1
|
Wu YC, Moon HG, Bindokas VP, Phillips EH, Park GY, Lee SSY. Multiresolution 3D Optical Mapping of Immune Cell Infiltrates in Mouse Asthmatic Lung. Am J Respir Cell Mol Biol 2023; 69:13-21. [PMID: 37017484 PMCID: PMC10324044 DOI: 10.1165/rcmb.2022-0353ma] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/04/2023] [Indexed: 04/06/2023] Open
Abstract
Asthma is a chronic inflammatory airway disease driven by various infiltrating immune cell types into the lung. Optical microscopy has been used to study immune infiltrates in asthmatic lungs. Confocal laser scanning microscopy (CLSM) identifies the phenotypes and locations of individual immune cells in lung tissue sections by employing high-magnification objectives and multiplex immunofluorescence staining. In contrast, light-sheet fluorescence microscopy (LSFM) can visualize the macroscopic and mesoscopic architecture of whole-mount lung tissues in three dimensions (3D) by adopting an optical tissue-clearing method. Despite each microscopy method producing image data with unique resolution from a tissue sample, CLSM and LSFM have not been applied together because of different tissue-preparation procedures. Here, we introduce a new approach combining LSFM and CLSM into a sequential imaging pipeline. We built a new optical tissue clearing workflow in which the immersion clearing agent can be switched from an organic solvent to an aqueous sugar solution for sequential 3D LSFM and CLSM of mouse lungs. This sequential combination microscopy offered quantitative 3D spatial analyses of the distribution of immune infiltrates in the same mouse asthmatic lung tissue at the organ, tissue, and cell levels. These results show that our method facilitates multiresolution 3D fluorescence microscopy as a new imaging approach providing comprehensive spatial information for a better understanding of inflammatory lung diseases.
Collapse
Affiliation(s)
| | - Hyung-Geun Moon
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois Chicago, Chicago, Illinois
| | - Vytautas P. Bindokas
- Integrated Light Microscopy Facility, The University of Chicago, Chicago, Illinois; and
| | | | - Gye Young Park
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois Chicago, Chicago, Illinois
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | | |
Collapse
|
2
|
Gu C, Upchurch K, Horton J, Wiest M, Zurawski S, Millard M, Kane RR, Joo H, Miller LA, Oh S. Dectin-1 Controls TSLP-Induced Th2 Response by Regulating STAT3, STAT6, and p50-RelB Activities in Dendritic Cells. Front Immunol 2021; 12:678036. [PMID: 34305908 PMCID: PMC8293820 DOI: 10.3389/fimmu.2021.678036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
The epithelium-associated cytokine thymic stromal lymphopoietin (TSLP) can induce OX40L and CCL17 expression by myeloid dendritic cells (mDCs), which contributes to aberrant Th2-type immune responses. Herein, we report that such TSLP-induced Th2-type immune response can be effectively controlled by Dectin-1, a C-type lectin receptor expressed by mDCs. Dectin-1 stimulation induced STAT3 activation and decreased the transcriptional activity of p50-RelB, both of which resulted in reduced OX40L expression on TSLP-activated mDCs. Dectin-1 stimulation also suppressed TSLP-induced STAT6 activation, resulting in decreased expression of the Th2 chemoattractant CCL17. We further demonstrated that Dectin-1 activation was capable of suppressing ragweed allergen (Amb a 1)-specific Th2-type T cell response in allergy patients ex vivo and house dust mite allergen (Der p 1)-specific IgE response in non-human primates in vivo. Collectively, this study provides a molecular explanation of Dectin-1-mediated suppression of Th2-type inflammatory responses and suggests Dectin-1 as a target for controlling Th2-type inflammation.
Collapse
Affiliation(s)
- Chao Gu
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States
| | - Katherine Upchurch
- Institute of Biomedical Studies, Baylor University, Waco, TX, United States
| | - Joshua Horton
- Institute of Biomedical Studies, Baylor University, Waco, TX, United States
| | - Mathew Wiest
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States.,Institute of Biomedical Studies, Baylor University, Waco, TX, United States
| | | | - Mark Millard
- Department of Pulmonology, Baylor University Medical Center, Dallas, TX, United States
| | - Robert R Kane
- Institute of Biomedical Studies, Baylor University, Waco, TX, United States.,Department of Chemistry and Biochemistry, Baylor University, Waco, TX, United States
| | - HyeMee Joo
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States.,Institute of Biomedical Studies, Baylor University, Waco, TX, United States
| | - Lisa A Miller
- California National Primate Research Center, University of California, Davis, Davis, CA, United States
| | - SangKon Oh
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States.,Institute of Biomedical Studies, Baylor University, Waco, TX, United States
| |
Collapse
|
3
|
Pabst R, Miller LA, Schelegle E, Hyde DM. Organized lymphatic tissue (BALT) in lungs of rhesus monkeys after air pollutant exposure. Anat Rec (Hoboken) 2020; 303:2766-2773. [PMID: 32445535 PMCID: PMC8793891 DOI: 10.1002/ar.24456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/10/2020] [Accepted: 03/23/2020] [Indexed: 11/09/2022]
Abstract
The presence of bronchus-associated lymphoid tissue (BALT) and its size in humans largely depends upon age. It is detected in 35% of children less than 2 years of age, but absent in the healthy adult lung. Environmental gases or allergens may have an effect on the number of BALT. Lungs of rhesus macaque monkeys were screened by histology for the presence, size, and location of BALT after exposure to filtered air for 2, 6, 12, or 36 months or 12 and 36 months to ozone or 2, 12, or 36 months of house dust mite or a combination of ozone and house dust mite for 12 months. In the lungs of monkeys housed in filtered air for 2 months, no BALT was identified. After 6, 12, or 36 months, the number of BALT showed a significantly increased correlation with age in monkeys housed in filtered air. After 2 months of episodic house dust mite (HDM) exposure, no BALT was found. Monkeys exposed to HDM or HDM + ozone did not show a significant increase in BALT compared to monkeys housed in filtered air. However, monkeys exposed to ozone alone did show significant increases in BALT compared to all other groups. In particular, there were frequent accumulations of lymphocytes in the periarterial space of ozone exposed animals. In conclusion, BALT in rhesus monkeys housed under filtered air conditions is age-dependent. BALT significantly increased in monkeys exposed to ozone in comparison with monkeys exposed to HDM.
Collapse
Affiliation(s)
- Reinhard Pabst
- Institute of Immunomorphology, Centre of Anatomy, Medical School of Hannover, Hannover, Germany
| | - Lisa A. Miller
- California National Primate Research Center, Davis, California, USA
| | - Edward Schelegle
- California National Primate Research Center, Davis, California, USA
| | - Dallas M. Hyde
- California National Primate Research Center, Davis, California, USA
| |
Collapse
|
4
|
Dahlmann F, Sewald K. Use of nonhuman primates in obstructive lung disease research - is it required? Primate Biol 2017; 4:131-142. [PMID: 32110701 PMCID: PMC7041527 DOI: 10.5194/pb-4-131-2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/05/2017] [Indexed: 12/20/2022] Open
Abstract
In times of increasing costs for health insurances, obstructive lung
diseases are a burden for both the patients and the economy. Pulmonary symptoms
of asthma and chronic obstructive pulmonary disease (COPD) are similar;
nevertheless, the diseases differ in pathophysiology and therapeutic
approaches. Novel therapeutics are continuously developed, and nonhuman
primates (NHPs) provide valuable models for investigating novel biologicals
regarding efficacy and safety. This review discusses the role of nonhuman primate models for drug
development in asthma and COPD and investigates whether alternative methods
are able to prevent animal experiments.
