1
|
Huang Y, Zhu L, Cheng S, Dai R, Huang C, Song Y, Peng B, Li X, Wen J, Gong Y, Hu Y, Qian L, Zhu L, Zhang F, Yu L, Yi C, Gu W, Ling Z, Ma L, Tang W, Peng L, Shi G, Zhang Y, Sun B. Solar ultraviolet B radiation promotes α-MSH secretion to attenuate the function of ILC2s via the pituitary-lung axis. Nat Commun 2023; 14:5601. [PMID: 37699899 PMCID: PMC10497598 DOI: 10.1038/s41467-023-41319-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
The immunomodulatory effects of ultraviolet B (UVB) radiation in human diseases have been described. Whether type 2 lung inflammation is directly affected by solar ultraviolet (UV) radiation is not fully understood. Here, we show a possible negative correlation between solar UVB radiation and asthmatic inflammation in humans and mice. UVB exposure to the eyes induces hypothalamus-pituitary activation and α-melanocyte-stimulating hormone (α-MSH) accumulation in the serum to suppress allergic airway inflammation by targeting group 2 innate lymphoid cells (ILC2) through the MC5R receptor in mice. The α-MSH/MC5R interaction limits ILC2 function through attenuation of JAK/STAT and NF-κB signaling. Consistently, we observe that the plasma α-MSH concentration is negatively correlated with the number and function of ILC2s in the peripheral blood mononuclear cells (PBMC) of patients with asthma. We provide insights into how solar UVB radiation-driven neuroendocrine α-MSH restricts ILC2-mediated lung inflammation and offer a possible strategy for controlling allergic diseases.
Collapse
Affiliation(s)
- Yuying Huang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Lin Zhu
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shipeng Cheng
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ranran Dai
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunrong Huang
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanyan Song
- Department of Biostatistics, Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Peng
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuezhen Li
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jing Wen
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yi Gong
- Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yunqian Hu
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ling Qian
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Linyun Zhu
- Shanghai Putuo District Central Hospital, Shanghai, China
| | - Fengying Zhang
- Shanghai Putuo District People's Hospital, Shanghai, China
| | - Li Yu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chunyan Yi
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wangpeng Gu
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhiyang Ling
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Liyan Ma
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wei Tang
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Li Peng
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai, China.
| | - Guochao Shi
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yaguang Zhang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
- Med-X Institute, Center for Immunological and Metabolic Diseases, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an JiaoTong University, Xi'an, Shaanxi, P. R. China.
| | - Bing Sun
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
2
|
Afzal M, Kazmi I, Al-Abbasi FA, Alshehri S, Ghoneim MM, Imam SS, Nadeem MS, Al-Zahrani MH, Alzarea SI, Alquraini A. Current Overview on Therapeutic Potential of Vitamin D in Inflammatory Lung Diseases. Biomedicines 2021; 9:1843. [PMID: 34944659 PMCID: PMC8698997 DOI: 10.3390/biomedicines9121843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
Inflammatory lung disorders (ILDs) are one of the world's major reasons for fatalities and sickness, impacting millions of individuals of all ages and constituting a severe and pervasive health hazard. Asthma, lung cancer, bronchiectasis, pulmonary fibrosis acute respiratory distress syndrome, and COPD all include inflammation as a significant component. Microbe invasions, as well as the damage and even death of host cells, can cause and sustain inflammation. To counteract the negative consequences of irritants, the airways are equipped with cellular and host defense immunological systems that block the cellular entrance of these irritants or eliminate them from airway regions by triggering the immune system. Failure to activate the host defense system will trigger chronic inflammatory cataracts, leading to permanent lung damage. This damage makes the lungs more susceptible to various respiratory diseases. There are certain restrictions of the available therapy for lung illnesses. Vitamins are nutritional molecules that are required for optimal health but are not produced by the human body. Cholecalciferol (Vitamin D) is classified as a vitamin, although it is a hormone. Vitamin D is thought to perform a function in bone and calcium homeostasis. Recent research has found that vitamin D can perform a variety of cellular processes, including cellular proliferation; differentiation; wound repair; healing; and regulatory systems, such as the immune response, immunological, and inflammation. The actions of vitamin D on inflammatory cells are dissected in this review, as well as their clinical significance in respiratory illnesses.
Collapse
Affiliation(s)
- Muhammad Afzal
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (M.A.); (S.I.A.)
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.A.A.-A.); (M.S.N.); (M.H.A.-Z.)
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.A.A.-A.); (M.S.N.); (M.H.A.-Z.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.)
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.A.A.-A.); (M.S.N.); (M.H.A.-Z.)
| | - Maryam Hassan Al-Zahrani
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.A.A.-A.); (M.S.N.); (M.H.A.-Z.)
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (M.A.); (S.I.A.)
| | - Ali Alquraini
- Department of Pharmaceutical Chemistry, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65779, Saudi Arabia;
| |
Collapse
|
3
|
Mincham KT, Panchal K, Hart PH, Lucas RM, Feelisch M, Weller RB, Matthews VB, Strickland DH, Gorman S. Metabolic dysfunction induced by a high-fat diet modulates hematopoietic stem and myeloid progenitor cells in brown adipose tissue of mice. Immunol Cell Biol 2021; 99:749-766. [PMID: 33866598 DOI: 10.1111/imcb.12460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/05/2021] [Accepted: 04/15/2021] [Indexed: 11/29/2022]
Abstract
Brown adipose tissue (BAT) may be an important metabolic regulator of whole-body glucose. While important roles have been ascribed to macrophages in regulating metabolic functions in BAT, little is known of the roles of other immune cells subsets, particularly dendritic cells (DCs). Eating a high-fat diet may compromise the development of hematopoietic stem and progenitor cells (HSPCs)-which give rise to DCs-in bone marrow, with less known of its effects in BAT. We have previously demonstrated that ongoing exposure to low-dose ultraviolet radiation (UVR) significantly reduced the 'whitening' effect of eating a high-fat diet upon interscapular (i) BAT of mice. Here, we examined whether this observation may be linked to changes in the phenotype of HSPCs and myeloid-derived immune cells in iBAT and bone marrow of mice using 12-colour flow cytometry. Many HSPC subsets declined in both iBAT and bone marrow with increasing metabolic dysfunction. Conversely, with rising adiposity and metabolic dysfunction, conventional DCs (cDCs) increased in both of these tissues. When compared with a low-fat diet, consumption of a high-fat diet significantly reduced proportions of myeloid, common myeloid and megakaryocyte-erythrocyte progenitors in iBAT, and short-term hematopoietic stem cells in bone marrow. In mice fed the high-fat diet, exposure to low-dose UVR significantly reduced proportions of cDCs in iBAT, independently of nitric oxide release from irradiated skin [blocked using the scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO)], but did not significantly modify HSPC subsets in either tissue. Further studies are needed to determine whether changes in these cell populations contribute towards metabolic dysfunction .
Collapse
Affiliation(s)
- Kyle T Mincham
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Kunjal Panchal
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Prue H Hart
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Robyn M Lucas
- National Centre for Epidemiology and Population Health, Research School of Population Health, Australian National University, Canberra, Australian Capital Territory, Australia.,Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Australia
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Richard B Weller
- University of Edinburgh, MRC Centre for Inflammation Research, Edinburgh, Scotland
| | - Vance B Matthews
- School of Biomedical Science - Royal Perth Hospital Unit, The University of Western Australia, Perth, Australia
| | | | - Shelley Gorman
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| |
Collapse
|
4
|
Ahmad S, Arora S, Khan S, Mohsin M, Mohan A, Manda K, Syed MA. Vitamin D and its therapeutic relevance in pulmonary diseases. J Nutr Biochem 2020; 90:108571. [PMID: 33388351 DOI: 10.1016/j.jnutbio.2020.108571] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/20/2020] [Accepted: 12/24/2020] [Indexed: 01/15/2023]
Abstract
Vitamin D is customarily involved in maintaining bone and calcium homeostasis. However, contemporary studies have identified the implication of vitamin D in several cellular processes including cellular proliferation, differentiation, wound healing, repair and regulatory systems inclusive of host defence, immunity, and inflammation. Multiple studies have indicated corelations between low serum levels of vitamin D, perturbed pulmonary functions and enhanced incidences of inflammatory diseases. Almost all of the pulmonary diseases including acute lung injury, cystic fibrosis, asthma, COPD, Pneumonia and Tuberculosis, all are inflammatory in nature. Studies have displayed strong inter-relations with vitamin D deficiency and progression of lung disorders; however, the underlying mechanism is still unknown. Vitamin D has emerged to possess inhibiting effects on pulmonary inflammation while exaggerating innate immune defenses by strongly influencing functions of inflammatory cells including dendritic cells, monocyte/macrophages, T cells, and B cells along with structural epithelial cells. This review dissects the effects of vitamin D on the inflammatory cells and their therapeutic relevance in pulmonary diseases. Although, the data obtained is very limited and needs further corroboration but presents an exciting area of further research. This is because of its ease of supplementation and development of personalized medicine which could lead us to an effective adjunct and cost-effective method of therapeutic modality for highly fatal pulmonary diseases.
Collapse
Affiliation(s)
- Shaniya Ahmad
- Translational Research Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India; Institute of Nuclear Medicine and Allied Science, Defence Research and Development Organisation, New Delhi, India
| | - Shweta Arora
- Translational Research Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Salman Khan
- Translational Research Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Mohd Mohsin
- Translational Research Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Anant Mohan
- Department of Pulmonary Medicine, AIIMS, New Delhi, India
| | - Kailash Manda
- Institute of Nuclear Medicine and Allied Science, Defence Research and Development Organisation, New Delhi, India
| | - Mansoor Ali Syed
- Translational Research Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
5
|
Gorman S, Buckley AG, Ling KM, Berry LJ, Fear VS, Stick SM, Larcombe AN, Kicic A, Hart PH. Vitamin D supplementation of initially vitamin D-deficient mice diminishes lung inflammation with limited effects on pulmonary epithelial integrity. Physiol Rep 2018; 5:5/15/e13371. [PMID: 28774952 PMCID: PMC5555896 DOI: 10.14814/phy2.13371] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/03/2017] [Accepted: 07/07/2017] [Indexed: 12/18/2022] Open
Abstract
In disease settings, vitamin D may be important for maintaining optimal lung epithelial integrity and suppressing inflammation, but less is known of its effects prior to disease onset. Female BALB/c dams were fed a vitamin D3‐supplemented (2280 IU/kg, VitD+) or nonsupplemented (0 IU/kg, VitD−) diet from 3 weeks of age, and mated at 8 weeks of age. Male offspring were fed the same diet as their mother. Some offspring initially fed the VitD− diet were switched to a VitD+ diet from 8 weeks of age (VitD−/+). At 12 weeks of age, signs of low‐level inflammation were observed in the bronchoalveolar lavage fluid (BALF) of VitD− mice (more macrophages and neutrophils), which were suppressed by subsequent supplementation with vitamin D3. There was no difference in the level of expression of the tight junction proteins occludin or claudin‐1 in lung epithelial cells of VitD+ mice compared to VitD− mice; however, claudin‐1 levels were reduced when initially vitamin D‐deficient mice were fed the vitamin D3‐containing diet (VitD−/+). Reduced total IgM levels were detected in BALF and serum of VitD−/+ mice compared to VitD+ mice. Lung mRNA levels of the vitamin D receptor (VDR) were greatest in VitD−/+ mice. Total IgG levels in BALF were greater in mice fed the vitamin D3‐containing diet, which may be explained by increased activation of B cells in airway‐draining lymph nodes. These findings suggest that supplementation of initially vitamin D‐deficient mice with vitamin D3 suppresses signs of lung inflammation but has limited effects on the epithelial integrity of the lungs.
Collapse
Affiliation(s)
- Shelley Gorman
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia
| | - Alysia G Buckley
- Centre of Microscopy, Characterisation and Analysis The University of Western Australia, Nedlands, Western Australia, Australia
| | - Kak-Ming Ling
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia
| | - Luke J Berry
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia
| | - Vanessa S Fear
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia
| | - Stephen M Stick
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia.,School of Paediatrics and Child Health The University of Western Australia, Nedlands, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology The University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia
| | - Alexander N Larcombe
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia.,Occupation and Environment School of Public Health Curtin University, Perth, Western Australia, Australia
| | - Anthony Kicic
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia.,School of Paediatrics and Child Health The University of Western Australia, Nedlands, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology The University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia.,Occupation and Environment School of Public Health Curtin University, Perth, Western Australia, Australia
| | - Prue H Hart
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia
| |
Collapse
|
6
|
Gorman S, Geldenhuys S, Weeden CE, Grimbaldeston MA, Hart PH. Investigating the roles of regulatory T cells, mast cells and interleukin-9 in the control of skin inflammation by vitamin D. Arch Dermatol Res 2018; 310:221-230. [PMID: 29392411 DOI: 10.1007/s00403-018-1814-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 12/29/2017] [Accepted: 01/12/2018] [Indexed: 01/14/2023]
Abstract
Topical application of biologically active vitamin D [1,25-dihydroxyvitamin D (1,25(OH)2D)], or low-calcemic analogues, curb skin inflammation through mechanisms that involve migratory dendritic cells (DCs) and regulatory T (TReg) cells. 1,25(OH)2D also promotes immunoregulation by mast cells, and inhibits the development of T helper type-9 (Th9) cells that secrete interleukin-9 (IL-9). Here, we investigated the ability of topical 1,25(OH)2D to suppress contact dermatitis through an IL-9-dependent process, examining mast cells and IL-9-secreting T cells. Contact dermatitis was modelled in adult BALB/c female mice by initiating a "biphasic ear swelling response" following a single application of 2,4-dinitrofluorobenzene (DNFB). Topical 1,25(OH)2D (125 ng) applied to ear pinnae prior to (but not after) DNFB sensitisation suppressed the efferent phase of the ear swelling response. This dose of 1,25(OH)2D did not cause hypercalcemia. At the peak of the efferent ear swelling response, proportions of TReg (CD3 + Foxp3+) cells and numbers of mast cells were increased in ear skin of 1,25(OH)2D-treated mice. Topical 1,25(OH)2D increased the proportion of Foxp3 + IL-9 + TReg cells and the capacity of TReg cells to secrete IL-9 ex vivo. However, the proportion of the IL-9 + cells of the total TReg cell population was small (< 1%), and the amount of IL-9 secreted by TReg cells from mice treated with IL-9 was low (< 50 pg/ml). Furthermore, injection of anti-IL-9 neutralising antibody (100 µg, intraperitoneally) prior to sensitisation did not significantly reverse the suppressive effects of 1,25(OH)2D. In conclusion, topically applied 1,25(OH)2D suppressed the efferent phase of a biphasic cutaneous ear swelling response through mechanism(s) that may be dependent on mast cells and TReg cells; however, the role of IL-9 in mediating these responses is uncertain. More studies are needed to further characterise the mechanisms by which topical 1,25(OH)2D modulates cell-mediated immune responses central to its suppressive effects upon contact dermatitis.
Collapse
Affiliation(s)
- Shelley Gorman
- Telethon Kids Institute, University of Western Australia, 100 Roberts Rd, Subiaco, Perth, WA, 6008, Australia.
| | - Sian Geldenhuys
- Telethon Kids Institute, University of Western Australia, 100 Roberts Rd, Subiaco, Perth, WA, 6008, Australia
| | - Clare E Weeden
- Telethon Kids Institute, University of Western Australia, 100 Roberts Rd, Subiaco, Perth, WA, 6008, Australia
| | - Michele A Grimbaldeston
- OMNI-Biomarker Development, Genentech Inc, South San Francisco, CA, USA.,Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Prue H Hart
- Telethon Kids Institute, University of Western Australia, 100 Roberts Rd, Subiaco, Perth, WA, 6008, Australia
| |
Collapse
|
7
|
Fleury N, Feelisch M, Hart PH, Weller RB, Smoothy J, Matthews VB, Gorman S. Sub-erythemal ultraviolet radiation reduces metabolic dysfunction in already overweight mice. J Endocrinol 2017; 233:81-92. [PMID: 28154004 DOI: 10.1530/joe-16-0616] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/01/2017] [Indexed: 01/16/2023]
Abstract
Exposure to sunlight may limit cardiometabolic risk. In our previous studies, regular exposure to sub-erythemal (non-burning) ultraviolet radiation (UVR) reduced signs of adiposity and cardiometabolic dysfunction in mice fed a high-fat diet. Some of the observed effects were dependent on skin release of nitric oxide after UVR exposure. Here, we examine the effects of sub-erythemal UVR on signs of adiposity and metabolic dysfunction in already overweight mice, comparing the effects of two sunlamps with distinct emitted light spectra. Mice were fed a high-fat diet from 8 weeks of age, with UVR administered twice a week from 14 weeks of age until they were killed at 20 weeks of age. Mice were irradiated with the same dose of UVB radiation (1 kJ/m2) from either FS40 (65% UVB, 35% UVA) or CLEO (4% UVB, 96% UVA) sunlamps, but substantially more UVA from the latter. FS40 UVR (but not CLEO UVR) significantly reduced mouse weights and weight gain, compared to mice fed a high-fat diet (only). These effects were dependent on nitric oxide. Conversely, CLEO UVR (but not FS40 UVR) significantly reduced circulating LDL cholesterol. Both light sources reduced fasting insulin levels, and the extent of hepatic steatosis; the latter was reversed by topical application of cPTIO, suggesting an important role for skin release of nitric oxide in preventing hepatic lipid accumulation. These results suggest that there may be a number of benefits achieved by regular exposure to safe (non-burning) levels of sunlight or UV-containing phototherapy, with effects potentially dependent on the predominance of the wavelengths of UVR administered.
Collapse
Affiliation(s)
- Naomi Fleury
- Telethon Kids InstituteUniversity of Western Australia, Perth, Australia
| | - Martin Feelisch
- Clinical and Experimental SciencesFaculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Prue H Hart
- Telethon Kids InstituteUniversity of Western Australia, Perth, Australia
| | - Richard B Weller
- University of EdinburghMRC Centre for Inflammation Research, Edinburgh, Scotland
| | - Jordan Smoothy
- Telethon Kids InstituteUniversity of Western Australia, Perth, Australia
| | - Vance B Matthews
- School of Medicine and Pharmacology - Royal Perth Hospital UnitThe University of Western Australia, Perth, Australia
| | - Shelley Gorman
- Telethon Kids InstituteUniversity of Western Australia, Perth, Australia
| |
Collapse
|
8
|
Short-range ultraviolet irradiation with LED device effectively increases serum levels of 25(OH)D. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 164:256-263. [PMID: 27710873 DOI: 10.1016/j.jphotobiol.2016.09.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 09/27/2016] [Indexed: 12/18/2022]
Abstract
Impairment of the activities of daily living (ADL) by osteoporosis is an important concern in developed countries with a super-aging population. Vitamin D, which is a crucial molecule in bone metabolism and mainly produced endogenously with ultraviolet (UV) light exposure, is known to be insufficient in the elderly population. We used an UV Light-Emitting Diode (UV-LED) instrument generating a narrow-range wavelength to analyze the efficacy of endogenous vitamin D production. The primary purpose of this study was to examine the effects of UV irradiation at various narrow-range wavelengths using UV-LED on vitamin D supplementation. The second one was to clarify the short-term effects of UV irradiation on bone morphology in mice. Vitamin D-starved C57BL/6 female mice (n=7 per group) were UV-irradiated (268nm, 282nm, 290nm, 305nm, and 316nm) with 1kJ/m2 twice a week for 4weeks. UV irradiation using UV-LED had significant effects on increasing serum 25(OH)D levels in all wavelength groups (P<0.001, all groups) as compared to a control group. Among irradiated groups, wavelength of 316nm had a less marked effect on 25(OH)D production compared with other wavelengths at 1week of UV irradiation (P<0.05). Levels of 1,25(OH)2D were significantly increased after 4weeks irradiation with UV-B or UV-C irradiation (P<0.05). mRNA levels of vitamin D 25-hydroxylase were increased with UV-B or UV-C irradiation (268nm-305nm), significantly. Micro-CT examination revealed that short-term (4weeks) UV-irradiation did not induce morphological change of mice in any group. This study provides essential information that narrow-range UV irradiation with LED can increase the endogenous production of vitamin D, and mRNA levels of the responsible enzyme. Although bone morphology was not altered by short-term UV irradiation in this study, an increase of serum vitamin D might improve bone morphology with long-term irradiation.
Collapse
|
9
|
Roggenbuck M, Anderson D, Barfod KK, Feelisch M, Geldenhuys S, Sørensen SJ, Weeden CE, Hart PH, Gorman S. Vitamin D and allergic airway disease shape the murine lung microbiome in a sex-specific manner. Respir Res 2016; 17:116. [PMID: 27655266 PMCID: PMC5031331 DOI: 10.1186/s12931-016-0435-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/17/2016] [Indexed: 02/06/2023] Open
Abstract
Background Vitamin D is under scrutiny as a potential regulator of the development of respiratory diseases characterised by chronic lung inflammation, including asthma and chronic obstructive pulmonary disease. It has anti-inflammatory effects; however, knowledge around the relationship between dietary vitamin D, inflammation and the microbiome in the lungs is limited. In our previous studies, we observed more inflammatory cells in the bronchoalveolar lavage fluid and increased bacterial load in the lungs of vitamin D-deficient male mice with allergic airway disease, suggesting that vitamin D might modulate the lung microbiome. In the current study, we examined in more depth the effects of vitamin D deficiency initiated early in life, and subsequent supplementation with dietary vitamin D on the composition of the lung microbiome and the extent of respiratory inflammation. Methods BALB/c dams were fed a vitamin D-supplemented or -deficient diet throughout gestation and lactation, with offspring continued on this diet post-natally. Some initially deficient offspring were fed a supplemented diet from 8 weeks of age. The lungs of naïve adult male and female offspring were compared prior to the induction of allergic airway disease. In further experiments, offspring were sensitised and boosted with the experimental allergen, ovalbumin (OVA), and T helper type 2-skewing adjuvant, aluminium hydroxide, followed by a single respiratory challenge with OVA. Results In mice fed a vitamin D-containing diet throughout life, a sex difference in the lung microbial community was observed, with increased levels of an Acinetobacter operational taxonomic unit (OTU) in female lungs compared to male lungs. This effect was not observed in vitamin D-deficient mice or initially deficient mice supplemented with vitamin D from early adulthood. In addition, serum 25-hydroxyvitamin D levels inversely correlated with total bacterial OTUs, and Pseudomonas OTUs in the lungs. Increased levels of the antimicrobial murine ß-defensin-2 were detected in the bronchoalveolar lavage fluid of male and female mice fed a vitamin D-containing diet. The induction of OVA-induced allergic airway disease itself had a profound affect on the OTUs identified in the lung microbiome, which was accompanied by substantially more respiratory inflammation than that induced by vitamin D deficiency alone. Conclusion These data support the notion that maintaining sufficient vitamin D is necessary for optimal lung health, and that vitamin D may modulate the lung microbiome in a sex-specific fashion. Furthermore, our data suggest that the magnitude of the pro-inflammatory and microbiome-modifying effects of vitamin D deficiency were substantially less than that of allergic airway disease, and that there is an important interplay between respiratory inflammation and the lung microbiome.
Collapse
Affiliation(s)
- Michael Roggenbuck
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Denise Anderson
- Telethon Kids Institute, University of Western Australia, 100 Roberts Rd, Subiaco, WA, 6008, Australia
| | | | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Sian Geldenhuys
- Telethon Kids Institute, University of Western Australia, 100 Roberts Rd, Subiaco, WA, 6008, Australia
| | - Søren J Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Clare E Weeden
- Telethon Kids Institute, University of Western Australia, 100 Roberts Rd, Subiaco, WA, 6008, Australia
| | - Prue H Hart
- Telethon Kids Institute, University of Western Australia, 100 Roberts Rd, Subiaco, WA, 6008, Australia
| | - Shelley Gorman
- Telethon Kids Institute, University of Western Australia, 100 Roberts Rd, Subiaco, WA, 6008, Australia.
| |
Collapse
|
10
|
Grant CC, Crane J, Mitchell EA, Sinclair J, Stewart A, Milne T, Knight J, Gilchrist C, Camargo CA. Vitamin D supplementation during pregnancy and infancy reduces aeroallergen sensitization: a randomized controlled trial. Allergy 2016; 71:1325-34. [PMID: 27060679 DOI: 10.1111/all.12909] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Vitamin D has immune-modulating effects. We determined whether vitamin D supplementation during pregnancy and infancy prevents aeroallergen sensitization and primary care respiratory illness presentations. METHODS A randomized, double-blind, placebo-controlled parallel-group trial. We assigned pregnant women, from 27-week gestation to birth, and then their infants, from birth to 6 months, to placebo or one of two dosages of daily oral vitamin D. Woman/infant pairs were randomized to: placebo/placebo, 1000 IU/400 IU or 2000 IU/800 IU. When the children were 18 months old, we measured serum-specific IgE antibodies and identified acute primary care visits described by the doctor to be due to a cold, otitis media, an upper respiratory infection, croup, asthma, bronchitis, bronchiolitis, a wheezy lower respiratory infection or fever and cough. RESULTS Specific IgE was measured on 185 of 260 (71%) enrolled children. The proportion of children sensitized differed by study group for four mite antigens: Dermatophagoides farinae (Der-f1, Der-f2) and Dermatophagoides pteronyssinus (Der-p1, Der-p2). With results presented for placebo, lower dose, and higher dose vitamin D, respectively (all P < 0.05): Der-f1 (18%, 10%, 2%), Der-f2 (14%, 3%, 2%), Der-p1 (19%, 14%, 3%) and Der-p2 (12%, 2%, 3%). There were study group differences in the proportion of children with primary care visits described by the doctor as being for asthma (11%, 0%, 4%, P = 0.002), but not for the other respiratory diagnoses. CONCLUSIONS Vitamin D supplementation during pregnancy and infancy reduces the proportion of children sensitized to mites at age 18 months. Preliminary data indicate a possible effect on primary care visits where asthma is diagnosed.
Collapse
Affiliation(s)
- C. C. Grant
- Department of Paediatrics: Child & Youth Health; University of Auckland; Auckland New Zealand
- Starship Children's Hospital; Auckland New Zealand
| | - J. Crane
- Medicine; University of Otago; Wellington New Zealand
| | - E. A. Mitchell
- Department of Paediatrics: Child & Youth Health; University of Auckland; Auckland New Zealand
| | - J. Sinclair
- Starship Children's Hospital; Auckland New Zealand
| | - A. Stewart
- Epidemiology & Biostatistics; University of Auckland; Auckland New Zealand
| | - T. Milne
- Department of Paediatrics: Child & Youth Health; University of Auckland; Auckland New Zealand
| | - J. Knight
- Epidemiology & Biostatistics; University of Auckland; Auckland New Zealand
| | - C. Gilchrist
- Department of Paediatrics: Child & Youth Health; University of Auckland; Auckland New Zealand
| | - C. A. Camargo
- Emergency Medicine; Massachusetts General Hospital; Harvard Medical School; Boston Massachusetts USA
| |
Collapse
|
11
|
Kok LF, Marsh-Wakefield F, Marshall JE, Gillis C, Halliday GM, Byrne SN. B cells are required for sunlight protection of mice from a CNS-targeted autoimmune attack. J Autoimmun 2016; 73:10-23. [PMID: 27289166 DOI: 10.1016/j.jaut.2016.05.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 01/09/2023]
Abstract
The ultraviolet (UV) radiation contained in sunlight is a powerful immune suppressant. While exposure to UV is associated with protection from the development of autoimmune diseases, particularly multiple sclerosis, the precise mechanism by which UV achieves this protection is not currently well understood. Regulatory B cells play an important role in preventing autoimmunity and activation of B cells is a major way in which UV suppresses adaptive immune responses. Whether UV-protection from autoimmunity is mediated by the activation of regulatory B cells has never been considered before. When C57BL/6 mice were exposed to low, physiologically relevant doses of UV, a unique population of B cells was activated in the skin draining lymph nodes. As determined by flow cytometry, CD1d(low)CD5(-)MHC-II(hi)B220(hi) UV-activated B cells expressed significantly higher levels of CD19, CD21/35, CD25, CD210 and CD268 as well as the co-stimulatory molecules CD80, CD86, CD274 and CD275. Experimental autoimmune encephalomyelitis (EAE) in mice immunized with MOG/CFA was reduced by exposure to UV. UV significantly inhibited demyelination and infiltration of inflammatory cells into the spinal cord. Consequently, UV-exposed groups showed elevated IL-10 levels in secondary lymphoid organs, delayed EAE onset, reduced peak EAE score and significantly suppressed overall disease incidence and burden. Importantly, protection from EAE could be adoptively transferred using B cells isolated from UV-exposed, but not unirradiated hosts. Indeed, UV-protection from EAE was dependent on UV activation of lymph node B cells because UV could not protect mice from EAE who were pharmacologically depleted of B cells using antibodies. Thus, UV maintenance of a pool of unique regulatory B cells in peripheral lymph nodes appears to be essential to prevent an autoimmune attack on the central nervous system.
Collapse
Affiliation(s)
- Lai Fong Kok
- Cellular Photoimmunology Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School at the Charles Perkins Centre, University of Sydney, Australia
| | - Felix Marsh-Wakefield
- Cellular Photoimmunology Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School at the Charles Perkins Centre, University of Sydney, Australia
| | - Jacqueline E Marshall
- Cellular Photoimmunology Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School at the Charles Perkins Centre, University of Sydney, Australia
| | - Caitlin Gillis
- Discipline of Dermatology at the Bosch Institute, Sydney Medical School, University of Sydney and Royal Prince Alfred Hospital, Australia
| | - Gary M Halliday
- Cellular Photoimmunology Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School at the Charles Perkins Centre, University of Sydney, Australia; Discipline of Dermatology at the Bosch Institute, Sydney Medical School, University of Sydney and Royal Prince Alfred Hospital, Australia
| | - Scott N Byrne
- Cellular Photoimmunology Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School at the Charles Perkins Centre, University of Sydney, Australia; Discipline of Dermatology at the Bosch Institute, Sydney Medical School, University of Sydney and Royal Prince Alfred Hospital, Australia.
| |
Collapse
|
12
|
Scott NM, Ng RLX, McGonigle TA, Gorman S, Hart PH. Reduced immune responses in chimeric mice engrafted with bone marrow cells from mice with airways inflammation. Inflamm Res 2015; 64:861-73. [PMID: 26280298 DOI: 10.1007/s00011-015-0868-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVE During respiratory inflammation, it is generally assumed that dendritic cells differentiating from the bone marrow are immunogenic rather than immunoregulatory. Using chimeric mice, the outcomes of airways inflammation on bone marrow progenitor cells were studied. METHODS Immune responses were analyzed in chimeric mice engrafted for >16 weeks with bone marrow cells from mice with experimental allergic airways disease (EAAD). RESULTS Responses to sensitization and challenge with the allergen causing inflammation in the bone marrow-donor mice were significantly reduced in the chimeric mice engrafted with bone marrow cells from mice with EAAD (EAAD-chimeric). Responses to intranasal LPS and topical fluorescein isothiocyanate (non-specific challenges) were significantly attenuated. Fewer activated dendritic cells from the airways and skin of the EAAD-chimeric mice could be tracked to the draining lymph nodes, and may contribute to the significantly reduced antigen/chemical-induced hypertrophy in the draining nodes, and the reduced immune responses to sensitizing allergens. Dendritic cells differentiating in vitro from the bone marrow of >16 weeks reconstituted EAAD-chimeric mice retained an ability to poorly prime immune responses when transferred into naïve mice. CONCLUSIONS Dendritic cells developing from bone marrow progenitors during airways inflammation are altered such that daughter cells have reduced antigen priming capabilities.
Collapse
Affiliation(s)
- Naomi M Scott
- Telethon Kids Institute, University of Western Australia, PO Box 855, West Perth, WA, 6872, Australia
| | - Royce L X Ng
- Telethon Kids Institute, University of Western Australia, PO Box 855, West Perth, WA, 6872, Australia
| | - Terence A McGonigle
- Telethon Kids Institute, University of Western Australia, PO Box 855, West Perth, WA, 6872, Australia
| | - Shelley Gorman
- Telethon Kids Institute, University of Western Australia, PO Box 855, West Perth, WA, 6872, Australia
| | - Prue H Hart
- Telethon Kids Institute, University of Western Australia, PO Box 855, West Perth, WA, 6872, Australia.
| |
Collapse
|
13
|
Kerley CP, Elnazir B, Faul J, Cormican L. Vitamin D as an adjunctive therapy in asthma. Part 2: A review of human studies. Pulm Pharmacol Ther 2015; 32:75-92. [PMID: 25749414 DOI: 10.1016/j.pupt.2015.02.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vitamin D deficiency (VDD) is highly prevalent worldwide, with adverse effects on bone health but also potentially other unfavorable consequences. VDD and asthma-incidence/severity share many common risk factors, including winter season, industrialization, poor diet, obesity, dark skin pigmentation, and high latitude. Multiple anatomical areas relevant to asthma contain both the enzyme responsible for producing activated vitamin D and the vitamin D receptor suggesting that activated vitamin D (1,25-dihydroxyvitamin D) may have important local effects at these sites. Emerging evidence suggests that VDD is associated with increased airway hyperresponsiveness, decreased pulmonary function, worse asthma control, and possibly decreased response to standard anti-asthma therapy. However the effect is inconsistent with preliminary evidence from different studies suggesting vitamin D is both beneficial and detrimental to asthma genesis and severity. Current evidence suggests that supplementation with moderate doses of vitamin D may be appropriate for maintenance of bone health in asthmatics, particularly steroid users. However emerging data from an increasing number of randomized, controlled, intervention studies of vitamin D supplementation in pediatric and adult asthma are becoming available and should help determine the importance, if any of vitamin D for asthma pathogenesis. The purpose of this second of a two-part review is to review the current human literature on vitamin D and asthma, discussing the possible consequences of VDD for asthma and the potential for vitamin D repletion as adjunct therapy.
Collapse
Affiliation(s)
- Conor P Kerley
- Respiratory and Sleep Diagnostics Department, Connolly Hospital, Blanchardstown, Dublin 15, Ireland; School of Medicine and Medical Sciences, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Basil Elnazir
- Department of Paediatric Respiratory Medicine, The National Children's Hospital Dublin 24, Ireland.
| | - John Faul
- Respiratory and Sleep Diagnostics Department, Connolly Hospital, Blanchardstown, Dublin 15, Ireland.
| | - Liam Cormican
- Respiratory and Sleep Diagnostics Department, Connolly Hospital, Blanchardstown, Dublin 15, Ireland.
| |
Collapse
|
14
|
Abstract
The ultraviolet (UV) radiation contained in sunlight is a powerful immune suppressant. While exposure to UV is best known for its ability to cause skin cancer, it is also associated with protection against a range of autoimmune diseases, particularly multiple sclerosis (MS). Although the precise mechanism by which sunlight affords protection from MS remains to be determined, some have hypothesised that UV immunosuppression explains the "latitude-gradient effect" associated with MS. By stimulating the release of soluble factors in exposed skin, UV activates immune suppressive pathways that culminate in the induction of regulatory cells in distant tissues. Each and every one of the immune suppressive cells and molecules activated by UV exposure are potential targets for treating and preventing MS. A thorough understanding of the mechanisms involved is therefore required if we are to realise the therapeutic potential of photoimmunology.
Collapse
Affiliation(s)
- Felix Marsh-Wakefield
- Cellular Photoimmunology Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School, University of Sydney, Camperdown, Australia.,Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.,Discipline of Dermatology, Bosch Institute, Sydney Medical School, University of Sydney, Camperdown, Australia
| | - Scott N Byrne
- Cellular Photoimmunology Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School, University of Sydney, Camperdown, Australia. .,Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia. .,Discipline of Dermatology, Bosch Institute, Sydney Medical School, University of Sydney, Camperdown, Australia. .,Infectious Diseases and Immunology, Level 5 (East), The Charles Perkins Centre Hub (D17), University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
15
|
Geldenhuys S, Hart PH, Endersby R, Jacoby P, Feelisch M, Weller RB, Matthews V, Gorman S. Ultraviolet radiation suppresses obesity and symptoms of metabolic syndrome independently of vitamin D in mice fed a high-fat diet. Diabetes 2014; 63:3759-69. [PMID: 25342734 DOI: 10.2337/db13-1675] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The role of vitamin D in curtailing the development of obesity and comorbidities such as the metabolic syndrome (MetS) and type 2 diabetes has received much attention recently. However, clinical trials have failed to conclusively demonstrate the benefits of vitamin D supplementation. In most studies, serum 25-hydroxyvitamin D [25(OH)D] decreases with increasing BMI above normal weight. These low 25(OH)D levels may also be a proxy for reduced exposure to sunlight-derived ultraviolet radiation (UVR). Here we investigate whether UVR and/or vitamin D supplementation modifies the development of obesity and type 2 diabetes in a murine model of obesity. Long-term suberythemal and erythemal UVR significantly suppressed weight gain, glucose intolerance, insulin resistance, nonalcoholic fatty liver disease measures; and serum levels of fasting insulin, glucose, and cholesterol in C57BL/6 male mice fed a high-fat diet. However, many of the benefits of UVR were not reproduced by vitamin D supplementation. In further mechanistic studies, skin induction of the UVR-induced mediator nitric oxide (NO) reproduced many of the effects of UVR. These studies suggest that UVR (sunlight exposure) may be an effective means of suppressing the development of obesity and MetS, through mechanisms that are independent of vitamin D but dependent on other UVR-induced mediators such as NO.
Collapse
Affiliation(s)
- Sian Geldenhuys
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Prue H Hart
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Raelene Endersby
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Peter Jacoby
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, U.K
| | - Richard B Weller
- University of Edinburgh, MRC Centre for Inflammation Research, Edinburgh, Scotland
| | - Vance Matthews
- Laboratory for Metabolic Dysfunction, Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Shelley Gorman
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
16
|
da Silva EZM, Jamur MC, Oliver C. Mast cell function: a new vision of an old cell. J Histochem Cytochem 2014; 62:698-738. [PMID: 25062998 PMCID: PMC4230976 DOI: 10.1369/0022155414545334] [Citation(s) in RCA: 397] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/07/2014] [Indexed: 02/06/2023] Open
Abstract
Since first described by Paul Ehrlich in 1878, mast cells have been mostly viewed as effectors of allergy. It has been only in the past two decades that mast cells have gained recognition for their involvement in other physiological and pathological processes. Mast cells have a widespread distribution and are found predominantly at the interface between the host and the external environment. Mast cell maturation, phenotype and function are a direct consequence of the local microenvironment and have a marked influence on their ability to specifically recognize and respond to various stimuli through the release of an array of biologically active mediators. These features enable mast cells to act as both first responders in harmful situations as well as to respond to changes in their environment by communicating with a variety of other cells implicated in physiological and immunological responses. Therefore, the critical role of mast cells in both innate and adaptive immunity, including immune tolerance, has gained increased prominence. Conversely, mast cell dysfunction has pointed to these cells as the main offenders in several chronic allergic/inflammatory disorders, cancer and autoimmune diseases. This review summarizes the current knowledge of mast cell function in both normal and pathological conditions with regards to their regulation, phenotype and role.
Collapse
Affiliation(s)
- Elaine Zayas Marcelino da Silva
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil (EZMDS, MCJ, CO)
| | - Maria Célia Jamur
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil (EZMDS, MCJ, CO)
| | - Constance Oliver
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil (EZMDS, MCJ, CO)
| |
Collapse
|
17
|
Arshi S, Fallahpour M, Nabavi M, Bemanian MH, Javad-Mousavi SA, Nojomi M, Esmaeilzadeh H, Molatefi R, Rekabi M, Jalali F, Akbarpour N. The effects of vitamin D supplementation on airway functions in mild to moderate persistent asthma. Ann Allergy Asthma Immunol 2014; 113:404-9. [PMID: 25091714 DOI: 10.1016/j.anai.2014.07.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/22/2014] [Accepted: 07/07/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Vitamin D is hypothesized to have some roles in innate and adaptive immunity, inflammation reduction, and remodeling; therefore, it is supposed to affect the asthma phenotype, severity, and response to inhaled corticosteroid (ICS). OBJECTIVE To explore the synergistic effects of vitamin D supplementation in addition to asthma controllers (ICS or ICS plus long-acting β-agonist) on airway functions. METHODS A randomized clinical trial was conducted in 130 individuals aged 10 to 50 years who lived in Tehran during a 24-week period. Data on age, sex, body mass index, stage of asthma, serum total IgE, history of allergic rhinitis, atopic dermatitis, food allergy, and urticaria were collected. Spirometric parameters (forced expiratory volume in 1 second [FEV1] and ratio of FEV1 to forced vital capacity) and serum vitamin D measurement were obtained before and 8 and 24 weeks after the intervention. Patients were divided in 2 groups randomly. Both groups received asthma controllers (budesonide or budesonide plus formoterol) according to their stage, but the intervention group received vitamin D supplementation (100,000-U bolus intramuscularly plus 50,000 U orally weekly) in addition to asthma controllers. RESULTS FEV1 improved significantly in both groups after 8 weeks, but no significant difference was found between the 2 groups at baseline (P = .20) or after 8 weeks (P = .99); however, a significant improvement was seen in the intervention group in the last 16 weeks, and FEV1 was significantly better in the intervention group than the other group after 24 weeks (P < .001). CONCLUSION Vitamin D supplementation associated with asthma controllers could significantly improve FEV1 in mild to moderate persistent asthma after 24 weeks. TRIAL REGISTRATION irct.ir Identifier: IRCT201302079608N1.
Collapse
Affiliation(s)
- Saba Arshi
- Department of Allergy, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Fallahpour
- Department of Allergy, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Nabavi
- Department of Allergy, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hasan Bemanian
- Department of Allergy, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Javad-Mousavi
- Department of Pulmonology, Iran University of Medical Sciences and Minimally Invasive Surgery Research Center, Tehran, Iran; Department of Pulmonology, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Nojomi
- Department of Community and Preventive Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Esmaeilzadeh
- Department of Allergy, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Rasool Molatefi
- Department of Allergy, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Rekabi
- Department of Allergy, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Farhad Jalali
- Department of Allergy, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Nadieh Akbarpour
- Department of Allergy, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Ng RLX, Scott NM, Bisley JL, Lambert MJ, Gorman S, Norval M, Hart PH. Characterization of regulatory dendritic cells differentiated from the bone marrow of UV-irradiated mice. Immunology 2014; 140:399-412. [PMID: 23826713 DOI: 10.1111/imm.12145] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/28/2013] [Accepted: 07/01/2013] [Indexed: 12/14/2022] Open
Abstract
When antigen-loaded dendritic cells (DCs) differentiated from the bone marrow (BM) of UV-irradiated mice (UV-BMDCs) were adoptively transferred into naive mice or mice pre-sensitized with that antigen, the recipients exhibited a reduced immune response following antigen challenge. Hence, UV-BMDCs are poorly immunogenic and can suppress pre-existing immunity. The UV-induced effect on BM-derived DCs was rapid (observed 1 day after UV radiation), long-lasting (observed 10 days after UV radiation) and UV dose-dependent. The mechanism by which UV-BMDCs could regulate immunity was investigated. The CD11c(+) cells, differentiated using granulocyte-macrophage colony-stimulating factor + interleukin-4, were confirmed to be DCs because they did not express the myeloid-derived suppressor cell marker, Gr1. UV-BMDCs did not display altered antigen uptake, processing or ability to activate T cells in vitro. When gene expression in UV-BMDCs and DCs differentiated from the BM of non-irradiated mice (control-BMDCs) was examined, Ccl7, Ccl8 and CSF1R (CD115) mRNA transcripts were up-regulated in UV-BMDCs compared with control-BMDCs. However, neutralizing antibodies for Ccl7 and Ccl8 did not abrogate the reduced immunogenicity of UV-BMDCs in vivo. Moreover, the up-regulation of CSF1R transcript did not correspond with increased receptor expression on UV-BMDCs. The phenotypes of UV-BMDCs and control-BMDCs were similar, with no difference in the expression of CD4, CD8α, CD103, B220 or F4/80, or the regulatory molecules CCR7 (CD197), FasL (CD95L), B7H3 (CD276) and B7H4. However, PDL1 (CD274) expression was reduced in UV-BMDCs compared with control-BMDCs following lipopolysaccharide stimulation. In summary, UV-BMDCs do not express the classical phenotypic or gene expression properties of DCs reported by others as 'regulatory' or 'tolerogenic'.
Collapse
Affiliation(s)
- Royce L X Ng
- Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, Perth, WA, Australia
| | | | | | | | | | | | | |
Collapse
|
19
|
Lange NE, Litonjua A, Hawrylowicz CM, Weiss S. Vitamin D, the immune system and asthma. Expert Rev Clin Immunol 2014; 5:693-702. [PMID: 20161622 DOI: 10.1586/eci.09.53] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The effects of vitamin D on bone metabolism and calcium homeostasis have long been recognized. Emerging evidence has implicated vitamin D as a critical regulator of immunity, playing a role in both the innate and cell-mediated immune systems. Vitamin D deficiency has been found to be associated with several immune-mediated diseases, susceptibility to infection and cancer. Recently, there has been increasing interest in the possible link between vitamin D and asthma. Further elucidation of the role of vitamin D in lung development and immune system function may hold profound implications for the prevention and treatment of asthma.
Collapse
Affiliation(s)
- Nancy E Lange
- Channing Laboratory, Division of Pulmonary and Critical Care Medicine, Brigham & Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA Tel.: +1 617 525 0874
| | | | | | | |
Collapse
|
20
|
Reversible control by vitamin D of granulocytes and bacteria in the lungs of mice: an ovalbumin-induced model of allergic airway disease. PLoS One 2013; 8:e67823. [PMID: 23826346 PMCID: PMC3691156 DOI: 10.1371/journal.pone.0067823] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 05/21/2013] [Indexed: 12/26/2022] Open
Abstract
Vitamin D may be essential for restricting the development and severity of allergic diseases and asthma, but a direct causal link between vitamin D deficiency and asthma has yet to be established. We have developed a 'low dose' model of allergic airway disease induced by intraperitoneal injection with ovalbumin (1 µg) and aluminium hydroxide (0.2 mg) in which characteristics of atopic asthma are recapitulated, including airway hyperresponsiveness, antigen-specific immunoglobulin type-E and lung inflammation. We assessed the effects of vitamin D deficiency throughout life (from conception until adulthood) on the severity of ovalbumin-induced allergic airway disease in vitamin D-replete and -deficient BALB/c mice using this model. Vitamin D had protective effects such that deficiency significantly enhanced eosinophil and neutrophil numbers in the bronchoalveolar lavage fluid of male but not female mice. Vitamin D also suppressed the proliferation and T helper cell type-2 cytokine-secreting capacity of airway-draining lymph node cells from both male and female mice. Supplementation of initially vitamin D-deficient mice with vitamin D for four weeks returned serum 25-hydroxyvitamin D to levels observed in initially vitamin D-replete mice, and also suppressed eosinophil and neutrophil numbers in the bronchoalveolar lavage fluid of male mice. Using generic 16 S rRNA primers, increased bacterial levels were detected in the lungs of initially vitamin D-deficient male mice, which were also reduced by vitamin D supplementation. These results indicate that vitamin D controls granulocyte levels in the bronchoalveolar lavage fluid in an allergen-sensitive manner, and may contribute towards the severity of asthma in a gender-specific fashion through regulation of respiratory bacteria.
Collapse
|
21
|
Gorman S, Hart PH. The current state of play of rodent models to study the role of vitamin D in UV-induced immunomodulation. Photochem Photobiol Sci 2013; 11:1788-96. [PMID: 22898802 DOI: 10.1039/c2pp25108f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ultraviolet radiation (UVR) from sunlight is immunomodulatory and the main source of vitamin D for humans. Vitamin D can also regulate adaptive immunity, through mechanisms that involve the induction or activation of regulatory T cells. Similar mechanisms have also been proposed for the induction of regulatory T cells after skin exposure to UVR. Here we discuss the converging and diverging immunoregulatory pathways of UVR and vitamin D, including the molecular pathways for regulatory T cell induction, non-genomic pathways regulated by vitamin D, antimicrobial peptides, skin integrity and potential interactions between vitamin D and other UVR-induced mediators. We then discuss possible in vivo approaches that could be used to demonstrate a direct (or otherwise) role for vitamin D in mediating the immunosuppressive effects of UVR such as the use of dietary vitamin D restriction to induce vitamin D deficiency, gene knockout mice or drugs to block enzymes of vitamin D metabolism. We end with discussion of the epigenetic effects of vitamin D and UVR for immunosuppression.
Collapse
Affiliation(s)
- Shelley Gorman
- Telethon Institute for Child Health Research and Centre for Child Health Research, University of Western Australia, Perth, Australia.
| | | |
Collapse
|
22
|
Leighton S, Kok LF, Halliday GM, Byrne SN. Inhibition of UV-induced uric acid production using Allopurinol prevents suppression of the contact hypersensitivity response. Exp Dermatol 2013; 22:189-94. [DOI: 10.1111/exd.12096] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2013] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Gary M. Halliday
- Discipline of Dermatology; Bosch Institute; Faculty of Medicine; Sydney Medical School; University of Sydney; Sydney; NSW; Australia
| | | |
Collapse
|
23
|
Gorman S, Scott NM, Tan DHW, Weeden CE, Tuckey RC, Bisley JL, Grimbaldeston MA, Hart PH. Acute erythemal ultraviolet radiation causes systemic immunosuppression in the absence of increased 25-hydroxyvitamin D3 levels in male mice. PLoS One 2012; 7:e46006. [PMID: 23049920 PMCID: PMC3458820 DOI: 10.1371/journal.pone.0046006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 08/27/2012] [Indexed: 12/17/2022] Open
Abstract
Vitamin D is synthesised by ultraviolet (UV) irradiation of skin and is hypothesized to be a direct mediator of the immunosuppression that occurs following UV radiation (UVR) exposure. Both UVR and vitamin D drive immune responses towards tolerance by ultimately increasing the suppressive activities of regulatory T cells. To examine a role for UVR-induced vitamin D, vitamin D3-deficient mice were established by dietary vitamin D3 restriction. In comparison to vitamin D3-replete mice, vitamin D3-deficient mice had significantly reduced serum levels of 25-hydroxyvitamin D3 (25(OH)D3, <20 nmol.L−1) and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3, <20 pmol.L−1). Following either acute erythemal UVR, or chronic sub-erythemal UVR (8 exposures over 4 weeks) treatment, serum 25(OH)D3 levels significantly increased in vitamin D3-deficient female but not male mice. To determine if UVR-induced vitamin D was a mediator of UVR-induced systemic immunosuppression, responses were measured in mice that were able (female) or unable (male) to increase systemic levels of 25(OH)D3 after UVR. Erythemal UVR (≥4 kJ/m2) suppressed contact hypersensitivity responses (T helper type-1 or -17), aspects of allergic airway disease (T helper type-2) and also the in vivo priming capacity of bone marrow-derived dendritic cells to a similar degree in female and male vitamin D3-deficient mice. Thus, in male mice, UVR-induced 25(OH)D3 is not essential for mediating the immunosuppressive effects of erythemal UVR.
Collapse
Affiliation(s)
- Shelley Gorman
- Telethon Institute for Child Health Research and Centre for Child Health Research, University of Western Australia, Perth, Western Australia, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Scott NM, Ng RL, Strickland DH, Bisley JL, Bazely SA, Gorman S, Norval M, Hart PH. Toward Homeostasis. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:535-47. [DOI: 10.1016/j.ajpath.2012.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 04/06/2012] [Accepted: 04/30/2012] [Indexed: 12/31/2022]
|
25
|
Effect of oral feeding with Clostridium leptum on regulatory T-cell responses and allergic airway inflammation in mice. Ann Allergy Asthma Immunol 2012; 109:201-7. [PMID: 22920076 DOI: 10.1016/j.anai.2012.06.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 06/16/2012] [Accepted: 06/23/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND Allergic lung inflammation is mediated by allergen-specific T responses, which are negatively regulated by regulatory T cells (Tregs). Previous studies have reported that inoculation of indigenous Clostridium species in the early lives of mice can induce Tregs that colonize the colon. However, whether inoculation of C leptum alone in adult mice could induce systemic Treg responses and inhibit allergic airway inflammation remains unclear. OBJECTIVE To investigate the effect of oral administration of C leptum on systemic Treg responses and allergic airway inflammation in a mouse model of asthma. METHODS Adult BABL/c mice were injected with ovalbumin to induce asthma and treated orally with C leptum or vehicle daily for 2 weeks. The numbers of Foxp3(+)CD4(+)CD25(+) Tregs in both the spleen and mediastinal lymph nodes were examined by flow cytometry. After allergen challenge, the airway hyperresponsiveness of individual mice was measured, and the numbers of inflammatory infiltrates and the levels of cytokines in bronchoalveolar lavage fluids ere determined. RESULTS Oral feeding with C leptum increased the percentage and total number of Tregs in the spleens and mediastinal lymph nodes at 14 days after inoculation and attenuated allergen-induced airway hyperresponsiveness and inflammation by inhibiting inflammatory cytokine production but enhancing interleukin 10 and transforming growth factor β1 production in the lungs. CONCLUSION Oral treatment with C leptum can attenuate induced allergic airway inflammation in adult mice.
Collapse
|
26
|
Joo HM, Nam SY, Yang KH, Kim CS, Jin YW, Kim JY. The effects of low-dose ionizing radiation in the activated rat basophilic leukemia (RBL-2H3) mast cells. J Biol Chem 2012; 287:27789-95. [PMID: 22700973 DOI: 10.1074/jbc.m112.378497] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mast cells play important roles in many biological responses, such as those during allergic diseases and inflammatory disorders. Although laser and UV irradiation have immunosuppressive effects on inflammatory diseases by suppressing mast cells, little is known about the effects of γ-ionizing radiation on mast cells. In this study, we investigated the effects of γ-ionizing radiation on RBL-2H3 cells, a convenient model system for studying regulated secretion by mast cells. Low-dose radiation (<0.1 gray (Gy)) did not induce cell death, but high-dose radiation (>0.5 Gy) induced apoptosis. Low-dose ionizing radiation significantly suppressed the release of mediators (histamine, β-hexosaminidase, IL-4, and tumor necrosis factor-α) from immunoglobulin E (IgE)-sensitized RBL-2H3 cells. To determine the mechanism of mediator release inhibition by ionizing radiation, we examined the activation of intracellular signaling molecules such as Lyn, Syk, phospholipase Cγ, PKCs, and MAPK, and intracellular free calcium concentrations ([Ca(2+)](i)). The phosphorylation of signaling molecules following stimulation of high-affinity IgE receptor I (FcεRI) was specifically inhibited by low-dose ionizing radiation (0.01 Gy). These results were due to the suppression of FcεRI expression by the low-dose ionizing radiation. Therefore, low-dose ionizing radiation (0.01 Gy) may function as a novel inhibitor of mast cell activation.
Collapse
Affiliation(s)
- Hae Mi Joo
- Radiation Effect Research Team, Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., Ltd., Seoul 132-703, Korea
| | | | | | | | | | | |
Collapse
|
27
|
Lin TY, Chen CJ, Chen LK, Wen SH, Jan RH. Effect of probiotics on allergic rhinitis in Df, Dp or dust-sensitive children: a randomized double blind controlled trial. Indian Pediatr 2012; 50:209-13. [PMID: 22728633 DOI: 10.1007/s13312-013-0068-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 04/30/2012] [Indexed: 01/29/2023]
Abstract
OBJECTIVE To study, we examined the effect of Lactobacillus salivarius on the clinical symptoms and medication use among children with established allergic rhinitis (AR). DESIGN Double blind, randomized, controlled trial. SETTING Hualien Tzu-Chi General Hospital. METHODS Atopic children with current allergic rhinitis received 4x10(9) colony forming units/g of Lactobacillus salivarius (n=99) or placebo (n=100) daily as a powder mixed with food or water for 12 weeks. The SCORing Allergic rhinitis index (specific symptoms scores [SSS] and symptom medication scores [SMS]), which measures the extent and severity of AR, was assessed in each subject at each of the visits--2 weeks prior to treatment initiation (visit 0), at the beginning of the treatment (visit 1), then at 4 (visit 2), 8 (visit 3) and 12 weeks (visit 4) after starting treatment. The WBC, RBC, platelet and, eosinophil counts as well as the IgE antibody levels of the individuals were evaluated before and after 3 months of treatment. RESULTS The major outcome, indicating the efficacy of Lactobacillus salivarius treatment, was the reduction in rhinitis symptoms and drug scores. No significant statistical differences were found between baseline or 12 weeks in the probiotic and placebo groups for any immunological or blood cell variables. CONCLUSIONS Our study demonstrates that Lactobacillus salivarius treatment reduces rhinitis symptoms and drug usage in children with allergic rhinitis.
Collapse
Affiliation(s)
- Teng-Yi Lin
- Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | | | | | | | | |
Collapse
|
28
|
Jeong KT, Hwang SJ, Oh GS, Park JH. FICZ, a tryptophan photoproduct, suppresses pulmonary eosinophilia and Th2-type cytokine production in a mouse model of ovalbumin-induced allergic asthma. Int Immunopharmacol 2012; 13:377-85. [PMID: 22561122 DOI: 10.1016/j.intimp.2012.04.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/14/2012] [Accepted: 04/20/2012] [Indexed: 12/24/2022]
Abstract
Most studies about functions of aryl hydrocarbon receptor (AhR) in the pathogenesis of asthma have been carried out with non-physiological industrial by-products such as 2,3,7,8-tetrachlorodibenzo-p-dioxin and benzo(a)pyrene. In the present study, effects of 6-formylindolo[3,2-b]carbazole (FICZ), a tryptophan photoproduct postulated as a candidate physiological ligand of AhR, on the pathogenesis of asthma were examined and then underlying mechanisms of its immumodulatory effects were investigated. FICZ significantly reduced pulmonary eosinophilia and Th2 cytokine expression in the lungs. Flow cytometric analysis of mediastinal lymph nodes showed that IL-4 producing cells decreased in FICZ-treated mice compared with PBS control. Next, effects of FICZ on in vitro Th2 differentiation and expression of the Th2 transcription factor GATA-3 were examined. CD4+ T cells were isolated from the spleen and incubated under the Th2 differentiation conditions. FICZ inhibited both Th2 differentiation and the expression of GATA-3. Finally, activation of STAT6, which is necessary for Th2 differentiation, was inhibited by FICZ.
Collapse
Affiliation(s)
- Kyu-Tae Jeong
- Department of Biology, Changwon National University, Changwon, Kyungnam 641-773, Korea
| | | | | | | |
Collapse
|
29
|
Gorman S, Tan DHW, Lambert MJM, Scott NM, Judge MA, Hart PH. Vitamin D(3) deficiency enhances allergen-induced lymphocyte responses in a mouse model of allergic airway disease. Pediatr Allergy Immunol 2012; 23:83-7. [PMID: 22283404 DOI: 10.1111/j.1399-3038.2011.01146.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is debate as to whether vitamin D deficiency contributes towards the extent of the asthma epidemic. In this study, using a mouse model, we determined whether vitamin D deficiency in utero and during early life modulated the severity of asthma. Using dietary restriction, vitamin D(3) -replete and vitamin D(3) -deficient colonies of BALB/c mice were established. Utilizing the allergic airway disease model of asthma with the experimental allergen ovalbumin (OVA), we examined asthma-like responses 24 h after airway challenge with OVA in adult offspring born to vitamin D(3) -replete and vitamin D(3) -deficient mothers. The ability of airway-draining lymph node cells to proliferate and secrete cytokines in response to OVA ex vivo was significantly enhanced by vitamin D(3) deficiency. However, other aspects of allergic disease, including the numbers and proportions of inflammatory cells and cytokines in the lungs and the quantity of OVA-specific IgE in serum, were not modified. These results suggest that vitamin D(3) deficiency modulates the capacity of lymphocytes to respond to allergens.
Collapse
Affiliation(s)
- Shelley Gorman
- Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, Perth, Western Australia, Australia.
| | | | | | | | | | | |
Collapse
|
30
|
Paul G, Brehm JM, Alcorn JF, Holguín F, Aujla SJ, Celedón JC. Vitamin D and asthma. Am J Respir Crit Care Med 2011; 185:124-32. [PMID: 22016447 DOI: 10.1164/rccm.201108-1502ci] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Vitamin D deficiency and asthma are common conditions that share risk factors such as African American ethnicity, inner-city residence, and obesity. This review provides a critical examination of current experimental and epidemiologic evidence of a causal association between vitamin D status and asthma or asthma morbidity, including potential protective mechanisms such as antiviral effects and enhanced steroid responsiveness. Because most published epidemiologic studies of vitamin D and asthma or asthma morbidity are observational, a recommendation for or against vitamin D supplementation as preventive or secondary treatment for asthma is not advisable and must await results of ongoing clinical trials. Should these trials confirm a beneficial effect of vitamin D, others will be needed to assess the role of vitamin D supplementation to prevent or treat asthma in different groups such as infants, children of school age, and ethnic minorities.
Collapse
Affiliation(s)
- Grace Paul
- Division of Pediatric Pulmonary Medicine, Allergy and Immunology, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
31
|
Scott NM, Lambert MJM, Gorman S, McGlade JP, Hart PH. Differences in control by UV radiation of inflammatory airways disease in naïve and allergen pre-sensitised mice. Photochem Photobiol Sci 2011; 10:1894-901. [PMID: 22002339 DOI: 10.1039/c1pp05206c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Exposure of skin to UV radiation (UVR) prior to allergen exposure can inhibit inflammatory airways disease in mice by reducing effector CD4+ T cells in both the trachea and the airway draining lymph nodes. This study analysed the immunomodulatory properties of UVR delivered to naïve versus allergen pre-sensitised mice. In a model of inflammatory airways disease, BALB/c mice were sensitised by peritoneal injection of the allergen, ovalbumin (OVA) (20 μg/mouse), in the adjuvant, alum (4 mg/mouse), on days 0 and 14. On day 21, the mice were exposed to aerosolised OVA and 24 h later, proliferative responses by the cells in the airway draining lymph nodes were examined. UVR (8 kJ m(-2)) was administered 3 days prior to first OVA sensitisation (day -3), or OVA aerosol challenge (day 18). UVR before sensitisation reduced immune responses associated with expression of allergic airways disease; seven days after first OVA sensitisation, regulation of OVA-induced proliferation in vitro but not in vivo by CD4+CD25+ cells from UV-irradiated mice was detected. UVR administered to pre-sensitised mice regulated allergen responsiveness by cells from the airway draining lymph nodes only with a sensitisation protocol involving allergen and adjuvant at 5% strength of the original dose (1 μg OVA in 0.2 mg alum/mouse). These results suggest that UVR may modulate allergic airways disease by two mechanisms. The first, and more potent, is by reducing effector cells in respiratory tissues and requires UV delivery prior to sensitisation. The second, associated with administration to pre-sensitised mice, is weaker and is detected when the mice are sensitised with lower levels of allergen and adjuvant.
Collapse
Affiliation(s)
- Naomi M Scott
- Telethon Institute for Child Health Research and Centre for Child Health Research, University of Western Australia, West Perth, Australia
| | | | | | | | | |
Collapse
|
32
|
The challenges of UV-induced immunomodulation for children's health. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 107:323-32. [PMID: 21875613 DOI: 10.1016/j.pbiomolbio.2011.07.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 07/26/2011] [Indexed: 02/01/2023]
Abstract
Exposure to solar ultraviolet radiation (UVR) is recognised to have both beneficial and harmful effects on human health. With regard to immune responses, it can lead to suppression of immunity and to the synthesis of vitamin D, a hormone that can alter both innate and adaptive immunity. The consequences in children of such UV-induced changes are considerable: first there are positive outcomes including protection against some photoallergic (for example polymorphic light eruption) and T cell-mediated autoimmune diseases (for example multiple sclerosis) and asthma, and secondly there are negative outcomes including an increased risk of skin cancer (squamous cell carcinoma, basal cell carcinoma and cutaneous malignant melanoma) and less effective control of several infectious diseases. Many uncertainties remain regarding the amount of sun exposure that would provide children with the most effective responses against the variety of immunological challenges that they are likely to experience.
Collapse
|
33
|
Norval M, Halliday GM. The consequences of UV-induced immunosuppression for human health. Photochem Photobiol 2011; 87:965-77. [PMID: 21749399 DOI: 10.1111/j.1751-1097.2011.00969.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Exposure to UV radiation can cause suppression of specific immune responses. The pathways leading to the down-regulation are complex, starting from the absorption of UV photons by chromophores in the skin and ending with local and systemic changes in immune mediators, the generation of T and B regulatory cells and inhibition of effector and memory T cell activation. The consequences for human health are thought to be both beneficial and adverse. The former are illustrated by protection against polymorphic light eruption, and possible protection against T cell-mediated autoimmune diseases and asthma. The latter are illustrated by skin cancer, cutaneous lupus erythematosus and infectious diseases including vaccination. Many outstanding questions remain in this rapidly developing and controversial area, not least what advice to give the general public regarding their sun exposure. While considerable advances have been made in the development of strategies that preserve the health benefits of sunlight exposure and decrease its detrimental effects, further research is required before optimal levels of protection are achieved.
Collapse
Affiliation(s)
- Mary Norval
- Biomedical Sciences, University of Edinburgh, Edinburgh, Scotland.
| | | |
Collapse
|
34
|
Byrne SN, Beaugie C, O'Sullivan C, Leighton S, Halliday GM. The immune-modulating cytokine and endogenous Alarmin interleukin-33 is upregulated in skin exposed to inflammatory UVB radiation. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:211-22. [PMID: 21703403 DOI: 10.1016/j.ajpath.2011.03.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 02/08/2011] [Accepted: 03/14/2011] [Indexed: 10/18/2022]
Abstract
The cellular and molecular mechanisms by which UV radiation modulates inflammation and immunity while simultaneously maintaining skin homeostasis is complex and not completely understood. Similar to the effects of UV, IL-33 has potent immune-modulating properties that are mediated by the downstream induction of cytokines and chemokines. We have discovered that exposure of mice in vivo or human skin samples ex vivo to inflammatory doses of UVB induced IL-33 expression within the epidermal and dermal skin layers. Using a combination of murine cell lines and primary human cells, we demonstrate that both UV and the oxidized lipid platelet activating factor induce IL-33 expression in keratinocytes and dermal fibroblasts. Highlighting the significance of these results, we found that administering IL-33 to mice in vivo suppressed the induction of Th1-mediated contact hypersensitivity responses. This may have consequences for skin cancer growth because UV-induced squamous cell carcinomas that evade immunological destruction were found to express significantly higher levels of IL-33. Finally, we demonstrate that dermal mast cells and skin-infiltrating neutrophils closely associate with UV-induced IL-33-expressing fibroblasts. Our results therefore identify and support a role for IL-33 as an important early danger signal produced in response to inflammation-inducing UV radiation.
Collapse
Affiliation(s)
- Scott Napier Byrne
- Cellular Immunology Group, Department of Infectious Diseases and Immunology, Sydney Medical School, University of Sydney, New South Wales, Australia.
| | | | | | | | | |
Collapse
|
35
|
Arnedo-Pena A, García-Marcos L, Fernández-Espinar JF, Bercedo-Sanz A, Aguinaga-Ontoso I, González-Díaz C, Carvajal-Urueña I, Busquet-Monge R, Suárez-Varela MM, de Andoin NG, Batlles-Garrido J, Blanco-Quirós A, Varela ALS, García-Hernández G. Sunny hours and variations in the prevalence of asthma in schoolchildren according to the International Study of Asthma and Allergies (ISAAC) Phase III in Spain. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2011; 55:423-434. [PMID: 20803035 DOI: 10.1007/s00484-010-0353-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 07/01/2010] [Accepted: 07/30/2010] [Indexed: 05/29/2023]
Abstract
The objective of this study was to estimate the relationship between the prevalence of asthma in schoolchildren aged 6-7 years and 13-14 years and the mean annual sunny hours (MASH) in Spain, and to explore predictive models for asthma prevalence. The prevalence of asthma was obtained from the International Study of Asthma and Allergies (ISAAC) Phase III 2002-2003, and climate and socio-economic variables from official sources. Nine centres were studied and a further four centres, two of which are in ISAAC, to test the predictive models. Logistic regression was used to estimate adjusted prevalence rates of asthma for each centre, and multiple regression models to study the effects of MASH and other meteorological and socio-economic variables. The adjusted prevalence rate of asthma decreased 0.6% [95% confidence interval (CI) 0.4-0.8%] for the 6-7 years group and 1.1% (95% CI 0.8-1.3%) for the 13-14 years group with an increase in the MASH of 100 h. Relative humidity was negatively associated with asthma in the older age group, and gross province product per capita (GPP) was positively associated with asthma in the younger age group. The predictive models, which included MASH, gender, relative humidity, and GPP, anticipated prevalence rates of asthma without significant differences between the levels observed and those expected in 9 of the 11 measurements carried out. The results indicate that sunny hours have a protective effect on the prevalence of asthma in schoolchildren.
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW asthma is a disease that continues to carry a significant health burden on humanity. Vitamin D is thought to play a role in many chronic diseases as it may possess immunomodulatory properties. This article will review the role of vitamin D regulation on the immune system and its potential implication in the pathophysiology of asthma. RECENT FINDINGS vitamin D receptors are present on many cells in the body, specifically peripheral blood mononuclear cells. Vitamin D has been shown to regulate the balance of several pro-inflammatory and anti-inflammatory responses in the immune system. Studies have suggested that prenatal vitamin D intake has an effect on childhood wheezing and asthma. Additionally, vitamin D may play a role in asthma exacerbations, and recent evidence also suggests its importance in steroid resistant asthma. SUMMARY vitamin D has a complex role on the immune system and its regulation of various aspects of immunity has allowed speculation on its potential role in asthma. However, the net effect of vitamin D on the immune system and its role in asthma still remains unanswered. More research needs to address the diagnostic and therapeutic implications vitamin D may have in the future of asthma management.
Collapse
|
37
|
Gorman S, McGlade JP, Lambert MJM, Strickland DH, Thomas JA, Hart PH. UV exposure and protection against allergic airways disease. Photochem Photobiol Sci 2010; 9:571-7. [PMID: 20354653 DOI: 10.1039/b9pp00136k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Asthma is a chronic inflammatory disease of the small and large conducting airway mucosa characterised by Th2 cell immunity. Allergen-specific IgE levels control the immediate response whilst the interplay between airway mucosal antigen presenting cells, Th2 effector cells and CD4+CD25+ regulatory T cells control the late phase, cell-mediated response. Using two experimental systems in mice with ovalbumin and papain, respectively, as the allergens, UV irradiation of skin prior to allergen sensitisation reduced the expression of allergic airways disease, particularly the late phase response. In this review, the reduced Th2-driven, asthma-like responses in respiratory tissues of UV-irradiated mice are detailed. Possible mechanisms of UV regulation are debated. The potential beneficial effects of UV irradiation of skin in controlling allergic airways disease are discussed. This review gives some scientific understanding to century-old anecdotal reports that beach and mountain resort holidays associated with increased UV exposure are beneficial in asthma treatment.
Collapse
Affiliation(s)
- Shelley Gorman
- Telethon Institute for Child Health Research and Centre for Child Health Research, University of Western Australia, PO Box 855, West Perth, Western Australia, Australia 6872
| | | | | | | | | | | |
Collapse
|
38
|
Dimeloe S, Nanzer A, Ryanna K, Hawrylowicz C. Regulatory T cells, inflammation and the allergic response-The role of glucocorticoids and Vitamin D. J Steroid Biochem Mol Biol 2010; 120:86-95. [PMID: 20227496 DOI: 10.1016/j.jsbmb.2010.02.029] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/22/2010] [Accepted: 02/13/2010] [Indexed: 12/15/2022]
Abstract
Regulatory T cells (TRegs) play a central role in the maintenance of peripheral tolerance. They prevent inappropriate immune responses to ubiquitous allergens in healthy individuals, and contribute to the maintenance of immune homeostasis in the airways. Both Foxp3+ and IL-10+ TReg have been implicated in these functions. Glucocorticoids represent the mainstay of treatment for asthma and other allergic conditions, and evidence that steroids influence TReg function will be reviewed. Growing bodies of epidemiological and immunological data suggest a role for endogenous Vitamin D in immune regulation. This review will discuss the role of glucocorticoids and Vitamin D, and their potential interactions in promoting tolerance in the context of allergic disease and asthma.
Collapse
Affiliation(s)
- Sarah Dimeloe
- King's College London, MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Guy's Hospital, London, United Kingdom
| | | | | | | |
Collapse
|
39
|
McGlade JP, Strickland DH, Lambert MJM, Gorman S, Thomas JA, Judge MA, Burchell JT, Zosky GR, Hart PH. UV inhibits allergic airways disease in mice by reducing effector CD4 T cells. Clin Exp Allergy 2010; 40:772-85. [PMID: 20214669 DOI: 10.1111/j.1365-2222.2010.03469.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND In human asthma, and experimental allergic airways disease in mice, antigen-presenting cells and CD4(+) effector cells at the airway mucosa orchestrate, and CD4(+)CD25(+) regulatory T cells attenuate, allergen immunity. UV irradiation of skin before sensitization with ovalbumin (OVA) causes significantly reduced asthma-like responses in respiratory tissues. OBJECTIVE To determine whether UV-induced changes in CD11c(+) cells, CD4(+)CD25(+) effector cells or CD4(+)CD25(+) regulatory cells in the trachea and airway draining lymph nodes (ADLNs) were responsible for reduced allergic airways disease. METHODS The phenotype and function of CD11c(+) cells and CD4(+)CD25(+) cells in the trachea and ADLNs of UV- and non-irradiated, OVA-sensitized mice was examined 24 h after a single exposure to aerosolized OVA. RESULTS No changes in the function of CD11c(+) cells from UV-irradiated mice were observed. CD4(+)CD25(+) cells from UV-irradiated, OVA-sensitized mice harvested 24 h after OVA aerosol proliferated less in response to OVA in vitro and were unable to suppress the proliferation of OVA-sensitized responder cells. This result suggested reduced activation of effector T cells in the airway mucosa of UV-irradiated, OVA-sensitized mice. To exclude regulatory cells of any type, there was similar proliferation in vivo to aerosolized OVA by CFSE-loaded, OVA-TCR-specific CD4(+) cells adoptively transferred into UV- and non-irradiated, OVA-sensitized mice. In addition, there was no difference in the expression of regulatory T cell markers (Foxp3, IL-10, TGF-beta mRNA). To examine effector T cells, ADLN cells from UV-irradiated, OVA-sensitized and -challenged mice were cultured with OVA. There was reduced expression of the early activation marker CD69 by CD4(+)CD25(+) cells, and reduced proliferation in the absence of the regulatory cytokine, IL-10. CONCLUSION Reduced allergic airways disease in UV-irradiated mice is due to fewer effector CD4(+)CD25(+) cells in the trachea and ADLNs, and not due to UV-induced regulatory cells.
Collapse
Affiliation(s)
- J P McGlade
- Telethon Institute for Child Health Research and Centre for Child Health Research, The University of Western Australia, West Perth, Western Australia, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sandhu MS, Casale TB. The role of vitamin D in asthma. Ann Allergy Asthma Immunol 2010; 105:191-9; quiz 200-2, 217. [PMID: 20800785 DOI: 10.1016/j.anai.2010.01.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 01/18/2010] [Accepted: 01/22/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To review the current literature on vitamin D and asthma, discussing the possible roles of vitamin D on asthma pathogenesis and the potential consequences of vitamin D deficiency. DATA SOURCES PubMed database was searched from 1950 to 2009. Keywords used included asthma, vitamin D, inflammation, airway smooth muscle and cytokines. STUDY SELECTION Articles were selected based on relevance to the subject. RESULTS Vitamin D deficiency has been associated with epidemiologic patterns observed in the asthma epidemic. Vitamin D deficiency is more common with obesity, African American ethnicity, and westernization of countries with higher-risk populations for asthma. Evidence suggests that vitamin D deficiency is associated with increased airway hyperresponsiveness, lower pulmonary functions, worse asthma control, and possibly steroid resistance. Lung epithelial cells express high baseline levels of 1alpha-hydroxylase. This allows the conversion of inactive calcidiol to active calcitriol locally within the lung. Calcitriol has been shown to inhibit the synthesis and release of certain cytokines, such as RANTES, platelet-derived growth factor, and matrix metalloproteinases, from bronchial smooth muscle cells, thereby leading to decreased lung inflammation and smooth muscle cell proliferation. Vitamin D also increases synthesis of interleukin 10 by CD4+CD25+Foxp3+ T-regulatory cells and dendritic cells, while concurrently inhibiting dendritic cell activation by downregulating expression of costimulatory molecules CD40 and CD80/86. Vitamin D is also capable of inducing the expression of several anti-infective molecules, such as cathelicidin. Thus, vitamin D has a number of biologic effects that are likely important in regulating key mechanisms in asthma. CONCLUSIONS We hypothesize that vitamin D supplementation may lead to improved asthma control by inhibiting the influx of inflammatory cytokines in the lung and increasing the secretion of interleukin 10 by T-regulatory cells and dendritic cells.
Collapse
Affiliation(s)
- Manbir S Sandhu
- Creighton University, Department of Medicine, Division of Allergy and Immunology, Omaha, Nebraska 68131, USA
| | | |
Collapse
|
41
|
Lyons A, O'Mahony D, O'Brien F, MacSharry J, Sheil B, Ceddia M, Russell WM, Forsythe P, Bienenstock J, Kiely B, Shanahan F, O'Mahony L. Bacterial strain-specific induction of Foxp3+ T regulatory cells is protective in murine allergy models. Clin Exp Allergy 2010; 40:811-9. [PMID: 20067483 DOI: 10.1111/j.1365-2222.2009.03437.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The incidence of atopic disease has increased dramatically during recent decades and the potential immunoregulatory influence of the microbiota in these individuals is under investigation. OBJECTIVE The aim of our study was to identify a bacterial strain that is protective in murine allergy models and to determine if microbial induction of T regulatory cells was associated with protection from allergic inflammation. METHODS Three microbes (Bifidobacterium breve AH1205, B. longum AH1206 and Lactobacillus salivarius AH102) of human origin were fed to newborn, adult and germ-free animals. Induction of Foxp3(+) T regulatory cells was assessed by flow cytometry. Gene array analysis was performed on Peyer's patches. Strains were also examined for their protective effects in the ovalbumin (OVA) respiratory allergy model and the OVA-cholera toxin dietary allergy model. RESULTS Bifidobacterium longum AH1206 consumption resulted in increased numbers of Foxp3(+) T regulatory cells in infant, adult and germ-free animals. B. breve AH1205 induced Foxp3(+) T regulatory cell expansion only in infant mice while L. salivarius AH102 did not alter T regulatory cell numbers in any animal model tested. B. longum AH1206 reduced the Peyer's patch gene expression associated with antigen presentation, TLR signalling and cytokine production while increasing the expression of genes associated with retinoic acid metabolism. B. longum AH1206 protected against airway inflammation in OVA-sensitized animals and B. longum AH1206 blocked the induction of IgE to orally administered OVA. Neither B. breve AH1205 nor L. salivarius AH102 had a protective effect in either model. CONCLUSION Bacterial strain-specific induction of Foxp3(+) T regulatory cells in vivo is associated with protection from respiratory and oral allergy.
Collapse
Affiliation(s)
- A Lyons
- Alimentary Health Ltd., Cork, Ireland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Gorman S, Judge MA, Burchell JT, Turner DJ, Hart PH. 1,25-dihydroxyvitamin D3 enhances the ability of transferred CD4+ CD25+ cells to modulate T helper type 2-driven asthmatic responses. Immunology 2010; 130:181-92. [PMID: 20059575 DOI: 10.1111/j.1365-2567.2009.03222.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The severity of allergic diseases may be modified by vitamin D. However, the immune pathways modulated by the active form of vitamin D, 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], are yet to be fully elucidated. In this study, naturally occurring CD4(+) CD25(+) cells from the skin-draining lymph nodes (SDLN) of mice treated with topical 1,25(OH)(2)D(3) had an increased ability to suppress T helper type 2 (Th2) -skewed immune responses. CD4(+) CD25(+) cells transferred from mice treated with topical 1,25(OH)(2)D(3) into ovalbumin (OVA) -sensitized mice challenged intranasally with OVA 18 hr later, significantly suppressed the capacity of airway-draining lymph node (ADLN) cells to proliferate and secrete cytokines in response to further OVA stimulation ex vivo. The CD4(+) CD25(+) cells from 1,25(OH)(2)D(3)-treated mice also reduced airway hyperresponsiveness and the proportions of neutrophils and eosinophils in bronchoalveolar lavage fluid (BALF). To test the effect of 1,25(OH)(2)D(3) on cells able to respond to a specific antigen, CD4(+) CD25(+) cells were purified from the SDLN of OVA-T-cell receptor (TCR) transgenic mice treated 4 days earlier with topical 1,25(OH)(2)D(3). CD4(+) CD25(+) cells from OVA-TCR mice treated with 1,25(OH)(2)D(3) were able to alter BALF cell content and suppress ADLN responses to a similar degree to those cells from non-transgenic mice, suggesting that the effect of 1,25(OH)(2)D(3) was not related to TCR signalling. In summary, topical 1,25(OH)(2)D(3) increased the regulatory capacity of CD4(+) CD25(+) cells from the SDLN to suppress Th2-mediated allergic airway disease. This work highlights how local 1,25(OH)(2)D(3) production by lung epithelial cells may modulate the suppressive activity of local regulatory T cells.
Collapse
Affiliation(s)
- Shelley Gorman
- Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, Perth, Western Australia, Australia.
| | | | | | | | | |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Vitamin D deficiency has been rediscovered as a public-health problem worldwide. It has been postulated that vitamin D deficiency may explain a portion of the asthma epidemic. The purpose of this review is to present the evidence for a role of vitamin D in asthma. RECENT FINDINGS Both animal models and studies in human fetal tissues show that vitamin D plays a role in fetal lung growth and maturation. Epidemiologic studies have also suggested that higher prenatal vitamin D intakes have a protective role against wheezing illnesses in young children. Vitamin D may protect against wheezing illnesses through its role in upregulating antimicrobial proteins or through its multiple immune effects. In addition, vitamin D may play a therapeutic role in steroid resistant asthmatics, and lower vitamin D levels have recently been associated with higher risks for asthma exacerbations. SUMMARY Improving vitamin D status holds promise in primary prevention of asthma, in decreasing exacerbations of disease, and in treating steroid resistance. However, the appropriate level of circulating vitamin D for optimal immune functioning remains unclear. Because vitamin D deficiency is prevalent even in sun-replete areas, clinical trials are needed to definitively answer questions about the role of vitamin D in asthma.
Collapse
|
44
|
Pali-Schöll I, Renz H, Jensen-Jarolim E. Update on allergies in pregnancy, lactation, and early childhood. J Allergy Clin Immunol 2009; 123:1012-21. [PMID: 19249083 DOI: 10.1016/j.jaci.2009.01.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 01/06/2009] [Accepted: 01/14/2009] [Indexed: 11/24/2022]
Abstract
The factors responsible for the induction of allergic disease at an early age have not been completely identified. Therefore a major research focus is their identification to elaborate recommendations for prevention of sensitization in high-risk or atopic children. This review analyzes known or suspected reasons for sensitization in pregnant women and infants from both clinical and experimental animal studies. Recent studies and meta-analyses could not confirm the protective effect of an allergen-poor diet on the part of the mother during pregnancy and lactation. Likewise, the type of bottle feeding or the introduction of solid food into the child's diet might not significantly influence the development of atopy, allergy, or asthma in the child's life. Disappointingly, the few preventive measures remaining to reduce the risk of allergic sensitization and atopic diseases in mother and child are the avoidance of smoking and alcohol consumption during pregnancy and lactation and the avoidance of the impairment of gastric function. Further studies are urgently needed to address the influence of certain foods and nutrients, as well as environmental factors, for prevention of allergic diseases in the low- or high-risk infant.
Collapse
|
45
|
Karimi K, Inman MD, Bienenstock J, Forsythe P. Lactobacillus reuteri-induced regulatory T cells protect against an allergic airway response in mice. Am J Respir Crit Care Med 2008; 179:186-93. [PMID: 19029003 DOI: 10.1164/rccm.200806-951oc] [Citation(s) in RCA: 270] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RATIONALE We have previously demonstrated that oral treatment with live Lactobacillus reuteri can attenuate major characteristics of the asthmatic response in a mouse model of allergic airway inflammation. However, the mechanisms underlying these effects remain to be determined. OBJECTIVES We tested the hypothesis that regulatory T cells play a major role in mediating L. reuteri-induced attenuation of the allergic airway response. METHODS BALB/c mice were treated daily with L. reuteri by gavage. Flourescent-activated cell sorter analysis was used to determine CD4(+)CD25(+)Foxp3(+)T cell populations in spleens following treatment with L. reuteri or vehicle control. Cell proliferation assays were performed on immunomagnetic bead separated CD4(+)CD25(+) and CD4(+)CD25(-) T cells. CD4(+)CD25(+) T cells isolated from, ovalbumin naive, L. reuteri treated mice were transferred into ovalbumin-sensitized mice. Following antigen challenge the airway responsiveness, inflammatory cell influx and cytokine levels in bronchoalveolar lavage fluid of recipient mice were assessed. MEASUREMENTS AND MAIN RESULTS Following 9 days of oral L. reuteri treatment, the percentage and total number of CD4(+)CD25(+)Foxp3(+)T cells in spleens significantly increased. CD4(+)CD25(+) cells isolated from L. reuteri-fed animals also had greater capacity to suppress T-effector cell proliferation. Adoptive transfer of CD4(+)CD25(+) T cells from L. reuteri-treated mice to ovalbumin-sensitized animals attenuated airway hyper-responsiveness and inflammation in response to subsequent antigen challenge. CONCLUSIONS These results strongly support a role for nonantigen-specific CD4(+)CD25(+)Foxp3(+) regulatory T cells in attenuating the allergic airway response following oral treatment with L. reuteri. This potent immuno-regulatory action may have therapeutic potential in controlling the Th2 bias observed in atopic individuals.
Collapse
Affiliation(s)
- Khalil Karimi
- The Brain-Body Institute, St. Joseph's Healthcare, 50 Charlton Avenue East, T3312, Hamilton, ON L8N 4A6, Canada
| | | | | | | |
Collapse
|
46
|
Reply. J Allergy Clin Immunol 2008. [DOI: 10.1016/j.jaci.2007.12.1168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
|