1
|
Duan Y, Chen H, Liu D. Dose-dependent multi-organ injury following lipopolysaccharide gas inhalation. J Int Med Res 2024; 52:3000605241247707. [PMID: 38717029 PMCID: PMC11080761 DOI: 10.1177/03000605241247707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/31/2024] [Indexed: 05/12/2024] Open
Abstract
Lipopolysaccharide (LPS) is widely used to establish various animal models, including models of acute lung injury, cardiomyocyte damage, and acute kidney injury. Currently, there is no consensus on the diagnosis and treatment of LPS-induced disease. We herein present a case series of four patients who developed dose-dependent multi-organ injury, including acute lung injury and acute kidney injury, after inhaling LPS gas in a sealed room. These patients exhibited varying degrees of multi-organ injury characterized by inflammatory cell infiltration and secretion of proinflammatory cytokines. One patient showed progressive symptoms even with active treatment, leading to mild pulmonary fibrosis. This study emphasizes the importance of early diagnosis and treatment of significant LPS exposure and suggests personalized treatment approaches for managing LPS poisoning.
Collapse
Affiliation(s)
- Yang Duan
- The Seventh People’s Hospital of Chongqing, No. 1, Village 1, Lijiatuo Labor Union, Banan District, Chongqing, China
| | - Hengyi Chen
- The Seventh People’s Hospital of Chongqing, No. 1, Village 1, Lijiatuo Labor Union, Banan District, Chongqing, China
| | - Dan Liu
- The Seventh People’s Hospital of Chongqing, No. 1, Village 1, Lijiatuo Labor Union, Banan District, Chongqing, China
| |
Collapse
|
2
|
Sitaru S, Budke A, Bertini R, Sperandio M. Therapeutic inhibition of CXCR1/2: where do we stand? Intern Emerg Med 2023; 18:1647-1664. [PMID: 37249756 PMCID: PMC10227827 DOI: 10.1007/s11739-023-03309-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023]
Abstract
Mounting experimental evidence from in vitro and in vivo animal studies points to an essential role of the CXCL8-CXCR1/2 axis in neutrophils in the pathophysiology of inflammatory and autoimmune diseases. In addition, the pathogenetic involvement of neutrophils and the CXCL8-CXCR1/2 axis in cancer progression and metastasis is increasingly recognized. Consequently, therapeutic targeting of CXCR1/2 or CXCL8 has been intensively investigated in recent years using a wide array of in vitro and animal disease models. While a significant benefit for patients with unwanted neutrophil-mediated inflammatory conditions may be expected from a potential clinical use of inhibitors, their use in severe infections or sepsis might be problematic and should be carefully and thoroughly evaluated in animal models and clinical trials. Translating the approaches using inhibitors of the CXCL8-CXCR1/2 axis to cancer therapy is definitively a new and promising research avenue, which parallels the ongoing efforts to clearly define the involvement of neutrophils and the CXCL8-CXCR1/2 axis in neoplastic diseases. Our narrative review summarizes the current literature on the activation and inhibition of these receptors in neutrophils, key inhibitor classes for CXCR2 and the therapeutic relevance of CXCR2 inhibition focusing here on gastrointestinal diseases.
Collapse
Affiliation(s)
- Sebastian Sitaru
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilian University, Großhaderner Str. 9, Planegg-Martinsried, 82152, Munich, Germany
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Agnes Budke
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilian University, Großhaderner Str. 9, Planegg-Martinsried, 82152, Munich, Germany
| | | | - Markus Sperandio
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilian University, Großhaderner Str. 9, Planegg-Martinsried, 82152, Munich, Germany.
| |
Collapse
|
3
|
Xie Y, Kuang W, Wang D, Yuan K, Yang P. Expanding role of CXCR2 and therapeutic potential of CXCR2 antagonists in inflammatory diseases and cancers. Eur J Med Chem 2023; 250:115175. [PMID: 36780833 DOI: 10.1016/j.ejmech.2023.115175] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
C-X-C motif chemokine receptor 2 (CXCR2) is G protein-coupled receptor (GPCR) and plays important roles in various inflammatory diseases and cancers, including chronic obstructive pulmonary disease (COPD), atherosclerosis, asthma, and pancreatic cancer. Upregulation of CXCR2 is closely associated with the migration of neutrophils and monocytes. To date, many small-molecule CXCR2 antagonists have entered clinical trials, showing favorable safety and therapeutic effects. Hence, we provide an overview containing the discovery history, protein structure, signaling pathways, biological functions, structure-activity relationships and clinical significance of CXCR2 antagonists in inflammatory diseases and cancers. According to the latest development and recent clinical progress of CXCR2 small molecule antagonists, we speculated that CXCR2 can be used as a biomarker and a new target for diabetes and that CXCR2 antagonists may also attenuate lung injury in coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Yishi Xie
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, 211198, China
| | - Wenbin Kuang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, 211198, China
| | - Dawei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, 211198, China
| | - Kai Yuan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, 211198, China
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
4
|
Alkarni M, Lipman M, Lowe DM. The roles of neutrophils in non-tuberculous mycobacterial pulmonary disease. Ann Clin Microbiol Antimicrob 2023; 22:14. [PMID: 36800956 PMCID: PMC9938600 DOI: 10.1186/s12941-023-00562-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/30/2023] [Indexed: 02/19/2023] Open
Abstract
Non-tuberculous Mycobacterial Pulmonary Disease (NTM-PD) is an increasingly recognised global health issue. Studies have suggested that neutrophils may play an important role in controlling NTM infection and contribute to protective immune responses within the early phase of infection. However, these cells are also adversely associated with disease progression and exacerbation and can contribute to pathology, for example in the development of bronchiectasis. In this review, we discuss the key findings and latest evidence regarding the diverse functions of neutrophils in NTM infection. First, we focus on studies that implicate neutrophils in the early response to NTM infection and the evidence reporting neutrophils' capability to kill NTM. Next, we present an overview of the positive and negative effects that characterise the bidirectional relationship between neutrophils and adaptive immunity. We consider the pathological role of neutrophils in driving the clinical phenotype of NTM-PD including bronchiectasis. Finally, we highlight the current promising treatments in development targeting neutrophils in airways diseases. Clearly, more insights on the roles of neutrophils in NTM-PD are needed in order to inform both preventative strategies and host-directed therapy for these important infections.