Collapse
Affiliation(s)
- Franziska Dahlmann
- German Primate Center GmbH, Infection Pathology Unit, Kellnerweg 4, 37077 Göttingen, Germany.,Fraunhofer Institute for Toxicology and Experimental Medicine, Preclinical Pharmacology and Immunology, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Nikolai-Fuchs-Straße 1, 30625 Hanover, Germany
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine, Preclinical Pharmacology and Immunology, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Nikolai-Fuchs-Straße 1, 30625 Hanover, Germany
| |
Collapse
|
5
|
Van Winkle LS, Kelty JS, Plopper CG. Preparation of Specific Compartments of the Lungs for Pathologic and Biochemical Analysis of Toxicologic Responses. ACTA ACUST UNITED AC 2017; 71:24.5.1-24.5.26. [PMID: 28146282 DOI: 10.1002/cptx.18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This unit focuses on protocols for assessing microenvironment-specific responses in the thoracic lung tissues. Aspects of the entire respiratory system serve as potential targets for candidate toxicants, but each candidate toxicant may impact distinct sites due to differential distribution of either the toxicant or the target cells. Within the conducting airways, the composition of resident cell populations and the metabolic capabilities of the cell populations vary greatly. Thus, studies of this region of the lung require unique, site-selective methods to clearly define the toxic response. Without site-specific sampling, as described in this chapter, the experimental limit of detection for toxicant effects in conducting airways is weakened because differences unrelated to treatment, but related to location, may dominate the response. The protocols included here allow assessment of toxicological responses in the tracheobronchial airways and the gas exchange area of the lung, with specific application to laboratory mammals. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Laura S Van Winkle
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, California.,John Muir Institute for the Environment, Center for Health and the Environment, University of California, Davis, California
| | - Jacklyn S Kelty
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, California.,John Muir Institute for the Environment, Center for Health and the Environment, University of California, Davis, California
| | - Charles G Plopper
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, California
| |
Collapse
|
6
|
Liravi B, Piedrafita D, Nguyen G, Bischof RJ. Dynamics of IL-4 and IL-13 expression in the airways of sheep following allergen challenge. BMC Pulm Med 2015; 15:101. [PMID: 26362930 PMCID: PMC4566292 DOI: 10.1186/s12890-015-0097-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/01/2015] [Indexed: 01/03/2023] Open
Abstract
Background IL-4 and IL-13 play a critical yet poorly understood role in orchestrating the recruitment and activation of effector cells of the asthmatic response and driving the pathophysiology of allergic asthma. The house dust mite (HDM) sheep asthma model displays many features of the human condition and is an ideal model to further elucidate the involvement of these critical Th2 cytokines. We hypothesized that airway exposure to HDM allergen would induce or elevate the expression profile of IL-4 and IL-13 during the allergic airway response in this large animal model of asthma. Methods Bronchoalveolar lavage (BAL) samples were collected from saline- and house dust mite (HDM)- challenged lung lobes of sensitized sheep from 0 to 48 h post-challenge. BAL cytokines (IL-4, IL-13, IL-6, IL-10, TNF-α) were each measured by ELISA. IL-4 and IL-13 expression was assessed in BAL leukocytes by flow cytometry and in airway tissue sections by immunohistology. Results IL-4 and IL-13 were increased in BAL samples following airway allergen challenge. HDM challenge resulted in a significant increase in BAL IL-4 levels at 4 h compared to saline-challenged airways, while BAL IL-13 levels were elevated at all time-points after allergen challenge. IL-6 levels were maintained following HDM challenge but declined after saline challenge, while HDM administration resulted in an acute elevation in IL-10 at 4 h but no change in TNF-α levels over time. Lymphocytes were the main early source of IL-4, with IL-4 release by alveolar macrophages (AMs) prominent from 24 h post-allergen challenge. IL-13 producing AMs were increased at 4 and 24 h following HDM compared to saline challenge, and tissue staining provided evidence of IL-13 expression in airway epithelium as well as immune cells in airway tissue. Conclusion In a sheep model of allergic asthma, airway inflammation is accompanied by the temporal release of key cytokines following allergen exposure that primarily reflects the Th2-driven nature of the immune response in asthma. The present study demonstrates for the first time the involvement of IL-4 and IL-13 in a relevant large animal model of allergic airways disease.
Collapse
Affiliation(s)
- Bahar Liravi
- Biotechnology Research Laboratories, Department of Physiology, Monash University, Clayton, 3800, VIC, Australia.
| | - David Piedrafita
- School of Applied and Biomedical Sciences, Federation University, Churchill, 3842, VIC, Australia.
| | - Gary Nguyen
- Biotechnology Research Laboratories, Department of Physiology, Monash University, Clayton, 3800, VIC, Australia.
| | - Robert J Bischof
- Biotechnology Research Laboratories, Department of Physiology, Monash University, Clayton, 3800, VIC, Australia. .,The Ritchie Centre, Hudson Institute of Medical Research, Clayton, 3168, VIC, Australia.
| |
Collapse
|
7
|
Murphy SR, Oslund KL, Hyde DM, Miller LA, Van Winkle LS, Schelegle ES. Ozone-induced airway epithelial cell death, the neurokinin-1 receptor pathway, and the postnatal developing lung. Am J Physiol Lung Cell Mol Physiol 2014; 307:L471-81. [PMID: 25063800 DOI: 10.1152/ajplung.00324.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Children are uniquely susceptible to ozone because airway and lung growth continue for an extensive period after birth. Early-life exposure of the rhesus monkey to repeated ozone cycles results in region-specific disrupted airway/lung growth, but the mediators and mechanisms are poorly understood. Substance P (SP), neurokinin-1 receptor (NK-1R); and nuclear receptor Nur77 (NR4A1) are signaling pathway components involved in ozone-induced cell death. We hypothesize that acute ozone (AO) exposure during postnatal airway development disrupts SP/NK-1R/Nur77 pathway expression and that these changes correlate with increased ozone-induced cell death. Our objectives were to 1) spatially define the normal development of the SP/NK-1R/Nur77 pathway in conducting airways; 2) compare how postnatal age modulates responses to AO exposure; and 3) determine how concomitant, episodic ozone exposure modifies age-specific acute responses. Male infant rhesus monkeys were assigned at age 1 mo to two age groups, 2 or 6 mo, and then to one of three exposure subgroups: filtered air (FA), FA+AO (AO: 8 h/day × 2 days), or episodic biweekly ozone exposure cycles (EAO: 8 h/day × 5 days/14-day cycle+AO). O3 = 0.5 ppm. We found that 1) ozone increases SP/NK-1R/Nur77 pathway expression in conducting airways, 2) an ozone exposure cycle (5 days/cycle) delivered early at age 2 mo resulted in an airway that was hypersensitive to AO exposure at the end of 2 mo, and 3) continued episodic exposure (11 cycles) resulted in an airway that was hyposensitive to AO exposure at 6 mo. These observations collectively associate with greater overall inflammation and epithelial cell death, particularly in early postnatal (2 mo), distal airways.
