1
|
Farley SJ, Grishok A, Zeldich E. Shaking up the silence: consequences of HMGN1 antagonizing PRC2 in the Down syndrome brain. Epigenetics Chromatin 2022; 15:39. [PMID: 36463299 PMCID: PMC9719135 DOI: 10.1186/s13072-022-00471-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/11/2022] [Indexed: 12/04/2022] Open
Abstract
Intellectual disability is a well-known hallmark of Down Syndrome (DS) that results from the triplication of the critical region of human chromosome 21 (HSA21). Major studies were conducted in recent years to gain an understanding about the contribution of individual triplicated genes to DS-related brain pathology. Global transcriptomic alterations and widespread changes in the establishment of neural lineages, as well as their differentiation and functional maturity, suggest genome-wide chromatin organization alterations in trisomy. High Mobility Group Nucleosome Binding Domain 1 (HMGN1), expressed from HSA21, is a chromatin remodeling protein that facilitates chromatin decompaction and is associated with acetylated lysine 27 on histone H3 (H3K27ac), a mark correlated with active transcription. Recent studies causatively linked overexpression of HMGN1 in trisomy and the development of DS-associated B cell acute lymphoblastic leukemia (B-ALL). HMGN1 has been shown to antagonize the activity of the Polycomb Repressive Complex 2 (PRC2) and prevent the deposition of histone H3 lysine 27 trimethylation mark (H3K27me3), which is associated with transcriptional repression and gene silencing. However, the possible ramifications of the increased levels of HMGN1 through the derepression of PRC2 target genes on brain cell pathology have not gained attention. In this review, we discuss the functional significance of HMGN1 in brain development and summarize accumulating reports about the essential role of PRC2 in the development of the neural system. Mechanistic understanding of how overexpression of HMGN1 may contribute to aberrant brain cell phenotypes in DS, such as altered proliferation of neural progenitors, abnormal cortical architecture, diminished myelination, neurodegeneration, and Alzheimer's disease-related pathology in trisomy 21, will facilitate the development of DS therapeutic approaches targeting chromatin.
Collapse
Affiliation(s)
- Sean J. Farley
- grid.189504.10000 0004 1936 7558Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
| | - Alla Grishok
- grid.189504.10000 0004 1936 7558Department of Biochemistry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA ,grid.189504.10000 0004 1936 7558Boston University Genome Science Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
| | - Ella Zeldich
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
2
|
Risgaard KA, Sorci IA, Mohan S, Bhattacharyya A. Meta-Analysis of Down Syndrome Cortical Development Reveals Underdeveloped State of the Science. Front Cell Neurosci 2022; 16:915272. [PMID: 35769326 PMCID: PMC9234119 DOI: 10.3389/fncel.2022.915272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/20/2022] [Indexed: 11/27/2022] Open
Abstract
Neurodevelopmental impairment contributes to the hallmark cognitive disability in individuals with Down syndrome (DS, trisomy 21, T21). The appearance of cognitive deficits in infancy suggests that alterations emerge during the earliest stages of neural development and continue throughout the lifespan in DS. Neural correlates of intellectual and language function include cortical structures, specifically temporal and frontal lobes that are smaller in DS. Yet, despite increased understanding of the DS cognitive-behavioral phenotype in childhood, there is very little structural and histological information to help explain the deficits. Consequently, attempts to effectively design therapeutic targets or interventions are limited. We present a systematic review of published research on cortical development in DS that reveals a paucity of studies that rigorously identify cellular features that may underlie the gross morphological deficits of the developing DS brain. We assessed 115 published reports retrieved through PubMed and other sources and found that only 23 reported histological and/or immunohistochemical data to define cell composition affected in DS post-mortem brain. Further, our analysis reveals that many reports have limited samples sizes and few DS samples, making it difficult to draw conclusions that are generally applicable to the DS population. Thus, the lack of replication and limited number of studies indicate that more developmentally focused research, ideally using equal numbers of age-matched samples in analyses, is needed to elucidate the cellular nature of smaller brain size in DS.
Collapse
Affiliation(s)
| | - Isabella A. Sorci
- Waisman Center, University of Wisconsin—Madison, Madison, WI, United States
| | - Sruti Mohan
- Waisman Center, University of Wisconsin—Madison, Madison, WI, United States
| | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin—Madison, Madison, WI, United States
- Department of Cell and Regenerative Biology, School of Medicine and Pubic Health, University of Wisconsin—Madison, Madison, WI, United States
- *Correspondence: Anita Bhattacharyya
| |
Collapse
|
3
|
A reassessment of Jackson's checklist and identification of two Down syndrome sub-phenotypes. Sci Rep 2022; 12:3104. [PMID: 35210468 PMCID: PMC8873406 DOI: 10.1038/s41598-022-06984-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 02/10/2022] [Indexed: 11/08/2022] Open
Abstract
Down syndrome (DS) is characterised by several clinical features including intellectual disability (ID) and craniofacial dysmorphisms. In 1976, Jackson and coll. identified a checklist of signs for clinical diagnosis of DS; the utility of these checklists in improving the accuracy of clinical diagnosis has been recently reaffirmed, but they have rarely been revised. The purpose of this work is to reassess the characteristic phenotypic signs and their frequencies in 233 DS subjects, following Jackson's checklist. 63.77% of the subjects showed more than 12 signs while none showed less than 5, confirming the effectiveness of Jackson's checklist for the clinical diagnosis of DS. An association between three phenotypic signs emerged, allowing us to distinguish two sub-phenotypes: Brachycephaly, short and broad Hands, short Neck (BHN), which is more frequent, and "non-BHN". The strong association of these signs might be interpreted in the context of the growth defects observed in DS children suggesting decreased cell proliferation. Lastly, cognitive assessments were investigated for 114 subjects. The lack of association between the presence of a physical sign or the number of signs present in a subject and cognitive skills disproves the stereotype that physical characteristics are predictive of degree of ID.
Collapse
|
4
|
Fernández-Blanco Á, Dierssen M. Rethinking Intellectual Disability from Neuro- to Astro-Pathology. Int J Mol Sci 2020; 21:E9039. [PMID: 33261169 PMCID: PMC7730506 DOI: 10.3390/ijms21239039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/26/2022] Open
Abstract
Neurodevelopmental disorders arise from genetic and/or from environmental factors and are characterized by different degrees of intellectual disability. The mechanisms that govern important processes sustaining learning and memory, which are severely affected in intellectual disability, have classically been thought to be exclusively under neuronal control. However, this vision has recently evolved into a more integrative conception in which astroglia, rather than just acting as metabolic supply and structural anchoring for neurons, interact at distinct levels modulating neuronal communication and possibly also cognitive processes. Recently, genetic tools have made it possible to specifically manipulate astrocyte activity unraveling novel functions that involve astrocytes in memory function in the healthy brain. However, astrocyte manipulation has also underscored potential mechanisms by which dysfunctional astrocytes could contribute to memory deficits in several neurodevelopmental disorders revealing new pathogenic mechanisms in intellectual disability. Here, we review the current knowledge about astrocyte dysfunction that might contribute to learning and memory impairment in neurodevelopmental disorders, with special focus on Fragile X syndrome and Down syndrome.