Collapse
Affiliation(s)
- Meyad Alkarni
- grid.83440.3b0000000121901201Institute of Immunity and Transplantation, University College London, Pears Building, Rowland Hill Street, London, NW3 2PP UK
| | - Marc Lipman
- grid.83440.3b0000000121901201UCL Respiratory, University College London, London, UK
| | - David M. Lowe
- grid.83440.3b0000000121901201Institute of Immunity and Transplantation, University College London, Pears Building, Rowland Hill Street, London, NW3 2PP UK
| |
Collapse
|
5
|
Brooks D, Barr LC, Wiscombe S, McAuley DF, Simpson AJ, Rostron AJ. Human lipopolysaccharide models provide mechanistic and therapeutic insights into systemic and pulmonary inflammation. Eur Respir J 2020; 56:13993003.01298-2019. [PMID: 32299854 DOI: 10.1183/13993003.01298-2019] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 03/18/2020] [Indexed: 02/07/2023]
Abstract
Inflammation is a key feature in the pathogenesis of sepsis and acute respiratory distress syndrome (ARDS). Sepsis and ARDS continue to be associated with high mortality. A key contributory factor is the rudimentary understanding of the early events in pulmonary and systemic inflammation in humans, which are difficult to study in clinical practice, as they precede the patient's presentation to medical services. Lipopolysaccharide (LPS), a constituent of the outer membrane of Gram-negative bacteria, is a trigger of inflammation and the dysregulated host response in sepsis. Human LPS models deliver a small quantity of LPS to healthy volunteers, triggering an inflammatory response and providing a window to study early inflammation in humans. This allows biological/mechanistic insights to be made and new therapeutic strategies to be tested in a controlled, reproducible environment from a defined point in time. We review the use of human LPS models, focussing on the underlying mechanistic insights that have been gained by studying the response to intravenous and pulmonary LPS challenge. We discuss variables that may influence the response to LPS before considering factors that should be considered when designing future human LPS studies.
Collapse
Affiliation(s)
- Daniel Brooks
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - Laura C Barr
- Dept of Respiratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Sarah Wiscombe
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - Daniel F McAuley
- School of Medicine, Dentistry and Biomedical Sciences, Institute for Health Sciences, Wellcome-Wolfson Institute for Experimental Medicine, Belfast, UK
| | - A John Simpson
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - Anthony J Rostron
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
6
|
Xue D, Chen W, Neamati N. Discovery, structure-activity relationship study and biological evaluation of 2-thioureidothiophene-3-carboxylates as a novel class of C-X-C chemokine receptor 2 (CXCR2) antagonists. Eur J Med Chem 2020; 204:112387. [PMID: 32829163 DOI: 10.1016/j.ejmech.2020.112387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/09/2020] [Accepted: 04/23/2020] [Indexed: 12/17/2022]
Abstract
The C-X-C motif ligand 8 and C-X-C chemokine receptor 2 (CXCL8-CXCR2) axis is involved in pathogenesis of various diseases including inflammation and cancers. Various CXCR2 antagonists are under development for several diseases. Our previous high-throughput cell-based assay specific for CXCR2 has identified a pyrimidine-based compound CX797 acting on CXCR2 down-stream signaling. A lead optimization campaign through scaffold-hopping strategy led to a series of 2-thioureidothiophene-3-carboxylates (TUTP) as novel CXCR2 antagonists. Structure-activity relationship study of TUTPs led to the identification of compound 52 that significantly inhibited CXCR2-mediated β-arrestin recruitment signaling (IC50 = 1.1±0.01 μM) with negligible effect on CXCL8-mediated cAMP signaling and calcium flux. Similar to the known CXCR2 antagonist SB265610, compound 52 inhibited CXCL8-CXCR2 induced phosphorylation of ERK1/2. TUTP compounds also inhibited CXCL8-mediated cell migration and showed synergy with doxorubicin in ovarian cancer cells, thereby supporting TUTPs as promising compounds for cancer treatment.
Collapse
Affiliation(s)
- Ding Xue
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, MI, 48109, United States
| | - Wenmin Chen
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, MI, 48109, United States
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, MI, 48109, United States.
| |
Collapse
|
7
|
Wooding DJ, Ryu MH, Li H, Alexis NE, Pena O, Carlsten C. Acute air pollution exposure alters neutrophils in never-smokers and at-risk humans. Eur Respir J 2020; 55:13993003.01495-2019. [PMID: 31806722 DOI: 10.1183/13993003.01495-2019] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/26/2019] [Indexed: 11/05/2022]
Abstract
Outdoor air pollution exposure increases chronic obstructive pulmonary disease (COPD) hospitalisations, and may contribute to COPD development. The mechanisms of harm, and the extent to which at-risk populations are more susceptible are not fully understood. Neutrophils are recruited to the lung following diesel exhaust exposure, a model of traffic-related air pollution (TRAP), but their functional role in this response is unknown. The purpose of this controlled human-exposure crossover study was to assess the effects of acute diesel exhaust exposure on neutrophil function in never-smokers and at-risk populations, with support from additional in vitro studies.18 participants, including never-smokers (n=7), ex-smokers (n=4) and mild-moderate COPD patients (n=7), were exposed to diesel exhaust and filtered air for 2 h on separate occasions, and neutrophil function in blood (0 h and 24 h post-exposure) and bronchoalveolar lavage (24 h post-exposure) was assessed.Compared to filtered air, diesel exhaust exposure reduced the proportion of circulating band cells at 0 h, which was exaggerated in COPD patients. Diesel exhaust exposure increased the amount of neutrophil extracellular traps (NETs) in the lung across participants. COPD patients had increased peripheral neutrophil activation following diesel exhaust exposure. In vitro, suspended diesel exhaust particles increased the amount of NETs measured in isolated neutrophils. We propose NET formation as a possible mechanism through which TRAP exposure affects airway pathophysiology. In addition, COPD patients may be more prone to an activated inflammatory state following exposure.This is the first controlled human TRAP exposure study directly comparing at-risk phenotypes (COPD and ex-smokers) with lower-risk (never-smokers) participants, elucidating the human susceptibility spectrum.