Collapse
Affiliation(s)
- Shannon R Murphy
- Center for Health and the Environment, University of California-Davis, Davis, California
| | - Karen L Oslund
- California National Primate Research Center, University of California-Davis, Davis, California; and
| | - Dallas M Hyde
- California National Primate Research Center, University of California-Davis, Davis, California; and School of Veterinary Medicine, Department of Anatomy, Physiology and Cell Biology, University of California-Davis, Davis, California
| | - Lisa A Miller
- California National Primate Research Center, University of California-Davis, Davis, California; and School of Veterinary Medicine, Department of Anatomy, Physiology and Cell Biology, University of California-Davis, Davis, California
| | - Laura S Van Winkle
- Center for Health and the Environment, University of California-Davis, Davis, California; School of Veterinary Medicine, Department of Anatomy, Physiology and Cell Biology, University of California-Davis, Davis, California
| | - Edward S Schelegle
- California National Primate Research Center, University of California-Davis, Davis, California; and School of Veterinary Medicine, Department of Anatomy, Physiology and Cell Biology, University of California-Davis, Davis, California
| |
Collapse
|
8
|
Murphy SR, Schelegle ES, Miller LA, Hyde DM, Van Winkle LS. Ozone exposure alters serotonin and serotonin receptor expression in the developing lung. Toxicol Sci 2013; 134:168-79. [PMID: 23570994 DOI: 10.1093/toxsci/kft090] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ozone, a pervasive environmental pollutant, adversely affects functional lung growth in children. Animal studies demonstrate that altered lung development is associated with modified signaling within the airway epithelial mesenchymal trophic unit, including mediators that can change nerve growth. We hypothesized that ozone exposure alters the normal pattern of serotonin, its transporter (5-HTT), and two key receptors (5-HT2A and 5-HT4), a pathway involved in postnatal airway neural, epithelial, and immune processes. We exposed monkeys to acute or episodic ozone during the first 2 or 6 months of life. There were three exposure groups/age: (1) filtered air, (2) acute ozone challenge, and (3) episodic ozone + acute ozone challenge. Lungs were prepared for compartment-specific qRT-PCR, immunohistochemistry, and stereology. Airway epithelial serotonin immunopositive staining increased in all exposure groups with the most prominent in 2-month midlevel and 6-month distal airways. Gene expression of 5-HTT, 5-HT2AR, and 5-HT4R increased in an age-dependent manner. Overall expression was greater in distal compared with midlevel airways. Ozone exposure disrupted both 5-HT2AR and 5-HT4R protein expression in airways and enhanced immunopositive staining for 5-HT2AR (2 months) and 5-HT4R (6 months) on smooth muscle. Ozone exposure increases serotonin in airway epithelium regardless of airway level, age, and exposure history and changes the spatial pattern of serotonin receptor protein (5-HT2A and 5-HT4) and 5-HTT gene expression depending on compartment, age, and exposure history. Understanding how serotonin modulates components of reversible airway obstruction exacerbated by ozone exposure sets the foundation for developing clinically relevant therapies for airway disease.
Collapse
Affiliation(s)
- Shannon R Murphy
- Center for Health and the Environment, California National Primate Research Center, Davis, CA, USA
| | | | | | | | | |
Collapse
|
9
|
Wang L, Jenkins TJ, Dai M, Yin W, Pulido JC, Lamantia-Martin E, Hodge MR, Ocain T, Kolbeck R. Antagonism of chemokine receptor CCR8 is ineffective in a primate model of asthma. Thorax 2013; 68:506-12. [PMID: 23457038 DOI: 10.1136/thoraxjnl-2012-203012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Expression of the T-cell-associated chemokine receptor CCR8 and its ligand CCL1 have been demonstrated to be elevated in patients with asthma. CCR8 deficiency or inhibition in models of allergic airway disease in mice resulted in conflicting data. OBJECTIVE To investigate the effects of a selective small molecule CCR8 inhibitor (ML604086) in a primate model of asthma. METHODS ML604086 and vehicle were administered by intravenous infusion to 12 cynomolgus monkeys during airway challenge with Ascaris suum. Samples were collected throughout the study to measure pharmacokinetics (PK) and systemic CCR8 inhibition, as well as inflammation, T helper 2 (Th2) cytokines and mucus in bronchoalveolar lavage (BAL). Airway resistance and compliance were measured before and after allergen challenge, and in response to increasing concentrations of methacholine. RESULTS ML604086 inhibited CCL1 binding to CCR8 on circulating T-cells>98% throughout the duration of the study. However, CCR8 inhibition had no significant effect on allergen-induced BAL eosinophilia and the induction of the Th2 cytokines IL-4, IL-5, IL-13 and mucus levels in BAL. Changes in airway resistance and compliance induced by allergen provocation and increasing concentrations of methacholine were also not affected by ML604086. CONCLUSIONS These results clearly demonstrate a dispensable role for CCR8 in ameliorating allergic airway disease in atopic primates, and suggest that strategies other than CCR8 antagonism should be considered for the treatment of asthma.
Collapse
Affiliation(s)
- Lin Wang
- Department of Cellular Immunology and Pharmacology, Millennium Pharmaceuticals Inc., Cambridge, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Mitchell VL, Van Winkle LS, Gershwin LJ. Environmental tobacco smoke and progesterone alter lung inflammation and mucous metaplasia in a mouse model of allergic airway disease. Clin Rev Allergy Immunol 2013; 43:57-68. [PMID: 21837398 DOI: 10.1007/s12016-011-8280-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The prevalence and severity of asthma is sexually dimorphic. Adult women have a higher incidence of asthma than men. This suggests that this disease may have a hormonal component. Progesterone has been shown to elicit an immune response similar to that seen in allergic asthma and previous studies have shown that progesterone increases total IgE levels in the peripheral blood. In the current study, we examine the effect of environmental tobacco smoke (ETS) and progesterone on hallmarks of asthma pathology in lung tissue with the goal of defining whether progesterone can also exacerbate two key features of airway remodeling: accumulation of eosinophils and increased mucous. We used a mouse model of allergic asthma that includes house dust mite allergen (HDMA). Adult female BALB/c mice were ovariectomized and implanted with time-release progesterone pellets. Mice were housed in filtered air or ETS for 6 weeks (1 mg/m³ total suspended particulate) and exposed to HDMA by inhalation. Progesterone alone did not increase mucous cell mass or the abundance of eosinophils but ETS coupled with progesterone exposure resulted in a significant increase in mucous cell metaplasia and increased accumulation of eosinophils in the asthma model. Levels of cytokines in the bronchoalveolar lavage fluid, measured using a multiplex cytokine assay, revealed elevated levels of both interleukin (IL)-5 and IL-12(p40) in HDMA-exposed animals. The addition of progesterone further exacerbated this response. We conclude that progesterone, in the absence of estrogen, exacerbates airway inflammation and airway remodeling induced by the toxicant ETS.