Collapse
Affiliation(s)
- Álvaro Fernández-Blanco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain;
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain;
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| |
Collapse
|
5
|
Martínez-Cué C, Rueda N. Cellular Senescence in Neurodegenerative Diseases. Front Cell Neurosci 2020; 14:16. [PMID: 32116562 PMCID: PMC7026683 DOI: 10.3389/fncel.2020.00016] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/21/2020] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a homeostatic biological process characterized by a permanent state of cell cycle arrest that can contribute to the decline of the regenerative potential and function of tissues. The increased presence of senescent cells in different neurodegenerative diseases suggests the contribution of senescence in the pathophysiology of these disorders. Although several factors can induce senescence, DNA damage, oxidative stress, neuroinflammation, and altered proteostasis have been shown to play a role in its onset. Oxidative stress contributes to accelerated aging and cognitive dysfunction stages affecting neurogenesis, neuronal differentiation, connectivity, and survival. During later life stages, it is implicated in the progression of cognitive decline, synapse loss, and neuronal degeneration. Also, neuroinflammation exacerbates oxidative stress, synaptic dysfunction, and neuronal death through the harmful effects of pro-inflammatory cytokines on cell proliferation and maturation. Both oxidative stress and neuroinflammation can induce DNA damage and alterations in DNA repair that, in turn, can exacerbate them. Another important feature associated with senescence is altered proteostasis. Because of the disruption in the function and balance of the proteome, senescence can modify the proper synthesis, folding, quality control, and degradation rate of proteins producing, in some diseases, misfolded proteins or aggregation of abnormal proteins. There is an extensive body of literature that associates cellular senescence with several neurodegenerative disorders including Alzheimer’s disease (AD), Down syndrome (DS), and Parkinson’s disease (PD). This review summarizes the evidence of the shared neuropathological events in these neurodegenerative diseases and the implication of cellular senescence in their onset or aggravation. Understanding the role that cellular senescence plays in them could help to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Carmen Martínez-Cué
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Noemí Rueda
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| |
Collapse
|
6
|
Increased DNA Damage and Apoptosis in CDKL5-Deficient Neurons. Mol Neurobiol 2020; 57:2244-2262. [PMID: 32002787 DOI: 10.1007/s12035-020-01884-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/20/2020] [Indexed: 12/15/2022]
Abstract
Mutations in the CDKL5 gene, which encodes a serine/threonine kinase, causes a rare encephalopathy, characterized by early-onset epilepsy and severe intellectual disability, named CDKL5 deficiency disorder (CDD). In vitro and in vivo studies in mouse models of Cdkl5 deficiency have highlighted the role of CDKL5 in brain development and, in particular, in the morphogenesis and synaptic connectivity of hippocampal and cortical neurons. Interestingly, Cdkl5 deficiency in mice increases vulnerability to excitotoxic stress in hippocampal neurons. However, the mechanism by which CDKL5 controls neuronal survival is far from being understood. To investigate further the function of CDKL5 and dissect the molecular mechanisms underlying neuronal survival, we generated a human neuronal model of CDKL5 deficiency, using CRISPR/Cas9-mediated genome editing. We demonstrated that CDKL5 deletion in human neuroblastoma SH-SY5Y cells not only impairs neuronal maturation but also reduces cell proliferation and survival, with alterations in the AKT and ERK signaling pathways and an increase in the proapoptotic BAX protein and in DNA damage-associated biomarkers (i.e., γH2AX, RAD50, and PARP1). Furthermore, CDKL5-deficient cells were hypersensitive to DNA damage-associated stress, accumulated more DNA damage foci (γH2AX positive) and were more prone to cell death than the controls. Importantly, increased kainic acid-induced cell death of hippocampal neurons of Cdkl5 KO mice correlated with an increased γH2AX immunostaining. The results suggest a previously unknown role for CDKL5 in DNA damage response that could underlie the pro-survival function of CDKL5.
Collapse
|
7
|
Nawa N, Hirata K, Kawatani K, Nambara T, Omori S, Banno K, Kokubu C, Takeda J, Nishimura K, Ohtaka M, Nakanishi M, Okuzaki D, Taniguchi H, Arahori H, Wada K, Kitabatake Y, Ozono K. Elimination of protein aggregates prevents premature senescence in human trisomy 21 fibroblasts. PLoS One 2019; 14:e0219592. [PMID: 31356639 PMCID: PMC6663065 DOI: 10.1371/journal.pone.0219592] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 06/27/2019] [Indexed: 12/12/2022] Open
Abstract
Chromosome abnormalities induces profound alterations in gene expression, leading to various disease phenotypes. Recent studies on yeast and mammalian cells have demonstrated that aneuploidy exerts detrimental effects on organismal growth and development, regardless of the karyotype, suggesting that aneuploidy-associated stress plays an important role in disease pathogenesis. However, whether and how this effect alters cellular homeostasis and long-term features of human disease are not fully understood. Here, we aimed to investigate cellular stress responses in human trisomy syndromes, using fibroblasts and induced pluripotent stem cells (iPSCs). Dermal fibroblasts derived from patients with trisomy 21, 18 and 13 showed a severe impairment of cell proliferation and enhanced premature senescence. These phenomena were accompanied by perturbation of protein homeostasis, leading to the accumulation of protein aggregates. We found that treatment with sodium 4-phenylbutyrate (4-PBA), a chemical chaperone, decreased the protein aggregates in trisomy fibroblasts. Notably, 4-PBA treatment successfully prevented the progression of premature senescence in secondary fibroblasts derived from trisomy 21 iPSCs. Our study reveals aneuploidy-associated stress as a potential therapeutic target for human trisomies, including Down syndrome.
Collapse
Affiliation(s)
- Nobutoshi Nawa
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Katsuya Hirata
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Neonatal Medicine, Osaka Women’s and Children’s Hospital, Izumi, Osaka, Japan
| | - Keiji Kawatani
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Toshihiko Nambara
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Sayaka Omori
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kimihiko Banno
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Chikara Kokubu
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Junji Takeda
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Ken Nishimura
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Manami Ohtaka
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Mahito Nakanishi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Hidetoshi Taniguchi
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hitomi Arahori
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kazuko Wada
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Neonatal Medicine, Osaka Women’s and Children’s Hospital, Izumi, Osaka, Japan
| | - Yasuji Kitabatake
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- * E-mail:
| | - Keiichi Ozono
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
8
|
Duval N, Vacano GN, Patterson D. Rapamycin Treatment Ameliorates Age-Related Accumulation of Toxic Metabolic Intermediates in Brains of the Ts65Dn Mouse Model of Down Syndrome and Aging. Front Aging Neurosci 2018; 10:263. [PMID: 30237765 PMCID: PMC6135881 DOI: 10.3389/fnagi.2018.00263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/14/2018] [Indexed: 01/22/2023] Open
Abstract
Down syndrome (DS), caused by trisomy of chromosome 21, is the most common genetic cause of intellectual disability. Individuals with DS exhibit changes in neurochemistry and neuroanatomy that worsen with age, neurological delay in learning and memory, and predisposition to Alzheimer's disease. The Ts65Dn mouse is the best characterized model of DS and has many features reminiscent of DS, including developmental anomalies and age-related neurodegeneration. The mouse carries a partial triplication of mouse chromosome 16 containing roughly 100 genes syntenic to human chromosome 21 genes. We hypothesized that there would be differences in brain metabolites with trisomy and age, and that long-term treatment with rapamycin, mechanistic target of rapamycin (mTOR) inhibitor and immunosuppressant, would correct these differences. Using HPLC coupled with electrochemical detection, we identified differences in levels of metabolites involved in dopaminergic, serotonergic, and kynurenine pathways in trisomic mice that are exacerbated with age. These include homovanillic acid, norepinephrine, and kynurenine. In addition, we demonstrate that prolonged treatment with rapamycin reduces accumulation of toxic metabolites (such as 6-hydroxymelatonin and 3-hydroxykynurenine) in aged mice.
