scratch wound assays were performed using IncuCyte technology. RESULTS In vitro exposure of EA.hy926 monolayers with Day 0, 1-2, and 3-4 stored PC supernatants resulted in decreases in surface expression of markers of ECs. There was differential production of soluble BRMs in the tested cell line. Exposure to the supernatants of PCs that had been implicated in SARs showed a significant difference in the expression of the EC surface markers. EC mediators also responded differently when exposed to PC supernatants of different storage times and PCs involved in SARs. CONCLUSION PC supernatants collected at Day 1-2 activate fewer cell lines of ECs compared with supernatants collected at Day 3-4. Moreover, PC supernatants involved in SARs appear to alter EC activation compared with the control and storage length.
Collapse
Affiliation(s)
- Caroline Sut
- Université de Lyon, GIMAP-EA3064, Saint-Etienne, France.,Établissement Français du Sang, Auvergne-Rhône-Alpes, Saint-Etienne, France
| | | | | | - Marie-Ange Eyraud
- Établissement Français du Sang, Auvergne-Rhône-Alpes, Saint-Etienne, France
| | - Kamel Chettab
- Centre de Recherche en Cancérologie de Lyon, Equipe Anticorps Anticancer, UMR INSERM 1052-CNRS 5286, Lyon, France
| | - Charles Dumontet
- Centre de Recherche en Cancérologie de Lyon, Equipe Anticorps Anticancer, UMR INSERM 1052-CNRS 5286, Lyon, France
| | - Sandrine Laradi
- Université de Lyon, GIMAP-EA3064, Saint-Etienne, France.,Établissement Français du Sang, Auvergne-Rhône-Alpes, Saint-Etienne, France
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Olivier Garraud
- Université de Lyon, GIMAP-EA3064, Saint-Etienne, France.,Institut National de la Transfusion Sanguine, Paris, France
| | - Fabrice Cognasse
- Université de Lyon, GIMAP-EA3064, Saint-Etienne, France.,Établissement Français du Sang, Auvergne-Rhône-Alpes, Saint-Etienne, France
| |
Collapse
|
14
|
Mujalli A, Chicanne G, Bertrand-Michel J, Viars F, Stephens L, Hawkins P, Viaud J, Gaits-Iacovoni F, Severin S, Gratacap MP, Terrisse AD, Payrastre B. Profiling of phosphoinositide molecular species in human and mouse platelets identifies new species increasing following stimulation. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1121-1131. [PMID: 29902570 DOI: 10.1016/j.bbalip.2018.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/15/2018] [Accepted: 06/10/2018] [Indexed: 12/17/2022]
Abstract
Phosphoinositides are bioactive lipids essential in the regulation of cell signaling as well as cytoskeleton and membrane dynamics. Their metabolism is highly active in blood platelets where they play a critical role during activation, at least through two well identified pathways involving phospholipase C and phosphoinositide 3-kinases (PI3K). Here, using a sensitive high-performance liquid chromatography-mass spectrometry method recently developed, we monitored for the first time the profiling of phosphatidylinositol (PI), PIP, PIP2 and PIP3 molecular species (fatty-acyl profiles) in human and mouse platelets during the course of stimulation by thrombin and collagen-related peptide. Furthermore, using class IA PI3K p110α or p110β deficient mouse platelets and a pharmacological inhibitor, we show the crucial role of p110β and the more subtle role of p110α in the production of PIP3 molecular species following stimulation. This comprehensive platelet phosphoinositides profiling provides important resources for future studies and reveals new information on phosphoinositides biology, similarities and differences in mouse and human platelets and unexpected dramatic increase in low-abundance molecular species of PIP2 during stimulation, opening new perspectives in phosphoinositide signaling in platelets.
Collapse
Affiliation(s)
| | - Gaëtan Chicanne
- INSERM U1048, I2MC, Université Paul Sabatier, 31432 Toulouse, France
| | - Justine Bertrand-Michel
- MetaToul-Lipidomic Core Facility, MetaboHUB, INSERM UMR-1048, Université Paul Sabatier, 31432 Toulouse, France
| | - Fanny Viars
- MetaToul-Lipidomic Core Facility, MetaboHUB, INSERM UMR-1048, Université Paul Sabatier, 31432 Toulouse, France
| | - Len Stephens
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
| | - Phil Hawkins
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
| | - Julien Viaud
- INSERM U1048, I2MC, Université Paul Sabatier, 31432 Toulouse, France
| | | | - Sonia Severin
- INSERM U1048, I2MC, Université Paul Sabatier, 31432 Toulouse, France
| | | | | | - Bernard Payrastre
- INSERM U1048, I2MC, Université Paul Sabatier, 31432 Toulouse, France; CHU de Toulouse, Laboratoire d'Hématologie, 31059 Toulouse Cedex 03, France.
| |
Collapse
|
15
|
Kuo CY, Wang HC, Kung PH, Lu CY, Liao CY, Wu MT, Wu CC. Identification of CalDAG-GEFI as an intracellular target for the vicinal dithiol binding agent phenylarsine oxide in human platelets. Thromb Haemost 2017; 111:892-901. [DOI: 10.1160/th13-07-0629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/22/2013] [Indexed: 11/05/2022]
Abstract
SummaryCalDAG-GEFI, a guanine nucleotide exchange factor activating Rap1, is known to play a key role in Ca2+-dependent glycoprotein (GP)IIb/IIIa activation and platelet aggregation. Although inhibition of CalDAG-GEFI could be a potential strategy for antiplatelet therapy, no inhibitor of this protein has been identified. In the present study, phenylarsine oxide (PAO), a vicinal dithiol blocker, potently prevented Rap1 activation in thrombin-stimulated human platelets without significantly inhibiting intracellular Ca2+ mobilisation and protein kinase C activation. PAO also prevented the Ca2+ ionophore-induced Rap1 activation and platelet aggregation, which are dependent on CalDAG-GEFI. In the biotin-streptavidin pull-down assay, CalDAG-GEFI was efficiently pull-downed by streptavidin beads from the lysates of biotin-conjugated PAO-treated platelets, suggesting that PAO binds to intracellular CalDAG-GEFI with high affinity. The above effects of PAO were reversed by a vicinal dithiol compound 2,3-dimercaptopropanol. In addition, CalDAG-GEFI formed disulfide-linked oligomers in platelets treated with the thiol-oxidant diamide, indicating that CalDAG-GEFI contains redox-sensitive thiols. In a purified recombinant protein system, PAO directly inhibited CalDAG-GEFI-stimulated GTP binding to Rap1. Using CalDAG-GEFI and Rap1-overexpressed human embryonic kidney 293T cells, we further confirmed that PAO abolished Ca2+-mediated Rap1 activation. Taken together, these results have demonstrated that CalDAG-GEFI is one of the targets of action of PAO, and propose an important role of vicinal cysteines for the functions of CalDAG-GEFI.
Collapse
|
16
|
The importance of blood platelet lipid signaling in thrombosis and in sepsis. Adv Biol Regul 2017; 67:66-73. [PMID: 28993230 DOI: 10.1016/j.jbior.2017.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 12/11/2022]
Abstract
Blood platelets are the first line of defense against hemorrhages and are also strongly involved in the processes of arterial thrombosis, a leading cause of death worldwide. Besides their well-established roles in hemostasis, vascular wall repair and thrombosis, platelets are now recognized as important players in other processes such as inflammation, healing, lymphangiogenesis, neoangiogenesis or cancer. Evidence is accumulating they are key effector cells in immune and inflammatory responses to host infection. To perform their different functions platelets express a wide variety of membrane receptors triggering specific intracellular signaling pathways and largely use lipid signaling systems. Lipid metabolism is highly active in stimulated platelets including the phosphoinositide metabolism with the phospholipase C (PLC) and the phosphoinositide 3-kinase (PI3K) pathways but also other enzymatic systems producing phosphatidic acid, lysophosphatidic acid, platelet activating factor, sphingosine 1-phosphate and a number of eicosanoids. While several of these bioactive lipids regulate intracellular platelet signaling mechanisms others are released by activated platelets acting as autocrine and/or paracrine factors modulating neighboring cells such as endothelial and immune cells. These bioactive lipids have been shown to play important roles in hemostasis and thrombosis but also in vessel integrity and dynamics, inflammation, tissue remodeling and wound healing. In this review, we will discuss some important aspects of platelet lipid signaling in thrombosis and during sepsis that is an important cause of death in intensive care unit. We will particularly focus on the implication of the different isoforms of PI3Ks and on the generation of eicosanoids released by activated platelets.