Collapse
Affiliation(s)
- Valerie L Mitchell
- School of Veterinary Medicine, Department of Pathology, Microbiology, and Immunology, University of California, Davis, One Shields Avenue, 4206 VM3A, Davis, CA 95616-5270, USA
| | | | | |
Collapse
|
11
|
Abstract
Airway epithelial healing is defined as restoration of health or soundness; to cure. Our research indicates that two types of progenitor cells participate in this process: the tissue-specific stem cell (TSC) and the facultative basal progenitor (FBP). The TSC restores the epithelium to its normal structure and function. Thus, the TSC regenerates the epithelium. In contrast, the FBP-derived epithelium is characterized by regions of cellular hyperplasia and hypoplasia. Since the FBP-derived epithelium deviates from normal, we term the FBP-mediated process repair. Our work indicates that the TSC responds to signals from other epithelial cells, including the FBP. These signals instruct the TSC to proliferate or to select one of several differentiation pathways. We interpret these data in the context of Stephen Padget's "seed and soil" paradigm. Therein, Padget explained that metastasis of a tumor, the seed, to a specific site, the soil, was determined by the growth and differentiation requirements of the tumor cell. By extending the seed and soil paradigm to airway epithelial healing, we suggest that proliferation and differentiation of the TSC, the seed, is determined by its interactions with other cell types, the soil. Based on this concept, we provide a set of suggestions for development of cell-based therapies that are directed toward chronic airways disease.
Collapse
|
12
|
Yu JY, Zheng N, Mane G, Min KA, Hinestroza JP, Zhu H, Stringer KA, Rosania GR. A cell-based computational modeling approach for developing site-directed molecular probes. PLoS Comput Biol 2012; 8:e1002378. [PMID: 22383866 PMCID: PMC3285574 DOI: 10.1371/journal.pcbi.1002378] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 12/20/2011] [Indexed: 11/18/2022] Open
Abstract
Modeling the local absorption and retention patterns of membrane-permeant small molecules in a cellular context could facilitate development of site-directed chemical agents for bioimaging or therapeutic applications. Here, we present an integrative approach to this problem, combining in silico computational models, in vitro cell based assays and in vivo biodistribution studies. To target small molecule probes to the epithelial cells of the upper airways, a multiscale computational model of the lung was first used as a screening tool, in silico. Following virtual screening, cell monolayers differentiated on microfabricated pore arrays and multilayer cultures of primary human bronchial epithelial cells differentiated in an air-liquid interface were used to test the local absorption and intracellular retention patterns of selected probes, in vitro. Lastly, experiments involving visualization of bioimaging probe distribution in the lungs after local and systemic administration were used to test the relevance of computational models and cell-based assays, in vivo. The results of in vivo experiments were consistent with the results of in silico simulations, indicating that mitochondrial accumulation of membrane permeant, hydrophilic cations can be used to maximize local exposure and retention, specifically in the upper airways after intratracheal administration. We have developed an integrative, cell-based modeling approach to facilitate the design and discovery of chemical agents directed to specific sites of action within a living organism. Here, a computational, multiscale transport model of the lung was adapted to enable virtual screening of small molecules targeting the epithelial cells of the upper airways. In turn, the transport behaviors of selected candidate probes were evaluated to establish their degree of retention at a site of absorption, using computational simulations as well as two in vitro cell-based assay systems. Lastly, bioimaging experiments were performed to examine candidate molecules' distribution in the lungs of mice after local and systemic administration. Based on computational simulations, the higher mitochondrial density per unit absorption surface area is the key parameter determining the higher retention of small molecule hydrophilic cations in the upper airways, relative to lipophilic weak bases, specifically after intratracheal administration.
Collapse
Affiliation(s)
- Jing-Yu Yu
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, Ann Arbor, Michigan, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abbas AR, Jackman JK, Bullens SL, Davis SM, Choy DF, Fedorowicz G, Tan M, Truong BT, Gloria Meng Y, Diehl L, Miller LA, Schelegle ES, Hyde DM, Clark HF, Modrusan Z, Arron JR, Wu LC. Lung gene expression in a rhesus allergic asthma model correlates with physiologic parameters of disease and exhibits common and distinct pathways with human asthma and a mouse asthma model. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1667-80. [PMID: 21819959 DOI: 10.1016/j.ajpath.2011.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 06/10/2011] [Accepted: 06/27/2011] [Indexed: 01/22/2023]
Abstract
Experimental nonhuman primate models of asthma exhibit multiple features that are characteristic of an eosinophilic/T helper 2 (Th2)-high asthma subtype, characterized by the increased expression of Th2 cytokines and responsive genes, in humans. Here, we determine the molecular pathways that are present in a house dust mite-induced rhesus asthma model by analyzing the genomewide lung gene expression profile of the rhesus model and comparing it with that of human Th2-high asthma. We find that a prespecified human Th2 inflammation gene set from human Th2-high asthma is also present in rhesus asthma and that the expression of the genes comprising this gene set is positively correlated in human and rhesus asthma. In addition, as in human Th2-high asthma, the Th2 gene set correlates with physiologic markers of allergic inflammation and disease in rhesus asthma. Comparison of lung gene expression profiles from human Th2-high asthma, the rhesus asthma model, and a common mouse asthma model indicates that genes associated with Th2 inflammation are shared by all three species. However, some pathophysiologic aspects of human asthma (ie, subepithelial fibrosis, angiogenesis, neural biology, and immune host defense biology) are better represented in the gene expression profile of the rhesus model than in the mouse model. Further study of the rhesus asthma model may yield novel insights into the pathogenesis of human Th2-high asthma.
Collapse
Affiliation(s)
- Alexander R Abbas
- Department of Bioinformatics, Genentech Inc., South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
OBJECTIVE To determine whether indicators of behavioral inhibition and cortisol responses to stressful situations, obtained in infancy, were associated with asthma-related measures (atopy and airway hyperresponsiveness [AHR]) approximately 2 years later. METHODS Measures reflecting inhibited temperament and cortisol response after a 25-hour separation from mother and relocation to a novel room were obtained for 21 rhesus monkeys (mean age, 109 days; range, 91-122 days). Inhibited temperament was measured by reduced emotionality and increased vigilance. Atopy and AHR were assessed after 2 years (age range, 19-35 months) using skin tests to common aeroallergens and inhaled methacholine challenge, respectively. RESULTS No associations were found between atopy and either behavioral inhibition or cortisol levels (p > .56). Low emotionality was associated with AHR (r = 0.47, p = .03), and a trend was found for blunted cortisol responsiveness and AHR (r = 0.42, p = .06). CONCLUSIONS Inhibited temperament and blunted cortisol responsiveness may be related to the development of AHR that is common to both nonatopic and atopic asthma phenotypes and may indicate risk for nonatopic asthma specifically.
Collapse
|
15
|
Isajevs S, Taivans I, Svirina D, Strazda G, Kopeika U. Patterns of Inflammatory Responses in Large and Small Airways in Smokers with and without Chronic Obstructive Pulmonary Disease. Respiration 2011; 81:362-71. [DOI: 10.1159/000322560] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 11/04/2010] [Indexed: 11/19/2022] Open
|
16
|
Van Winkle LS, Baker GL, Chan JKW, Schelegle ES, Plopper CG. Airway mast cells in a rhesus model of childhood allergic airways disease. Toxicol Sci 2010; 116:313-22. [PMID: 20403968 DOI: 10.1093/toxsci/kfq119] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Asthma is a leading cause of morbidity in children. Risk factors include chronic exposure to allergens and air pollution. While chronically activated mast cells contribute to the pathophysiology of asthma in part through their proteases such as chymase and tryptase, previous studies of airway mast cell abundance and distribution in asthmatics have been inconsistent. To determine whether repeated episodic exposures to environmental pollutants during postnatal lung development alter airway mast cell abundance and distribution, we exposed infant rhesus monkeys to a known human allergen, house dust mite antigen (HDMA), and/or a known environmental pollutant, ozone (O(3)), and quantitatively compared the abundance of tryptase- or chymase-positive mast cells in three airway levels. Mast cells are resident in multiple compartments of the airway wall in infant rhesus monkeys raised from birth in filtered air. Tryptase- and chymase-positive cells were most abundant in trachea and least in terminal bronchioles. The majority of tryptase-positive and almost all chymase-positive cells were in extracellular matrix and smooth muscle bundles. Chronic exposure to HDMA elevated the abundance of both tryptase- and chymase-positive cells in the trachea and intrapulmonary bronchi. Neither exposure to O(3) nor HDMA + O(3) increased mast cell accumulations in the airway wall. We conclude that during postnatal airway development (1) mast cells are a resident airway cell population even in the absence of toxic air contaminants; (2) aeroallergen exposure alters large airway mast cell distribution and abundance, increasing chymase-positive mast cells; and (3) this response is attenuated by exposure to oxidant air pollutants.
Collapse
Affiliation(s)
- Laura S Van Winkle
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, California 95616, USA.
| | | | | | | | | |
Collapse
|
17
|
Coppens JT, Plopper CG, Murphy SR, Van Winkle LS. Postnatal lung development of rhesus monkey airways: cellular expression of Clara cell secretory protein. Dev Dyn 2010; 238:3016-24. [PMID: 19877270 DOI: 10.1002/dvdy.22132] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Clara cell secretory protein (CCSP) is a protective lung protein that is believed to have antioxidant, immunomodulatory, and anticarcinogenic properties. Evidence suggests that CCSP is involved in mitigating many lung disease states during development including asthma. This study's rationale is to define the distribution and abundance of CCSP in the airway epithelium of the rhesus monkey during postnatal lung development using carefully controlled site-specific morphometric approaches in defined airway regions. Immunoreactive CCSP was found in nonciliated cells and mucous cells, including glands, throughout the airway epithelium at all ages, with proximal and mid-level airways having the highest labeling. Overall airway CCSP levels were low at 1 week and 1 month, doubled between 1 and 3 months, and changed little from 3 months to 3 years. Thus, the critical developmental window for CCSP expression to reach adult levels in the rhesus conducting airways occurs between 1 and 3 months of age.
Collapse
Affiliation(s)
- John T Coppens
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
18
|
Cell-based multiscale computational modeling of small molecule absorption and retention in the lungs. Pharm Res 2010; 27:457-67. [PMID: 20099073 DOI: 10.1007/s11095-009-0034-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 12/08/2009] [Indexed: 10/19/2022]
Abstract
PURPOSE For optimizing the local, pulmonary targeting of inhaled medications, it is important to analyze the relationship between the physicochemical properties of small molecules and their absorption, retention and distribution in the various cell types of the airways and alveoli. METHODS A computational, multiscale, cell-based model was constructed to facilitate analysis of pulmonary drug transport and distribution. The relationship between the physicochemical properties and pharmacokinetic profile of monobasic molecules was explored. Experimental absorption data of compounds with diverse structures were used to validate this model. Simulations were performed to evaluate the effect of active transport and organelle sequestration on the absorption kinetics of compounds. RESULTS Relating the physicochemical properties to the pharmacokinetic profiles of small molecules reveals how the absorption half-life and distribution of compounds are expected to vary in different cell types and anatomical regions of the lung. Based on logP, pK(a) and molecular radius, the absorption rate constants (K(a)) calculated with the model were consistent with experimental measurements of pulmonary drug absorption. CONCLUSIONS The cell-based mechanistic model developed herein is an important step towards the rational design of local, lung-targeted medications, facilitating the design and interpretation of experiments aimed at optimizing drug transport properties in lung.
Collapse
|
19
|
Shirai N, Geoly FJ. Eosinophilic airway inflammation in a cynomolgus monkey. Vet Pathol 2009; 47:318-21. [PMID: 20147585 DOI: 10.1177/0300985809359318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present article describes an occurrence of eosinophilic airway inflammation of a 4-year-old female cynomolgus monkey in a vehicle control group of a routine toxicology study. Histologically, the airway lesion was characterized by prominent eosinophilic infiltrates, accompanied by mast cells, lymphocytes, and plasmacytes. The eosinophilic infiltrates were distributed throughout the airway: from trachea through respiratory bronchioles in the lung. The morphological feature of the lesion was indicative of an allergic airway disorder that can occur in humans with asthma. The present case is remarkable in that there is a paucity of reports on naturally occurring allergic airway disorders in nonhuman primates.
Collapse
Affiliation(s)
- N Shirai
- Drug Safety Research and Development, Pfizer Global Research and Development, Groton Laboratories, Groton, CT 06340, USA.
