1
|
Zhang M, Lu H, Xie L, Liu X, Cun D, Yang M. Inhaled RNA drugs to treat lung diseases: Disease-related cells and nano-bio interactions. Adv Drug Deliv Rev 2023; 203:115144. [PMID: 37995899 DOI: 10.1016/j.addr.2023.115144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
In recent years, RNA-based therapies have gained much attention as biomedicines due to their remarkable therapeutic effects with high specificity and potency. Lung diseases offer a variety of currently undruggable but attractive targets that could potentially be treated with RNA drugs. Inhaled RNA drugs for the treatment of lung diseases, including asthma, chronic obstructive pulmonary disease, cystic fibrosis, and acute respiratory distress syndrome, have attracted more and more attention. A variety of novel nanoformulations have been designed and attempted for the delivery of RNA drugs to the lung via inhalation. However, the delivery of RNA drugs via inhalation poses several challenges. It includes protection of the stability of RNA molecules, overcoming biological barriers such as mucus and cell membrane to the delivery of RNA molecules to the targeted cytoplasm, escaping endosomal entrapment, and circumventing unwanted immune response etc. To address these challenges, ongoing researches focus on developing innovative nanoparticles to enhance the stability of RNA molecules, improve cellular targeting, enhance cellular uptake and endosomal escape to achieve precise delivery of RNA drugs to the intended lung cells while avoiding unwanted nano-bio interactions and off-target effects. The present review first addresses the pathologic hallmarks of different lung diseases, disease-related cell types in the lung, and promising therapeutic targets in these lung cells. Subsequently we highlight the importance of the nano-bio interactions in the lung that need to be addressed to realize disease-related cell-specific delivery of inhaled RNA drugs. This is followed by a review on the physical and chemical characteristics of inhaled nanoformulations that influence the nano-bio interactions with a focus on surface functionalization. Finally, the challenges in the development of inhaled nanomedicines and some key aspects that need to be considered in the development of future inhaled RNA drugs are discussed.
Collapse
Affiliation(s)
- Mengjun Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China; School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Haoyu Lu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Liangkun Xie
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Xulu Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China.
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
2
|
Yamashita S, Takasu C, Morine Y, Ishibashi H, Ikemoto T, Mori H, Yamada S, Oya T, Tsuneyama K, Shimada M. Characteristic submucosal alteration in biliary carcinogenesis of pancreaticobiliary maljunction with a focus on inflammasome activation. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2023; 30:462-472. [PMID: 36259178 DOI: 10.1002/jhbp.1253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 08/25/2022] [Accepted: 09/14/2022] [Indexed: 04/28/2023]
Abstract
BACKGROUND This study investigated submucosal alterations in biliary carcinogenesis of pancreaticobiliary maljunction (PBM). METHODS Thirty-three patients with PBM (including seven with gallbladder [GB] cancer), four with neither biliary tract cancer nor PBM who underwent pancreaticoduodenectomy (controls), and seven with chronic cholecystitis without PBM were enrolled. Protein expression of α-smooth muscle actin (αSMA), CD68, and CD204 in the GB lamina propria and that of NLRP3 and caspase 1 in the GB epithelium and lamina propria were examined. RESULTS Compared with the control and cholecystitis groups, αSMA expression was higher in the cancerous part (stroma) of the GB in patients with GB cancer + PBM and in the lamina propria of patients with PBM. The CD204/CD68 ratio in the lamina propria was higher in the PBM group than in the control and cholecystitis groups. NLRP3 and caspase 1 expression in both the lamina propria and epithelium was higher in the PBM than control group. In the PBM group, NLRP3- and caspase 1-positive cells in the lamina propria were located near the epithelium. CONCLUSION Activated fibroblasts and M2 macrophages in the GB lamina propria may be associated with biliary carcinogenesis of PBM, possibly through inflammasome activation.