Collapse
Affiliation(s)
- Denise J Wooding
- Air Pollution Exposure Laboratory, Dept of Medicine, Division of Respiratory Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Min Hyung Ryu
- Air Pollution Exposure Laboratory, Dept of Medicine, Division of Respiratory Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Hang Li
- Air Pollution Exposure Laboratory, Dept of Medicine, Division of Respiratory Medicine, The University of British Columbia, Vancouver, BC, Canada.,Dept of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Neil E Alexis
- UNC Center for Environmental Medicine Asthma and Lung Biology, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Olga Pena
- Air Pollution Exposure Laboratory, Dept of Medicine, Division of Respiratory Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Chris Carlsten
- Air Pollution Exposure Laboratory, Dept of Medicine, Division of Respiratory Medicine, The University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
8
|
Wang S, Sun Y, Zhang J, Cui X, Xu Z, Ding D, Zhao L, Li W, Zhang W. Astragalus Polysaccharides/Chitosan Microspheres for Nasal Delivery: Preparation, Optimization, Characterization, and Pharmacodynamics. Front Pharmacol 2020; 11:230. [PMID: 32256349 PMCID: PMC7093564 DOI: 10.3389/fphar.2020.00230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/20/2020] [Indexed: 12/25/2022] Open
Abstract
Chitosan (CTS) constitutes a promising area in treatment of nose-related diseases as a nasal drug delivery carrier. Astragalus polysaccharide (APS) significantly attenuates eosinophils and neutrophil-dominant airway inflammation, and it has a potential pharmaceutical application in the treatment of severe asthma. The purpose of this work was to prepare APS/CTS microspheres intended for nasal drug delivery by the spray-drying method. The characteristics of APS/CTS microspheres were evaluated by a scanning electron microscope, Fourier transform infrared spectroscopy, differential scanning calorimetry, and in vitro drug release. The effect of APS/CTS microspheres on rats with allergic rhinitis (AR) was investigated by eosinophil and neutrophil counts in nasal lavage fluid. Results of SEM showed that microspheres were spherical and wrinkled. In vitro release showed that 67.48-93.76% APS was released from APS/CTS microspheres at pH 6.8 within 24 h. The effects showed that APS/CTS microspheres alleviated allergic symptoms and reduced eosinophils infiltration and the expression of interleukin-4 in the nasal mucosa tissue of rats that had no liver and kidney toxicity by hematoxylin-eosin staining observation. In conclusion, these results indicated that APS/CTS microspheres had excellent characteristics for the treatment of AR.
Collapse
Affiliation(s)
- Saisai Wang
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Yuqing Sun
- Department of Otolaryngology, Head and Neck Surgery, Central Hospital of Zibo, Zibo, China
| | - Jingjing Zhang
- College of Basic Medical, Qingdao Binhai University, Qingdao, China
| | - Xiaoming Cui
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Zhilu Xu
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Dejun Ding
- School of Pharmacy, Weifang Medical University, Weifang, China
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang, China
- Institute for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang, China
| | - Limin Zhao
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Wentong Li
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang, China
- Institute for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang, China
- Department of Pathology, Weifang Medical University, Weifang, China
| | - Weifen Zhang
- School of Pharmacy, Weifang Medical University, Weifang, China
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang, China
- Institute for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang, China
| |
Collapse
|
9
|
The role of CXCR2 in acute inflammatory responses and its antagonists as anti-inflammatory therapeutics. Curr Opin Hematol 2020; 26:28-33. [PMID: 30407218 DOI: 10.1097/moh.0000000000000476] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW CXCR2 is key stimulant of immune cell migration and recruitment, especially of neutrophils. Alleviating excessive neutrophil accumulation and infiltration could prevent prolonged tissue damage in inflammatory disorders. This review focuses on recent advances in our understanding of the role of CXCR2 in regulating neutrophil migration and the use of CXCR2 antagonists for therapeutic benefit in inflammatory disorders. RECENT FINDINGS Recent studies have provided new insights into how CXCR2 signaling regulates hematopoietic cell mobilization and function in both health and disease. We also summarize several CXCR2 regulatory mechanisms during infection and inflammation such as via Wip1, T-bet, P-selectin glycoprotein ligand-1, granulocyte-colony-stimulating factor, and microbiome. Moreover, we provide an update of studies investigating CXCR2 blockade in the laboratory and in clinical trials. SUMMARY Neutrophil homeostasis, migration, and recruitment must be precisely regulated. The CXCR2 signaling pathway is a potential target for modifying neutrophil dynamics in inflammatory disorders. We discuss the recent clinical use of CXCR2 antagonists for controlling inflammation.