Collapse
|
17
|
Lee W, Kim MA, Park I, Hwang JS, Na M, Bae JS. Novel direct factor Xa inhibitory compounds from Tenebrio molitor with anti-platelet aggregation activity. Food Chem Toxicol 2017; 109:19-27. [PMID: 28844963 DOI: 10.1016/j.fct.2017.08.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/07/2017] [Accepted: 08/21/2017] [Indexed: 11/24/2022]
Abstract
Tenebrio molitor is an edible insect that has antimicrobial, anticancer, and antihypertensive effects. The aim of this study was to identify the unreported bioactive compounds from T. molitor larvae with inhibitory activities against factor Xa (FXa) and platelet aggregation. Isolated compounds were evaluated for their anti-FXa and anti-platelet aggregation properties by monitoring clotting time, platelet aggregation, FXa activity, and thrombus formation. A diketopiperazine (1, cyclo(L-Pro-L-Tyr)) and a phenylethanoid (2, N-acetyltyramine) were isolated and inhibited the catalytic activity of FXa in a mixed inhibition model and inhibited platelet aggregation induced by adenosine diphosphate (ADP) and U46619. They inhibited ADP- and U46619-induced phosphorylation of myristoylated alanine-rich C kinase substrate (MARCKS) and the expression of P-selectin and PAC-1 in platelets. They also improved the production of nitric oxide and inhibited the oversecretion of endothelin-1 compared to that of the ADP- or U46619-treated group. In an animal model of arterial and pulmonary thrombosis, the isolated compounds showed enhanced antithrombotic effects. They also elicited anticoagulant effects in mice. Compounds 1-2 inhibited ADP-, collagen-, or U46619-induced platelet aggregation and showed similar anti-thrombotic efficacy to rivaroxaban, a positive control. Therefore, 1-2 could serve as candidates and provide scaffolds for the development of new anti-FXa and anti-platelet drugs.
Collapse
Affiliation(s)
- Wonhwa Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Mi-Ae Kim
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Agricultural Biology, The National Academy of Agricultural Science, RDA, Wanju-gun 55365, Republic of Korea
| | - InWha Park
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jae Sam Hwang
- Department of Agricultural Biology, The National Academy of Agricultural Science, RDA, Wanju-gun 55365, Republic of Korea
| | - MinKyun Na
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
18
|
Lee W, Ku SK, Kim MA, Bae JS. Anti-factor Xa activities of zingerone with anti-platelet aggregation activity. Food Chem Toxicol 2017; 105:186-193. [PMID: 28414123 DOI: 10.1016/j.fct.2017.04.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 04/06/2017] [Accepted: 04/09/2017] [Indexed: 02/06/2023]
Abstract
Zingerone (ZGR), a phenolic alkanone found in Zingiber officinale, has been reported to have various pharmacological activities such as anti-inflammatory, anti-apoptotic, and protecting myocardial infarction and irritable bowel disorder. The aim was to identify the unreported bioactive anti-factor Xa (FXa) and anti-platelet activities of ZGR. ZGR was evaluated for their anti-FXa and anti-platelet aggregation properties by monitoring clotting time, platelet aggregation, FXa activity and production, and thrombus formation. ZGR reduced activated partial thromboplastin time and it inhibited the catalytic activity of FXa toward its substrate S-2222 in a noncompetitive inhibition model and inhibited platelet aggregation induced by adenosine diphosphate (ADP) and U46619 (not thrombin). However, ZGR did not prolong bleeding time in mice, as shown by tail clipping. ZGR also inhibited ADP- and U46619- induced phosphorylation of myristolated alanine-rich C-kinase substrate (MARCKS) and the expressions of P-selectin and PAC-1 in platelets. In an animal model of arterial and pulmonary thrombosis, ZGR showed enhanced antithrombotic effects. ZGR also elicited anticoagulant effects in mice. Our results reveal that ZGR is an antithrombotic compound with both FXa inhibitory and anti-platelet aggregation activities. Collectively, these results show that ZGR could serve as candidates and provide scaffolds for the development of new anti-FXa and anti-platelet drugs.
Collapse
Affiliation(s)
- Wonhwa Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Mi-Ae Kim
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Agricultural Biology, The National Academy of Agricultural Science, RDA, Wanju-gun 55365, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
19
|
Abstract
Fibrinogen and fibrin are essential for hemostasis and are major factors in thrombosis, wound healing, and several other biological functions and pathological conditions. The X-ray crystallographic structure of major parts of fibrin(ogen), together with computational reconstructions of missing portions and numerous biochemical and biophysical studies, have provided a wealth of data to interpret molecular mechanisms of fibrin formation, its organization, and properties. On cleavage of fibrinopeptides by thrombin, fibrinogen is converted to fibrin monomers, which interact via knobs exposed by fibrinopeptide removal in the central region, with holes always exposed at the ends of the molecules. The resulting half-staggered, double-stranded oligomers lengthen into protofibrils, which aggregate laterally to make fibers, which then branch to yield a three-dimensional network. Much is now known about the structural origins of clot mechanical properties, including changes in fiber orientation, stretching and buckling, and forced unfolding of molecular domains. Studies of congenital fibrinogen variants and post-translational modifications have increased our understanding of the structure and functions of fibrin(ogen). The fibrinolytic system, with the zymogen plasminogen binding to fibrin together with tissue-type plasminogen activator to promote activation to the active proteolytic enzyme, plasmin, results in digestion of fibrin at specific lysine residues. In spite of a great increase in our knowledge of all these interconnected processes, much about the molecular mechanisms of the biological functions of fibrin(ogen) remains unknown, including some basic aspects of clotting, fibrinolysis, and molecular origins of fibrin mechanical properties. Even less is known concerning more complex (patho)physiological implications of fibrinogen and fibrin.
Collapse
Affiliation(s)
- John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| | - Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
20
|
Lee J, Lee W, Kim MA, Hwang JS, Na M, Bae JS. Inhibition of platelet aggregation and thrombosis by indole alkaloids isolated from the edible insect Protaetia brevitarsis seulensis (Kolbe). J Cell Mol Med 2016; 21:1217-1227. [PMID: 27997749 PMCID: PMC5431138 DOI: 10.1111/jcmm.13055] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/10/2016] [Indexed: 12/13/2022] Open
Abstract
Protaetia brevitarsis seulensis (Kolbe) has been temporarily registered as a food material by the Ministry of Food and Drug Safety of Korea (MFDS). The current study aimed to discover small antithrombotic molecules from this edible insect. Five indole alkaloids, 5‐hydroxyindolin‐2‐one (1), (1R,3S)‐1‐methyl‐1,2,3,4‐tetrahydro‐β‐carboline‐3‐carboxylic acid (2), (1S,3S)‐1‐methyl‐1,2,3,4‐tetrahydro‐β‐carboline‐3‐carboxylic acid (3), (3S)‐1,2,3,4‐tetrahydro‐β‐carboline‐3‐carboxylic acid (4) and L‐tryptophan (5), were isolated from the insect. Among them, compounds 1 and 2 prolonged aPTT and PT and impaired thrombin and FXa generation on HUVEC surface. Moreover, these compounds inhibited platelet aggregation. Antithrombotic effects of compounds 1 and 2 were further confirmed in pre‐clinical models of pulmonary embolism and arterial thrombosis. Collectively, these results demonstrated that compounds 1 and 2 could be effective antithrombotic agents and serve as new scaffolds for the development of antithrombotic drug.