Collapse
Affiliation(s)
- Nathan Duval
- Department of Biological Sciences, Knoebel Institute for Healthy Aging, and Eleanor Roosevelt Institute, University of Denver, Denver, CO, United States
| | | | | |
Collapse
|
9
|
Ahmed AA, Smoczer C, Pace B, Patterson D, Cress Cabelof D. Loss of DNA polymerase β induces cellular senescence. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:603-612. [PMID: 29968395 PMCID: PMC6203593 DOI: 10.1002/em.22206] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/28/2018] [Accepted: 04/30/2018] [Indexed: 06/01/2023]
Abstract
We aim to establish that accelerated aging and premature cellular senescence seen in individuals with Down syndrome is related to reduced DNA polymeraseβ. We report here that primary fibroblasts from Down syndrome individuals exhibit greater SA-β-gal staining (fourfold increase, P < 0.001), increased p16 transcript abundance (threefold increase, P < 0.01), and reduced HMGB1 nuclear localization (1.5-fold lower, P < 0.01). We also find that DNA polymerase β expression is significantly reduced in Down syndrome primary fibroblasts (53% decline, P < 0.01). To evaluate whether DNA polymerase β might be causative in senescence induction, we evaluated the impact of murine DNA polymerase β nullizygosity on senescence. We find that unexposed DNA polymerase β -null primary fibroblasts exhibit a robust increase in the number of senescent cells compared to wild-type (11-fold, P < 0.001), demonstrating that loss DNA polymerase β is sufficient to induce senescence. We also see an additional increase in response to hydroxyurea (threefold greater than WT-HU, P < 0.05). These data demonstrate that loss of DNA polymerase β is sufficient to induce senescence. Additionally, we report a significant induction in spontaneous DNA double strand breaks in DNA polymerase β null MEFs (fivefold increase from wild-type, P < 0.0001). Our findings strongly suggest that DNA polymerase β is causative in senescence induction, reasonably pointing to DNA polymerase β as a likely factor driving the premature senescence in Down syndrome. Environ. Mol. Mutagen. 59:603-612, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Aqila A. Ahmed
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI, United States
| | - Cristine Smoczer
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI, United States
| | - Brianna Pace
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI, United States
| | - David Patterson
- Eleanor Roosevelt Institute, University of Denver, Denver, Colorado, United States
- Knoebel Institute for Healthy Aging and Department of Biological Sciences, University of Denver, Denver, Colorado, United States
| | - Diane Cress Cabelof
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI, United States
| |
Collapse
|
10
|
Macedo JC, Vaz S, Bakker B, Ribeiro R, Bakker PL, Escandell JM, Ferreira MG, Medema R, Foijer F, Logarinho E. FoxM1 repression during human aging leads to mitotic decline and aneuploidy-driven full senescence. Nat Commun 2018; 9:2834. [PMID: 30026603 PMCID: PMC6053425 DOI: 10.1038/s41467-018-05258-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 06/22/2018] [Indexed: 12/20/2022] Open
Abstract
Aneuploidy, an abnormal chromosome number, has been linked to aging and age-associated diseases, but the underlying molecular mechanisms remain unknown. Here we show, through direct live-cell imaging of young, middle-aged, and old-aged primary human dermal fibroblasts, that aneuploidy increases with aging due to general dysfunction of the mitotic machinery. Increased chromosome mis-segregation in elderly mitotic cells correlates with an early senescence-associated secretory phenotype (SASP) and repression of Forkhead box M1 (FoxM1), the transcription factor that drives G2/M gene expression. FoxM1 induction in elderly and Hutchison–Gilford progeria syndrome fibroblasts prevents aneuploidy and, importantly, ameliorates cellular aging phenotypes. Moreover, we show that senescent fibroblasts isolated from elderly donors’ cultures are often aneuploid, and that aneuploidy is a key trigger into full senescence phenotypes. Based on this feedback loop between cellular aging and aneuploidy, we propose modulation of mitotic efficiency through FoxM1 as a potential strategy against aging and progeria syndromes. Evidence for mitotic decline in aged cells and for aneuploidy-driven progression into full senescence is limited. Here, the authors find that in aged cells, mitotic gene repression leads to increased chromosome mis-segregation and aneuploidy that triggers permanent cell cycle arrest and full senescence.
Collapse
Affiliation(s)
- Joana Catarina Macedo
- Aging and Aneuploidy Laboratory, IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal.,i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Sara Vaz
- Aging and Aneuploidy Laboratory, IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal.,i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Bjorn Bakker
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Center Groningen, NL-9713 AV, Groningen, The Netherlands
| | - Rui Ribeiro
- Aging and Aneuploidy Laboratory, IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal.,i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Petra Lammigje Bakker
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Center Groningen, NL-9713 AV, Groningen, The Netherlands
| | - Jose Miguel Escandell
- Telomere and Genome Stability Laboratory, Instituto Gulbenkian de Ciência, 2781-901, Oeiras, Portugal
| | - Miguel Godinho Ferreira
- Telomere and Genome Stability Laboratory, Instituto Gulbenkian de Ciência, 2781-901, Oeiras, Portugal.,Telomere Shortening and Cancer Laboratory, Institute for Research on Cancer and Aging (IRCAN), UMR7284, U1081, UNS, 06107, Nice, France
| | - René Medema
- Division of Cell Biology and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Center Groningen, NL-9713 AV, Groningen, The Netherlands
| | - Elsa Logarinho
- Aging and Aneuploidy Laboratory, IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal. .,i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal. .,Cell Division Unit, Faculty of Medicine, Department of Experimental Biology, Universidade do Porto, 4200-319, Porto, Portugal.