Collapse
Affiliation(s)
- Shoko Yamashita
- Department of Surgery, Tokushima University, Kuramoto-cho, Tokushima, Japan
- Department of Pathology and Laboratory Medicine, Tokushima University, Kuramoto-cho, Tokushima, Japan
| | - Chie Takasu
- Department of Surgery, Tokushima University, Kuramoto-cho, Tokushima, Japan
| | - Yuji Morine
- Department of Surgery, Tokushima University, Kuramoto-cho, Tokushima, Japan
| | - Hiroki Ishibashi
- Department of Surgery, Tokushima University, Kuramoto-cho, Tokushima, Japan
| | - Tetsuya Ikemoto
- Department of Surgery, Tokushima University, Kuramoto-cho, Tokushima, Japan
| | - Hiroki Mori
- Department of Surgery, Tokushima University, Kuramoto-cho, Tokushima, Japan
| | - Shinichiro Yamada
- Department of Surgery, Tokushima University, Kuramoto-cho, Tokushima, Japan
| | - Takeshi Oya
- Department of Molecular Pathology, Tokushima University, Kuramoto-cho, Tokushima, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University, Kuramoto-cho, Tokushima, Japan
| | - Mitsuo Shimada
- Department of Surgery, Tokushima University, Kuramoto-cho, Tokushima, Japan
| |
Collapse
|
3
|
Nerve growth factor causes epinephrine release dysfunction by regulating phenotype alterations and the function of adrenal medullary chromaffin cells in mice with allergic rhinitis. Mol Med Rep 2023; 27:39. [PMID: 36601769 PMCID: PMC9835056 DOI: 10.3892/mmr.2023.12926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/06/2022] [Indexed: 01/04/2023] Open
Abstract
The presence of allergic rhinitis (AR) is an increased risk factor for the occurrence of bronchial asthma (BA). Nerve growth factor (NGF), in addition to its key role in the development and differentiation of neurons, may also be an important inflammatory factor in AR and BA. However, the pathogenesis of the progression of AR to BA remains to be elucidated. The present study aimed to investigate the ability of NGF to mediate nasobronchial interactions and explore possible underlying molecular mechanisms. In the present study, an AR mouse model was established and histology of nasal mucosa tissue injury was determined. The level of phenylethanolamine N‑methyl transferase in adrenal medulla was determined by immunofluorescence. Primary adrenal medullary chromaffin cells (AMCCs) were isolated and cultured from the adrenal medulla of mice. The expression levels of synaptophysin (SYP), STAT1, JAK1, p38 and ERK in NGF‑treated and untreated AMCCs were detected by reverse‑transcription‑quantitative PCR and western blotting. The epinephrine (EPI) and norepinephrine (NE) concentrations were measured by ELISA. It was found that the expression of SYP in AMCCs was enhanced in the presence of NGF, whereas, the concentration of EPI decreased significantly under the same conditions. Furthermore, NGF mediated the phenotypic and functional changes of AMCCs, resulting in decreased EPI secretion via JAK1/STAT1, p38 and ERK signaling. In conclusion, these findings could provide novel evidence for the role of NGF in regulating neuroendocrine mechanisms.
Collapse
|
4
|
Ogawa H, Azuma M, Umeno A, Shimizu M, Murotomi K, Yoshida Y, Nishioka Y, Tsuneyama K. Singlet oxygen -derived nerve growth factor exacerbates airway hyperresponsiveness in a mouse model of asthma with mixed inflammation. Allergol Int 2022; 71:395-404. [PMID: 35346582 DOI: 10.1016/j.alit.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/01/2022] [Accepted: 02/13/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Refractory asthma, which is caused by several factors including neutrophil infiltration is a serious complication of bronchial asthma. We previously reported that nerve growth factor (NGF) is involved in AHR. NGF-derived induction of hyperalgesia is dependent on neutrophils; however, this relationship remains unclear in respiratory disease. In this study, we examined the roles of neutrophils and NGF in refractory asthma. METHODS Using intranasal house dust mite sensitization, we established a mouse model of asthma with mixed inflammation (Mix-in). AHR, NGF production and hyperinnervation of the lungs were examined with or without different inhibitory treatments. The levels of the singlet oxygen markers, 10- and 12-(Z,E)-hydroxyoctadecadienoic acids (HODE) in the lungs, were measured by liquid chromatography-tandem mass spectrometry. An in vitro experiment was also performed to evaluate the direct effect of singlet oxygen on NGF production. RESULTS NGF production and hyperinnervation were higher in Mix-in mice than in conventional eosinophilic-asthmatic mice and were positively correlated with AHR. Asthmatic parameters were inhibited by NGF neutralizing Abs and myeloperoxidase (MPO) inhibition. The 10- and 12-(Z,E)-HODEs levels were increased in the lungs and were positively correlated with MPO activity and NGF production. NGF was produced by bronchial epithelial cells in vitro upon stimulation with singlet oxygen. CONCLUSIONS Our findings suggest that neutrophil MPO-derived singlet oxygen induces increased NGF production, leading to AHR and 10- and 12-(Z,E)-HODEs production. These findings may help to develop new therapies targeting this mechanism and to establish a new biomarker for non-type 2 and refractory asthma.
Collapse
Affiliation(s)
- Hirohisa Ogawa
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan.
| | - Masahiko Azuma
- Department of Respiratory Medicine and Rheumatology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan; Research Center for Education of Health Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Aya Umeno
- Health Research Institute, National Institute of Advanced Industrial Science and Technology, Kagawa, Japan; Department of Ophthalmology, Shimane University Faculty of Medicine, Shimane, Japan; Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Mayuko Shimizu
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kazutoshi Murotomi
- Health Research Institute, National Institute of Advanced Industrial Science and Technology, Kagawa, Japan; Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | - Yasukazu Yoshida
- Health Research Institute, National Institute of Advanced Industrial Science and Technology, Kagawa, Japan; LG Japan Lab Inc., Kanagawa, Japan
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
5
|
Liu P, Li S, Tang L. Nerve Growth Factor: A Potential Therapeutic Target for Lung Diseases. Int J Mol Sci 2021; 22:ijms22179112. [PMID: 34502019 PMCID: PMC8430922 DOI: 10.3390/ijms22179112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/19/2022] Open
Abstract
The lungs play a very important role in the human respiratory system. However, many factors can destroy the structure of the lung, causing several lung diseases and, often, serious damage to people's health. Nerve growth factor (NGF) is a polypeptide which is widely expressed in lung tissues. Under different microenvironments, NGF participates in the occurrence and development of lung diseases by changing protein expression levels and mediating cell function. In this review, we summarize the functions of NGF as well as some potential underlying mechanisms in pulmonary fibrosis (PF), coronavirus disease 2019 (COVID-19), pulmonary hypertension (PH), asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. Furthermore, we highlight that anti-NGF may be used in future therapeutic strategies.