| | | |
Collapse
|
20
|
|
21
|
Ohno Y, Koyama H, Matsumoto K, Onishi Y, Nogami M, Takenaka D, Matsumoto S, Sugimura K. Oxygen-enhanced MRI vs. quantitatively assessed thin-section CT: pulmonary functional loss assessment and clinical stage classification of asthmatics. Eur J Radiol 2009; 77:85-91. [PMID: 19646835 DOI: 10.1016/j.ejrad.2009.06.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 05/20/2009] [Accepted: 06/22/2009] [Indexed: 10/20/2022]
Abstract
PURPOSE The purpose of this study was to prospectively compare the efficacy of oxygen-enhanced MR imaging (O(2)-enhanced MRI) and CT for pulmonary functional loss assessment and clinical stage classification of asthmatics. MATERIALS AND METHODS O(2)-enhanced MRI, CT and %FEV(1) measurement were used 34 consecutive asthmatics classified into four stages ('Mild Intermittent [n=7]', 'Mild Persistent [n=8], 'Moderate Persistent [n=14]' and 'Severe Persistent [n=5]'). Relative enhancement ratio maps for every subject were generated, and determine mean relative enhancement ratios (MRERs). Mean lung density (MLD) and the airway wall area (WA) corrected by body surface area (WA/BSA) were also measured on CT. To compare the efficacy of the two methods for pulmonary functional loss assessment, all indexes were correlated with %FEV(1). To determine the efficacy of the two methods for clinical stage classification, all parameters for the four clinical stages were statistically compared. RESULTS %FEV(1) showed fair or moderate correlation with all parameters (0.15≤r(2)≤0.30, p<0.05). WA, WA/BSA and MRER of the 'Severe Persistent' group were significantly larger than those of 'Mild Intermittent' and 'Mild Persistent' groups (p<0.05), and MRER of the 'Moderate Persistent' group significantly lower than that of the 'Mild Intermittent' group (p<0.05). CONCLUSION O(2)-enhanced MRI is as effective as CT for pulmonary functional loss assessment and clinical stage classification of asthmatics.
Collapse
Affiliation(s)
- Yoshiharu Ohno
- Department of Radiology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Hyogo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Shiang C, Mauad T, Senhorini A, de Araújo BB, Ferreira DS, da Silva LFF, Dolhnikoff M, Tsokos M, Rabe KF, Pabst R. Pulmonary periarterial inflammation in fatal asthma. Clin Exp Allergy 2009; 39:1499-507. [PMID: 19486035 DOI: 10.1111/j.1365-2222.2009.03281.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND To date, little information has been available about pulmonary artery pathology in asthma. The pulmonary artery supplies the distal parts of the lungs and likely represents a site of immunological reaction in allergic inflammation. The objective of this study was to describe the inflammatory cell phenotype of pulmonary artery adventitial inflammation in lung tissue from patients who died of asthma. METHODS We quantified the different inflammatory cell types in the periarterial region of small pulmonary arteries in lung tissue from 22 patients who died of asthma [fatal asthma (FA)] and 10 control subjects. Using immunohistochemistry and image analysis, we quantified the cell density for T lymphocytes (CD3, CD4, CD8), B lymphocytes (CD20), eosinophils, mast cells (chymase and tryptase), and neutrophils in the adventitial layer of pulmonary arteries with a diameter smaller than 500 microm. RESULTS Our data (median/interquartile range) demonstrated increased cell density of mast cells [FA=271.8 (148.7) cells/mm2; controls=177.0 (130.3) cells/mm2, P=0.026], eosinophils [FA=23.1 (58.6) cells/mm2; controls=0.0 (2.3) cells/mm2, P=0.012], and neutrophils [FA=50.4 (85.5) cells/mm2; controls=2.9 (30.5) cells/mm2, P=0.009] in the periarterial space in FA. No significant differences were found for B and T lymphocytes or CD4+ or CD8+ subsets. Chymase/tryptase positive (MCCT) mast cells predominated over tryptase (MCT) mast cells in the perivascular arterial space in both asthma patients and controls [MCCT/(MCCT+MCT)=0.91 (0-1) in FA and 0.75 (0-1) in controls, P=0.86]. CONCLUSIONS Our results show that the adventitial layer of the pulmonary artery participates in the inflammatory process in FA, demonstrating increased infiltration of mast cells, eosinophils, and neutrophils, but not of T and B lymphocytes.
Collapse
Affiliation(s)
- C Shiang
- Department of Pathology, School of Medicine, São Paulo University, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
de Lange EE, Altes TA, Patrie JT, Battiston JJ, Juersivich AP, Mugler JP, Platts-Mills TA. Changes in regional airflow obstruction over time in the lungs of patients with asthma: evaluation with 3He MR imaging. Radiology 2009; 250:567-75. [PMID: 19188325 DOI: 10.1148/radiol.2502080188] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To determine changes in regional airflow obstruction over time in the lungs of patients with asthma, as demonstrated with hyperpolarized helium 3 ((3)He) magnetic resonance (MR) imaging, and to assess correlations with disease severity and use of asthma medications. MATERIALS AND METHODS Institutional review board approval and written informed consent were obtained for this HIPAA-compliant study. Use of (3)He was approved by the U.S. Food and Drug Administration. Forty-three patients underwent 103 MR imaging studies in total; 26 were imaged twice within 42-82 minutes (same day), and 17 were imaged on 3 days between 1 and 476 days (multiday). Each day, spirometry was performed, disease severity was determined, and the use of asthma medications was recorded. Images were reviewed in a pairwise fashion to determine total ventilation defect number, defects in same location between imaging studies, and size. Parametric and nonparametric statistical methods were used. RESULTS For the same-day examinations, the mean number of defects per image section was similar at baseline and repeat imaging (1.8 +/- 1.9 [standard deviation] vs 1.6 +/- 1.9, respectively; P = .15), with 75% of defects remaining in the same location and 71% of these not changing size. For the multiday examinations, the mean number of defects per section was higher for study 2 (2.4 +/- 1.5) than study 1 (1.7 +/- 0.9, P = .02), was lower for study 3 (1.5 +/- 1.1) than for study 2 (P < .01), and was similar for studies 1 and 3 (P = .56). Time between examinations was not associated with change in mean number of defects per section (median intrasubject correlation [r(m)] = 0.01, P = .64) or change in spirometric values (range of r(m) values: -0.56 to -0.31; range of P values: .09-.71). Defects in the same location decreased with time (r(m) = -0.83, P < .01), with 67% persisting between studies 1 and 2 (median interval, 31 days), 43% persisting between studies 2 and 3 (median interval, 41 days), and 38% persisting between studies 1 and 3 (median interval, 85 days); 46%-58% of defects remained unchanged in size. These trends were the same regardless of disease severity or medication use. CONCLUSION In asthma, focal airflow impediment within the lungs can be markedly persistent over time, regardless of disease severity or treatment.
Collapse
Affiliation(s)
- Eduard E de Lange
- Department of Radiology, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Ozone and allergen exposure during postnatal development alters the frequency and airway distribution of CD25+ cells in infant rhesus monkeys. Toxicol Appl Pharmacol 2009; 236:39-48. [PMID: 19371618 DOI: 10.1016/j.taap.2008.12.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2008] [Revised: 12/05/2008] [Accepted: 12/26/2008] [Indexed: 11/21/2022]
Abstract
The epidemiologic link between air pollutant exposure and asthma has been supported by experimental findings, but the mechanisms are not understood. In this study, we evaluated the impact of combined ozone and house dust mite (HDM) exposure on the immunophenotype of peripheral blood and airway lymphocytes from rhesus macaque monkeys during the postnatal period of development. Starting at 30 days of age, monkeys were exposed to 11 cycles of filtered air, ozone, HDM aerosol, or ozone+HDM aerosol. Each cycle consisted of ozone delivered at 0.5 ppm for 5 days (8 h/day), followed by 9 days of filtered air; animals received HDM aerosol during the last 3 days of each ozone exposure period. Between 2-3 months of age, animals co-exposed to ozone+HDM exhibited a decline in total circulating leukocyte numbers and increased total circulating lymphocyte frequency. At 3 months of age, blood CD4+/CD25+ lymphocytes were increased with ozone+HDM. At 6 months of age, CD4+/CD25+ and CD8+/CD25+ lymphocyte populations increased in both blood and lavage of ozone+HDM animals. Overall volume of CD25+ cells within airway mucosa increased with HDM exposure. Ozone did not have an additive effect on volume of mucosal CD25+ cells in HDM-exposed animals, but did alter the anatomical distribution of this cell type throughout the proximal and distal airways. We conclude that a window of postnatal development is sensitive to air pollutant and allergen exposure, resulting in immunomodulation of peripheral blood and airway lymphocyte frequency and trafficking.
Collapse
|
25
|
Abstract
This review evaluates the current status of information regarding the nonhuman primate as an experimental model for defining mechanisms of chronic airways disease in humans, using the concept of the epithelial-mesenchymal trophic unit (EMTU) as a basis for comparison with other laboratory species. All of the cellular and acellular compartments within the walls of tracheobronchial airways which interact as the EMTU are present throughout the airway tree in human and nonhuman primates. The epithelial compartment contains mucous goblet and basal cells in the surface epithelium and submucosal glands within the wall. The interstitial compartment of primates has a prominent subepithelial basement membrane zone (BMZ) with an attenuated fibroblast sheath and cartilage throughout the tree. In primates, there is an extensive transition zone between distal conducting airways and lung parenchyma composed of numerous generations of respiratory bronchioles. None of these features are characteristic of intrapulmonary airways in rodents, whose airways do share ciliated cells, smooth muscle cells, nerve networks, vasculature and inflammatory cell populations with primates. While the numbers of intrapulmonary airway branches are similar for most mammals, branching patterns, which dictate distribution of inhaled materials, are more uniform (dichotomous) in primates and less so (monopodial) in rodents. Development of tracheobronchial airways (both differentiation of the EMTU and overall growth) occurs over an extensive postnatal period (months to years) in primates and a comparably shorter time period (2-3 weeks) in rodents. As with allergic airways disease in humans, experimental exposure of nonhuman primates to a known human allergen, house dust mite, produces extensive remodeling of all compartments of the EMTU: mucous goblet cell hyperplasia, epithelial sloughing, basement membrane zone (BMZ) thickening and reorganization, altered attenuated fibroblast function, subepithelial fibrosis and smooth muscle thickening. Experimental allergic airways disease in nonhuman primates also shares other features with asthmatic humans: positive skin test to allergen; allergen-specific circulating IgE; airway hyper responsiveness to allergen, histamine and methacholine; increased eosinophils, IGE positive cells and mucins in airway exudate; and migratory leukocyte accumulations in the airway wall and lumen. Experimental exposure of nonhuman primates to reactive gases, such as ozone, produces the chronic respiratory bronchiolitis and other airway alterations associated with restricted airflow and chronic respiratory bronchiolitis characteristic of COPD in young smokers. We conclude that nonhuman primate models are appropriate for defining mechanisms as they relate to allergic airways disease and COPD in humans.
Collapse
Affiliation(s)
- Charles G Plopper
- California National Primate Research Center and School of Veterinary Medicine, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | | |
Collapse
|
26
|
Selgrade MK, Plopper CG, Gilmour MI, Conolly RB, Foos BSP. Assessing the health effects and risks associated with children's inhalation exposures--asthma and allergy. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2008; 71:196-207. [PMID: 18097945 DOI: 10.1080/15287390701597897] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Adults and children may have different reactions to inhalation exposures due to differences in target tissue doses following similar exposures, and/or different stages in lung growth and development. In the case of asthma and allergy both the developing immune system and initial encounters with common allergens contribute to this differential susceptibility. Asthma, the most common chronic childhood disease, has significant public health impacts and is characterized by chronic lung inflammation, reversible airflow obstruction, and immune sensitization to allergens. Animal studies described here suggest that air pollutants exacerbate asthma symptoms and may also play a role in disease induction. Changes characteristic of asthma were observed in rhesus monkeys sensitized to house dust mite antigen (HDMA) as infants and exposed repeatedly thereafter to ozone (O3) and HDMA. O3 exposure compromised airway growth and development and exacerbated the allergen response to favor intermittent airway obstruction and wheeze. In Brown Norway rats a variety of air pollutants enhanced sensitization to HDMA such that symptoms elicited in response to subsequent allergen challenge were more severe. Although useful for assessing air pollutants effects on initial sensitization, the rodent immune system is immature at birth relative to humans, making this model less useful for studying differential effects between adults and children. Because computational models available to address children's inhalation exposures are limited, default adjustments and their associated uncertainty will continue to be used in children's inhalation risk assessment. Because asthma is a complex (multiple genes, phenotypes, organ systems) disease, this area is ripe for systems biology approaches.
Collapse
Affiliation(s)
- MaryJane K Selgrade
- National Health and Environmental Effects Research Laboratory, North California, USA.
| | | | | | | | | |
Collapse
|
27
|
Plopper CG, Smiley-Jewell SM, Miller LA, Fanucchi MV, Evans MJ, Buckpitt AR, Avdalovic M, Gershwin LJ, Joad JP, Kajekar R, Larson S, Pinkerton KE, Van Winkle LS, Schelegle ES, Pieczarka EM, Wu R, Hyde DM. Asthma/allergic airways disease: does postnatal exposure to environmental toxicants promote airway pathobiology? Toxicol Pathol 2007; 35:97-110. [PMID: 17325978 DOI: 10.1080/01926230601132030] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
UNLABELLED The recent, dramatic increase in the incidence of childhood asthma suggests a role for environmental contaminants in the promotion of interactions between allergens and the respiratory system of young children. To establish whether exposure to an environmental stressor, ozone (O3), and an allergen, house dust mite (HDMA), during early childhood promotes remodeling of the epithelial-mesenchymal trophic unit (EMTU) of the tracheobronchial airway wall by altering postnatal development, infant rhesus monkeys were exposed to cyclic episodes of filtered air (FA), HDMA, O3, or HDMA plus O3. The following alterations in the EMTU were found after exposure to HDMA, O3, or HDMA plus O3: (1) reduced airway number; (2) hyperplasia of bronchial epithelium; (3) increased mucous cells; (4) shifts in distal airway smooth muscle bundle orientation and abundance to favor hyperreactivity; (5) interrupted postnatal basement membrane zone differentiation; (6) modified epithelial nerve fiber distribution; and (7) reorganization of the airway vascular and immune system. CONCLUSIONS cyclic challenge of infants to toxic stress during postnatal lung development modifies the EMTU. This exacerbates the allergen response to favor development of intermittent airway obstruction associated with wheeze. And, exposure of infants during early postnatal lung development initiates compromises in airway growth and development that persist or worsen as growth continues, even with cessation of exposure.
Collapse
Affiliation(s)
- Charles G Plopper
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
de Lange EE, Altes TA, Patrie JT, Parmar J, Brookeman JR, Mugler JP, Platts-Mills TAE. The variability of regional airflow obstruction within the lungs of patients with asthma: assessment with hyperpolarized helium-3 magnetic resonance imaging. J Allergy Clin Immunol 2007; 119:1072-8. [PMID: 17353032 DOI: 10.1016/j.jaci.2006.12.659] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 12/01/2006] [Accepted: 12/19/2006] [Indexed: 11/17/2022]
Abstract
BACKGROUND It is unknown whether focal changes of airflow obstruction within the lungs of patients with asthma vary or are fixed in location with time or repeated bronchoconstriction. With hyperpolarized helium-3 magnetic resonance (H(3)HeMR) imaging, the airspaces are depicted and focal areas of airflow obstruction are shown as "ventilation defects." OBJECTIVE To investigate the regional changes of airflow obstruction with time and repeated bronchoconstriction. METHODS H(3)HeMR and spirometry were performed before (pre) and immediately after (post) methacholine challenge in 10 young patients with asthma on 2 days that were 7-476 days (mean, 185.3 +/- 37.2 days) apart. Pair-wise image comparisons were performed to determine the change in location of ventilation defects within the lung and their change in size. RESULTS When comparing premethacholine versus premethacholine and postmethacholine versus post-methacholine images of the 2 days, 41% +/- 10% and 69% +/- 5% (P = .017) of defects, respectively, were in the same location, and of those, 69% +/- 12% and 43% +/- 5% (P = .022), respectively, did not change size. Comparing premethacholine versus postmethacholine images, 58% +/- 9% of defects were in the same location on day 1 and 73% +/- 7% (P = .088) on day 2. On both days, the percent increase in defect number from premethacholine to postmethacholine was much greater than the percent decrease in spirometric values (P < .001). CONCLUSION Many of the ventilation defects persisted or recurred in the same location with time or repeated bronchoconstriction, suggesting that the regional changes of airflow obstruction are relatively fixed within the lung. CLINICAL IMPLICATIONS The findings give new insight into the regional airflow variability within the lungs of patients with asthma.
Collapse
Affiliation(s)
- Eduard E de Lange
- Department of Radiology, University of Virginia, Charlottesville, VA 22908, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
de Lange EE, Altes TA, Patrie JT, Gaare JD, Knake JJ, Mugler JP, Platts-Mills TA. Evaluation of Asthma With Hyperpolarized Helium-3 MRI. Chest 2006; 130:1055-62. [PMID: 17035438 DOI: 10.1378/chest.130.4.1055] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Accurate characterization of asthma severity is difficult due to the variability of symptoms. Hyperpolarized helium-3 MRI (H(3)HeMR) is a new technique in which the airspaces are visualized, depicting regions with airflow obstruction as "ventilation defects." The objective of this study was to compare the extent of H(3)HeMR ventilation defects with measures of asthma severity and spirometry. METHODS Patients with a physician diagnosis of asthma and normal control subjects underwent H(3)HeMR. For each person, the number and size of ventilation defects were scored and the average number of ventilation defects per slice (VDS) was calculated. The correlations of the imaging findings with measures of asthma severity and spirometry were determined. RESULTS There were 58 patients with asthma (mild-intermittent, n = 13; mild-persistent, n = 13; moderate-persistent, n = 20; and severe-persistent, n = 12) and 18 control subjects. Mean +/- SE VDS for asthmatics was significantly greater than for control subjects (0.99 +/- 0.15 vs 0.26 +/- 0.22, p = 0.004). Among asthmatics, VDS was significantly higher for the group with moderate-persistent and severe-persistent disease than for the group with mild-intermittent and mild-persistent disease (1.37 +/- 0.24 vs 0.53 +/- 0.12, p < 0.001). VDS correlated significantly with FEV(1)/FVC (r = - 0.51, p = 0.002), forced expiratory flow between 25% and 75% from the beginning of FVC (FEF(25-75%)) percentage of predicted for height, sex, and race (%predicted) [r = - 0.50, p = 0.001], and FEV(1) %predicted (r = - 0.40, p = 0.002), but not with FVC %predicted (r = - 0.26, p = 0.057) and peak expiratory flow %predicted (r = - 0.16, p = 0.231). Many asthmatics had an elevated VDS, but their spirometric indexes, except FEF(25%-75%), were normal. Most ventilation defects were < 3 cm in size for all asthmatics. In the group of patients with moderate-to-severe persistent asthma, there were more defects > or =3 cm than in the group with mild-intermittent and mild-persistent disease (p = 0.021). CONCLUSIONS Regional changes of airflow obstruction in asthmatics depicted by H(3)HeMR correlate with measures of asthma severity and spirometry.
Collapse
Affiliation(s)
- Eduard E de Lange
- University of Virginia Health Sciences System, Department of Radiology, HSC 800170, Charlottesville, VA 22908, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Battaglia S, Mauad T, van Schadewijk AM, Vignola AM, Rabe KF, Bellia V, Sterk PJ, Hiemstra PS. Differential distribution of inflammatory cells in large and small airways in smokers. J Clin Pathol 2006; 60:907-11. [PMID: 16917001 PMCID: PMC1994511 DOI: 10.1136/jcp.2006.037002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Smoking induces structural changes in the airways, and is considered a major factor in the development of airflow obstruction in chronic obstructive pulmonary disease. However, differences in inflammatory cell distribution between large airways (LA) and small airways (SA) have not been systematically explored in smokers. HYPOTHESIS The content of cells infiltrating the airway wall differs between LA and SA. AIMS To compare the content of neutrophils, macrophages, lymphocytes and mast cells infiltrating LA and SA in smokers who underwent surgery for lung cancer. METHODS Lung tissue from 15 smokers was analysed. Inflammatory cells in the lamina propria were identified by immunohistochemical analysis, quantified by digital image analysis and expressed as number of cells per surface area. RESULTS The number of neutrophils infiltrating the lamina propria of SA (median 225.3 cells/mm(2)) was higher than that in the lamina propria of LA (median 60.2 cells/mm(2); p<0.001). Similar results were observed for mast cells: 313.3 and 133.7 cells/mm(2) in the SA and LA, respectively (p<0.001). In contrast, the number of CD4 cells was higher in LA compared with SA (median 217.8 vs 80.5 cells/mm(2); p = 0.042). CONCLUSIONS These findings indicate a non-uniform distribution of neutrophils and mast cells throughout the bronchial tree, and suggest that these cells may be involved in the development of smoking-related peripheral lung injury.
Collapse
Affiliation(s)
- Salvatore Battaglia
- Department of Pulmonology, Leiden University Medical Centre (LUMC), Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Asthma is a complex human disease that does not have an accurate counterpart in any common model organism. Most of our understanding of the immune mechanisms underlying asthma comes from studies in man and mouse. However, there are fundamental differences between the spontaneous disease in man and the experimentally induced counterparts in mice. We advocate more extensive use of nonhuman primate asthma models to reconcile these differences between man and mouse.
Collapse
|