| |
Collapse
|
11
|
Aziz NM, Guedj F, Pennings JLA, Olmos-Serrano JL, Siegel A, Haydar TF, Bianchi DW. Lifespan analysis of brain development, gene expression and behavioral phenotypes in the Ts1Cje, Ts65Dn and Dp(16)1/Yey mouse models of Down syndrome. Dis Model Mech 2018; 11:dmm031013. [PMID: 29716957 PMCID: PMC6031353 DOI: 10.1242/dmm.031013] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 04/23/2018] [Indexed: 12/26/2022] Open
Abstract
Down syndrome (DS) results from triplication of human chromosome 21. Neuropathological hallmarks of DS include atypical central nervous system development that manifests prenatally and extends throughout life. As a result, individuals with DS exhibit cognitive and motor deficits, and have delays in achieving developmental milestones. To determine whether different mouse models of DS recapitulate the human prenatal and postnatal phenotypes, here, we directly compared brain histogenesis, gene expression and behavior over the lifespan of three cytogenetically distinct mouse models of DS: Ts1Cje, Ts65Dn and Dp(16)1/Yey. Histological data indicated that Ts65Dn mice were the most consistently affected with respect to somatic growth, neurogenesis and brain morphogenesis. Embryonic and adult gene expression results showed that Ts1Cje and Ts65Dn brains had considerably more differentially expressed (DEX) genes compared with Dp(16)1/Yey mice, despite the larger number of triplicated genes in the latter model. In addition, DEX genes showed little overlap in identity and chromosomal distribution in the three models, leading to dissimilarities in affected functional pathways. Perinatal and adult behavioral testing also highlighted differences among the models in their abilities to achieve various developmental milestones and perform hippocampal- and motor-based tasks. Interestingly, Dp(16)1/Yey mice showed no abnormalities in prenatal brain phenotypes, yet they manifested behavioral deficits starting at postnatal day 15 that continued through adulthood. In contrast, Ts1Cje mice showed mildly abnormal embryonic brain phenotypes, but only select behavioral deficits as neonates and adults. Altogether, our data showed widespread and unexpected fundamental differences in behavioral, gene expression and brain development phenotypes between these three mouse models. Our findings illustrate unique limitations of each model when studying aspects of brain development and function in DS. This work helps to inform model selection in future studies investigating how observed neurodevelopmental abnormalities arise, how they contribute to cognitive impairment, and when testing therapeutic molecules to ameliorate the intellectual disability associated with DS.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Nadine M Aziz
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Faycal Guedj
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeroen L A Pennings
- Center for Health Protection, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
| | - Jose Luis Olmos-Serrano
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ashley Siegel
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tarik F Haydar
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Diana W Bianchi
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
12
|
Dang T, Duan WY, Yu B, Tong DL, Cheng C, Zhang YF, Wu W, Ye K, Zhang WX, Wu M, Wu BB, An Y, Qiu ZL, Wu BL. Autism-associated Dyrk1a truncation mutants impair neuronal dendritic and spine growth and interfere with postnatal cortical development. Mol Psychiatry 2018; 23:747-758. [PMID: 28167836 PMCID: PMC5822466 DOI: 10.1038/mp.2016.253] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 10/07/2016] [Accepted: 10/17/2016] [Indexed: 11/30/2022]
Abstract
Autism is a prevailing neurodevelopmental disorder with a large genetic/genomic component. Recently, the dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1 A (DYRK1A) gene was implicated as a risk factor for autism spectrum disorder (ASD). We identified five DYRK1A variants in ASD patients and found that the dose of DYRK1A protein has a crucial role in various aspects of postnatal neural development. Dyrk1a loss of function and gain of function led to defects in dendritic growth, dendritic spine development and radial migration during cortical development. Importantly, two autism-associated truncations, R205X and E239X, were shown to be Dyrk1a loss-of-function mutants. Studies of the truncated Dyrk1a mutants may provide new insights into the role of Dyrk1a in brain development, as well as the role of Dyrk1a loss of function in the pathophysiology of autism.
Collapse
Affiliation(s)
- T Dang
- Children’s Hospital of Fudan University and Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China
| | - W Y Duan
- Exome Sequencing Collaboration at Boston Children’s Hospital and Institute of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - B Yu
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - D L Tong
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - C Cheng
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Y F Zhang
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - W Wu
- Exome Sequencing Collaboration at Boston Children’s Hospital and Institute of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - K Ye
- Exome Sequencing Collaboration at Boston Children’s Hospital and Institute of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - W X Zhang
- Exome Sequencing Collaboration at Boston Children’s Hospital and Institute of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - M Wu
- Children’s Hospital of Fudan University and Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China
- Exome Sequencing Collaboration at Boston Children’s Hospital and Institute of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - B B Wu
- Children’s Hospital of Fudan University and Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China
- Exome Sequencing Collaboration at Boston Children’s Hospital and Institute of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Y An
- Children’s Hospital of Fudan University and Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China
- Exome Sequencing Collaboration at Boston Children’s Hospital and Institute of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Z L Qiu
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - B L Wu
- Children’s Hospital of Fudan University and Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China
- Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Colvin KL, Yeager ME. What people with Down Syndrome can teach us about cardiopulmonary disease. Eur Respir Rev 2017; 26:26/143/160098. [DOI: 10.1183/16000617.0098-2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/13/2016] [Indexed: 12/19/2022] Open
Abstract
Down syndrome is the most common chromosomal abnormality among live-born infants. Through full or partial trisomy of chromosome 21, Down syndrome is associated with cognitive impairment, congenital malformations (particularly cardiovascular) and dysmorphic features. Immune disturbances in Down syndrome account for an enormous disease burden ranging from quality-of-life issues (autoimmune alopecia) to more serious health issues (autoimmune thyroiditis) and life-threatening issues (leukaemia, respiratory tract infections and pulmonary hypertension). Cardiovascular and pulmonary diseases account for ∼75% of the mortality seen in persons with Down syndrome. This review summarises the cardiovascular, respiratory and immune challenges faced by individuals with Down syndrome, and the genetic underpinnings of their pathobiology. We strongly advocate increased comparative studies of cardiopulmonary disease in persons with and without Down syndrome, as we believe these will lead to new strategies to prevent and treat diseases affecting millions of people worldwide.
Collapse
|
14
|
Tramutola A, Pupo G, Di Domenico F, Barone E, Arena A, Lanzillotta C, Brokeaart D, Blarzino C, Head E, Butterfield DA, Perluigi M. Activation of p53 in Down Syndrome and in the Ts65Dn Mouse Brain is Associated with a Pro-Apoptotic Phenotype. J Alzheimers Dis 2017; 52:359-371. [PMID: 26967221 DOI: 10.3233/jad-151105] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Down syndrome (DS) is the most common genetic cause of intellectual disability, resulting from trisomy of chromosome 21. The main feature of DS neuropathology includes early onset of Alzheimer's disease (AD), with deposition of senile plaques and tangles. We hypothesized that apoptosis may be activated in the presence of AD neuropathology in DS, thus we measured proteins associated with upstream and downstream pathways of p53 in the frontal cortex from DS cases with and without AD pathology and from Ts65Dn mice, at different ages. We observed increased acetylation and phosphorylation of p53, coupled to reduced MDM2/p53 complex level and lower levels of SIRT1. Activation of p53 was associated with a number of targets (BAX, PARP1, caspase-3, p21, heat shock proteins, and PGC1α) that were modulated in both DS and DS/AD compared with age-matched controls. In particular, the most relevant changes (increased p-p53 and acetyl-p53 and reduced formation of MDM2/p53 complex) were found to be modified only in the presence of AD pathology in DS. In addition, a similar pattern of alterations in the p53 pathway was found in Ts65Dn mice. These results suggest that p53 may integrate different signals, which can result in a pro-apoptotic-phenotype contributing to AD neuropathology in people with DS.
Collapse
Affiliation(s)
| | - Gilda Pupo
- Department of Biochemical Sciences, Sapienza University of Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences, Sapienza University of Rome, Italy
| | - Eugenio Barone
- Department of Biochemical Sciences, Sapienza University of Rome, Italy.,Universidad Autónoma de Chile, Instituto de Ciencias Biomédicas, Facultad de Salud, Providencia, Santiago, Chile
| | - Andrea Arena
- Department of Biochemical Sciences, Sapienza University of Rome, Italy
| | | | | | - Carla Blarzino
- Department of Biochemical Sciences, Sapienza University of Rome, Italy
| | - Elizabeth Head
- Sanders-Brown Center of Aging, University of Kentucky, Lexington KY, USA
| | - D Allan Butterfield
- Sanders-Brown Center of Aging, University of Kentucky, Lexington KY, USA.,Department of Chemistry, University of Kentucky, Lexington KY, USA
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, Italy
| |
Collapse
|
15
|
Necchi D, Pinto A, Tillhon M, Dutto I, Serafini MM, Lanni C, Govoni S, Racchi M, Prosperi E. Defective DNA repair and increased chromatin binding of DNA repair factors in Down syndrome fibroblasts. Mutat Res 2015; 780:15-23. [PMID: 26258283 DOI: 10.1016/j.mrfmmm.2015.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 06/13/2015] [Accepted: 07/23/2015] [Indexed: 10/23/2022]
Abstract
Down syndrome (DS) is characterized by genetic instability, neurodegeneration, and premature aging. However, the molecular mechanisms leading to this phenotype are not yet well understood. Here, we report that DS fibroblasts from both fetal and adult donors show the presence of oxidative DNA base damage, such as dihydro-8-oxoguanine (8-oxodG), and activation of a DNA damage response (DDR), already during unperturbed growth conditions. DDR with checkpoint activation was indicated by histone H2AX and Chk2 protein phosphorylation, and by increased p53 protein levels. In addition, both fetal and adult DS fibroblasts were more sensitive to oxidative DNA damage induced by potassium bromate, and were defective in the removal of 8-oxodG, as compared with age-matched cells from control healthy donors. The analysis of core proteins participating in base excision repair (BER), such as XRCC1 and DNA polymerase β, showed that higher amounts of these factors were bound to chromatin in DS than in control cells, even in the absence of DNA damage. These findings occurred in concomitance with increased levels of phosphorylated XRCC1 detected in DS cells. These results indicate that DS cells exhibit a BER deficiency, which is associated with prolonged chromatin association of core BER factors.
Collapse
Affiliation(s)
- Daniela Necchi
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy.
| | - Antonella Pinto
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Micol Tillhon
- Institute of Molecular Genetics of the National Research Council (CNR), 27100 Pavia, Italy
| | - Ilaria Dutto
- Institute of Molecular Genetics of the National Research Council (CNR), 27100 Pavia, Italy
| | | | - Cristina Lanni
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Ennio Prosperi
- Institute of Molecular Genetics of the National Research Council (CNR), 27100 Pavia, Italy.
| |
Collapse
|
16
|
Abstract
Cancer cells differ from normal healthy cells in multiple aspects ranging from altered cellular signaling through metabolic changes to aberrant chromosome content, so called aneuploidy. The large-scale changes in copy numbers of chromosomes or large chromosomal regions due to aneuploidy alter significantly the gene expression, as several hundreds of genes are gained or lost. Comparison of quantitative genome, transcriptome and proteome data enables dissection of the molecular causes that underlie the gene expression changes observed in cancer cells and provides a new perspective on the molecular consequences of aneuploidy. Here, we will map to what degree aneuploidy affects the expression of genes located on the affected chromosomes. We will also address the effects of aneuploidy on global gene expression in cancer cells as well as whether and how it may contribute to the physiology of cancer cells.
Collapse
Affiliation(s)
- Milena Dürrbaum
- Group Maintenance of Genome Stability, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
- Center for Integrated Protein Science Munich, Ludwig-Maximilian-University Munich, 80336, Munich, Germany
| | - Zuzana Storchová
- Group Maintenance of Genome Stability, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
- Center for Integrated Protein Science Munich, Ludwig-Maximilian-University Munich, 80336, Munich, Germany.
| |
Collapse
|
17
|
Roles for DSCAM and DSCAML1 in central nervous system development and disease. ADVANCES IN NEUROBIOLOGY 2014; 8:249-70. [PMID: 25300140 DOI: 10.1007/978-1-4614-8090-7_11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
DSCAMs (Down syndrome cell adhesion molecules) are a group of immunoglobulin-like transmembrane proteins that contain fibronectin III domains. The founding member of the family was isolated in a positional cloning study that sought to identify genes located on chromosome 21 at the locus 21q22.2-q22.3 that is implicated in the neurological and cardiac phenotypes associated with Down's syndrome. In Drosophila, Dscam proteins are involved in neuronal wiring, while in vertebrates, the role of these cell adhesion molecules in neurogenesis, dendritogenesis, axonal outgrowth, synaptogenesis, and synaptic plasticity is only just beginning to be understood. In this chapter, we will review the functions ascribed to the two paralogous proteins found in humans, DSCAM and DSCAML1 (DSCAM-like 1), based on findings in knockout mice. The signaling pathways downstream of DSCAM activation and the role of DSCAM miss-expression in disease will be also discussed, particularly with regard to the intellectual disability in Down's syndrome.
Collapse
|
18
|
Dang V, Medina B, Das D, Moghadam S, Martin KJ, Lin B, Naik P, Patel D, Nosheny R, Wesson Ashford J, Salehi A. Formoterol, a long-acting β2 adrenergic agonist, improves cognitive function and promotes dendritic complexity in a mouse model of Down syndrome. Biol Psychiatry 2014; 75:179-88. [PMID: 23827853 DOI: 10.1016/j.biopsych.2013.05.024] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/17/2013] [Accepted: 05/17/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Down syndrome is associated with significant failure in cognitive function. Our previous investigation revealed age-dependent degeneration of locus coeruleus, a major player in contextual learning, in the Ts65Dn mouse model of Down syndrome. We studied whether drugs already available for use in humans can be used to improve cognitive function in these mice. METHODS We studied the status of β adrenergic signaling in the dentate gyrus of the Ts65Dn mouse model of Down syndrome. Furthermore, we used fear conditioning to study learning and memory in these mice. Postmortem analyses included the analysis of synaptic density, dendritic arborization, and neurogenesis. RESULTS We found significant atrophy of dentate gyrus and failure of β adrenergic signaling in the hippocampus of Ts65Dn mice. Our behavioral analyses revealed that formoterol, a long-acting β2 adrenergic receptor agonist, caused significant improvement in the cognitive function in Ts65Dn mice. Postmortem analyses revealed that the use of formoterol was associated with a significant improvement in the synaptic density and increased complexity of newly born dentate granule neurons in the hippocampus of Ts65Dn mice. CONCLUSIONS Our data suggest that targeting β2 adrenergic receptors is an effective strategy for restoring synaptic plasticity and cognitive function in these mice. Considering its widespread use in humans and positive effects on cognition in Ts65Dn mice, formoterol or similar β2 adrenergic receptor agonists with ability to cross the blood brain barrier might be attractive candidates for clinical trials to improve cognitive function in individuals with Down syndrome.
Collapse
Affiliation(s)
- Van Dang
- Department of Psychiatry and Behavioral Sciences (VD, JWA, AS); Veterans Administration Palo Alto Health Care System (VD, BM, DD, SM, KJM, BL, PN, DP, JWA, AS), Palo Alto, California
| | - Brian Medina
- Veterans Administration Palo Alto Health Care System (VD, BM, DD, SM, KJM, BL, PN, DP, JWA, AS), Palo Alto, California
| | - Devsmita Das
- Veterans Administration Palo Alto Health Care System (VD, BM, DD, SM, KJM, BL, PN, DP, JWA, AS), Palo Alto, California
| | - Sarah Moghadam
- Veterans Administration Palo Alto Health Care System (VD, BM, DD, SM, KJM, BL, PN, DP, JWA, AS), Palo Alto, California
| | - Kara J Martin
- Veterans Administration Palo Alto Health Care System (VD, BM, DD, SM, KJM, BL, PN, DP, JWA, AS), Palo Alto, California
| | - Bill Lin
- Veterans Administration Palo Alto Health Care System (VD, BM, DD, SM, KJM, BL, PN, DP, JWA, AS), Palo Alto, California
| | - Priyanka Naik
- Veterans Administration Palo Alto Health Care System (VD, BM, DD, SM, KJM, BL, PN, DP, JWA, AS), Palo Alto, California
| | - Devan Patel
- Veterans Administration Palo Alto Health Care System (VD, BM, DD, SM, KJM, BL, PN, DP, JWA, AS), Palo Alto, California
| | - Rachel Nosheny
- Department of Molecular and Cellular Physiology (RN), Stanford University School of Medicine, Stanford
| | - John Wesson Ashford
- Department of Psychiatry and Behavioral Sciences (VD, JWA, AS); Veterans Administration Palo Alto Health Care System (VD, BM, DD, SM, KJM, BL, PN, DP, JWA, AS), Palo Alto, California
| | - Ahmad Salehi
- Department of Psychiatry and Behavioral Sciences (VD, JWA, AS); Veterans Administration Palo Alto Health Care System (VD, BM, DD, SM, KJM, BL, PN, DP, JWA, AS), Palo Alto, California.
| |
Collapse
|
19
|
Solzak JP, Liang Y, Zhou FC, Roper RJ. Commonality in Down and fetal alcohol syndromes. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2013; 97:187-97. [PMID: 23554291 PMCID: PMC4096968 DOI: 10.1002/bdra.23129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/22/2013] [Accepted: 02/27/2013] [Indexed: 01/26/2023]
Abstract
BACKGROUND Down syndrome (DS) and Fetal Alcohol Syndrome (FAS) are two leading causes of birth defects with phenotypes ranging from craniofacial abnormalities to cognitive impairment. Despite different origins, we report that in addition to sharing many phenotypes, DS and FAS may have common underlying mechanisms of development. METHODS Literature was surveyed for DS and FAS as well as mouse models. Gene expression and apoptosis were compared in embryonic mouse models of DS and FAS by qPCR, immunohistochemical and immunoflurorescence analyses. The craniometry was examined using MicroCT at postnatal day 21. RESULTS A literature survey revealed over 20 comparable craniofacial and structural deficits in both humans with DS and FAS and corresponding mouse models. Similar phenotypes were experimentally found in pre- and postnatal craniofacial and neurological tissues of DS and FAS mice. Dysregulation of two genes, Dyrk1a and Rcan1, key to craniofacial and neurological precursors of DS, was shared in craniofacial precursors of DS and FAS embryos. Increased cleaved caspase 3 expression was also discovered in comparable regions of the craniofacial and brain precursors of DS and FAS embryos. Further mechanistic studies suggested overexpression of trisomic Ttc3 in DS embyros may influence nuclear pAkt localization and cell survival. CONCLUSIONS This first and initial study indicates that DS and FAS share common dysmorphologies in humans and animal models. This work also suggests common mechanisms at cellular and molecular levels that are disrupted by trisomy or alcohol consumption during pregnancy and lead to craniofacial and neurological phenotypes associated with DS or FAS.
Collapse
Affiliation(s)
- Jeffrey P. Solzak
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Yun Liang
- Department of Radiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Feng C. Zhou
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
| | - Randall J. Roper
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| |
Collapse
|
20
|
|
21
|
Early-occurring proliferation defects in peripheral tissues of the Ts65Dn mouse model of Down syndrome are associated with patched1 over expression. J Transl Med 2012; 92:1648-60. [PMID: 22890555 DOI: 10.1038/labinvest.2012.117] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Down syndrome (DS) is a genetic pathology due to the triplication of human chromosome 21. In addition to mental retardation, individuals with DS exhibit a large range of variable traits, including co-occurring congenital malformations. It is now clear that neurogenesis impairment underlies the typically reduced brain size and, hence, mental retardation in individuals with DS. The small body size and the constellation of congenital malformations in children with DS suggest that proliferation defects may involve peripheral tissues, in addition to the brain. The goal of the current study was to establish whether a generalized impairment of cell proliferation is a key feature of the trisomic condition. We used the Ts65Dn mouse, a widely used DS model, and examined proliferation in tissues with different embryological origin by 5-bromo-2-deoxyuridine immunohistochemistry. We found that 2-day-old (P2) Ts65Dn mice had notably fewer proliferating cells in the heart and liver, and in all proliferating niches of the skin and intestine. A reduced proliferation rate was still present in the intestine at P15. In all tissues, Ts65Dn mice had a similar number of apoptotic cells as euploid mice, indicating no unbalance in cell death. In the skin, liver and intestine of trisomic mice, we found a higher expression of patched1 (Ptch1), a receptor that represses the mitogenic sonic hedgehog (Shh) pathway. This suggests that Ptch1-dependent inhibition of Shh signaling may underlie proliferation impairment in trisomic peripheral tissues. In agreement with the widespread reduction in proliferation, neonate trisomic mice had a reduced body weight and this defect was still present at 30 days of age. Our findings show that, in all examined peripheral tissues, Ts65Dn mice exhibit a notable reduction in proliferation rate, suggesting that proliferation impairment may be a generalized defect of trisomic precursor cells.
Collapse
|
22
|
Mouse models of Down syndrome as a tool to unravel the causes of mental disabilities. Neural Plast 2012; 2012:584071. [PMID: 22685678 PMCID: PMC3364589 DOI: 10.1155/2012/584071] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/23/2012] [Accepted: 03/24/2012] [Indexed: 12/16/2022] Open
Abstract
Down syndrome (DS) is the most common genetic cause of mental disability. Based on the homology of Hsa21 and the murine chromosomes Mmu16, Mmu17 and Mmu10, several mouse models of DS have been developed. The most commonly used model, the Ts65Dn mouse, has been widely used to investigate the neural mechanisms underlying the mental disabilities seen in DS individuals. A wide array of neuromorphological alterations appears to compromise cognitive performance in trisomic mice. Enhanced inhibition due to alterations in GABA(A)-mediated transmission and disturbances in the glutamatergic, noradrenergic and cholinergic systems, among others, has also been demonstrated. DS cognitive dysfunction caused by neurodevelopmental alterations is worsened in later life stages by neurodegenerative processes. A number of pharmacological therapies have been shown to partially restore morphological anomalies concomitantly with cognition in these mice. In conclusion, the use of mouse models is enormously effective in the study of the neurobiological substrates of mental disabilities in DS and in the testing of therapies that rescue these alterations. These studies provide the basis for developing clinical trials in DS individuals and sustain the hope that some of these drugs will be useful in rescuing mental disabilities in DS individuals.
Collapse
|
23
|
Mazur-Kolecka B, Golabek A, Kida E, Rabe A, Hwang YW, Adayev T, Wegiel J, Flory M, Kaczmarski W, Marchi E, Frackowiak J. Effect of DYRK1A activity inhibition on development of neuronal progenitors isolated from Ts65Dn mice. J Neurosci Res 2012; 90:999-1010. [PMID: 22252917 DOI: 10.1002/jnr.23007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 11/14/2011] [Accepted: 11/17/2011] [Indexed: 01/09/2023]
Abstract
Overexpression of dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1A (DYRK1A), encoded by a gene located in the Down syndrome (DS) critical region, is considered a major contributor to developmental abnormalities in DS. DYRK1A regulates numerous genes involved in neuronal commitment, differentiation, maturation, and apoptosis. Because alterations of neurogenesis could lead to impaired brain development and mental retardation in individuals with DS, pharmacological normalization of DYRK1A activity has been postulated as DS therapy. We tested the effect of harmine, a specific DYRK1A inhibitor, on the development of neuronal progenitor cells (NPCs) isolated from the periventricular zone of newborn mice with segmental trisomy 16 (Ts65Dn mice), a mouse model for DS that overexpresses Dyrk1A by 1.5-fold. Trisomy did not affect the ability of NPCs to expand in culture. Twenty-four hours after stimulation of migration and neuronal differentiation, NPCs showed increased expression of Dyrk1A, particularly in the trisomic cultures. After 7 days, NPCs developed into a heterogeneous population of differentiating neurons and astrocytes that expressed Dyrk1A in the nuclei. In comparison with disomic cells, NPCs with trisomy showed premature neuronal differentiation and enhanced γ-aminobutyric acid (GABA)-ergic differentiation, but astrocyte development was unchanged. Harmine prevented premature neuronal maturation of trisomic NPCs but not acceleration of GABA-ergic development. In control NPCs, harmine treatment caused altered neuronal development of NPCs, similar to that in trisomic NPCs with Dyrk1A overexpression. This study suggests that pharmacological normalization of DYRK1A activity may have a potential role in DS therapy.
Collapse
Affiliation(s)
- Bozena Mazur-Kolecka
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Rachubinski AL, Crowley SK, Sladek JR, Maclean KN, Bjugstad KB. Effects of neonatal neural progenitor cell implantation on adult neuroanatomy and cognition in the Ts65Dn model of Down syndrome. PLoS One 2012; 7:e36082. [PMID: 22558337 PMCID: PMC3338504 DOI: 10.1371/journal.pone.0036082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 03/26/2012] [Indexed: 12/13/2022] Open
Abstract
As much of the aberrant neural development in Down syndrome (DS) occurs postnatally, an early opportunity exists to intervene and influence life-long cognitive development. Recent success using neural progenitor cells (NPC) in models of adult neurodegeneration indicate such therapy may be a viable option in diseases such as DS. Murine NPC (mNPC, C17.2 cell line) or saline were implanted bilaterally into the dorsal hippocampus of postnatal day 2 (PND 2) Ts65Dn pups to explore the feasibility of early postnatal treatment in this mouse model of DS. Disomic littermates provided karyotype controls for trisomic pups. Pups were monitored for developmental milestone achievement, and then underwent adult behavior testing at 14 weeks of age. We found that implanted mNPC survived into adulthood and migrated beyond the implant site in both karyotypes. The implantation of mNPC resulted in a significant increase in the density of dentate granule cells. However, mNPC implantation did not elicit cognitive changes in trisomic mice either neonatally or in adulthood. To the best of our knowledge, these results constitute the first assessment of mNPC as an early intervention on cognitive ability in a DS model.
Collapse
Affiliation(s)
- Angela L. Rachubinski
- Department of Pediatrics, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Shannon K. Crowley
- Departments of Exercise Science, and Neuropsychiatry and Behavioral Science, University of South Carolina, Columbia, South Carolina, United States of America
| | - John R. Sladek
- Department of Neurology and Center for Neuroscience, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Kenneth N. Maclean
- Department of Pediatrics, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Colorado Intellectual and Developmental Disabilities Research Center (IDDRC), University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Kimberly B. Bjugstad
- Department of Pediatrics, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Colorado Intellectual and Developmental Disabilities Research Center (IDDRC), University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| |
Collapse
|
25
|
Rueda N, Flórez J, Martínez-Cué C. The Ts65Dn mouse model of Down syndrome shows reduced expression of the Bcl-X(L) antiapoptotic protein in the hippocampus not accompanied by changes in molecular or cellular markers of cell death. Int J Dev Neurosci 2011; 29:711-6. [PMID: 21684326 DOI: 10.1016/j.ijdevneu.2011.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/20/2011] [Accepted: 06/02/2011] [Indexed: 11/19/2022] Open
Abstract
The Ts65Dn (TS) mouse, the most widely used model of Down syndrome (DS), has a partial trisomy of a segment of chromosome 16 that is homologous to the distal part of human chromosome 21. This mouse shares many phenotypic characteristics with people with DS including neuromorphological, neurochemical, and cognitive disturbances. Both TS and DS brains show earlier aging and neurodegeneration. Since fibroblast cultures from TS mice and human DS hippocampal regions show increased apoptotic cell death it has been suggested that alterations in cerebral apoptosis might be implicated in the cognitive deficits found in TS mice and in people with DS. In the present study we have evaluated brain expression levels of several proapoptotic and antiapoptotic proteins from the mitochondrial (Bcl-2, Bcl-X(L), Bax and Bad) and the extrinsic (Fas-R and Fas-L) apoptotic pathways as well as the final executioner caspase-3, in the cortex and hippocampus of TS mice. No significant alterations in the expression levels of the proapoptotic Bad and Bax or the antiapoptotic Bcl-2 proteins in the cortex or hippocampus were found in TS mice. However, TS mice showed downregulation of Bcl-X(L) in the hippocampus. In the extrinsic pathway we found unchanged levels of Fas-L in both structures and also in the expression levels of Fas-R in the hippocampus. Although Bcl-X(L) downregulation suggests that the hippocampus of TS mice is less protected against programmed cell death, we did not find any evidence for increased apoptosis in TS mice since neither TUNEL-positive cells nor active caspase-3 expression were found in cortex or hippocampus of TS or CO mice.
Collapse
Affiliation(s)
- Noemí Rueda
- Department of Physiology and Pharmacology, University of Cantabria, Spain
| | | | | |
Collapse
|
26
|
Litovchick L, Florens LA, Swanson SK, Washburn MP, DeCaprio JA. DYRK1A protein kinase promotes quiescence and senescence through DREAM complex assembly. Genes Dev 2011; 25:801-13. [PMID: 21498570 PMCID: PMC3078706 DOI: 10.1101/gad.2034211] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 03/01/2011] [Indexed: 12/21/2022]
Abstract
In the absence of growth signals, cells exit the cell cycle and enter into G0 or quiescence. Alternatively, cells enter senescence in response to inappropriate growth signals such as oncogene expression. The molecular mechanisms required for cell cycle exit into quiescence or senescence are poorly understood. The DREAM (DP, RB [retinoblastoma], E2F, and MuvB) complex represses cell cycle-dependent genes during quiescence. DREAM contains p130, E2F4, DP1, and a stable core complex of five MuvB-like proteins: LIN9, LIN37, LIN52, LIN54, and RBBP4. In mammalian cells, the MuvB core dissociates from p130 upon entry into the cell cycle and binds to BMYB during S phase to activate the transcription of genes expressed late in the cell cycle. We used mass spectroscopic analysis to identify phosphorylation sites that regulate the switch of the MuvB core from BMYB to DREAM. Here we report that DYRK1A can specifically phosphorylate LIN52 on serine residue 28, and that this phosphorylation is required for DREAM assembly. Inhibiting DYRK1A activity or point mutation of LIN52 disrupts DREAM assembly and reduces the ability of cells to enter quiescence or undergo Ras-induced senescence. These data reveal an important role for DYRK1A in the regulation of DREAM activity and entry into quiescence.
Collapse
Affiliation(s)
- Larisa Litovchick
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | - Selene K. Swanson
- Stowers Institute for Biomedical Research, Kansas City, Missouri 64110, USA
| | - Michael P. Washburn
- Stowers Institute for Biomedical Research, Kansas City, Missouri 64110, USA
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - James A. DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| |
Collapse
|
27
|
Trazzi S, Mitrugno VM, Valli E, Fuchs C, Rizzi S, Guidi S, Perini G, Bartesaghi R, Ciani E. APP-dependent up-regulation of Ptch1 underlies proliferation impairment of neural precursors in Down syndrome. Hum Mol Genet 2011; 20:1560-73. [PMID: 21266456 DOI: 10.1093/hmg/ddr033] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mental retardation in Down syndrome (DS) appears to be related to severe neurogenesis impairment during critical phases of brain development. Recent lines of evidence in the cerebellum of a mouse model for DS (the Ts65Dn mouse) have shown a defective responsiveness to Sonic Hedgehog (Shh), a potent mitogen that controls cell division during brain development, suggesting involvement of the Shh pathway in the neurogenesis defects of DS. Based on these premises, we sought to identify the molecular mechanisms underlying derangement of the Shh pathway in neural precursor cells (NPCs) from Ts65Dn mice. By using an in vitro model of NPCs obtained from the subventricular zone and hippocampus, we found that trisomic NPCs had an increased expression of the Shh receptor Patched1 (Ptch1), a membrane protein that suppresses the action of a second receptor, Smoothened (Smo), thereby maintaining the pathway in a repressed state. Partial silencing of Ptch1 expression in trisomic NPCs restored cell proliferation, indicating that proliferation impairment was due to Ptch1 overexpression. The overexpression of Ptch1 in trisomic NPCs resulted from increased levels of AICD [a transcription-promoting fragment of amyloid precursor protein (APP)] and increased AICD binding to the Ptch1 promoter. Our data provide novel evidence that Ptch1 overexpression underlies derangement of the Shh pathway in trisomic NPCs with consequent proliferation impairment. The demonstration that Ptch1 overexpression in trisomic NPCs is due to an APP fragment provides a link between this trisomic gene and the defective neuronal production that characterizes the DS brain.
Collapse
Affiliation(s)
- Stefania Trazzi
- Department of Human and General Physiology, University of Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Blazek JD, Billingsley CN, Newbauer A, Roper RJ. Embryonic and not maternal trisomy causes developmental attenuation in the Ts65Dn mouse model for Down syndrome. Dev Dyn 2010; 239:1645-53. [PMID: 20503361 DOI: 10.1002/dvdy.22295] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Trisomy 21 results in Down syndrome (DS) and causes phenotypes that may result from alterations of developmental processes. The Ts65Dn mouse is the most widely used genetic and phenotypic model for DS. We used over 1,500 offspring from Ts65Dn and two nontrisomic genetically similar control strains to investigate the influence of trisomy on developmental alterations and number of offspring. For the first time, we demonstrate gross developmental attenuation of Ts65Dn trisomic offspring at embryonic day (E) 9.5 and E13.5 and show that the major determinant of the developmental changes is segmental trisomy of the embryo and not the trisomic maternal uterine environment. Maternal alleles of nontrisomic genes linked to Pde6b may also influence the development of Ts65Dn offspring. Both developmental attenuation and the contribution of trisomic and nontrisomic genes are important components in the genesis of DS phenotypes.
Collapse
Affiliation(s)
- Joshua D Blazek
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, USA
| | | | | | | |
Collapse
|
29
|
Llorens-Martín MV, Rueda N, Tejeda GS, Flórez J, Trejo JL, Martínez-Cué C. Effects of voluntary physical exercise on adult hippocampal neurogenesis and behavior of Ts65Dn mice, a model of Down syndrome. Neuroscience 2010; 171:1228-40. [PMID: 20875841 DOI: 10.1016/j.neuroscience.2010.09.043] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 08/18/2010] [Accepted: 09/22/2010] [Indexed: 11/15/2022]
Abstract
The Ts65Dn (TS) mouse is the most widely used model of Down syndrome (DS). This mouse shares many phenotypic characteristics with the human condition including cognitive and neuromorphological alterations. In this study the effects of physical exercise on hippocampal neurogenesis and behavior in TS mice were assessed. 10-12 month-old male TS and control (CO) mice were submitted to voluntary physical exercise for 7 weeks and the effects of this protocol on hippocampal morphology, neurogenesis and apoptosis were evaluated. Physical exercise improved performance in the acquisition sessions of the Morris water maze in TS but not in CO mice. Conversely, it did not have any effect on anxiety or depressive behavior in TS mice but it did reduce the cognitive components of anxiety in CO mice. TS mice presented a reduced dentate gyrus (DG) volume, subgranular zone area and number of granule neurons. Hippocampal neurogenesis was reduced in TS mice as shown by the reduced number of 5-bromo-2-deoxyuridine (BrdU) positive cells. Voluntary physical exercise did not rescue these alterations in TS mice but it did increase the number of doublecortin (DCX)-and phospho histone 3 (PH3)-positive neurons in CO mice. It is concluded that physical exercise produced a modest anxiolytic effect in CO mice and that this was accompanied by an increased number of immature cells in the hippocampal DG. On the other hand, voluntary physical exercise exerted a positive effect on TS mice learning of the platform position in the Morris water maze that seems to be mediated by a neurogenesis-independent mechanism.
Collapse
Affiliation(s)
- M V Llorens-Martín
- Cajal Institute, Consejo Superior de Investigaciones Científicas, Av. Doctor Arce, 37. 28002, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
30
|
Communication breaks-Down: from neurodevelopment defects to cognitive disabilities in Down syndrome. Prog Neurobiol 2010; 91:1-22. [PMID: 20097253 DOI: 10.1016/j.pneurobio.2010.01.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 12/10/2009] [Accepted: 01/14/2010] [Indexed: 12/31/2022]
Abstract
Down syndrome (DS) is the leading cause of genetically-defined intellectual disability and congenital birth defects. Despite being one of the first genetic diseases identified, only recently, thanks to the phenotypic analysis of DS mouse genetic models, we have begun to understand how trisomy may impact cognitive function. Cognitive disabilities in DS appear to result mainly from two pathological processes: neurogenesis impairment and Alzheimer-like degeneration. In DS brain, suboptimal network architecture and altered synaptic communication arising from neurodevelopmental impairment are key determinants of cognitive defects. Hypocellularity and hypoplasia start at early developmental stages and likely depend upon impaired proliferation of neuronal precursors, resulting in reduction of numbers of neurons and synaptic contacts. The impairment of neuronal precursor proliferation extends to adult neurogenesis and may affect learning and memory. Neurodegenerative mechanisms also contribute to DS cognitive impairment. Early onset Alzheimer disease occurs with extremely high incidence in DS patients and is causally-related to overexpression of beta-amyloid precursor protein (betaAPP), which is one of the triplicated genes in DS. In this review, we will survey the available findings on neurodevelopmental and neurodegenerative changes occurring in DS throughout life. Moreover, we will discuss the potential mechanisms by which defects in neurogenesis and neurodegenerative processes lead to altered formation of neural circuits and impair cognitive function, in connection with findings on pharmacological treatments of potential benefit for DS.
Collapse
|