Collapse
|
10
|
Chen JY, Lai YS, Chu PY, Chan SH, Wang LH, Hung WC. Cancer-Derived VEGF-C Increases Chemokine Production in Lymphatic Endothelial Cells to Promote CXCR2-Dependent Cancer Invasion and MDSC Recruitment. Cancers (Basel) 2019; 11:cancers11081120. [PMID: 31390756 PMCID: PMC6721484 DOI: 10.3390/cancers11081120] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/01/2019] [Accepted: 08/03/2019] [Indexed: 12/19/2022] Open
Abstract
Breast cancer-derived vascular endothelial growth factor-C (VEGF-C) has been shown to enhance lymphangiogenesis in lymph nodes to accelerate cancer metastasis. However, the remodeling of lymph node microenvironments by VEGF-C remains elusive. By in vivo selection, we established a subline (named as “LC”) with strong lymphatic tropism and high VEGF-C expression from the human MDA-MB-231 breast cancer cell line. Co-culture with LC cells or treatment with LC-conditioned medium upregulated the expression of CXC chemokines in lymphatic endothelial cells (LECs), which could be inhibited by pre-incubation with VEGF-C-neutralizing antibodies and VEGFR3 inhibitors. The chemokines produced by LECs enhanced recruitment of myeloid-derived suppressor cells (MDSCs) to tumor-draining and distant lymph nodes in tumor-bearing mice. Treatment with a CXCR2 inhibitor after tumor cell inoculation dramatically decreased the number of MDSCs in lymph nodes, suggesting the importance of the chemokine/CXCR2 signaling axis in MDSC recruitment. In addition, LEC-released chemokines also stimulated the expression of serum amyloid A1 (SAA1) in cancer cells, enhancing their lymphatic invasion by increasing VE-cadherin phosphorylation, junction disruption, and vascular permeability of LECs. Clinical sample validation confirmed that SAA1 expression was associated with increased lymph node metastasis. Collectively, we reveal a novel mechanism by which cancer cell-derived VEGF-C remodels lymphovascular microenvironments by regulating chemokine production in LECs to promote cancer invasion and MDSC recruitment. Our results also suggest that inhibition of CXCR2 is effective in treating lymphatic metastasis.
Collapse
Affiliation(s)
- Jing-Yi Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | - You-Syuan Lai
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua City 500, Taiwan
| | - Shih-Hsuan Chan
- Chinese Medicine Research Center and Graduate Institute of Integrated Medicine, China Medical University, Taichung 404, Taiwan
| | - Lu-Hai Wang
- Chinese Medicine Research Center and Graduate Institute of Integrated Medicine, China Medical University, Taichung 404, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 350, Taiwan
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
11
|
Gardiner P, Cox RJ, Grime K. Plasma Protein Binding as an Optimizable Parameter for Acidic Drugs. Drug Metab Dispos 2019; 47:865-873. [DOI: 10.1124/dmd.119.087163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/17/2019] [Indexed: 12/23/2022] Open
|
12
|
Nocera AL, Mueller SK, Stephan JR, Hing L, Seifert P, Han X, Lin DT, Amiji MM, Libermann T, Bleier BS. Exosome swarms eliminate airway pathogens and provide passive epithelial immunoprotection through nitric oxide. J Allergy Clin Immunol 2018; 143:1525-1535.e1. [PMID: 30442371 DOI: 10.1016/j.jaci.2018.08.046] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/27/2018] [Accepted: 08/26/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Nasal mucosa-derived exosomes (NMDEs) harbor immunodefensive proteins and are capable of rapid interepithelial protein transfer. OBJECTIVES We sought to determine whether mucosal exposure to inhaled pathogens stimulates a defensive swarm of microbiocidal exosomes, which also donate their antimicrobial cargo to adjacent epithelial cells. METHODS We performed an institutional review board-approved study of healthy NMDE secretion after Toll-like receptor (TLR) 4 stimulation by LPS (12.5 μg/mL) in the presence of TLR4 inhibitors. Interepithelial transfer of exosomal nitric oxide (NO) synthase and nitric oxide was measured by using ELISAs and NO activity assays. Exosomal antimicrobial assays were performed with Pseudomonas aeruginosa. Proteomic analyses were performed by using SOMAscan. RESULTS In vivo and in vitro LPS exposure induced a 2-fold increase in NMDE secretion along with a 2-fold increase in exosomal inducible nitric oxide synthase expression and function through TLR4 and inhibitor of nuclear factor κB kinase activation. LPS stimulation increased exosomal microbiocidal activity against P aeruginosa by almost 2 orders of magnitude. LPS-stimulated exosomes induced a 4-fold increase in NO production within autologous epithelial cells with protein transfer within 5 minutes of contact. Pathway analysis of the NMDE proteome revealed 44 additional proteins associated with NO signaling and innate immune function. CONCLUSIONS We provide direct in vivo evidence for a novel exosome-mediated innate immunosurveillance and defense mechanism of the human upper airway. These findings have implications for lower airway innate immunity, delivery of airway therapeutics, and host microbiome regulation.
Collapse
Affiliation(s)
- Angela L Nocera
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Mass
| | - Sarina K Mueller
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Mass; Department of Otolaryngology/Head and Neck Surgery, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jules R Stephan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Mass
| | - Loretta Hing
- Department of Biomedical Engineering, Boston University, Boston, Mass
| | - Philip Seifert
- Schepens Eye Research Institute and Department of Ophthalmology, Harvard Medical School, Boston, Mass
| | - Xue Han
- Department of Biomedical Engineering, Boston University, Boston, Mass
| | - Derrick T Lin
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Mass
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Mass
| | - Towia Libermann
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass
| | - Benjamin S Bleier
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Mass.
| |
Collapse
|
13
|
Dai W, Chen W, Debnath B, Wu Y, Neamati N. Synthesis, Structure–Activity Relationship Studies, and ADMET Properties of 3‐Aminocyclohex‐2‐en‐1‐ones as Chemokine Receptor 2 (CXCR2) Antagonists. ChemMedChem 2018; 13:916-930. [PMID: 29493096 DOI: 10.1002/cmdc.201800027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/23/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Weiyang Dai
- Department of Medicinal Chemistry, College of Pharmacy University of Michigan 1600 Huron Parkway Ann Arbor MI USA
- Key Laboratory of Drug Targeting and Drug Delivery, System of Ministry of Education, West China School of Pharmacy Sichuan University No. 17 People's South Road Chengdu 610041 P.R. China
| | - Wenmin Chen
- Department of Medicinal Chemistry, College of Pharmacy University of Michigan 1600 Huron Parkway Ann Arbor MI USA
| | - Bikash Debnath
- Department of Medicinal Chemistry, College of Pharmacy University of Michigan 1600 Huron Parkway Ann Arbor MI USA
| | - Yong Wu
- Key Laboratory of Drug Targeting and Drug Delivery, System of Ministry of Education, West China School of Pharmacy Sichuan University No. 17 People's South Road Chengdu 610041 P.R. China
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy University of Michigan 1600 Huron Parkway Ann Arbor MI USA
| |
Collapse
|
14
|
Targets of Neutrophil Influx and Weaponry: Therapeutic Opportunities for Chronic Obstructive Airway Disease. J Immunol Res 2017; 2017:5273201. [PMID: 28596972 PMCID: PMC5449733 DOI: 10.1155/2017/5273201] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/23/2017] [Accepted: 03/30/2017] [Indexed: 12/31/2022] Open
Abstract
Neutrophils are important effector cells of antimicrobial immunity in an acute inflammatory response, with a primary role in the clearance of extracellular pathogens. However, in respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD), there is excessive infiltration and activation of neutrophils, subsequent production of reactive oxygen species, and release of serine proteases, matrix metalloproteinases, and myeloperoxidase—resulting in collateral damage as the cells infiltrate into the tissue. Increased neutrophil survival through dysregulated apoptosis facilitates continued release of neutrophil-derived mediators to perpetuate airway inflammation and tissue injury. Several target mechanisms have been investigated to address pathologic neutrophil biology and thereby provide a novel therapy for respiratory disease. These include neutrophil influx through inhibition of chemokine receptors CXCR2, CXCR1, and PI3Kγ signaling and neutrophil weaponry by protease inhibitors, targeting matrix metalloproteinases and neutrophil serine proteases. In addition, neutrophil function can be modulated using selective PI3Kδ inhibitors. This review highlights the latest advances in targeting neutrophils and their function, discusses the opportunities and risks of neutrophil inhibition, and explores how we might better develop future strategies to regulate neutrophil influx and function for respiratory diseases in dire need of novel effective therapies.
Collapse
|
15
|
Muthas D, Reznichenko A, Balendran CA, Böttcher G, Clausen IG, Kärrman Mårdh C, Ottosson T, Uddin M, MacDonald TT, Danese S, Berner Hansen M. Neutrophils in ulcerative colitis: a review of selected biomarkers and their potential therapeutic implications. Scand J Gastroenterol 2017; 52:125-135. [PMID: 27610713 DOI: 10.1080/00365521.2016.1235224] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES This review article describes the role of neutrophils in mucosal injury and the resulting crypt abscesses characteristic of ulcerative colitis. We also review selected biomarkers for monitoring neutrophil presence and activity in the mucosa as well as their potential as therapeutic targets. MATERIAL We have collated and selectively reviewed data on the most prominent well-established and emerging neutrophil-related biomarkers and potential therapeutic targets (calprotectin, lactoferrin, CXCR1, CXCR2, MMP-9, NGAL, elafin, HNE, pANCAs, MPO, CD16, CD177, CD64, HNPs, SLPI and PTX3) in ulcerative colitis. RESULTS Systemic and intestinal neutrophil activity increases substantially in active ulcerative colitis, driving tissue damage and extra-intestinal manifestations. Calprotectin is a robust neutrophil and disease biomarker, and a few neutrophil-related targets are being clinically explored as therapeutic targets. CONCLUSION We propose that targeting neutrophils and their inflammatory mediators per se is an opportunity that should be explored to identify new effective medical therapies. The overall clinical goal for neutrophil-targeted therapy will be to modulate, but not completely silence, neutrophil activity, thereby abolishing the destructive inflammation with associated acute and chronic tissue damage without compromising host-defense.
Collapse
Affiliation(s)
- Daniel Muthas
- a Department of Respiratory , Inflammation and Autoimmunity, AstraZeneca R&D Gothenburg , Mölndal , Sweden
| | - Anna Reznichenko
- b Department of Cardiovascular and Metabolic Diseases , AstraZeneca R&D Gothenburg , Mölndal , Sweden
| | - Clare A Balendran
- c Department of Personalised HealthCare & Biomarkers , AstraZeneca R&D Gothenburg , Mölndal , Sweden
| | - Gerhard Böttcher
- d Department of Drug Safety and Metabolism , AstraZeneca R&D Gothenburg , Mölndal , Sweden
| | - Ib Groth Clausen
- a Department of Respiratory , Inflammation and Autoimmunity, AstraZeneca R&D Gothenburg , Mölndal , Sweden
| | - Carina Kärrman Mårdh
- a Department of Respiratory , Inflammation and Autoimmunity, AstraZeneca R&D Gothenburg , Mölndal , Sweden
| | - Tomas Ottosson
- a Department of Respiratory , Inflammation and Autoimmunity, AstraZeneca R&D Gothenburg , Mölndal , Sweden
| | - Mohib Uddin
- c Department of Personalised HealthCare & Biomarkers , AstraZeneca R&D Gothenburg , Mölndal , Sweden
| | - Thomas T MacDonald
- e Blizard Institute, Barts and the London School of Medicine and Dentistry, QMUL , London , UK
| | - Silvio Danese
- f Department of Gastroenterology , IBD Center, Humanitas Research Hospital , Milan , Italy
| | - Mark Berner Hansen
- a Department of Respiratory , Inflammation and Autoimmunity, AstraZeneca R&D Gothenburg , Mölndal , Sweden.,g Digestive Disease Center K, Bispebjerg Hospital, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
16
|
Malla SR, Kärrman Mårdh C, Günther A, Mahajan UM, Sendler M, D'Haese J, Weiss FU, Lerch MM, Hansen MB, Mayerle J. Effect of oral administration of AZD8309, a CXCR2 antagonist, on the severity of experimental pancreatitis. Pancreatology 2016; 16:761-9. [PMID: 27450968 DOI: 10.1016/j.pan.2016.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/18/2016] [Accepted: 07/06/2016] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Acute pancreatitis is a common gastrointestinal disorder burdened with a high mortality. Two pathophysiological events during experimental pancreatitis are thought to determine the clinical course: premature digestive protease activation and tissue infiltration by inflammatory cells. We have investigated the effect of AZD8309, a potent and orally bioavailable antagonist of the chemokine receptor CXCR2, which has been proposed to regulate the transmigration of neutrophils. METHODS Male C57BL6 mice (25-30 g) received gavage feeding of AZD8309 (50 mg/kg/BW) or mannitol (controls) twice daily starting 3 h prior to pancreatitis induction. Mild pancreatitis was induced by i.p. caerulein administration (50 μg/kg BW), severe pancreatitis by intraductal taurocholate (2%). Pancreas, lung, and serum was harvested up to 48 h after pancreatitis induction and used for histopathology, amylase, lipase, cathepsin B, trypsin, and elastase activity measurements, myeloperoxidase (MPO) content and cytokine concentrations. RESULTS Oral administration of AZD8309 significantly reduced MPO in the pancreas and lungs (8 h & 24 h) and reduced intrapancreatic trypsin and elastase activity (8 h) in caerulein-pancreatitis. In taurocholate-pancreatitis AZD8309 reduced cathepsin B activity and MPO. Serum cytokine levels were reduced by AZD8309 as well as histopathological damage. CONCLUSION The CXCR2 antagonist AZD8309 reduced the transmigration of neutrophils as well as intrapancreatic protease activation in experimental pancreatitis. This effect was sufficient to reduce the overall severity of the disease. CXCR2 may therefore be a viable therapeutic target and AZD8309 a suitable agent for the treatment of acute pancreatitis.