Collapse
Affiliation(s)
- Piaoyang Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China;
| | - Shun Li
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu 610500, China
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu 610500, China
- Correspondence: (S.L.); (L.T.)
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China;
- Correspondence: (S.L.); (L.T.)
| |
Collapse
|
6
|
Kippelen P, Anderson SD, Hallstrand TS. Mechanisms and Biomarkers of Exercise-Induced Bronchoconstriction. Immunol Allergy Clin North Am 2019; 38:165-182. [PMID: 29631728 DOI: 10.1016/j.iac.2018.01.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Exercise is a common trigger of bronchoconstriction. In recent years, there has been increased understanding of the pathophysiology of exercise-induced bronchoconstriction. Although evaporative water loss and thermal changes have been recognized stimuli for exercise-induced bronchoconstriction, accumulating evidence points toward a pivotal role for the airway epithelium in orchestrating the inflammatory response linked to exercise-induced bronchoconstriction. Overproduction of inflammatory mediators, underproduction of protective lipid mediators, and infiltration of the airways with eosinophils and mast cells are all established contributors to exercise-induced bronchoconstriction. Sensory nerve activation and release of neuropeptides maybe important in exercise-induced bronchoconstriction, but further research is warranted.
Collapse
Affiliation(s)
- Pascale Kippelen
- Department of Life Sciences, Division of Sport, Health and Exercise Sciences, Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK
| | - Sandra D Anderson
- Central Clinical School, Sydney Medical School, University of Sydney, Parramatta Road, Sydney New South Wales 2006, Australia.
| | - Teal S Hallstrand
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Center for Lung Biology, University of Washington, Box 358052, 850 Republican Street, Seattle, WA 98109-4714, USA
| |
Collapse
|
7
|
Shaffo FC, Grodzki AC, Fryer AD, Lein PJ. Mechanisms of organophosphorus pesticide toxicity in the context of airway hyperreactivity and asthma. Am J Physiol Lung Cell Mol Physiol 2018; 315:L485-L501. [PMID: 29952220 PMCID: PMC6230874 DOI: 10.1152/ajplung.00211.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/15/2018] [Accepted: 06/18/2018] [Indexed: 12/14/2022] Open
Abstract
Numerous epidemiologic studies have identified an association between occupational exposures to organophosphorus pesticides (OPs) and asthma or asthmatic symptoms in adults. Emerging epidemiologic data suggest that environmentally relevant levels of OPs may also be linked to respiratory dysfunction in the general population and that in utero and/or early life exposures to environmental OPs may increase risk for childhood asthma. In support of a causal link between OPs and asthma, experimental evidence demonstrates that occupationally and environmentally relevant OP exposures induce bronchospasm and airway hyperreactivity in preclinical models. Mechanistic studies have identified blockade of autoinhibitory M2 muscarinic receptors on parasympathetic nerves that innervate airway smooth muscle as one mechanism by which OPs induce airway hyperreactivity, but significant questions remain regarding the mechanism(s) by which OPs cause neuronal M2 receptor dysfunction and, more generally, how OPs cause persistent asthma, especially after developmental exposures. The goals of this review are to 1) summarize current understanding of OPs in asthma; 2) discuss mechanisms of OP neurotoxicity and immunotoxicity that warrant consideration in the context of OP-induced airway hyperreactivity and asthma, specifically, inflammatory responses, oxidative stress, neural plasticity, and neurogenic inflammation; and 3) identify critical data gaps that need to be addressed in order to better protect adults and children against the harmful respiratory effects of low-level OP exposures.
Collapse
Affiliation(s)
- Frances C Shaffo
- Department of Molecular Biosciences, University of California , Davis, California
| | - Ana Cristina Grodzki
- Department of Molecular Biosciences, University of California , Davis, California
| | - Allison D Fryer
- Pulmonary Critical Care Medicine, Department of Medicine, Oregon Health & Science University , Portland, Oregon
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California , Davis, California
| |
Collapse
|
8
|
Ogawa H, Azuma M, Tsunematsu T, Morimoto Y, Kondo M, Tezuka T, Nishioka Y, Tsuneyama K. Neutrophils induce smooth muscle hyperplasia via neutrophil elastase-induced FGF-2 in a mouse model of asthma with mixed inflammation. Clin Exp Allergy 2018; 48:1715-1725. [PMID: 30171733 DOI: 10.1111/cea.13263] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Bronchial asthma is traditionally characterized by chronic allergic inflammation, including eosinophilia and elevated Th2 cytokines. Recently, IL-17-derived neutrophil infiltration was shown to correlate with asthma severity and airway remodelling. OBJECTIVE To investigate the role of IL-17-derived neutrophils in airway remodelling in chronic bronchial asthma. METHODS We utilized house dust mite antigen-induced mouse models of asthma. Intranasal sensitization and chronic antigen challenge caused a mixed allergic inflammation that included eosinophils and neutrophils (Mix-in group). We neutralized IL-17 and fibroblast growth factor (FGF-2) and investigated the mechanism of airway remodelling in the Mix-in group. RESULTS The Mix-in group displayed neutrophilic infiltration and high levels of IL-17 in lung tissue. The Mix-in group also exhibited more bronchial smooth muscle hyperplasia. IL-17 neutralization decreased the magnitude of all of these effects in the Mix-in group. Antibody arrays revealed an increase in FGF-2 in the Mix-in Group relative to the Eo-ip group, and FGF-2 elevation was associated with smooth muscle hypertrophy/hyperplasia. High concentrations of neutrophil elastase enhanced E-cadherin/β-catenin signalling in bronchial epithelial cells. Neutrophil elastase inhibitor treatment decreased FGF-2 production and E-cadherin/β-catenin signalling, which inhibited smooth muscle hyperplasia. CONCLUSION The IL-17/neutrophil axis may play an important role in airway remodelling by contributing to smooth muscle hypertrophy/hyperplasia in mixed allergic inflammation and accordingly represents an attractive therapeutic target for severe asthma.
Collapse
Affiliation(s)
- Hirohisa Ogawa
- Department of Pathology and Laboratory Medicine, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Masahiko Azuma
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan.,Department of Medical Education, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Takaaki Tsunematsu
- Department of Pathology and Laboratory Medicine, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Yuuki Morimoto
- Department of Pathology and Laboratory Medicine, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Mayo Kondo
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Toshifumi Tezuka
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| |
Collapse
|
9
|
Chen J, Kou L, Kong L. Anti-nerve growth factor antibody improves airway hyperresponsiveness by down-regulating RhoA. J Asthma 2018; 55:1079-1085. [PMID: 29611766 DOI: 10.1080/02770903.2017.1396467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The pathogenesis of asthma is complex and continues to be considered as a challenging subject. Some studies have shown that nerve growth factor (NGF) participates in the pathogenesis of asthma, but the mechanism of airway contraction caused by NGF is still unclear. OBJECTIVE Our aim was to discuss the effect of anti-NGF antibody on RhoA expression, and further explore the role of NGF in airway hyperresponsiveness (AHR). METHODS Thirty female BALB/c mice were divided into three groups randomly: control group (group C, n = 10), asthma group (group A, n = 10) and anti-NGF antibody intervention group (group N, n = 10). The asthmatic mice were stimulated by OVA suspension, the intervention mice were given nasal instillation of anti-NGF antibody before the stimulation. Airway responsiveness, eosinophils, IL-13, IFN-γ were measured. The protein expression and mRNA level of NGF and RhoA were detected by immunohistochemical and Real Time-PCR (RT-PCR) analyses. RESULTS Airway responsiveness, eosinophils and IL-13 levels in group A were significantly increased compare with the other groups, and significantly decreased in group N than those in group A. IFN-γ level was significantly reduced in group A and increased in group N. Immunohistochemistry and RT-PCR analyses showed that the protein expression and mRNA level of NGF and RhoA were significantly increased in group A and significantly decreased in group N. CONCLUSION NGF participates in the pathogenesis of asthma in mice. Anti-NGF antibody can inhibit airway inflammation and alleviate AHR by down-regulating the protein expression and mRNA level of RhoA.
Collapse
Affiliation(s)
- Jingying Chen
- a Institute of Respiratory Diseases, The First Hospital of China Medical University , Shenyang , China.,b Department of ICU , Peking University Shenzhen Hospital , Shenzhen , China
| | - Lijie Kou
- a Institute of Respiratory Diseases, The First Hospital of China Medical University , Shenyang , China
| | - Lingfei Kong
- a Institute of Respiratory Diseases, The First Hospital of China Medical University , Shenyang , China
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Asthma is a chronic airway disease that affects more than 300 million people worldwide. Current treatment focuses on symptomatic relief by temporally dampening inflammation and relaxing the airway. Novel combative strategies against asthma and hopefully a cure are yet to be developed. The goal of this review is to summarize recent literature on neurotrophins (NTs) in experimental models and clinical settings of asthma research. RECENT FINDINGS We highlight studies of early phases of asthma that collectively reveal a profound impact of elevated NT levels following initial detrimental insults on long-term airway dysfunction. We hope this review will foster insights into the complex interaction between NTs, nerves, immune cells, and airway structural cells during a critical time window of development and disease susceptibility. Future studies are required to better understand the role of NTs in asthma pathophysiology and to evaluate whether NTs and their receptors may serve as new drug targets.
Collapse
Affiliation(s)
- Juliana Barrios
- The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Xingbin Ai
- Division of Pulmonary and Critical Care Medicine, Brigham & Women's Hospital, Boston, MA, 02115, USA.
- Pulmonary and Critical Care Medicine, Brigham & Women's Hospital, Thorn Building, Rm. 905, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
11
|
Tan H, Pan P, Zhang L, Cao Z, Liu B, Li H, Su X. Nerve growth factor promotes expression of costimulatory molecules and release of cytokines in dendritic cells involved in Th2 response through LPS-induced p75NTR. J Asthma 2016; 53:989-98. [PMID: 27437725 DOI: 10.1080/02770903.2016.1185440] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 04/19/2016] [Accepted: 04/28/2016] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Nerve growth factor (NGF) plays an important role in asthmatic inflammatory responses. However, the effects of NGF on dendritic cells (DCs) in asthmatic inflammation remain unknown. Therefore, we examined the effects of NGF on co-stimulatory molecules and the release of cytokines after ovalbumin (OVA) and a low dose of LPS (low LPS) stimulation of dendritic cells. METHODS Bone-marrow-derived dendritic cells (BMDCs) were collected from 6- to 8-week-old wide or TLR4(-/-) mice. BMDCs were treated with OVA and/or low LPS for 12h, and then stimulated with NGF for 24h. ELISA and flow cytometry were performed to measure TSLP, IL-6, IL-10, and IL-12 production and MHCII and CD86 expression on BMDCs. BMDCs were exposed to p75 neurotrophin receptor (p75NTR) inhibitor (TAT-Pep5) or NF-kB inhibitor (QNZ) 30 min prior to NGF 1 h after NGF intervention, the levels of RelA and RelB in cytoplasmic and nuclear were detected by west blot. Co-cultured BMDCs with naïve CD4(+) T cells, and ELISA was used to detect IL-4 and INF-γ levels. RESULTS NGF was found to markedly promote OVA and low LPS-induced expression of MHCII, CD86, secretion of TSLP and IL-6, and Th2-response-stimulating capacity of BMDCs. NGF affected BMDCs through LPS-induced p75NTR expression. TAT-Pep5 or QNZ could attenuate the promotive effect of NGF. CONCLUSIONS NGF facilitates OVA with lowLPS-induced maturation of mouse BMDCs through LPS-up-regulated p75 NTR via activation of NF-κB pathways, providing another mechanism for the involvement of NGF in the Th2 response.
Collapse
Affiliation(s)
- Hongyi Tan
- a Department of Pulmonary and Critical Care Medicine , Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Pinhua Pan
- a Department of Pulmonary and Critical Care Medicine , Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Lemeng Zhang
- b Department of Thoracic Medicine , Hunan Cancer Hospital and the Affiliated Cancer Hospital to Xiangya Medical School, Central South University , Changsha, Hunan , China
| | - Zu Cao
- a Department of Pulmonary and Critical Care Medicine , Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Ben Liu
- a Department of Pulmonary and Critical Care Medicine , Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Haitao Li
- a Department of Pulmonary and Critical Care Medicine , Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Xiaoli Su
- a Department of Pulmonary and Critical Care Medicine , Xiangya Hospital, Central South University , Changsha, Hunan , China
| |
Collapse
|
12
|
Manti S, Brown P, Perez MK, Piedimonte G. The Role of Neurotrophins in Inflammation and Allergy. VITAMINS AND HORMONES 2016; 104:313-341. [PMID: 28215300 DOI: 10.1016/bs.vh.2016.10.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Allergic inflammation is the result of a specific pattern of cellular and humoral responses leading to the activation of the innate and adaptive immune system, which, in turn, results in physiological and structural changes affecting target tissues such as the airways and the skin. Eosinophil activation and the production of soluble mediators such as IgE antibodies are pivotal features in the pathophysiology of allergic diseases. In the past few years, however, convincing evidence has shown that neurons and other neurosensory structures are not only a target of the inflammatory process but also participate in the regulation of immune responses by actively releasing soluble mediators. The main products of these activated sensory neurons are a family of protein growth factors called neurotrophins. They were first isolated in the central nervous system and identified as important factors for the survival and differentiation of neurons during fetal and postnatal development as well as neuronal maintenance later in life. Four members of this family have been identified and well defined: nerve growth factor, brain-derived neurotrophic factor, neurotrophin 3, and neurotrophin 4/5. Neurotrophins play a critical role in the bidirectional signaling mechanisms between immune cells and the neurosensory network structures in the airways and the skin. Pruritus and airway hyperresponsiveness, two major features of atopic dermatitis and asthma, respectively, are associated with the disruption of the neurosensory network activities. In this chapter, we provide a comprehensive description of the neuroimmune interactions underlying the pathophysiological mechanisms of allergic and inflammatory diseases.
Collapse
Affiliation(s)
- S Manti
- Center for Pediatric Research, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - P Brown
- Center for Pediatric Research, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - M K Perez
- Center for Pediatric Research, Cleveland Clinic Foundation, Cleveland, OH, United States; Pediatric Institute and Children's Hospital, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - G Piedimonte
- Center for Pediatric Research, Cleveland Clinic Foundation, Cleveland, OH, United States; Pediatric Institute and Children's Hospital, Cleveland Clinic Foundation, Cleveland, OH, United States.
| |
Collapse
|
13
|
Zang N, Li S, Li W, Xie X, Ren L, Long X, Xie J, Deng Y, Fu Z, Xu F, Liu E. Resveratrol suppresses persistent airway inflammation and hyperresponsivess might partially via nerve growth factor in respiratory syncytial virus-infected mice. Int Immunopharmacol 2015; 28:121-8. [DOI: 10.1016/j.intimp.2015.05.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 05/04/2015] [Accepted: 05/19/2015] [Indexed: 10/23/2022]
|
14
|
Gandhi VD, Vliagoftis H. Airway epithelium interactions with aeroallergens: role of secreted cytokines and chemokines in innate immunity. Front Immunol 2015; 6:147. [PMID: 25883597 PMCID: PMC4382984 DOI: 10.3389/fimmu.2015.00147] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 03/18/2015] [Indexed: 11/13/2022] Open
Abstract
Airway epithelial cells are the first line of defense against the constituents of the inhaled air, which include allergens, pathogens, pollutants, and toxic compounds. The epithelium not only prevents the penetration of these foreign substances into the interstitium, but also senses their presence and informs the organism’s immune system of the impending assault. The epithelium accomplishes the latter through the release of inflammatory cytokines and chemokines that recruit and activate innate immune cells at the site of assault. These epithelial responses aim to eliminate the inhaled foreign substances and minimize their detrimental effects to the organism. Quite frequently, however, the innate immune responses of the epithelium to inhaled substances lead to chronic and high level release of pro-inflammatory mediators that may mediate the lung pathology seen in asthma. The interactions of airway epithelial cells with allergens will be discussed with particular focus on interactions-mediated epithelial release of cytokines and chemokines and their role in the immune response. As pollutants are other major constituents of inhaled air, we will also discuss how pollutants may alter the responses of airway epithelial cells to allergens.
Collapse
Affiliation(s)
- Vivek D Gandhi
- Pulmonary Research Group, Department of Medicine, University of Alberta , Edmonton, AB , Canada
| | - Harissios Vliagoftis
- Pulmonary Research Group, Department of Medicine, University of Alberta , Edmonton, AB , Canada
| |
Collapse
|
15
|
Ogawa H, Ledford JG, Mukherjee S, Aono Y, Nishioka Y, Lee JJ, Izumi K, Hollingsworth JW. Surfactant protein D attenuates sub-epithelial fibrosis in allergic airways disease through TGF-β. Respir Res 2014; 15:143. [PMID: 25472740 PMCID: PMC4262976 DOI: 10.1186/s12931-014-0143-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 11/01/2014] [Indexed: 02/08/2023] Open
Abstract
Background Surfactant protein D (SP-D) can regulate both innate and adaptive immunity. Recently, SP-D has been shown to contribute to the pathogenesis of airway allergic inflammation and bleomycin-induced pulmonary fibrosis. However, in allergic airways disease, the role of SP-D in airway remodeling remains unknown. The objective of this study was to determine the contribution of functional SP-D in regulating sub-epithelial fibrosis in a mouse chronic house dust mite model of allergic airways disease. Methods C57BL/6 wild-type (WT) and SP-D−/− mice (C57BL/6 background) were chronically challenged with house dust mite antigen (Dermatophagoides pteronyssinus, Dp). Studies with SP-D rescue and neutralization of TGF-β were conducted. Lung histopathology and the concentrations of collagen, growth factors, and cytokines present in the airspace and lung tissue were determined. Cultured eosinophils were stimulated by Dp in presence or absence of SP-D. Results Dp-challenged SP-D−/− mice demonstrate increased sub-epithelial fibrosis, collagen production, eosinophil infiltration, TGF-β1, and IL-13 production, when compared to Dp-challenged WT mice. By immunohistology, we detected an increase in TGF-β1 and IL-13 positive eosinophils in SP-D−/− mice. Purified eosinophils stimulated with Dp produced TGF-β1 and IL-13, which was prevented by co-incubation with SP-D. Additionally, treatment of Dp challenged SP-D−/− mice with exogenous SP-D was able to rescue the phenotypes observed in SP-D−/− mice and neutralization of TGF-β1 reduced sub-epithelial fibrosis in Dp-challenged SP-D−/− mice. Conclusion These data support a protective role for SP-D in the pathogenesis of sub-epithelial fibrosis in a mouse model of allergic inflammation through regulation of eosinophil-derived TGF-β. Electronic supplementary material The online version of this article (doi:10.1186/s12931-014-0143-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hirohisa Ogawa
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA. .,Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA. .,Department of Molecular and Environmental Pathology, Institute of Health Bioscience, University of Tokushima Graduate School, Tokushima, Japan.
| | - Julie G Ledford
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA. .,Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA.
| | - Sambuddho Mukherjee
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA. .,Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA.
| | - Yoshinori Aono
- Department of Respiratory Medicine and Rheumatology, Institute of Health Bioscience, University of Tokushima Graduate School, Tokushima, Japan.
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Institute of Health Bioscience, University of Tokushima Graduate School, Tokushima, Japan.
| | - James J Lee
- Department of Biochemistry and Molecular Biology, Division of Pulmonary Medicine, Mayo Clinic Arizona, Scottsdale, Arizona, USA.
| | - Keisuke Izumi
- Department of Molecular and Environmental Pathology, Institute of Health Bioscience, University of Tokushima Graduate School, Tokushima, Japan.
| | - John W Hollingsworth
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA. .,Department of Medicine, Wexner Medical Center at Ohio State University, Columbus, Ohio, USA. .,Davis Heart & Lung Research Institute at Ohio State University, 473 West 12th Avenue, Columbus, OH, USA.
| |
Collapse
|
16
|
Mari A, Antonietta Ciardiello M, Passalacqua G, Vliagoftis H, Wardlaw AJ, Wickman M. Developments in the field of allergy in 2012 through the eyes of Clinical & Experimental Allergy. Clin Exp Allergy 2014; 43:1309-32. [PMID: 24118214 DOI: 10.1111/cea.12212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In 2012, we received 683 submissions and published 20 editorials, 38 reviews, 11 letters and 128 original articles. This represents an acceptance rate for original papers in the range of 20%. About 30% of original papers were triaged not to go out to review, either because the editors did not feel they had sufficient priority for publication or because the topic did not feel right for the readers of the journal. We place great emphasis on obtaining sufficient high-quality reviews to make our decisions on publication fair and consistent. Inevitably, however, there is a degree of luck about what gets published and which papers miss out, and we are always happy to receive an appeal on our decisions either at the triage stage or after review. This gives us the opportunity to revisit the decision and revise it or explain in more detail to the authors the basis for the decision. Once again in 2012, we were delighted by the quality of the papers submitted and the breadth and depth of research into allergic disease that it revealed. The pattern of papers submitted was similar in previous years with considerable emphasis on all aspects of asthma and rhinitis. We were particularly pleased with our special issue on severe asthma. Elucidating mechanisms using either animal models or patients has always been a major theme of the journal, and the excellent work in these areas has been summarized by Harissios Vliagoftis with a particularly interesting section on early-life events guiding the development of allergic disease, which understandably continue to be a major theme of research. Magnus Wickman summarized the papers looking at the epidemiology of allergic disease including work from birth cohorts, which are an increasingly rich source of data on risk factors for allergic disease, and two papers on the epidemiology of anaphylaxis. Giovanni Passalacqua discussed the papers in the clinical allergy section of the journal, and Adriano Mari who runs the excellent Allergome website discussed the papers looking at allergens including characterization and the relative usefulness of allergen arrays versus single extracts in diagnosis and management.
Collapse
Affiliation(s)
- A Mari
- Allergome, Allergy Data Laboratories s.c., Latina, Italy
| | | | | | | | | | | |
Collapse
|
17
|
Chen YL, Huang HY, Lee CC, Chiang BL. Small interfering RNA targeting nerve growth factor alleviates allergic airway hyperresponsiveness. MOLECULAR THERAPY-NUCLEIC ACIDS 2014; 3:e158. [PMID: 24714423 PMCID: PMC4011123 DOI: 10.1038/mtna.2014.11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 02/21/2014] [Indexed: 12/03/2022]
Abstract
Airway hyperresponsiveness is the hallmark of allergic asthma and caused by multiple factors. Nerve growth factor (NGF), a neurotrophin, is originally known for regulation of neural circuit development and function. Recent studies indicated that NGF contributes to airway hyperresponsiveness and pathogenesis of asthma. The objective of this study is to develop a small interfering RNA against NGF to attenuate airway hyperresponsiveness and further elucidate the underlying mechanism. In a murine model of allergic asthma, the ovalbumin-sensitized mice were intratracheally delivered small interfering RNA against NGF or administered an inhibitor targeting NGF receptor, tropomyosin-related kinase A, as a positive treatment control. In this study, knockdown NGF derived from pulmonary epithelium significantly reduced airway resistance in vivo. The levels of NGF, proinflammatory cytokines and infiltrated eosinophils in airway were decreased in small interfering RNA against NGF group but not in tropomyosin-related kinase A inhibitor and mock siRNA group. Furthermore, induction of neuropeptide (substance P) and airway innervation were mediated by NGF/tropomyosin-related kinase A pathway. These findings suggested that NGF targeting treatment holds the potential therapy for antigen-induced airway hyperresponsiveness via attenuation of airway innervation and inflammation in asthma.
Collapse
Affiliation(s)
- Yi-Lien Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Ying Huang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Chen Lee
- Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Bor-Luen Chiang
- 1] Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan [2] Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
18
|
Resveratrol inhibits the TRIF-dependent pathway by upregulating sterile alpha and armadillo motif protein, contributing to anti-inflammatory effects after respiratory syncytial virus infection. J Virol 2014; 88:4229-36. [PMID: 24478430 DOI: 10.1128/jvi.03637-13] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Respiratory syncytial virus (RSV) is the most important cause of lower respiratory tract infection in young children and the leading cause of infant hospitalization worldwide. Uncontrolled response to RSV is mediated by a toll-like receptor (TLR)-mediated immune response. Resveratrol possesses anti-RSV activity and is an inhibitor of the TRIF/TBK1/IRF-3 complex. We hypothesize that resveratrol inhibits the TRIF-dependent pathway through upregulation of SARM post-RSV infection. BALB/c mice were infected with RSV and were injected with resveratrol 1 h postinoculation. SARM short interfering RNA was administered to RSV-infected and resveratrol-treated mice. Lung function was measured by whole-body plethysmography, lung histopathology was examined, and lymphocytes in bronchoalveolar lavage fluid were quantified. SARM and TRIF protein expression were detected in the lung by Western blot analyses. The expression of gamma interferon in bronchoalveolar lavage fluid (BALF) was evaluated by enzyme-linked immunosorbent assay (ELISA). SARM expression was reduced and TRIF expression was increased after infection with RSV. Resveratrol increased SARM expression and decreased TRIF expression after RSV infection. SARM knockdown in resveratrol-treated mice enhanced gamma interferon production, RSV-induced airway inflammation, and airway hyperresponsiveness (AHR). Resveratrol decreased TRIF expression and prevented the RSV-mediated reduction of SARM expression. Resveratrol-mediated inhibition of the TRIF-dependent pathway may be dependent on SARM expression. IMPORTANCE Our study provides insights into the regulation of innate immunity in response to RSV infection. The results suggest that resveratrol-mediated alterations in SARM have therapeutic potential against RSV immunopathology caused by deregulation of the TLR-mediated immune response. Ultimately, improved insight into the complex interplay between TLR adaptor proteins and the occurrence of severe RSV infection might lead to novel therapeutic treatment strategies, such as TLR adjuvants.
Collapse
|
19
|
Szczepankiewicz A, Lackie PM, Holloway JW. Altered microRNA expression profile during epithelial wound repair in bronchial epithelial cells. BMC Pulm Med 2013; 13:63. [PMID: 24188858 PMCID: PMC4229315 DOI: 10.1186/1471-2466-13-63] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 10/31/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Airway epithelial cells provide a protective barrier against environmental particles including potential pathogens. Epithelial repair in response to tissue damage is abnormal in asthmatic airway epithelium in comparison to the repair of normal epithelium after damage. The complex mechanisms coordinating the regulation of the processes involved in wound repair requires the phased expression of networks of genes. Small non-coding RNA molecules termed microRNAs (miRNAs) play a critical role in such coordinated regulation of gene expression. We aimed to establish if the phased expression of specific miRNAs is correlated with the repair of mechanically induced damage to the epithelium. METHODS To investigate the possible involvement of miRNA in epithelial repair, we analyzed miRNA expression profiles during epithelial repair in a cell culture model using TaqMan-based quantitative real-time PCR in a TaqMan Low Density Array format. The expression of 754 miRNA genes at seven time points in a 48-hour period during the wound repair process was profiled using the bronchial epithelial cell line 16HBE14o- growing in monolayer. RESULTS The expression levels of numerous miRNAs were found to be altered during the wound repair process. These miRNA genes were clustered into 3 different patterns of expression that correlate with the further regulation of several biological pathways involved in wound repair. Moreover, it was observed that expression of some miRNA genes were significantly altered only at one time point, indicating their involvement in a specific stage of the epithelial wound repair. CONCLUSIONS In summary, miRNA expression is modulated during the normal repair processes in airway epithelium in vitro suggesting a potential role in regulation of wound repair.
Collapse
Affiliation(s)
- Aleksandra Szczepankiewicz
- Laboratory of Molecular and Cell Biology, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, 27/33 Szpitalna St,, 60-572 Poznan, Poland.
| | | | | |
Collapse
|
20
|
Kim JS, Kang JY, Ha JH, Lee HY, Kim SJ, Kim SC, Ahn JH, Kwon SS, Kim YK, Lee SY. Expression of nerve growth factor and matrix metallopeptidase-9/tissue inhibitor of metalloproteinase-1 in asthmatic patients. J Asthma 2013; 50:712-7. [PMID: 23713676 DOI: 10.3109/02770903.2013.808664] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The aim of this study was to measure the level of nerve growth factor (NGF) in bronchial specimens from humans and to determine whether it correlated with not only clinical characteristics of asthma such as percent eosinophils, Th2 cytokine levels, and pulmonary function, but also metallopeptidase-9 (MMP-9) and tissue inhibitor of metalloproteinases-1 (TIMP-1). METHODS Fifty-three people participated; 42 had asthma. The participants underwent bronchoscopy and the specimens were analyzed. The participants' clinical data including pulmonary function tests were reviewed. RESULTS Bronchoalveolar lavage fluid (BALF) from patients with asthma had a significantly higher level of NGF compared with that from participants without asthma. NGF level showed a positive correlation with the percentage of eosinophils in both BALF and serum. The concentration of NGF did not correlate with that of Th2 cytokines interleukin (IL)-4, IL-5, and IL-13 in BALF or parameters of pulmonary function including degree of airway hyperresponsiveness (ARH). The levels of MMP-9 and TIMP-1 in BALF were higher in asthma patients than in participants without asthma. The levels of NGF correlated with TIMP-1 levels but not with MMP-9 in the whole participants. CONCLUSIONS This study shows that NGF correlates with levels of eosinophils, a major effector cell in asthma. The high expression of NGF and TIMP-1 in asthma patients and the moderate correlation between NGF and TIMP-1 in the entire group of asthma subjects suggest a possible association between NGF and TIMP-1, which may influence asthma pathogenesis.
Collapse
Affiliation(s)
- Ju Sang Kim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Gandhi VD, Davidson C, Asaduzzaman M, Nahirney D, Vliagoftis H. House Dust Mite Interactions with Airway Epithelium: Role in Allergic Airway Inflammation. Curr Allergy Asthma Rep 2013; 13:262-70. [DOI: 10.1007/s11882-013-0349-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|