Collapse
Affiliation(s)
- JungIn Lee
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Wonhwa Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu, Republic of Korea
| | - Mi-Ae Kim
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu, Republic of Korea.,Department of Agricultural Biology, The National Academy of Agricultural Science, RDA, Wanju-gun, Republic of Korea
| | - Jae Sam Hwang
- Department of Agricultural Biology, The National Academy of Agricultural Science, RDA, Wanju-gun, Republic of Korea
| | - MinKyun Na
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
21
|
Ponschab M, van Griensven M, Heitmeier S, Laux V, Schlimp CJ, Calatzis A, Bahrami S, Redl H, Schöchl H. Platelet function in baboons and humans - A comparative study of whole blood using impedance platelet aggregometry (Multiplate®). Thromb Res 2016; 147:115-121. [PMID: 27736703 DOI: 10.1016/j.thromres.2016.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/28/2016] [Accepted: 10/05/2016] [Indexed: 01/29/2023]
Abstract
BACKGROUND Platelets play a pivotal role in coagulation, inflammation and wound healing. Suitable animal models that have the potential to mimic human platelet function are limited. The objective of the current study was to compare platelet aggregation response in the whole blood of baboons and humans using impedance aggregometry. METHODS Blood was drawn from 24 anesthetised male baboons and 25 healthy volunteers. The platelet aggregation response was determined by impedance aggregometry (Multiplate®). Platelets in the hirudinised whole blood samples were stimulated with four different activators: adenosine diphosphate (ADP), collagen (COL), thrombin receptor activating peptide-6 (TR1AP), and activation of PAR-4 thrombin receptor subtype (TR4AP) at standard concentrations. Higher than standard concentrations were tested in a subgroup of the animals. RESULTS The cell counts showed no differences between baboons and humans. The platelet aggregation response was significantly lower in baboons compared to humans when stimulated with the platelet agonists ADP (p<0.0001), COL (p=0.021) and TR4AP (p<0.0001). TR1AP did not stimulate platelet aggregation in the baboon blood. Doubling the concentration of ADP and of TR4AP significantly increased the AUC compared to the standard concentration. In contrast, increased COL levels did not further increase the AUC. CONCLUSION The current study revealed that testing the platelet function in baboon blood by impedance aggregometry is feasible with ADP, COL and TR4AP, but not with TR1AP. Compared to humans, the aggregation response is lower in baboons. Considering the limitations in accordance to these results, baboons might represent a potential species for further platelet research.
Collapse
Affiliation(s)
- Martin Ponschab
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Centre, Vienna, Austria; Department of Anaesthesiology and Intensive Care, AUVA Trauma Hospital Linz, Academic Teaching Hospital of the Paracelsus Medical University, Salzburg, Austria.
| | - Martijn van Griensven
- Experimental Trauma Surgery, Department of Trauma Surgery, Klinikum rechts der Isar, Technical University Munich, Germany.
| | | | - Volker Laux
- Bayer Pharma AG, Acute Care Research, Wuppertal, Germany.
| | - Christoph J Schlimp
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Centre, Vienna, Austria.
| | | | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Centre, Vienna, Austria.
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Centre, Vienna, Austria.
| | - Herbert Schöchl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Centre, Vienna, Austria; Department of Anaesthesiology and Intensive Care, AUVA Trauma Centre, Salzburg, Austria.
| |
Collapse
|
22
|
Mira A, Alkhiary W, Shimizu K. Antiplatelet and Anticoagulant Activities of Angelica shikokiana Extract and Its Isolated Compounds. Clin Appl Thromb Hemost 2016; 23:91-99. [DOI: 10.1177/1076029615595879] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Angelica shikokiana is a Japanese medicinal plant that is used traditionally in several ailments of cardiovascular diseases. However, there is no report regarding its anticoagulant or antiplatelet activities. So this study was designed to screen for such activities (anticoagulant by prothrombin time [PT], activated partial thromboplastin time, and thrombin time assays and antiplatelet activities against adenosine 5′-diphosphate [ADP] and arachidonic acid-induced platelet aggregations) for the methanol extract of the aerial part ( Angelica methanol extract [AME]), its isolated coumarins, flavonoids, and flavonoid metabolites. The AME had potent anticoagulant and antiplatelet activities, and the flavonoid compounds were evidenced to be responsible for such activities. Among coumarins compounds, hyuganin C showed significant prolongation of only PT, while other coumarins were inactive. Similarly, hyuganin C and bergapten were the only active coumarins against ADP-induced platelet aggregation. Compared to the parent compounds, colonic metabolites of the flavonoids had similar anticoagulant and antiplatelet activities, while glucuronides showed sharp decreases in all studied activities. This is the first report showing that the medicinal plant A shikokiana has potent antiplatelet and anticoagulant activities.
Collapse
Affiliation(s)
- Amira Mira
- Division of Systematic Forest and Forest Products Sciences, Department of Agro-Environmental Sciences, Faculty of Agriculture, Graduate School of Kyushu University, Japan
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Wael Alkhiary
- Department of Clinical Pathology, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Kuniyoshi Shimizu
- Division of Systematic Forest and Forest Products Sciences, Department of Agro-Environmental Sciences, Faculty of Agriculture, Graduate School of Kyushu University, Japan
| |
Collapse
|
23
|
Development of antithrombotic nanoconjugate blocking integrin α2β1-collagen interactions. Sci Rep 2016; 6:26292. [PMID: 27195826 PMCID: PMC4872532 DOI: 10.1038/srep26292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/28/2016] [Indexed: 01/07/2023] Open
Abstract
An antithrombotic nanoconjugate was designed in which a designed biomimetic peptide LWWNSYY was immobilized to the surface of poly(glycidyl methacrylate) nanoparticles (PGMA NPs). Our previous work has demonstrated LWWNSYY to be an effective inhibitor of integrin α2β1-collagen interaction and subsequent thrombus formation, however its practical application suffered from the formation of clusters in physiological environment caused by its high hydrophobicity. In our present study, the obtained LWWNSYY-PGMA nanoparticles (L-PGMA NPs) conjugate, with an improved dispersibility of LWWNSYY by PGMA NPs, have shown binding to collagen receptors with a Kd of 3.45 ± 1.06 μM. L-PGMA NPs have also proven capable of inhibiting platelet adhesion in vitro with a reduced IC50 of 1.83 ± 0.29 μg/mL. High inhibition efficiency of L-PGMA NPs in thrombus formation was further confirmed in vivo with a 50% reduction of thrombus weight. Therefore, L-PGMA NPs were developed as a high-efficiency antithrombotic nanomedicine targeted for collagen exposed on diseased blood vessel wall.
Collapse
|
24
|
Ponschab M, Schlimp CJ, Zipperle J, Gabriel C, Süssner S, Cadamuro J, Gratz J, Redl H, Schöchl H. Platelet function in reconstituted whole blood variants: An observational study over 5 days of storage time. J Trauma Acute Care Surg 2016; 79:797-804. [PMID: 26496104 DOI: 10.1097/ta.0000000000000852] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Platelet concentrates (PCs) are usually stored at room temperature under constant gentle agitation. Risk of bacterial contamination limits maximum storage time to 5 days. The objective of the study was to investigate platelet function with regard to storage time in different reconstituted whole blood (RWB) variants. METHODS Donated apheresis PCs were stored at 22°C over 5 days. To obtain RWB, apheresis PCs were mixed with plasma-free packed red blood cells (RBCs) and either prethawed fresh frozen plasma (PT) or solvent-detergent plasma (SD) [1:1:1 ratio], or with leukocyte- and platelet-depleted whole blood (LD-WB) as control. Platelet function in RWB variants was assessed by impedance aggregometry (Multiplate) on Days 0, 1, 3, and 5 following platelet donation. RESULTS Platelet aggregometry did not reach the lower limits determined from healthy volunteers in any of the RWB variants. Platelet aggregability measured by ASPI test, ADP test, and COL test declined over storage time in all RWB variants. No differences were observed in the TRAP test. At most measurement time points, LD-RWB provided significantly higher platelet aggregability compared with SD-RWB and PT-RWB (p < 0.01). SD-RWB demonstrated higher platelet aggregability on Day 0 in the ASPI test, ADP test, and TRAP test compared with PT-RWB. CONCLUSION Apheresis PCs stored for 5 days at 22°C demonstrated reduced platelet aggregability, as measured by multiple electrode aggregometry when mixed with RBCs and plasma. As platelet aggregation in LD-RWB was superior compared with SD-RWB and PT-RWB variants, it might be possible that additives in RBCs or plasma are responsible for the observed depressed platelet function. Critical evaluation of current massive transfusion recommendations proposing early platelet transfusion is indicated.
Collapse
Affiliation(s)
- Martin Ponschab
- From the Ludwig Boltzmann Institute for Experimental and Clinical Traumatology (M.P., C.J.S., J.Z., H.R., H.S.), AUVA Research Centre; and Department of Anaesthesia, General Intensive Care and Pain Control (J.G.), Medical University of Vienna, Vienna; Red Cross Blood Transfusion Service for Upper Austria (C.G., S.S.), Linz; Department of Laboratory Medicine (J.C.), Paracelsus Medical University Salzburg; and Department of Anaesthesiology and Intensive Care (H.S.), AUVA Trauma Centre, Salzburg, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Baker-Groberg SM, Lattimore S, Recht M, McCarty OJ, Haley KM. Assessment of neonatal platelet adhesion, activation, and aggregation. J Thromb Haemost 2016; 14:815-27. [PMID: 26806373 PMCID: PMC4828266 DOI: 10.1111/jth.13270] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/11/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Acquired and inherited bleeding disorders may present in the neonatal period with devastating lifelong effects. Diagnosing bleeding disorders in the neonatal population could aid in preventing and treating the associated complications. However, currently available platelet function testing is limited in neonates, owing to difficulties in obtaining an adequate blood volume, a lack of normal reference ranges, and an incomplete understanding of the neonatal platelet functional phenotype. OBJECTIVE To develop small-volume, whole blood platelet function assays in order to quantify and compare neonatal and adult platelet function. METHODS AND RESULTS Peripheral blood was obtained from healthy, full-term neonates at 24 h of life. Platelet activation, secretion and aggregation were measured via flow cytometry. Platelet adhesion and aggregation were assessed under static and flow conditions. As compared with adult platelets, peripheral neonatal platelet P-selectin expression and integrin glycoprotein IIbIIIa activation were significantly reduced in response to the G-protein-coupled receptor (GPCR) agonists thrombin receptor activator peptide-6 (TRAP-6), ADP, and U46619, and the immunoreceptor tyrosine-based activation motif (ITAM) signaling pathway agonists collagen-related peptide (CRP) and rhodocytin. Neonatal platelet aggregation was markedly reduced in response to TRAP-6, ADP, U46619, CRP and rhodocytin as compared with adult platelets. The extents of neonatal and adult platelet adhesion and aggregate formation under static and shear conditions on collagen and von Willebrand factor were similar. CONCLUSIONS As compared with adult platelets, we found that neonatal platelet activation and secretion were blunted in response to GPCR or ITAM agonists, whereas the extent of neonatal platelet adhesion and aggregate formation was similar to that of adult platelets.
Collapse
Affiliation(s)
- Sandra M. Baker-Groberg
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 SW Bond Ave, Portland, OR 97239, USA
| | - Susan Lattimore
- The Hemophilia Center, Oregon Health & Science University, 700 SW Campus Drive, Portland, OR 97239, USA
| | - Michael Recht
- The Hemophilia Center, Oregon Health & Science University, 700 SW Campus Drive, Portland, OR 97239, USA
| | - Owen J.T. McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 SW Bond Ave, Portland, OR 97239, USA
| | - Kristina M. Haley
- The Hemophilia Center, Oregon Health & Science University, 700 SW Campus Drive, Portland, OR 97239, USA
| |
Collapse
|
26
|
Lee W, Lee J, Kulkarni R, Kim MA, Hwang JS, Na M, Bae JS. Antithrombotic and antiplatelet activities of small-molecule alkaloids from Scolopendra subspinipes mutilans. Sci Rep 2016; 6:21956. [PMID: 26905699 PMCID: PMC4764974 DOI: 10.1038/srep21956] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/02/2016] [Indexed: 01/25/2023] Open
Abstract
The aim of this study was to discover small-molecule anticoagulants from Scolopendra subspinipes mutilans (SSM). A new acylated polyamine (1) and a new sulfated quinoline alkaloid (2) were isolated from SSM. Treatment with the new alkaloids 1, 2, and indole acetic acid 4 prolonged the activated partial thromboplastin time and prothrombin time and inhibited the activity and production of thrombin and activated factor X. Furthermore, compounds 1, 2, and 4 inhibited thrombin-catalyzed fibrin polymerization and platelet aggregation. In accordance with these potential in vitro antiplatelet activities, compounds 1, 2, and 4 showed enhanced antithrombotic effects in an in vivo pulmonary embolism and arterial thrombosis model. Compounds 1, 2, and 4 also elicited anticoagulant effects in mice. Collectively, this study may serve as the groundwork for commercializing SSM or compounds 1, 2, and 4 as functional food components for the prevention and treatment of pathogenic conditions and serve as new scaffolds for the development of anticoagulants.
Collapse
Affiliation(s)
- Wonhwa Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team Kyungpook National University, Daegu 41566, Republic of Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - JungIn Lee
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Roshan Kulkarni
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Mi-Ae Kim
- Department of Agricultural Biology, The National Academy of Agricultural Science, RDA, 166 Nongsaengmyoungro, Wanju-gun, 55365, Republic of Korea
| | - Jae Sam Hwang
- Department of Agricultural Biology, The National Academy of Agricultural Science, RDA, 166 Nongsaengmyoungro, Wanju-gun, 55365, Republic of Korea
| | - MinKyun Na
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
27
|
Stefanini L, Bergmeier W. RAP1-GTPase signaling and platelet function. J Mol Med (Berl) 2015; 94:13-9. [PMID: 26423530 DOI: 10.1007/s00109-015-1346-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/10/2015] [Accepted: 09/17/2015] [Indexed: 10/23/2022]
Abstract
Platelets are critical for hemostasis, i.e., the body's ability to prevent blood loss at sites of vascular injury. They patrol the vasculature in a quiescent, non-adhesive state for approximately 10 days, after which they are removed from circulation by phagocytic cells of the reticulo-endothelial system. At sites of vascular injury, they promptly shift to an activated, adhesive state required for the formation of a hemostatic plug. The small GTPase RAP1 is a critical regulator of platelet adhesiveness. Our recent studies demonstrate that the antagonistic balance between the RAP1 regulators, CalDAG-GEFI and RASA3, is critical for the modulation of platelet adhesiveness, both in circulation and at sites of vascular injury. The RAP1 activator CalDAG-GEFI responds to small changes in the cytoplasmic calcium concentration and thus provides sensitivity and speed to the activation response, essential for efficient platelet adhesion under conditions of hemodynamic shear stress. The RAP1 inhibitor RASA3 ensures that circulating platelets remain quiescent by restraining CalDAG-GEFI-dependent RAP1 activation. Upon cellular stimulation, it is turned off by P2Y12 signaling to enable sustained RAP1 activation, required for the formation of a stable hemostatic plug. This review will summarize important studies that elucidated the signaling pathways that control RAP1 activation in platelets.
Collapse
Affiliation(s)
- Lucia Stefanini
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
28
|
Lee W, Bae JS. Antithrombotic and antiplatelet activities of orientin in vitro and in vivo. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.05.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
29
|
Abstract
Multiple studies have now shown that various species of bacteria can stimulate platelets; many in a strain and donor-dependent manner. The signalling pathways underlying this platelet activation has been the subject of scrutiny for the last decade. The best-delineated pathway is that in response to Streptococcal species, such as Streptococcus sanguinis (S. sanguinis), Streptococcus gordonii (S. gordonii) and Streptococcus oralis (S. oralis), where a pathway is initiated by the engagement of the low affinity IgG receptor, FcγRIIA. This leads to and involves the tyrosine kinase Syk, the adaptor protein Linker of Activated T Cells (LAT) and subsequently both phospholipase Cγ2 (PLCγ2) and phosphatidylinositol-3-kinase (PI-3-K). Finally, this leads to the expression of the αIIbβ3 integrin, the synthesis and release of thromboxane A2 (T × A2) and the exocytosis of PF4, each of which plays a crucial role in secondary signalling and full platelet activation. Roles for other signalling pathways in Streptococcal-induced platelet activation are less clear, although an ADP-mediated inhibition of adenylyl cyclase, a glycoprotein Ib/IX/V-mediated pathway and perhaps a complement-induced pathway have each been proposed. Platelet activation by Porphyromonas gingivalis (P. gingivalis) at least partially shares the FcγRIIA/Syk/PLCγ2/PI-3-K mechanism utilised by Streptococcal species. However, it has also been suggested that P. gingivalis activates platelets by two additional methods; stimulation of the protease-activated receptors leading to activation of phospholipase Cβ (PLCβ), and the engagement of Toll-like receptors 2 and 4 by released lipopolysaccharide leading to an ill-defined pathway which may involve PI-3-K. Consequently, it appears that bacteria can stimulate platelets by eliciting multiple signalling pathways some of which are common, and some unique, to individual species.
Collapse
|
30
|
Swanepoel AC, Pretorius E. Erythrocyte-platelet interaction in uncomplicated pregnancy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2014; 20:1848-1860. [PMID: 25470019 DOI: 10.1017/s1431927614013518] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Maternal and fetal requirements during uncomplicated pregnancy are associated with changes in the hematopoietic system. Platelets and erythrocytes [red blood cells (RBCs)], and especially their membranes, are involved in coagulation, and their interactions may provide reasons for the changed hematopoietic system during uncomplicated pregnancy. We review literature regarding RBC and platelet membrane structure and interactions during hypercoagulability and hormonal changes. We then study interactions between RBCs and platelets in uncomplicated pregnancy, as their interactions may be one of the reasons for increased hypercoagulability during uncomplicated pregnancy. Scanning electron microscopy was used to study whole blood smears from 90 pregnant females in different phases of pregnancy. Pregnancy-specific interaction was seen between RBCs and platelets. Typically, one or more platelets interacted through platelet spreading and pseudopodia formation with a single RBC. However, multiple interactions with RBCs were also shown for a single platelet. Specific RBC-platelet interaction seen during uncomplicated pregnancy may be caused by increased estrogen and/or increased fibrinogen concentrations. This interaction may contribute to the hypercoagulable state associated with healthy and uncomplicated pregnancy and may also play a fundamental role in gestational thrombocytopenia.
Collapse
Affiliation(s)
- Albe C Swanepoel
- Department of Physiology,School of Medicine, Faculty of Health Sciences,University of Pretoria,Private Bag x323;Arcadia 0007,South Africa
| | - Etheresia Pretorius
- Department of Physiology,School of Medicine, Faculty of Health Sciences,University of Pretoria,Private Bag x323;Arcadia 0007,South Africa
| |
Collapse
|
31
|
Moriarty R, McManus CA, Lambert M, Tilley T, Devocelle M, Brennan M, Kerrigan SW, Cox D. A novel role for the fibrinogen Asn-Gly-Arg (NGR) motif in platelet function. Thromb Haemost 2014; 113:290-304. [PMID: 25413489 DOI: 10.1160/th14-04-0366] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 09/12/2014] [Indexed: 01/20/2023]
Abstract
The integrin αIIbβ3 on resting platelets can bind to immobilised fibrinogen resulting in platelet spreading and activation but requires activation to bind to soluble fibrinogen. αIIbβ3 is known to interact with the general integrin-recognition motif RGD (arginine-glycine-aspartate) as well as the fibrinogen-specific γ-chain dodecapeptide; however, it is not known how fibrinogen binding triggers platelet activation. NGR (asparagine-glycine-arginine) is another integrin-recognition sequence present in fibrinogen and this study aims to determine if it plays a role in the interaction between fibrinogen and αIIbβ3. NGR-containing peptides inhibited resting platelet adhesion to fibrinogen with an IC50 of 175 µM but failed to inhibit the adhesion of activated platelets to fibrinogen (IC50> 500 µM). Resting platelet adhesion to mutant fibrinogens lacking the NGR sequences was reduced compared to normal fibrinogen under both static and shear conditions (200 s⁻¹). However, pre-activated platelets were able to fully spread on all types of fibrinogen. Thus, the NGR motif in fibrinogen is the site that is primarily responsible for the interaction with resting αIIbβ3 and is responsible for triggering platelet activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dermot Cox
- Dermot Cox, BSc, PhD, Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland, Tel.: +35 3 1 402 2152, Fax: +35 3 1 402 2453, E-mail:
| |
Collapse
|
32
|
Geraldo RB, Sathler PC, Lourenço AL, Saito MS, Cabral LM, Rampelotto PH, Castro HC. Platelets: still a therapeutical target for haemostatic disorders. Int J Mol Sci 2014; 15:17901-19. [PMID: 25295482 PMCID: PMC4227196 DOI: 10.3390/ijms151017901] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/26/2014] [Accepted: 09/23/2014] [Indexed: 11/16/2022] Open
Abstract
Platelets are cytoplasmatic fragments from bone marrow megakaryocytes present in blood. In this work, we review the basis of platelet mechanisms, their participation in syndromes and in arterial thrombosis, and their potential as a target for designing new antithrombotic agents. The option of new biotechnological sources is also explored.
Collapse
Affiliation(s)
- Reinaldo Barros Geraldo
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense (UFF), Niterói CEP 24210-130, RJ, Brazil.
| | - Plínio Cunha Sathler
- Programa de Pós-graduação em Patologia, Departamento de Patologia, Hospital Universitário Antônio Pedro (HUAP), Universidade Federal Fluminense (UFF), Niterói CEP 24030-215, RJ, Brazil.
| | - André Luiz Lourenço
- Programa de Pós-graduação em Patologia, Departamento de Patologia, Hospital Universitário Antônio Pedro (HUAP), Universidade Federal Fluminense (UFF), Niterói CEP 24030-215, RJ, Brazil.
| | - Max Seidy Saito
- Programa de Pós-graduação em Patologia, Departamento de Patologia, Hospital Universitário Antônio Pedro (HUAP), Universidade Federal Fluminense (UFF), Niterói CEP 24030-215, RJ, Brazil.
| | - Lucio M Cabral
- LabTIF, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro CEP 21941-590, RJ, Brazil.
| | - Pabulo Henrique Rampelotto
- Interdisciplinary Center for Biotechnology Research, Federal University of Pampa, Antônio Trilha Avenue, P.O. Box 1847, São Gabriel/RS 97300-000, Brazil.
| | - Helena Carla Castro
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense (UFF), Niterói CEP 24210-130, RJ, Brazil.
| |
Collapse
|
33
|
Haley KM, Recht M, McCarty OJ. Neonatal platelets: mediators of primary hemostasis in the developing hemostatic system. Pediatr Res 2014; 76:230-7. [PMID: 24941213 PMCID: PMC4348010 DOI: 10.1038/pr.2014.87] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/19/2014] [Indexed: 12/16/2022]
Abstract
The human hemostatic system is developmentally regulated, resulting in qualitative and quantitative differences in the mediators of primary and secondary hemostasis as well as fibrinolysis in neonates and infants. Although gestational age-related differences in coagulation factor levels occur, the existence of a unique neonatal platelet phenotype remains controversial. Complicated by difficulties in obtaining adequate neonatal blood volumes with which to perform functional assays, ambiguity surrounds the characterization of neonatal platelets. Thus, much of the current knowledge of neonatal platelet function has been based on studies from cord blood samples. Studies suggest that cord blood-derived platelets, as a surrogate for neonatal platelets, are hypofunctional when compared with adult platelets. This relative platelet dysfunction, combined with a propensity toward thrombocytopenia in the neonatal intensive care unit population, creates a clinical conundrum regarding the appropriate administration of platelet transfusions. This review provides an appraisal of the distinct functional phenotype of neonatal platelets. Neonatal platelet transfusion practices and the impact of the relatively hypofunctional neonatal platelet on those practices will be considered.
Collapse
Affiliation(s)
- Kristina M. Haley
- The Hemophilia Center, Oregon Health & Science University, Portland, OR, USA
| | - Michael Recht
- The Hemophilia Center, Oregon Health & Science University, Portland, OR, USA
| | - Owen J.T. McCarty
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, USA
| |
Collapse
|
34
|
Zhang L, Sun Y. Biomimetic design of platelet adhesion inhibitors to block integrin α2β1-collagen interactions: I. Construction of an affinity binding model. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:4725-4733. [PMID: 24697616 DOI: 10.1021/la404599s] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Platelet adhesion on a collagen surface through integrin α2β1 has been proven to be significant for the formation of arterial thrombus. However, the molecular determinants mediating the integrin-collagen complex remain unclear. In the present study, the dynamics of integrin-collagen binding and molecular interactions were investigated using molecular dynamics (MD) simulations and molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) analysis. Hydrophobic interaction is identified as the major driving force for the formation of the integrin-collagen complex. On the basis of the MD simulation and MM-PBSA results, an affinity binding model (ABM) of integrin for collagen is constructed; it is composed of five residues, including Y157, N154, S155, R288, and L220. The ABM has been proven to capture the major binding motif contributing 84.8% of the total binding free energy. On the basis of the ABM, we expect to establish a biomimetic design strategy of platelet adhesion inhibitors, which would be beneficial for the development of potent peptide-based drugs for thrombotic diseases.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | | |
Collapse
|
35
|
Zhang L, Zhang C, Sun Y. Biomimetic design of platelet adhesion inhibitors to block integrin α2β1-collagen interactions: II. Inhibitor library, screening, and experimental validation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:4734-4742. [PMID: 24697658 DOI: 10.1021/la4046012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Platelet adhesion on collagen mediated by integrin α2β1 has been proven important in arterial thrombus formation, leading to an exigent demand on development of potent inhibitors for the integrin α2β1-collagen binding. In the present study, a biomimetic design strategy of platelet adhesion inhibitors was established, based on the affinity binding model of integrin proposed in part I. First, a heptapeptide library containing 8000 candidates was designed to functionally mimic the binding motif of integrin α2β1. Then, each heptapeptide in the library was docked onto a collagen molecule for the assessment of its affinity, followed by a screening based on its structure similarity to the original structure in the affinity binding model. Eight candidates were then selected for further screening by molecular dynamics (MD) simulations. Thereafter, three candidates chosen from MD simulations were separately added into the physiological saline containing separated integrin and collagen, to check their abilities for blocking the integrin-collagen interaction using MD simulations. Of these three candidates, significant inhibition was observed in the presence of LWWNSYY. Finally, the binding affinity of LWWNSYY for collagen was demonstrated by isothermal titration calorimetry. Moreover, significant inhibition of platelet adhesion in the presence of LWWNSYY has been experimentally validated. This work has thus developed an effective strategy for the biomimetic design of peptide-based platelet adhesion inhibitors.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | | | | |
Collapse
|
36
|
Cognasse F, Hamzeh-Cognasse H, Chabert A, Jackson E, Arthaud CA, Garraud O, McNicol A. Streptococcus sanguinis-induced cytokine and matrix metalloproteinase-1 release from platelets. BMC Immunol 2014; 15:15. [PMID: 24755160 PMCID: PMC3998947 DOI: 10.1186/1471-2172-15-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 04/07/2014] [Indexed: 01/01/2023] Open
Abstract
Background Streptococcus sanguinis (S.sanguinis), a predominant bacterium in the human oral cavity, has been widely associated with the development of infective endocarditis. Platelets play both a haemostatic function and can influence both innate and adaptive immune responses. Previous studies have shown that S.sanguinis can interact with, and activate, platelets. Results The aim of this study was to determine whether S.sanguinis stimulates the release of matrix metalloproteinases (MMPs) 1, 2 and 9 and the pro-inflammatory mediators SDF-1, VEGF and sCD40L, from platelets and to subsequently pharmacologically address the release mechanism (s). S.sanguinis stimulated the release of MMP-1, SDF-1, VEGF and sCD40L from platelets and inhibitors of cyclooxygenase and phosphatidylinositol 3-kinase, and antagonists of the αIIbβ3 integrin and glycoprotein Ib, each inhibited the secretion of all factors. Conclusions Therefore the release of MMP-1, SDF-1, VEGF and sCD40L occurs late in the platelet response to S.sanguinis and highlights the complex intracellular signalling pathways stimulated in response to S.sanguinis which lead to haemostasis, MMP and pro-inflammatory mediator secretion.
Collapse
Affiliation(s)
- Fabrice Cognasse
- Etablissement Français du Sang (EFS) Auvergne-Loire, Saint-Etienne, France.
| | | | | | | | | | | | | |
Collapse
|
37
|
Cox K, Price V, Kahr WHA. Inherited platelet disorders: a clinical approach to diagnosis and management. Expert Rev Hematol 2014; 4:455-72. [DOI: 10.1586/ehm.11.41] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
38
|
Di Michele M, Van Geet C, Freson K. Recent advances in platelet proteomics. Expert Rev Proteomics 2014; 9:451-66. [DOI: 10.1586/epr.12.31] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
39
|
Gardiner EE, Andrews RK. Structure and function of platelet receptors initiating blood clotting. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 844:263-75. [PMID: 25480646 DOI: 10.1007/978-1-4939-2095-2_13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
At the clinical level, recent studies reveal the link between coagulation and other pathophysiological processes, including platelet activation, inflammation, cancer, the immune response, and/or infectious diseases. These links are likely to underpin the coagulopathy associated with risk factors for venous thromboembolic (VTE) and deep vein thrombosis (DVT). At the molecular level, the interactions between platelet-specific receptors and coagulation factors could help explain coagulopathy associated with aberrant platelet function, as well as revealing new approaches targeting platelet receptors in diagnosis or treatment of VTE or DVT. Glycoprotein (GP)Ibα, the major ligand-binding subunit of the platelet GPIb-IX-V complex, that binds the adhesive ligand, von Willebrand factor (VWF), is co-associated with the platelet-specific collagen receptor, GPVI. The GPIb-IX-V/GPVI adheso-signaling complex not only initiates platelet activation and aggregation (thrombus formation) in response to vascular injury or disease but GPIbα also regulates coagulation through a specific interaction with thrombin and other coagulation factors. Here, we discuss the structure and function of key platelet receptors involved in thrombus formation and coagulation in health and disease, with a particular focus on platelet GPIbα.
Collapse
Affiliation(s)
- Elizabeth E Gardiner
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | | |
Collapse
|
40
|
Kumar R, Kahr WHA. Congenital thrombocytopenia: clinical manifestations, laboratory abnormalities, and molecular defects of a heterogeneous group of conditions. Hematol Oncol Clin North Am 2013; 27:465-94. [PMID: 23714308 DOI: 10.1016/j.hoc.2013.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Once considered exceptionally rare, congenital thrombocytopenias are increasingly recognized as a heterogeneous group of disorders characterized by a reduction in platelet number and a bleeding tendency that may range from very mild to life threatening. Although some of these disorders affect only megakaryocytes and platelets, others involve different cell types and may result in characteristic phenotypic abnormalities. This review elaborates the clinical presentation and laboratory manifestations of common congenital thrombocytopenias in addition to exploring our understanding of the molecular basis of these disorders and therapeutic interventions available.
Collapse
Affiliation(s)
- Riten Kumar
- Division of Haematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
41
|
Abstract
Platelets are anucleated fragments produced by megakaryocytes that circulate in the blood. Platelets are involved in the initial cellular response to damaged endothelium and migrate to this area to prevent excessive bleeding. What is becoming more acknowledged over the last few decades is that blood flow (hemodynamics) plays a critical role in platelet function. The purpose of this review is to summarize the current understanding of platelet biology with particular focus on the role of hemodynamics. The emerging concept of shear microgradients, which are challenging the traditional model of platelet function, will also be introduced in the review.
Collapse
Affiliation(s)
- Angus Ka Tsun Wong
- Australian Centre for Blood Diseases, 6th Floor, Burnet Tower, 89 Commercial Rd., Melbourne, VIC 3004, Australia.
| |
Collapse
|
42
|
Bleijerveld OB, van Holten TC, Preisinger C, van der Smagt JJ, Farndale RW, Kleefstra T, Willemsen MH, Urbanus RT, de Groot PG, Heck AJ, Roest M, Scholten A. Targeted Phosphotyrosine Profiling of Glycoprotein VI Signaling Implicates Oligophrenin-1 in Platelet Filopodia Formation. Arterioscler Thromb Vasc Biol 2013; 33:1538-43. [DOI: 10.1161/atvbaha.112.300916] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Objective—
Platelet adhesion to subendothelial collagen is dependent on the integrin α
2
β
1
and glycoprotein VI (GPVI) receptors. The major signaling routes in collagen-dependent platelet activation are outlined; however, crucial detailed knowledge of the actual phosphorylation events mediating them is still limited. Here, we explore phosphotyrosine signaling events downstream of GPVI with site-specific detail.
Approach and Results—
Immunoprecipitations of phosphotyrosine-modified peptides from protein digests of GPVI-activated and resting human platelets were compared by stable isotope-based quantitative mass spectrometry. We surveyed 214 unique phosphotyrosine sites over 2 time points, of which 28 showed a significant increase in phosphorylation on GPVI activation. Among these was Tyr370 of oligophrenin-1 (OPHN1), a Rho GTPase–activating protein. To elucidate the function of OPHN1 in platelets, we performed an array of functional platelet analyses within a small cohort of patients with rare oligophrenia. Because of germline mutations in the
OPHN1
gene locus, these patients lack OPHN1 expression entirely and are in essence a human knockout model. Our studies revealed that among other unaltered properties, patients with oligophrenia show normal P-selectin exposure and α
IIb
β
3
activation in response to GPVI, as well as normal aggregate formation on collagen under shear conditions. Finally, the major difference in OPHN1-deficient platelets turned out to be a significantly reduced collagen-induced filopodia formation.
Conclusions—
In-depth phosphotyrosine screening revealed many novel signaling recipients downstream of GPVI activation uncovering a new level of detail within this important pathway. To illustrate the strength of such data, functional follow-up of OPHN1 in human platelets deficient in this protein showed reduced filopodia formation on collagen, an important parameter of platelet hemostatic function.
Collapse
Affiliation(s)
- Onno B. Bleijerveld
- From the Biomolecular Mass Spectrometry and Proteomics and Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Netherlands Proteomics Centre, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Departments of Clinical Chemistry and Haematology (T.C.v.H., R.T.U., P.G.d.G., M.R.) and Medical Genetics (J.J.v.d.S.), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Thijs C. van Holten
- From the Biomolecular Mass Spectrometry and Proteomics and Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Netherlands Proteomics Centre, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Departments of Clinical Chemistry and Haematology (T.C.v.H., R.T.U., P.G.d.G., M.R.) and Medical Genetics (J.J.v.d.S.), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christian Preisinger
- From the Biomolecular Mass Spectrometry and Proteomics and Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Netherlands Proteomics Centre, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Departments of Clinical Chemistry and Haematology (T.C.v.H., R.T.U., P.G.d.G., M.R.) and Medical Genetics (J.J.v.d.S.), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jasper J. van der Smagt
- From the Biomolecular Mass Spectrometry and Proteomics and Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Netherlands Proteomics Centre, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Departments of Clinical Chemistry and Haematology (T.C.v.H., R.T.U., P.G.d.G., M.R.) and Medical Genetics (J.J.v.d.S.), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Richard W. Farndale
- From the Biomolecular Mass Spectrometry and Proteomics and Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Netherlands Proteomics Centre, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Departments of Clinical Chemistry and Haematology (T.C.v.H., R.T.U., P.G.d.G., M.R.) and Medical Genetics (J.J.v.d.S.), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tjitske Kleefstra
- From the Biomolecular Mass Spectrometry and Proteomics and Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Netherlands Proteomics Centre, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Departments of Clinical Chemistry and Haematology (T.C.v.H., R.T.U., P.G.d.G., M.R.) and Medical Genetics (J.J.v.d.S.), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marjolein H. Willemsen
- From the Biomolecular Mass Spectrometry and Proteomics and Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Netherlands Proteomics Centre, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Departments of Clinical Chemistry and Haematology (T.C.v.H., R.T.U., P.G.d.G., M.R.) and Medical Genetics (J.J.v.d.S.), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rolf T. Urbanus
- From the Biomolecular Mass Spectrometry and Proteomics and Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Netherlands Proteomics Centre, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Departments of Clinical Chemistry and Haematology (T.C.v.H., R.T.U., P.G.d.G., M.R.) and Medical Genetics (J.J.v.d.S.), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Philip G. de Groot
- From the Biomolecular Mass Spectrometry and Proteomics and Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Netherlands Proteomics Centre, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Departments of Clinical Chemistry and Haematology (T.C.v.H., R.T.U., P.G.d.G., M.R.) and Medical Genetics (J.J.v.d.S.), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Albert J.R. Heck
- From the Biomolecular Mass Spectrometry and Proteomics and Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Netherlands Proteomics Centre, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Departments of Clinical Chemistry and Haematology (T.C.v.H., R.T.U., P.G.d.G., M.R.) and Medical Genetics (J.J.v.d.S.), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mark Roest
- From the Biomolecular Mass Spectrometry and Proteomics and Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Netherlands Proteomics Centre, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Departments of Clinical Chemistry and Haematology (T.C.v.H., R.T.U., P.G.d.G., M.R.) and Medical Genetics (J.J.v.d.S.), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Arjen Scholten
- From the Biomolecular Mass Spectrometry and Proteomics and Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Netherlands Proteomics Centre, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Departments of Clinical Chemistry and Haematology (T.C.v.H., R.T.U., P.G.d.G., M.R.) and Medical Genetics (J.J.v.d.S.), University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
43
|
Cosemans JMEM, Angelillo-Scherrer A, Mattheij NJA, Heemskerk JWM. The effects of arterial flow on platelet activation, thrombus growth, and stabilization. Cardiovasc Res 2013; 99:342-52. [PMID: 23667186 DOI: 10.1093/cvr/cvt110] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Injury of an arterial vessel wall acutely triggers a multifaceted process of thrombus formation, which is dictated by the high-shear flow conditions in the artery. In this overview, we describe how the classical concept of arterial thrombus formation and vascular occlusion, driven by platelet activation and fibrin formation, can be extended and fine-tuned. This has become possible because of recent insight into the mechanisms of: (i) platelet-vessel wall and platelet-platelet communication, (ii) autocrine platelet activation, and (iii) platelet-coagulation interactions, in relation to blood flow dynamics. We list over 40 studies with genetically modified mice showing a role of platelet and plasma proteins in the control of thrombus stability after vascular injury. These include multiple platelet adhesive receptors and other junctional molecules, components of the ADP receptor signalling cascade to integrin activation, proteins controlling platelet shape, and autocrine activation processes, as well as multiple plasma proteins binding to platelets and proteins of the intrinsic coagulation cascade. Regulatory roles herein of the endothelium and other blood cells are recapitulated as well. Patient studies support the contribution of platelet- and coagulation activation in the regulation of thrombus stability. Analysis of the factors determining flow-dependent thrombus stabilization and embolus formation in mice will help to understand the regulation of this process in human arterial disease.
Collapse
Affiliation(s)
- Judith M E M Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht , Maastricht University, PO Box 616, Maastricht 6200 MD, The Netherlands
| | | | | | | |
Collapse
|
44
|
Abstract
Small GTPase proteins regulate cytoskeletal dynamics to orchestrate diverse cellular functions in organismal physiology, development and disease. The Rho GTPase family member Rac1 is central to actin-driven processes in a number of cell types, particularly platelets, where Rac1 serves as an essential mediator of lamellipodia formation and thrombus stability. Despite the importance of Rac1 to platelet function, little is known about how Rac1 activity is regulated in platelets. We recently defined the tyrosine-kinase based signaling cascade that activates mTOR to regulate Rac1 activation downstream of platelet integrin and glycoprotein receptors. We demonstrated a critical role for the mTOR-Rac1 axis in regulating platelet spreading, aggregation and aggregate stability under shear. These studies suggest that in addition to cancer and transplant medicine, intervention of the mTOR system may have implications for hemostatic and thrombotic processes as well as immunotherapies and intravascular stent design.
Collapse
Affiliation(s)
- Joseph E Aslan
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR USA.
| | | |
Collapse
|
45
|
Chuang WY, Kung PH, Kuo CY, Wu CC. Sulforaphane prevents human platelet aggregation through inhibiting the phosphatidylinositol 3-kinase/Akt pathway. Thromb Haemost 2013; 109:1120-30. [PMID: 23426129 DOI: 10.1160/th12-09-0636] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 01/23/2013] [Indexed: 01/05/2023]
Abstract
Sulforaphane, a dietary isothiocyanate found in cruciferous vegetables, has been shown to exert beneficial effects in animal models of cardiovascular diseases. However, its effect on platelet aggregation, which is a critical factor in arterial thrombosis, is still unclear. In the present study, we show that sulforaphane inhibited human platelet aggregation caused by different receptor agonists, including collagen, U46619 (a thromboxane A2 mimic), protease-activated receptor 1 agonist peptide (PAR1-AP), and an ADP P2Y12 receptor agonist. Moreover, sulforaphane significantly reduced thrombus formation on a collagen-coated surface under whole blood flow conditions. In exploring the underlying mechanism, we found that sulforaphane specifically prevented phosphatidylinositol 3-kinase (PI3K)/Akt signalling, without markedly affecting other signlaling pathways involved in platelet aggregation, such as protein kinase C activation, calcium mobilisation, and protein tyrosine phosphorylation. Although sulforaphane did not directly inhibit the catalytic activity of PI3K, it caused ubiquitination of the regulatory p85 subunit of PI3K, and prevented PI3K translocation to membranes. In addition, sulforaphane caused ubiquitination and degradation of phosphoinositide-dependent kinase 1 (PDK1), which is required for Akt activation. Therefore, sulforaphane is able to inhibit the PI3K/Akt pathway at two distinct sites. In conclusion, we have demonstrated that sulforaphane prevented platelet aggregation and reduced thrombus formation in flow conditions; our data also support that the inhibition of the PI3K/Akt pathway by sulforaphane contributes it antiplatelet effects.
Collapse
Affiliation(s)
- Wen-Ying Chuang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | |
Collapse
|
46
|
Israels SJ, Rand ML. What we have learned from inherited platelet disorders. Pediatr Blood Cancer 2013; 60 Suppl 1:S2-7. [PMID: 23109117 DOI: 10.1002/pbc.24345] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 08/30/2012] [Indexed: 11/09/2022]
Abstract
Identifying the molecular basis of inherited platelet disorders has contributed to our understanding of normal platelet physiology. Many of these conditions are rare, but close observation of clinical and laboratory phenotype, and subsequent identification of the abnormal protein and mutated gene, have provided us with unique opportunities to examine specific aspects of platelet biogenesis and function. Phenotype-genotype association studies are providing a detailed understanding of the structure and function of platelet membrane receptors, the biogenesis and release of platelet granules, and the assembly of the cytoskeleton. Genetic polymorphisms contributing to decreased or increased platelet adhesion and activation may translate into increased clinical risks for bleeding or thrombosis. More recently, genome wide association studies have identified new genes contributing to the variation in normal platelet function.
Collapse
Affiliation(s)
- Sara J Israels
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | |
Collapse
|
47
|
Abstract
Hemostasis encompasses the tightly regulated processes of blood clotting, platelet activation, and vascular repair. After wounding, the hemostatic system engages a plethora of vascular and extravascular receptors that act in concert with blood components to seal off the damage inflicted to the vasculature and the surrounding tissue. The first important component that contributes to hemostasis is the coagulation system, while the second important component starts with platelet activation, which not only contributes to the hemostatic plug, but also accelerates the coagulation system. Eventually, coagulation and platelet activation are switched off by blood-borne inhibitors and proteolytic feedback loops. This review summarizes new concepts of activation of proteases that regulate coagulation and anticoagulation, to give rise to transient thrombin generation and fibrin clot formation. It further speculates on the (patho)physiological roles of intra- and extravascular receptors that operate in response to these proteases. Furthermore, this review provides a new framework for understanding how signaling and adhesive interactions between endothelial cells, leukocytes, and platelets can regulate thrombus formation and modulate the coagulation process. Now that the key molecular players of coagulation and platelet activation have become clear, and their complex interactions with the vessel wall have been mapped out, we can also better speculate on the causes of thrombosis-related angiopathies.
Collapse
Affiliation(s)
- Henri H. Versteeg
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; and Department of Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Johan W. M. Heemskerk
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; and Department of Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Marcel Levi
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; and Department of Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Pieter H. Reitsma
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; and Department of Medicine, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
48
|
Mendes-Silverio CB, Leiria LOS, Morganti RP, Anhê GF, Marcondes S, Mónica FZ, De Nucci G, Antunes E. Activation of haem-oxidized soluble guanylyl cyclase with BAY 60-2770 in human platelets lead to overstimulation of the cyclic GMP signaling pathway. PLoS One 2012; 7:e47223. [PMID: 23144808 PMCID: PMC3493568 DOI: 10.1371/journal.pone.0047223] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 09/12/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND AND AIMS Nitric oxide-independent soluble guanylyl cyclase (sGC) activators reactivate the haem-oxidized enzyme in vascular diseases. This study was undertaken to investigate the anti-platelet mechanisms of the haem-independent sGC activator BAY 60-2770 in human washed platelets. The hypothesis that sGC oxidation potentiates the anti-platelet activities of BAY 60-2770 has been tested. METHODS Human washed platelet aggregation and adhesion assays, as well as flow cytometry for α(IIb)β(3) integrin activation and Western blot for α1 and β1 sGC subunits were performed. Intracellular calcium levels were monitored in platelets loaded with a fluorogenic calcium-binding dye (FluoForte). RESULTS BAY 60-2770 (0.001-10 µM) produced significant inhibition of collagen (2 µg/ml)- and thrombin (0.1 U/ml)-induced platelet aggregation that was markedly potentiated by the sGC inhibitor ODQ (10 µM). In fibrinogen-coated plates, BAY 60-2770 significantly inhibited platelet adhesion, an effect potentiated by ODQ. BAY 60-2770 increased the cGMP levels and reduced the intracellular Ca(2+) levels, both of which were potentiated by ODQ. The cell-permeable cGMP analogue 8-Br-cGMP (100 µM) inhibited platelet aggregation and Ca(2+) levels in an ODQ-insensitive manner. The cAMP levels remained unchanged by BAY 60-2770. Collagen- and thrombin-induced α(IIb)β(3) activation was markedly inhibited by BAY 60-2770 that was further inhibited by ODQ. The effects of sodium nitroprusside (3 µM) were all prevented by ODQ. Incubation with ODQ (10 µM) significantly reduced the protein levels of α1 and β1 sGC subunits, which were prevented by BAY 60-2770. CONCLUSION The inhibitory effects of BAY 60-2770 on aggregation, adhesion, intracellular Ca(2+) levels and α(IIb)β(3) activation are all potentiated in haem-oxidizing conditions. BAY 60-2770 prevents ODQ-induced decrease in sGC protein levels. BAY 60-2770 could be of therapeutic interest in cardiovascular diseases associated with thrombotic complications.
Collapse
Affiliation(s)
- Camila B. Mendes-Silverio
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Luiz O. S. Leiria
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Rafael P. Morganti
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Gabriel F. Anhê
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Sisi Marcondes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Fabíola Z. Mónica
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Gilberto De Nucci
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), São Paulo, Brazil
- * E-mail:
| |
Collapse
|
49
|
Gleim S, Stitham J, Tang WH, Martin KA, Hwa J. An eicosanoid-centric view of atherothrombotic risk factors. Cell Mol Life Sci 2012; 69:3361-80. [PMID: 22491820 PMCID: PMC3691514 DOI: 10.1007/s00018-012-0982-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 03/22/2012] [Accepted: 03/26/2012] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease is the foremost cause of morbidity and mortality in the Western world. Atherosclerosis followed by thrombosis (atherothrombosis) is the pathological process underlying most myocardial, cerebral, and peripheral vascular events. Atherothrombosis is a complex and heterogeneous inflammatory process that involves interactions between many cell types (including vascular smooth muscle cells, endothelial cells, macrophages, and platelets) and processes (including migration, proliferation, and activation). Despite a wealth of knowledge from many recent studies using knockout mouse and human genetic studies (GWAS and candidate approach) identifying genes and proteins directly involved in these processes, traditional cardiovascular risk factors (hyperlipidemia, hypertension, smoking, diabetes mellitus, sex, and age) remain the most useful predictor of disease. Eicosanoids (20 carbon polyunsaturated fatty acid derivatives of arachidonic acid and other essential fatty acids) are emerging as important regulators of cardiovascular disease processes. Drugs indirectly modulating these signals, including COX-1/COX-2 inhibitors, have proven to play major roles in the atherothrombotic process. However, the complexity of their roles and regulation by opposing eicosanoid signaling, have contributed to the lack of therapies directed at the eicosanoid receptors themselves. This is likely to change, as our understanding of the structure, signaling, and function of the eicosanoid receptors improves. Indeed, a major advance is emerging from the characterization of dysfunctional naturally occurring mutations of the eicosanoid receptors. In light of the proven and continuing importance of risk factors, we have elected to focus on the relationship between eicosanoids and cardiovascular risk factors.
Collapse
Affiliation(s)
- Scott Gleim
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511
| | - Jeremiah Stitham
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511
| | - Wai Ho Tang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511
| | - Kathleen A. Martin
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511
| |
Collapse
|
50
|
Abstract
During thrombotic or hemostatic episodes, platelets bind collagen and release ADP and thromboxane A(2), recruiting additional platelets to a growing deposit that distorts the flow field. Prediction of clotting function under hemodynamic conditions for a patient's platelet phenotype remains a challenge. A platelet signaling phenotype was obtained for 3 healthy donors using pairwise agonist scanning, in which calcium dye-loaded platelets were exposed to pairwise combinations of ADP, U46619, and convulxin to activate the P2Y(1)/P2Y(12), TP, and GPVI receptors, respectively, with and without the prostacyclin receptor agonist iloprost. A neural network model was trained on each donor's pairwise agonist scanning experiment and then embedded into a multiscale Monte Carlo simulation of donor-specific platelet deposition under flow. The simulations were compared directly with microfluidic experiments of whole blood flowing over collagen at 200 and 1000/s wall shear rate. The simulations predicted the ranked order of drug sensitivity for indomethacin, aspirin, MRS-2179 (a P2Y(1) inhibitor), and iloprost. Consistent with measurement and simulation, one donor displayed larger clots and another presented with indomethacin resistance (revealing a novel heterozygote TP-V241G mutation). In silico representations of a subject's platelet phenotype allowed prediction of blood function under flow, essential for identifying patient-specific risks, drug responses, and novel genotypes.
Collapse
|