Collapse
Affiliation(s)
| | | | - Annett Günther
- Department of Medicine A, University Medicine, Greifswald, Germany
| | - Ujjwal M Mahajan
- Department of Medicine A, University Medicine, Greifswald, Germany
| | - Matthias Sendler
- Department of Medicine A, University Medicine, Greifswald, Germany
| | - Jan D'Haese
- Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery, Hospital of the University of Munich, Germany
| | | | - Markus M Lerch
- Department of Medicine A, University Medicine, Greifswald, Germany
| | - Mark Berner Hansen
- AstraZeneca R&D Mölndal, Innovative and Global Medicines, Mölndal, Sweden
| | - Julia Mayerle
- Department of Medicine A, University Medicine, Greifswald, Germany.
| |
Collapse
|
17
|
Jurcevic S, Humfrey C, Uddin M, Warrington S, Larsson B, Keen C. The effect of a selective CXCR2 antagonist (AZD5069) on human blood neutrophil count and innate immune functions. Br J Clin Pharmacol 2015; 80:1324-36. [PMID: 26182832 DOI: 10.1111/bcp.12724] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 12/11/2022] Open
Abstract
AIMS The aim of the present study was to investigate whether selective antagonism of the cysteine-X-cysteine chemokine receptor-2 (CXCR2) receptor has any adverse effects on the key innate effector functions of human neutrophils for defence against microbial pathogens. METHODS In a double-blind, crossover study, 30 healthy volunteers were randomized to treatment with the CXCR2 antagonist AZD5069 (100 mg) or placebo, twice daily orally for 6 days. The peripheral blood neutrophil count was assessed at baseline, daily during treatment and in response to exercise challenge and subcutaneous injection of granulocyte-colony stimulating factor (G-CSF). Neutrophil function was evaluated by phagocytosis of Escherichia coli and by the oxidative burst response to E. coli. RESULTS AZD5069 treatment reversibly reduced circulating neutrophil count from baseline by a mean [standard deviation (SD)] of -1.67 (0.67) ×10(9) l(-1) vs. 0.19 (0.78) ×10(9) l(-1) for placebo on day 2, returning to baseline by day 7 after the last dose. Despite low counts on day 4, a 10-min exercise challenge increased absolute blood neutrophil count, but the effect with AZD5069 was smaller and not sustained, compared with placebo treatment. Subcutaneous G-CSF on day 5 caused a substantial increase in blood neutrophil count in both placebo- and AZD5069-treated subjects. Superoxide anion production in E. coli-stimulated neutrophils and phagocytosis of E. coli were unaffected by AZD5069 (P = 0.375, P = 0.721, respectively vs. baseline, Day 4). AZD5069 was well tolerated. CONCLUSIONS CXCR2 antagonism did not appear adversely to affect the mobilization of neutrophils from bone marrow into the peripheral circulation, phagocytosis or the oxidative burst response to bacterial pathogens. This supports the potential of CXCR2 antagonists as a treatment option for diseases in which neutrophils play a pathological role.
Collapse
Affiliation(s)
- Stipo Jurcevic
- Division of Transplantation Immunology & Mucosal Biology, King's College London, London, UK
| | | | | | | | | | | |
Collapse
|
18
|
Citro A, Cantarelli E, Piemonti L. The CXCR1/2 Pathway: Involvement in Diabetes Pathophysiology and Potential Target for T1D Interventions. Curr Diab Rep 2015; 15:68. [PMID: 26275440 DOI: 10.1007/s11892-015-0638-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although numerous chemokine/chemokine receptor pathways have been described to be implicated in the pathogenesis of type 1 diabetes (T1D), the CXCR1/2 axis has recently been proved to be crucial for leucocyte recruitment involved in insulitis and β cell damage. Multiple strategies blocking the CXCR1/2 pathway are available such as neutralizing antibodies, small molecules and peptide-derived inhibitors. They were firstly and widely used in cancer thanks to their anti-tumorigenic activity and only recently they were tested as a new interventional approach for T1D. As well, CXCR1/2 inhibition has been demonstrated to prevent inflammation- and autoimmunity-mediated damage of the pancreatic islets through inhibiting the migration of CXCR1/2-expressing cells. Among them, neutrophils, macrophages, and, although to a smaller extent, lymphoid cells are the main CXCR1/2-expressing cells. These results supported the active role of the innate immunity in the autoimmune process and opened new interventional approaches for the management of T1D.
Collapse
Affiliation(s)
- Antonio Citro
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy,
| | | | | |
Collapse
|
19
|
Nasal Lipopolysaccharide Challenge and Cytokine Measurement Reflects Innate Mucosal Immune Responsiveness. PLoS One 2015; 10:e0135363. [PMID: 26367003 PMCID: PMC4569396 DOI: 10.1371/journal.pone.0135363] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 07/18/2015] [Indexed: 01/27/2023] Open
Abstract
Background Practical methods of monitoring innate immune mucosal responsiveness are lacking. Lipopolysaccharide (LPS) is a component of the cell wall of Gram negative bacteria and a potent activator of Toll-like receptor (TLR)-4. To measure LPS responsiveness of the nasal mucosa, we administered LPS as a nasal spray and quantified chemokine and cytokine levels in mucosal lining fluid (MLF). Methods We performed a 5-way cross-over, single blind, placebo-controlled study in 15 healthy non-atopic subjects (n = 14 per protocol). Doses of ultrapure LPS (1, 10, 30 or 100μg/100μl) or placebo were administered by a single nasal spray to each nostril. Using the recently developed method of nasosorption with synthetic adsorptive matrices (SAM), a series of samples were taken. A panel of seven cytokines/chemokines were measured by multiplex immunoassay in MLF. mRNA for intercellular cell adhesion molecule-1 (ICAM-1) was quantified from nasal epithelial curettage samples taken before and after challenge. Results Topical nasal LPS was well tolerated, causing no symptoms and no visible changes to the nasal mucosa. LPS induced dose-related increases in MLF levels of IL-1β, IL-6, CXCL8 (IL-8) and CCL3 (MIP-1α) (AUC at 0.5 to 10h, compared to placebo, p<0.05 at 30 and 100μg LPS). At 100μg LPS, IL-10, IFN-α and TNF-α were also increased (p<0.05). Dose-related changes in mucosal ICAM-1 mRNA were also seen after challenge, and neutrophils appeared to peak in MLF at 8h. However, 2 subjects with high baseline cytokine levels showed prominent cytokine and chemokine responses to relatively low LPS doses (10μg and 30μg LPS). Conclusions Topical nasal LPS causes dose-dependent increases in cytokines, chemokines, mRNA and cells. However, responsiveness can show unpredictable variations, possibly because baseline innate tone is affected by environmental factors. We believe that this new technique will have wide application in the study of the innate immune responses of the respiratory mucosa. Key Messages Ultrapure LPS was used as innate immune stimulus in a human nasal challenge model, with serial sampling of nasal mucosal lining fluid (MLF) by nasosorption using a synthetic absorptive matrix (SAM), and nasal curettage of mucosal cells. A dose response could be demonstrated in terms of levels of IL-1β, IL-6, CXCL8 and CCL3 in MLF, as well as ICAM-1 mRNA in nasal curettage specimens, and levels of neutrophils in nasal lavage. Depending on higher baseline levels of inflammation, there were occasional magnified innate inflammatory responses to LPS. Trial Registration Clinical Trials.gov NCT02284074
Collapse
|
20
|
De Soyza A, Pavord I, Elborn JS, Smith D, Wray H, Puu M, Larsson B, Stockley R. A randomised, placebo-controlled study of the CXCR2 antagonist AZD5069 in bronchiectasis. Eur Respir J 2015; 46:1021-32. [PMID: 26341987 DOI: 10.1183/13993003.00148-2015] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/28/2015] [Indexed: 11/05/2022]
Abstract
This randomised double-blind placebo-controlled parallel-group multicentre phase IIa study evaluated the effect of the CXCR2 antagonist AZD5069 on sputum neutrophil counts in adults with bronchiectasis.Patients were randomised 1:1 to receive AZD5069 80 mg or placebo orally twice daily for 28 days. Assessments included blood cell counts, inflammatory markers in blood, morning spontaneous sputum, lung function, safety and tolerability and patients completed daily BronkoTest diary cards. The primary outcome measure was the change in absolute sputum neutrophil count.Of 52 randomised patients, 45 completed treatment, 20 (76.9%) out of 26 receiving AZD5069 and 25 (96.2%) out of 26 receiving placebo. AZD5069 reduced the absolute neutrophil cell count in morning sputum by 69% versus placebo (p=0.004); percentage sputum neutrophil count was reduced by 36% (p=0.008). The number of infections/exacerbations was similar with AZD5069 and placebo (nine versus eight), but these led to more study discontinuations with AZD5069 (four versus zero). Sputum interleukin (IL)-6 and growth-regulated oncogene (GRO)-α and serum GRO-α, IL-1ß and IL-8 levels increased with AZD5069 versus placebo (all p<0.001), while serum high-sensitivity C-reactive protein levels did not change. AZD5069 was well tolerated.AZD5069 markedly reduced absolute sputum neutrophil counts in bronchiectasis patients, although this was not associated with improvements in clinical outcomes in this exploratory study.
Collapse
Affiliation(s)
- Anthony De Soyza
- Institute of Cellular Medicine, Newcastle University and Freeman Hospital, Sir William Leech Research Centre, Respiratory Department, Newcastle upon Tyne, UK
| | - Ian Pavord
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - J Stuart Elborn
- Centre for Infection and Immunity, Queens University, Belfast, UK
| | - David Smith
- Respiratory Research Unit, Southmead Hospital, Bristol, UK
| | - Heather Wray
- Innovative Medicines, Respiratory, Inflammation and Autoimmunity (iMED RIA), AstraZeneca R&D, Mölndal, Sweden
| | - Margareta Puu
- Innovative Medicines, Respiratory, Inflammation and Autoimmunity (iMED RIA), AstraZeneca R&D, Mölndal, Sweden
| | - Bengt Larsson
- Innovative Medicines, Respiratory, Inflammation and Autoimmunity (iMED RIA), AstraZeneca R&D, Mölndal, Sweden
| | - Robert Stockley
- Respiratory Department, Queen Elizabeth Hospital, Birmingham, UK
| |
Collapse
|
21
|
PA401, a novel CXCL8-based biologic therapeutic with increased glycosaminoglycan binding, reduces bronchoalveolar lavage neutrophils and systemic inflammatory markers in a murine model of LPS-induced lung inflammation. Cytokine 2015; 76:433-441. [PMID: 26303011 DOI: 10.1016/j.cyto.2015.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/13/2015] [Accepted: 08/14/2015] [Indexed: 02/07/2023]
Abstract
RATIONALE Neutrophils play a fundamental role in a number of chronic lung diseases. Among the mediators of their recruitment to the lung, CXCL8 (IL-8) is considered to be one of the major players. CXCL8 exerts its chemotactic activity by binding to its GPCR receptors (CXCR1/R2) located on neutrophils, as well as through interactions with glycosaminoglycans (GAGs) on cell surfaces including those of the microvascular endothelium. Binding to GAG co-receptors is required to generate a solid-phase haptotactic gradient and to present IL-8/CXCL8 in a proper conformation to its receptors on circulating neutrophils. METHODS We have engineered increased GAG-binding affinity into human CXCL8, thereby obtaining a competitive inhibitor that displaces wild-type IL-8/CXCL8 from GAGs. By additionally knocking-out the GPCR binding domain of the chemokine, we generated a dominant negative protein (dnCXCL8; PA401) with potent anti-inflammatory characteristics proven in vivo in a murine model of LPS-induced lung inflammation (Adage et al., 2015). Here we have further investigated PA401 activity in this pulmonary model by evaluating plasma changes induced by LPS on white blood cells (WBC) and a broad range of inflammatory markers, especially chemokines, by addressing immediate effects of PA401 on these parameters in healthy and LPS exposed mice. RESULTS Aerosolized LPS induced a significant increase in bronchoalveolar lavage (BAL) neutrophils after 3 and 7h, as well as an increase in total WBC and changes in 21 of the 59 measured plasma markers, mostly belonging to the chemokine family. PA401 treatment in saline exposed mice didn't induce major changes in any of the measured parameters. When administered to LPS aerosolized mice, PA401 caused a significant normalization of KC/mCXCL1 and other inflammatory markers, as well as of blood WBC count. In addition, BAL neutrophils were significantly reduced, confirming the previously observed lung anti-inflammatory activity of PA401 in this experiment. CONCLUSIONS PA401 is a new promising biologic therapeutic with a novel and unique mechanism of action for interfering with neutrophilic lung inflammation, that also normalizes plasma inflammatory markers.
Collapse
|
22
|
Schuler AD, Engles CA, Maeda DY, Quinn MT, Kirpotina LN, Wicomb WN, Mason SN, Auten RL, Zebala JA. Boronic acid-containing aminopyridine- and aminopyrimidinecarboxamide CXCR1/2 antagonists: Optimization of aqueous solubility and oral bioavailability. Bioorg Med Chem Lett 2015; 25:3793-7. [PMID: 26248802 DOI: 10.1016/j.bmcl.2015.07.090] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 07/27/2015] [Indexed: 12/12/2022]
Abstract
The chemokine receptors CXCR1 and CXCR2 are important pharmaceutical targets due to their key roles in inflammatory diseases and cancer progression. We have previously identified 2-[5-(4-fluoro-phenylcarbamoyl)-pyridin-2-ylsulfanylmethyl]-phenylboronic acid (SX-517) and 6-(2-boronic acid-5-trifluoromethoxy-benzylsulfanyl)-N-(4-fluoro-phenyl)-nicotinamide (SX-576) as potent non-competitive boronic acid-containing CXCR1/2 antagonists. Herein we report the synthesis and evaluation of aminopyridine and aminopyrimidine analogs of SX-517 and SX-576, identifying (2-{(benzyl)[(5-boronic acid-2-pyridyl)methyl]amino}-5-pyrimidinyl)(4-fluorophenylamino)formaldehyde as a potent chemokine antagonist with improved aqueous solubility and oral bioavailability.
Collapse
Affiliation(s)
- Aaron D Schuler
- Syntrix Biosystems, 215 Clay Street NW, Suite B-5, Auburn, WA 98001, United States.
| | - Courtney A Engles
- Syntrix Biosystems, 215 Clay Street NW, Suite B-5, Auburn, WA 98001, United States
| | - Dean Y Maeda
- Syntrix Biosystems, 215 Clay Street NW, Suite B-5, Auburn, WA 98001, United States
| | - Mark T Quinn
- Department of Microbiology and Immunology, Montana State University, 960 Technology Boulevard, Bozeman, MT 59717, United States
| | - Liliya N Kirpotina
- Department of Microbiology and Immunology, Montana State University, 960 Technology Boulevard, Bozeman, MT 59717, United States
| | - Winston N Wicomb
- Infectious Disease Research Institute, 1616 Eastlake Avenue East, Seattle, WA 98102, United States
| | - S Nicholas Mason
- Department of Pediatrics (Neonatal Medicine), DUMC Box 3373, Duke University, Durham, NC 27710, United States
| | - Richard L Auten
- Department of Pediatrics (Neonatal Medicine), DUMC Box 3373, Duke University, Durham, NC 27710, United States
| | - John A Zebala
- Syntrix Biosystems, 215 Clay Street NW, Suite B-5, Auburn, WA 98001, United States
| |
Collapse
|
23
|
Abstract
Neutrophils, the most abundant human immune cells, are rapidly recruited to sites of infection, where they fulfill their life-saving antimicrobial functions. While traditionally regarded as short-lived phagocytes, recent findings on long-term survival, neutrophil extracellular trap (NET) formation, heterogeneity and plasticity, suppressive functions, and tissue injury have expanded our understanding of their diverse role in infection and inflammation. This review summarises our current understanding of neutrophils in host-pathogen interactions and disease involvement, illustrating the versatility and plasticity of the neutrophil, moving between host defence, immune modulation, and tissue damage.
Collapse
|
24
|
Nicholls DJ, Wiley K, