1
|
Garcia da Silva AC, Carvalho Filho SDM, Furtado de Mendonça IC, Valadares MC. Identification of toxicity-induced biomarkers in human non-immune airway cells exposed to respiratory sensitizers: A mechanistic approach. Toxicology 2024; 503:153750. [PMID: 38360295 DOI: 10.1016/j.tox.2024.153750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Occupational asthma covers a group of work-related diseases whose clinical manifestations include airway hyperresponsiveness and airflow limitation. Although the chemical respiratory allergy (CRA) induced by Low Molecular Weight (LMW) sensitizers is a major concern, especially in terms of the regulatory framework, to date there are no methods available for preclinically addressing this toxicological outcome, as its mechanistic background is not fully understood at molecular or cellular levels. This paper proposes a mechanistic study applying New Approach Methodologies (NAM) of the pro-inflammatory and functional effects triggered by LMW respiratory allergens in different respiratory tract cell lines, including bronchial epithelial (BEAS-2B), lung fibroblast (MRC-5), and endothelial cells (EA.hy926), and an analysis of the capacity of such chemicals to interact with the mucin protein, to address certain toxicodynamic aspects of such compounds. The results showed that some of the sensitizers evaluated interact with mucin, the main protein mucus component, but the toxicant-mucin complex formation does not seem to be a common feature of different chemical classes of allergens. At a cellular level, sensitizers promoted an increase in IL-8, IL-6, and IL-1β production in the evaluated cell types. It also impaired the MUC1 expression by bronchial cells and activated endothelial cells, thereby increasing the ICAM-I surface expression. Taken together, our results showed that these aforementioned cell types participate in the CRA Adverse Outcome Pathway and must be considered when developing preclinical testing strategies, particularly investigating danger signal production after exposure to LMW sensitizers in different tissue compartments.
Collapse
Affiliation(s)
- Artur Christian Garcia da Silva
- Laboratory of Education and Research in In vitro Toxicology, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Sérgio de Morais Carvalho Filho
- Laboratory of Education and Research in In vitro Toxicology, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Marize Campos Valadares
- Laboratory of Education and Research in In vitro Toxicology, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
2
|
Schwab AD, Poole JA. Mechanistic and Therapeutic Approaches to Occupational Exposure-Associated Allergic and Non-Allergic Asthmatic Disease. Curr Allergy Asthma Rep 2023; 23:313-324. [PMID: 37154874 PMCID: PMC10896074 DOI: 10.1007/s11882-023-01079-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 05/10/2023]
Abstract
PURPOSE OF REVIEW Occupational lung disease, including asthma, is a significant cause of disability worldwide. The dose, exposure frequency, and nature of the causal agent influence the inflammatory pathomechanisms that inform asthma disease phenotype and progression. While surveillance, systems engineering, and exposure mitigation strategies are essential preventative considerations, no targeted medical therapies are currently available to ameliorate lung injury post-exposure and prevent chronic airway disease development. RECENT FINDINGS This article reviews contemporary understanding of allergic and non-allergic occupational asthma mechanisms. In addition, we discuss the available therapeutic options, patient-specific susceptibility and prevention measures, and recent scientific advances in post-exposure treatment conception. The course of occupational lung disease that follows exposure is informed by individual predisposition, immunobiologic response, agent identity, overall environmental risk, and preventative workplace practices. When protective strategies fail, knowledge of underlying disease mechanisms is necessary to inform targeted therapy development to lessen occupational asthma disease severity and occurrence.
Collapse
Affiliation(s)
- Aaron D Schwab
- Division of Allergy and Immunology, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Jill A Poole
- Division of Allergy and Immunology, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
3
|
Grunig G, Durmus N, Zhang Y, Lu Y, Pehlivan S, Wang Y, Doo K, Cotrina-Vidal ML, Goldring R, Berger KI, Liu M, Shao Y, Reibman J. Molecular Clustering Analysis of Blood Biomarkers in World Trade Center Exposed Community Members with Persistent Lower Respiratory Symptoms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8102. [PMID: 35805759 PMCID: PMC9266229 DOI: 10.3390/ijerph19138102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 11/30/2022]
Abstract
The destruction of the World Trade Center (WTC) on September 11, 2001 (9/11) released large amounts of toxic dusts and fumes into the air that exposed many community members who lived and/or worked in the local area. Many community members, defined as WTC survivors by the federal government, developed lower respiratory symptoms (LRS). We previously reported the persistence of these symptoms in patients with normal spirometry despite treatment with inhaled corticosteroids and/or long-acting bronchodilators. This report expands upon our study of this group with the goal to identify molecular markers associated with exposure and heterogeneity in WTC survivors with LRS using a selected plasma biomarker approach. Samples from WTC survivors with LRS (n = 73, WTCS) and samples from healthy control participants of the NYU Bellevue Asthma Registry (NYUBAR, n = 55) were compared. WTCS provided information regarding WTC dust exposure intensity. Hierarchical clustering of the linear biomarker data identified two clusters within WTCS and two clusters within NYUBAR controls. Comparison of the WTCS clusters showed that one cluster had significantly increased levels of circulating matrix metalloproteinases (MMP1, 2, 3, 8, 12, 13), soluble inflammatory receptors (receptor for advanced glycation end-products-RAGE, Interleukin-1 receptor antagonist (IL-1RA), suppression of tumorigenicity (ST)2, triggering receptor expressed on myeloid cells (TREM)1, IL-6Ra, tumor necrosis factor (TNF)RI, TNFRII), and chemokines (IL-8, CC chemokine ligand- CCL17). Furthermore, this WTCS cluster was associated with WTC exposure variables, ash at work, and the participant category workers; but not with the exposure variable WTC dust cloud at 9/11. A comparison of WTC exposure categorial variables identified that chemokines (CCL17, CCL11), circulating receptors (RAGE, TREM1), MMPs (MMP3, MMP12), and vascular markers (Angiogenin, vascular cell adhesion molecule-VCAM1) significantly increased in the more exposed groups. Circulating biomarkers of remodeling and inflammation identified clusters within WTCS and were associated with WTC exposure.
Collapse
Affiliation(s)
- Gabriele Grunig
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA
- Division of Pulmonary Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; (N.D.); (S.P.); (M.L.C.-V.); (R.G.); (K.I.B.)
| | - Nedim Durmus
- Division of Pulmonary Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; (N.D.); (S.P.); (M.L.C.-V.); (R.G.); (K.I.B.)
- World Trade Center Environmental Health Center, NYC Health + Hospitals, New York, NY 10016, USA; (Y.Z.); (Y.L.); (Y.W.); (M.L.)
| | - Yian Zhang
- World Trade Center Environmental Health Center, NYC Health + Hospitals, New York, NY 10016, USA; (Y.Z.); (Y.L.); (Y.W.); (M.L.)
- Division of Biostatistics, Department of Population Health, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Yuting Lu
- World Trade Center Environmental Health Center, NYC Health + Hospitals, New York, NY 10016, USA; (Y.Z.); (Y.L.); (Y.W.); (M.L.)
- Division of Biostatistics, Department of Population Health, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sultan Pehlivan
- Division of Pulmonary Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; (N.D.); (S.P.); (M.L.C.-V.); (R.G.); (K.I.B.)
| | - Yuyan Wang
- World Trade Center Environmental Health Center, NYC Health + Hospitals, New York, NY 10016, USA; (Y.Z.); (Y.L.); (Y.W.); (M.L.)
- Division of Biostatistics, Department of Population Health, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kathleen Doo
- Pulmonary, Kaiser Permanente East Bay, Oakland, CA 94611, USA;
| | - Maria L. Cotrina-Vidal
- Division of Pulmonary Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; (N.D.); (S.P.); (M.L.C.-V.); (R.G.); (K.I.B.)
| | - Roberta Goldring
- Division of Pulmonary Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; (N.D.); (S.P.); (M.L.C.-V.); (R.G.); (K.I.B.)
| | - Kenneth I. Berger
- Division of Pulmonary Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; (N.D.); (S.P.); (M.L.C.-V.); (R.G.); (K.I.B.)
| | - Mengling Liu
- World Trade Center Environmental Health Center, NYC Health + Hospitals, New York, NY 10016, USA; (Y.Z.); (Y.L.); (Y.W.); (M.L.)
- Division of Biostatistics, Department of Population Health, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Yongzhao Shao
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA
- World Trade Center Environmental Health Center, NYC Health + Hospitals, New York, NY 10016, USA; (Y.Z.); (Y.L.); (Y.W.); (M.L.)
- Division of Biostatistics, Department of Population Health, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Joan Reibman
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA
- Division of Pulmonary Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; (N.D.); (S.P.); (M.L.C.-V.); (R.G.); (K.I.B.)
- World Trade Center Environmental Health Center, NYC Health + Hospitals, New York, NY 10016, USA; (Y.Z.); (Y.L.); (Y.W.); (M.L.)
| |
Collapse
|
4
|
Song D, Jiang Y, Zhao Q, Li J, Zhao Y. lncRNA-NEAT1 Sponges miR-128 to Promote Inflammatory Reaction and Phenotypic Transformation of Airway Smooth Muscle Cells. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7499911. [PMID: 35082915 PMCID: PMC8786537 DOI: 10.1155/2022/7499911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Pediatric asthma is still a health threat to the children. Long noncoding RNA-NEAT1 (lncRNA-NEAT1) was reported to be positively correlated with the severity of asthma. We aimed to study the effects and mechanism of lncRNA-NEAT1on inflammatory reaction and phenotypic transformation of airway smooth muscle cells (ASMCs) in the bronchial asthma. METHOD The degree of lncRNA-NEAT1 and miR-128 mRNA in children with bronchial asthma and healthy individuals was tested by qRT-PCR. After the inflammatory reaction and phenotypic transformation of PDGF-BB-induced ASMCs, the expression of lncRNA-NEAT1 or miR-128 in the AMSC was disturbed in the AMSC. Subsequently, the expression of lncRNA-NEAT1 and miR-128 was detected by the way of qRT-PCR, and western blot was applied to measure the expression of MMP-2, MMP-9, α-SMA, calponin, NF-κB, and so on in the cells. The content of TNF-α, IL-1β, IL-6, and IL-8 in the cell culture supernatant was checked by ELISA. MTT, Transwell, and flow cytometry were used to detect cell proliferation, migration, and apoptosis. Further, the targeting relations between lncRNA-NEAT1 and miR-128 were evaluated by the dual-luciferase reporter assay. RESULT In the sputum of children with bronchial asthma, lncRNA-NEAT1 was significantly upregulated while miR-128 was rapidly downregulated. Besides, lncRNA-NEAT1 and miR-128 were competitively combined and, for their expression, negatively correlated. CONCLUSION lncRNA-NEAT1 sponges miR-128 to boost PDGF-BB-induced inflammatory reaction and phenotypic transformation of ASMCs to aggravate the occurrence and development of childhood bronchial asthma.
Collapse
Affiliation(s)
- Danyang Song
- Department of Pediatric, Cangzhou Central Hospital, Cangzhou, Hebei 061000, China
| | - Yajing Jiang
- Department of Pediatric, Cangzhou Central Hospital, Cangzhou, Hebei 061000, China
| | - Qiuju Zhao
- Department of Pediatric, Cangzhou Central Hospital, Cangzhou, Hebei 061000, China
| | - Jinling Li
- Department of Pediatric, Cangzhou Central Hospital, Cangzhou, Hebei 061000, China
| | - Yuqi Zhao
- Department of Pediatric, Cangzhou Central Hospital, Cangzhou, Hebei 061000, China
| |
Collapse
|
5
|
Hough KP, Curtiss ML, Blain TJ, Liu RM, Trevor J, Deshane JS, Thannickal VJ. Airway Remodeling in Asthma. Front Med (Lausanne) 2020; 7:191. [PMID: 32509793 PMCID: PMC7253669 DOI: 10.3389/fmed.2020.00191] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Asthma is an inflammatory disease of the airways that may result from exposure to allergens or other environmental irritants, resulting in bronchoconstriction, wheezing, and shortness of breath. The structural changes of the airways associated with asthma, broadly referred to as airway remodeling, is a pathological feature of chronic asthma that contributes to the clinical manifestations of the disease. Airway remodeling in asthma constitutes cellular and extracellular matrix changes in the large and small airways, epithelial cell apoptosis, airway smooth muscle cell proliferation, and fibroblast activation. These pathological changes in the airway are orchestrated by crosstalk of different cell types within the airway wall and submucosa. Environmental exposures to dust, chemicals, and cigarette smoke can initiate the cascade of pro-inflammatory responses that trigger airway remodeling through paracrine signaling and mechanostimulatory cues that drive airway remodeling. In this review, we explore three integrated and dynamic processes in airway remodeling: (1) initiation by epithelial cells; (2) amplification by immune cells; and (3) mesenchymal effector functions. Furthermore, we explore the role of inflammaging in the dysregulated and persistent inflammatory response that perpetuates airway remodeling in elderly asthmatics.
Collapse
Affiliation(s)
- Kenneth P Hough
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Miranda L Curtiss
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Trevor J Blain
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rui-Ming Liu
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jennifer Trevor
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jessy S Deshane
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Victor J Thannickal
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
6
|
Bullone M, Lavoie JP. The equine asthma model of airway remodeling: from a veterinary to a human perspective. Cell Tissue Res 2019; 380:223-236. [PMID: 31713728 DOI: 10.1007/s00441-019-03117-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/22/2019] [Indexed: 02/06/2023]
Abstract
Human asthma is a complex and heterogeneous disorder characterized by chronic inflammation, bronchospasm and airway remodeling. The latter is a major determinant of the structure-function relationship of the respiratory system and likely contributes to the progressive and accelerated decline in lung function observed in patients over time. Corticosteroids are the cornerstone of asthma treatment. While their action on inflammation and lung function is well characterized, their effect on remodeling remains largely unknown. An important hindrance to the study of airway remodeling as a major focus in asthma research is the lack of reliable non-invasive biomarkers. In consequence, the physiologic and clinical consequences of airway wall thickening and altered composition are not well understood. In this perspective, equine asthma provides a unique and ethical (non-terminal) preclinical model for hypothesis testing and generation. Severe equine asthma is a spontaneous disease affecting adult horses characterized by recurrent and reversible episodes of disease exacerbations. It is associated with bronchoalveolar neutrophilic inflammation, bronchospasm, and excessive mucus secretion. Severe equine asthma is also characterized by bronchial remodeling, which is only partially improved by prolonged period of disease remission induced by therapy or antigen avoidance strategies. This review will focus on the similarities and differences of airway remodeling in equine and human asthma, on the strengths and limitations of the equine model, and on the challenges the model has to face to keep up with human asthma research.
Collapse
Affiliation(s)
- Michela Bullone
- Department of Veterinary Sciences, Università degli Studi di Torino, Grugliasco, Italy
| | - Jean-Pierre Lavoie
- Faculty of Veterinary Sciences, University of Montreal, 3200 rue Sicotte, St-Hyacinthe, Quebec, Canada.
| |
Collapse
|
7
|
Nejad-Moghaddam A, Tahmasbpour E, Sohrabiyan M, Jafari H, Ghanei M. Stem cells therapy: a review on approaches that can be used for treatment of respiratory failures in sulfur mustard-injured patients. Immunopharmacol Immunotoxicol 2018; 40:359-367. [PMID: 30488735 DOI: 10.1080/08923973.2018.1510961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sulfur mustard (SM) is a toxic agent which causes severe abnormalities in an airway system such as necrosis and inflammation, oxidative stress, chronic bronchitis, shortness of breath, and chronic obstructive pulmonary disease. Although possible mechanisms of SM toxicity have been extensively considered, there is still need to find an appropriate clinical treatment to decrease chronic lung injuries caused by SM. Due to extensive progresses and achievement in tissue repairing through stem cells therapy, the importance of cell therapy for the treatment of lung injuries has been increased. However, several factors such as types of stem cells, necessary conditions for growth and proliferation of stem cells, and their homing into the target tissues are considered as the most important problems in this issue. Mesenchymal stem cells (MSCs) are a class of multipotent stem cells with proliferative and self-renewal capacity which are able to differentiate into different cell lines such as lung epithelial cells. They have a potential repairing and immune modulatory properties which make them as a good candidate for the regeneration of bronchioles tract in SM-exposed patients. Unlike chemical drugs, the differentiation and high-level safety properties of MSCs can be considered as a new strategy for the treatment of SM-injured patients with pulmonary complications. This review aims to consider the therapeutic effects of MSCs in the treatment of SM-induced pulmonary injuries in both animals and humans.
Collapse
Affiliation(s)
- Amir Nejad-Moghaddam
- a Marine Medicine Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Eisa Tahmasbpour
- b Laboratory of Regenerative Medicine & Biomedical Innovations , Pasteur Institute of Iran , Tehran , Iran
| | - Milad Sohrabiyan
- c Chemical Injuries Research Center, Systems Biology and Poisonings Institute , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Hosein Jafari
- a Marine Medicine Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Mostafa Ghanei
- c Chemical Injuries Research Center, Systems Biology and Poisonings Institute , Baqiyatallah University of Medical Sciences , Tehran , Iran
| |
Collapse
|
8
|
Poon AH, Choy DF, Chouiali F, Ramakrishnan RK, Mahboub B, Audusseau S, Mogas A, Harris JM, Arron JR, Laprise C, Hamid Q. Increased Autophagy-Related 5 Gene Expression Is Associated with Collagen Expression in the Airways of Refractory Asthmatics. Front Immunol 2017; 8:355. [PMID: 28424691 PMCID: PMC5372794 DOI: 10.3389/fimmu.2017.00355] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 03/13/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Fibrosis, particularly excessive collagen deposition, presents a challenge for treating asthmatic individuals. At present, no drugs can remove or reduce excessive collagen in asthmatic airways. Hence, the identification of pathways involved in collagen deposition would help to generate therapeutic targets to interfere with the airway remodeling process. Autophagy, a cellular degradation process, has been shown to be dysregulated in various fibrotic diseases, and genetic association studies in independent human populations have identified autophagy-related 5 (ATG5) to be associated with asthma pathogenesis. Hence, the dysregulation of autophagy may contribute to fibrosis in asthmatic airways. OBJECTIVE This study aimed to determine if (1) collagen deposition in asthmatic airways is associated with ATG5 expression and (2) ATG5 protein expression is associated with asthma per se and severity. METHODS Gene expression of transforming growth factor beta 1, various asthma-related collagen types [collagen, type I, alpha 1; collagen, type II, alpha 1; collagen, type III, alpha 1; collagen, type V, alpha 1 (COL5A1) and collagen, type V, alpha 2], and ATG5 were measured using mRNA isolated from bronchial biopsies of refractory asthmatic subjects and assessed for pairwise associations. Protein expression of ATG5 in the airways was measured and associations were assessed for asthma per se, severity, and lung function. MAIN RESULTS In refractory asthmatic individuals, gene expression of ATG5 was positively associated with COL5A1 in the airways. No association was detected between ATG5 protein expression and asthma per se, severity, and lung function. CONCLUSION AND CLINICAL RELEVANCE Positive correlation between the gene expression patterns of ATG5 and COL5A1 suggests that dysregulated autophagy may contribute to subepithelial fibrosis in the airways of refractory asthmatic individuals. This finding highlights the therapeutic potential of ATG5 in ameliorating airway remodeling in the difficult-to-treat refractory asthmatic individuals.
Collapse
Affiliation(s)
- Audrey H Poon
- Meakins-Christie Laboratories, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - David F Choy
- Biomarker Discovery - OMNI, Genentech Inc., South San Francisco, CA, USA
| | - Fazila Chouiali
- Meakins-Christie Laboratories, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | | | - Bassam Mahboub
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Severine Audusseau
- Meakins-Christie Laboratories, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Andrea Mogas
- Meakins-Christie Laboratories, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Jeffrey M Harris
- OMNI Early Clinical Development, Genentech Inc., South San Francisco, CA, USA
| | - Joseph R Arron
- Immunology Discovery, Genentech Inc., South San Francisco, CA, USA
| | - Catherine Laprise
- Meakins-Christie Laboratories, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Department of Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Qutayba Hamid
- Meakins-Christie Laboratories, Faculty of Medicine, McGill University, Montreal, QC, Canada.,College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
9
|
An official American Thoracic Society Workshop Report: presentations and discussion of the fifth Jack Pepys Workshop on Asthma in the Workplace. Comparisons between asthma in the workplace and non-work-related asthma. Ann Am Thorac Soc 2016. [PMID: 26203621 DOI: 10.1513/annalsats.201505-281st] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The fifth Jack Pepys Workshop on Asthma in the Workplace focused on the similarities and differences of work-related asthma (WRA) and non-work-related asthma (non-WRA). WRA includes occupational asthma (OA) and work-exacerbated asthma (WEA). There are few biological differences in the mechanisms of sensitization to environmental and occupational allergens. Non-WRA and OA, when due to high-molecular-weight agents, are both IgE mediated; it is uncertain whether OA due to low-molecular-weight agents is also IgE mediated. Risk factors for OA include female sex, a history of upper airway symptoms, and a history of bronchial hyperresponsiveness. Atopy is a risk factor for OA due to high-molecular-weight agents, and exposure to cleaning agents is a risk factor for both OA and non-WRA. WEA is important among workers with preexisting asthma and may overlap with irritant-induced asthma, a type of OA. Induced sputum cytology can confirm airway inflammation, but specific inhalation challenge is the reference standard diagnostic test. Inhalation challenges are relatively safe, with the most severe reactions occurring with low-molecular-weight agents. Indirect health care costs account for about 50% of total asthma costs. Workers with poor asthma control (WRA or non-WRA) are less likely to be employed. Income loss is a major contributor to the indirect costs of WRA. Overall, asthma outcomes probably are worse for adult-onset than for childhood-onset asthma but better for OA than adult-onset non-WRA. Important aspects of management of OA are rapid and proper confirmation of the diagnosis and reduction of exposure to sensitizers or irritants at work and home.
Collapse
|
10
|
Saglani S, Lloyd CM. Novel concepts in airway inflammation and remodelling in asthma. Eur Respir J 2015; 46:1796-804. [PMID: 26541520 DOI: 10.1183/13993003.01196-2014] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/25/2015] [Indexed: 02/03/2023]
Abstract
The hallmark pathological features of asthma include airway eosinophilic inflammation and structural changes (remodelling) which are associated with an irreversible loss in lung function that tracks from childhood to adulthood. In parallel with changes in function, pathological abnormalities occur early, during the pre-school years, are established by school age and subsequently remain (even though symptoms may remit for periods during adulthood). Given the equal importance of inflammation and remodelling in asthma pathogenesis, there is a significant disparity in studies undertaken to investigate the contribution of each. The majority focus on the role of inflammation, and although novel therapeutics such as those targeted against T-helper cell type 2 (Th2) mediators have arisen, it is apparent that targeting inflammation alone has not allowed disease modification. Therefore, unless airway remodelling is addressed for future therapeutic strategies, it is unlikely that we will progress towards a cure for asthma. Having acknowledged these limitations, the focus of this review is to highlight the gaps in our current knowledge about the mechanisms underlying airway remodelling, the relationships between remodelling, inflammation and function, remodelling and clinical phenotypes, and the importance of utilising innovative and realistic pre-clinical models to uncover effective, disease-modifying therapeutic strategies.
Collapse
Affiliation(s)
- Sejal Saglani
- Inflammation, Repair and Development Section, National Heart & Lung Institute, Imperial College London, London, UK Dept of Respiratory Paediatrics, Royal Brompton Hospital, London, UK
| | - Clare M Lloyd
- Inflammation, Repair and Development Section, National Heart & Lung Institute, Imperial College London, London, UK
| |
Collapse
|
11
|
Bullone M, Beauchamp G, Godbout M, Martin JG, Lavoie JP. Endobronchial Ultrasound Reliably Quantifies Airway Smooth Muscle Remodeling in an Equine Asthma Model. PLoS One 2015; 10:e0136284. [PMID: 26348727 PMCID: PMC4562526 DOI: 10.1371/journal.pone.0136284] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 08/01/2015] [Indexed: 11/18/2022] Open
Abstract
Endobronchial ultrasonography (EBUS) revealed differences in the thickness of the layer representing subepithelial tissues (L2) between human asthmatics and controls, but whether this measurement correlates with airway smooth muscle (ASM) remodeling in asthma is unknown. In this study, we sought to determine the ability of EBUS to predict histological ASM remodeling in normal and equine asthmatic airways. We studied 109 isolated bronchi from the lungs of 13 horses. They underwent EBUS examination using a 30 MHz radial probe before being processed for histology. ASM remodeling parameters were evaluated in EBUS images (L2 thickness, L2 area, L2 area/internal perimeter [Pi] and L2 area/Pi2) and histological cuts (ASM area/Pi2), and compared. EBUS was then performed ex vivo on the lungs of 4 horses with heaves, an asthma-like condition of horses, and 7 controls to determine whether central bronchial remodeling could be detected with this technique. An optimized approach was developed based on data variability within airways, subjects, and groups, and then validated in 7 horses (3 controls, 4 with heaves) that underwent EBUS in vivo. L2 area was significantly associated to ASM area in isolated lungs (p<0.0001), in the absence of significant bias related to the airway size. Bronchial size significantly affected EBUS ASM-related parameters, except for L2 area/Pi2. L2 area/Pi2 was increased in the airways of asthmatic horses compared to controls, both ex vivo and in vivo (p<0.05). Bronchial histology confirmed our findings (AASM/Pi2 was increased in asthmatic horses compared to controls, p<0.05). In both horses with heaves and controls, L2 was composed of ASM for the outer 75% of its thickness and by ECM for the remaining inner 25%. In conclusion, EBUS reliably allows assessment of asthma-associated ASM remodeling of central airways in a non-invasive way.
Collapse
Affiliation(s)
- Michela Bullone
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Guy Beauchamp
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Mireille Godbout
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - James G. Martin
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Jean-Pierre Lavoie
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, Quebec, Canada
- * E-mail:
| |
Collapse
|
12
|
Gao FS, Cao TM, Gao YY, Liu MJ, Liu YQ, Wang Z. Effects of chronic exposure to Aspergillus fumigatus on epidermal growth factor receptor expression in the airway epithelial cells of asthmatic rats. Exp Lung Res 2014; 40:298-307. [PMID: 24927409 DOI: 10.3109/01902148.2014.918212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Epidemiologic studies suggest that increased concentrations of airborne spores of Aspergillus fumigatus closely relate to asthma aggravation. Chronic exposure to A. fumigatus aggravates airway inflammation, remodeling, and airway hyperresponsiveness in asthmatic rats. The effects of chronic exposure to A. fumigatus on epidermal growth factor receptor (EGFR) expression in the airway epithelial cells of asthmatic rats remain unclear. This study aimed to investigate the effects of chronic exposure to A. fumigatus on injury and shedding of airway epithelium, goblet cell metaplasia, and EGFR expression in the airway epithelial cells of asthmatic rats. A rat model of chronic asthma was established using ovalbumin (OVA) sensitization and challenge. Rats with chronic asthma were then exposed to long-term inhalation of spores of A. fumigatus, and the dynamic changes in injury and shedding of airway epithelium, goblet cell metaplasia, and EGFR expression were observed and analyzed. Chronic exposure to A. fumigatus could aggravate airway epithelial cell damage, upregulate the expression of EGFR and its ligands EGF and TGF-α, promote goblet cell metaplasia, and increase airway responsiveness in rats with asthma. Chronic exposure to A. fumigatus upregulates the expression of EGFR and its ligands in asthmatic rats. The EGFR pathway may play a role in asthma aggravation induced by exposure to A. fumigatus.
Collapse
Affiliation(s)
- Fu-Sheng Gao
- Department of Respiratory Medicine, The Affiliated Hospital of Weifang Medical College, Weifang, China
| | | | | | | | | | | |
Collapse
|
13
|
Leclere M, Lavoie-Lamoureux A, Joubert P, Relave F, Setlakwe EL, Beauchamp G, Couture C, Martin JG, Lavoie JP. Corticosteroids and antigen avoidance decrease airway smooth muscle mass in an equine asthma model. Am J Respir Cell Mol Biol 2012; 47:589-96. [PMID: 22721832 DOI: 10.1165/rcmb.2011-0363oc] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Recent studies suggest that airway smooth muscle remodeling is an early event in the course of asthma. Little is known of the effects of long-term antigen avoidance and inhaled corticosteroids on chronically established airway remodeling. We sought to measure the effects of inhaled corticosteroids and antigen avoidance on airway remodeling in the peripheral airways of horses with heaves, a naturally occurring asthma-like disease. Heaves-affected adult horses with ongoing airway inflammation and bronchoconstriction were treated with fluticasone propionate (with and without concurrent antigen avoidance) (n = 6) or with antigen avoidance alone (n = 5). Lung function and bronchoalveolar lavage were performed at multiple time points, and peripheral lung biopsies were collected before and after 6 and 12 months of treatment. Lung function improved more quickly with inhaled corticosteroids, but eventually normalized in both groups. Inflammation was better controlled with antigen avoidance. During the study period, corrected smooth muscle mass decreased from 12.1 ± 2.8 × 10(-3) and 11.3 ± 1.2 × 10(-3) to 8.3 ± 1.4 × 10(-3) and 7.9 ± 1.0 × 10(-3) in the antigen avoidance and fluticasone groups, respectively (P = 0.03). At 6 months, smooth muscle mass was significantly smaller compared with baseline only in the fluticasone-treated animals. The subepithelial collagen area was lower at 12 months than at baseline in both groups. During the study period, airway smooth muscle remodeling decreased by approximately 30% in both groups, although the decrease was faster in horses receiving inhaled corticosteroids. Inhaled corticosteroids may accelerate the reversal of smooth muscle remodeling, even if airway inflammation is better controlled with antigen avoidance.
Collapse
Affiliation(s)
- Mathilde Leclere
- Department of Veterinary Clinical Sciences, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Gao FS, Gao YY, Liu MJ, Liu YQ. Chronic Aspergillus fumigatus exposure upregulates the expression of mucin 5AC in the airways of asthmatic rats. Exp Lung Res 2012; 38:256-65. [PMID: 22489685 DOI: 10.3109/01902148.2012.676705] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Airway mucus hypersecretion is associated with increased morbidity and mortality in patients with asthma. Chronic Aspergillus fumigatus (A. fumigatus) exposure leads to aggravation of airway inflammation and remodeling, including goblet cell hyperplasia (GCH) and mucus hypersecretion in a rat model of asthma. The effects of chronic A. fumigatus exposure on the expression of airway mucin 5AC (MUC5AC) are unknown. METHODS The rat model of chronic asthma was set up by systemic sensitization and repeated challenge to ovalbumin (OVA). The asthmatic rats were exposed to chronic intranasal inhalation of A. fumigatus spores. The changes of MUC5AC expression, the extent of GCH, and airway hyperreactivity (AHR) were measured after exposure to the fungus. RESULTS AND CONCLUSIONS Chronic exposure to A. fumigatus upregulates the expression of MUC5AC, and induces GCH in the airways of asthma rats, and the remodeling changes of the airway epithelium was positively correlated with AHR. Upregulation of MUC5AC and induction of GCH may be mechanisms by which chronic A. fumigatus exposure promotes the progression of asthma.
Collapse
Affiliation(s)
- Fu-Sheng Gao
- Department of Respiratory Medicine, The Affiliated Hospital of Weifang Medical College, Weifang, China.
| | | | | | | |
Collapse
|
15
|
Abstract
Accumulating evidence indicates that the workplace environment substantially contributes to the global burden of asthma and rhinitis. Work-related asthma and rhinitis represent a public health concern due to their health and socioeconomic impacts. This article summarizes the scientific evidence on sensitizer-induced occupational asthma and rhinitis that has been published during the past 5 years. The review addresses the strategies for diagnosing and managing these highly prevalent occupational diseases.
Collapse
Affiliation(s)
- Olivier Vandenplas
- Department of Chest Medicine, Mont-Godinne Hospital, Avenue Gaston Therasse 1, Yvoir, Belgium.
| |
Collapse
|
16
|
Sandström T. Effects of pharmacological and non-pharmacological interventions. CLINICAL RESPIRATORY JOURNAL 2010; 4 Suppl 1:41-8. [PMID: 20500609 DOI: 10.1111/j.1752-699x.2010.00196.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Asthma is recognised as a condition with variable airway obstruction with pathophysiological features that include activation of a wide range of inflammatory and structural cells. Additionally, structural changes in the airways have been demonstrated. This includes increased thickening of components in the basement membrane region, increased smooth muscle mass, increased vascularisation and many other events that is often referred to as remodelling of the airways. These processes and the underlying mechanisms have attracted considerable attention. METHODS AND RESULTS This review describes the different interventive approaches that have been tried in order to improve asthma control and affect the underlying pathophysiological pathways. These include elimination of harmful environmental and occupational exposures, a wide range of pharmacological agents as well as bronchial thermoplasty. The existing evidence for effects on airway inflammation and airway remodelling is discussed in relationship to mechanistic aspects and short- and long-term outcome. CONCLUSION It is expected that modulation of the asthmatic airway remodelling will become an even more important endpoint in the near future.
Collapse
Affiliation(s)
- Thomas Sandström
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden.
| |
Collapse
|
17
|
Bossé Y, Stankova J, Rola-Pleszczynski M. Transforming growth factor-beta1 in asthmatic airway smooth muscle enlargement: is fibroblast growth factor-2 required? Clin Exp Allergy 2010; 40:710-24. [PMID: 20447083 DOI: 10.1111/j.1365-2222.2010.03497.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Enlargement of airway smooth muscle (ASM) tissue around the bronchi/bronchioles is a histopathological signature of asthmatic airway remodelling and has been suggested to play a critical role in the increased lung resistance and airway hyperresponsiveness seen in asthmatic patients. The pleiotropic cytokine, TGF-beta1, is believed to contribute to several aspects of asthmatic airway remodelling and is known to influence the growth of many cell types. Increased TGF-beta1 expression/signalling and ASM growth have been shown to occur concurrently in animal models of asthma. Abundant studies further substantiate this association by showing that therapeutic strategies that reduce or prevent TGF-beta1 overexpression/signalling lead to a parallel decrease or prevention of ASM enlargement. Finally, recent findings have supported a direct link of causality between TGF-beta1 overexpression/signalling and the overgrowth of ASM tissue. To follow-up on these in vivo studies, many investigators have pursued detailed investigation of ASM in cell culture conditions, assessing the direct role of TGF-beta1 on cellular proliferation and/or hypertrophy. Inconsistencies among the in vitro studies suggest that the effect of TGF-beta1 on ASM cell proliferation/hypertrophy is contextual. A hypothesis focusing on fibroblast growth factor-2 is presented at the end of this review, which could potentially reconcile the apparent discrepancy between the conflicting in vitro findings with the consistent in vivo finding that TGF-beta1 is required for ASM enlargement in asthma.
Collapse
Affiliation(s)
- Y Bossé
- The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, Department of Medicine, Respiratory Division, University of British Columbia, Vancouver, BC, Canada.
| | | | | |
Collapse
|
18
|
Takeda N, Maghni K, Daigle S, L'Archevêque J, Castellanos L, Al-Ramli W, Malo JL, Hamid Q. Long-term pathologic consequences of acute irritant-induced asthma. J Allergy Clin Immunol 2009; 124:975-81.e1. [PMID: 19895985 DOI: 10.1016/j.jaci.2009.08.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 06/30/2009] [Accepted: 08/06/2009] [Indexed: 11/18/2022]
Abstract
BACKGROUND Acute irritant-induced asthma (IrIa) or reactive airways dysfunction syndrome is caused by exposure to a high concentration of an agent. The long-term pathologic consequences of IrIa remain thus far unknown. OBJECTIVE The aim of our study was to investigate the chronic airway inflammation and remodeling that occur in association with IrIa. METHODS Ten subjects with a history of IrIa (mean interval of 10.9 years, minimum of 4 years, since the inhalational accident) underwent bronchoscopy followed by bronchoalveolar lavage and bronchial biopsies. Immunologic and morphologic data from patients with IrIa were compared with those of patients with mild to moderate asthma as well as healthy controls. RESULTS Bronchoalveolar lavage fluid analysis showed increased eosinophil and neutrophil counts in 30% and 60% of subjects with IrIa, respectively. In the supernatant of bronchoalveolar lavage, we found a significant increase in the majority of mediators compared with healthy subjects and a significant increase in eosinophilic cationic protein, IL-8, basic fibroblast growth factor, and matrix metalloproteinase 1 compared with control patients with asthma. Evaluation of basement membrane thickness (subepithelial fibrosis) demonstrated a significant increase in patients with IrIa compared with healthy subjects and subjects with asthma. Basement membrane thickness also significantly correlated with the PC(20) value. The epithelial cell detachment showed an elevated although not significant trend compared with subjects with asthma and control subjects. Immunocytochemical analysis demonstrated increases in the number of eosinophil cationic protein and TGF-beta1-positive cells compared with healthy controls. CONCLUSION This study provides evidence of a significant eosinophilic and neutrophilic inflammation as well as remodeling in IrIa many years after an inhalational accident.
Collapse
Affiliation(s)
- Naoya Takeda
- Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Current World Literature. Curr Opin Allergy Clin Immunol 2009; 9:177-84. [DOI: 10.1097/aci.0b013e328329f9ca] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Current Opinion in Pulmonary Medicine. Current world literature. Curr Opin Pulm Med 2009; 15:79-87. [PMID: 19077710 DOI: 10.1097/mcp.0b013e32831fb1f3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Malo JL, L'archevêque J, Castellanos L, Lavoie K, Ghezzo H, Maghni K. Long-term outcomes of acute irritant-induced asthma. Am J Respir Crit Care Med 2009; 179:923-8. [PMID: 19234102 DOI: 10.1164/rccm.200810-1550oc] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE The long-term outcomes of acute irritant-induced asthma (IIA) are mostly unknown. OBJECTIVES To study the long-term outcomes of IIA. METHODS We reassessed 35 subjects who experienced IIA at a mean interval of 13.6 +/- 5.2 years. MEASUREMENTS AND MAIN RESULTS The causal agent was chlorine in 20 cases (57%). At diagnosis, the mean +/- SD FEV(1) was 74.5 +/- 19.5% predicted, and all subjects showed bronchial hyperresponsiveness. At reassessment, all subjects reported respiratory symptoms, and 24 (68%) were on inhaled steroids. There were no significant improvements in FEV(1) and FEV(1)/FVC values. Twenty-three subjects had a methacholine test, and only six subjects had normal levels of responsiveness. Of the remaining 12 subjects, six had improvement in FEV(1) after bronchodilator >or=10%. In samples of induced sputum obtained from 27 subjects, six had eosinophils >or=2%. Levels of inflammatory and remodeling mediators were higher than in control subjects but were no different from subjects with occupational asthma due to sensitization. Quality of life score was 4.4 +/- 1.5 on a 0 (worst) to 7 (best) scale. Twelve subjects had an abnormal depression score. CONCLUSIONS This study provides the first evidence of significant long-term impact of acute IIA on various outcomes.
Collapse
Affiliation(s)
- Jean-Luc Malo
- Axe de Recherche en Santé Respiratoire, Hôpital du Sacré-Coeur de Montréal, Quebec.
| | | | | | | | | | | |
Collapse
|
22
|
Gao FS, Qiao JO, Zhang Y, Jin XQ. Chronic intranasal administration of Aspergillus fumigatus spores leads to aggravation of airway inflammation and remodelling in asthmatic rats. Respirology 2009; 14:360-70. [PMID: 19207119 DOI: 10.1111/j.1440-1843.2009.01482.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVE Epidemiological evidence indicates a close link between exposure to fungi and deterioration of asthma. However, the role of fungi as an exogenous precipitant for initiation and progression of asthma has been incompletely explored. In this study, the effects of Aspergillus fumigatus exposure on airway inflammation and remodelling in a rat model of chronic asthma were investigated. METHODS The rat model of chronic asthma was established by systemic sensitization and repeated challenge with ovalbumin (OVA). The asthmatic rats were exposed to chronic intranasal inhalation of A. fumigatus spores. Changes in airway inflammation, remodelling and BHR were measured after exposure to the fungus. RESULTS Chronic inhalation of A. fumigatus spores elevated the production of T helper 2 (Th2) cytokines, increased the concentration of total serum IgE, and resulted in the recruitment of eosinophils and lymphocyte infiltration into the airways of asthmatic rats. Goblet cell hyperplasia, mucus hyperproduction and subepithelial collagen deposition were also induced by inhalation of the fungus. The remodelling changes induced by inhalation of the fungus paralleled the changes in BHR in this rat model of asthma. CONCLUSIONS Chronic exposure to A. fumigatus aggravated Th2 airway inflammation, promoted airway remodelling and increased BHR in OVA-sensitized and -challenged rats.
Collapse
Affiliation(s)
- Fu-Sheng Gao
- Department of Respiratory Medicine, First People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | | | | | | |
Collapse
|
23
|
Asthma in the workplace: a Canadian contribution and perspective. Can Respir J 2008; 14:407-13. [PMID: 17948141 DOI: 10.1155/2007/753724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
24
|
|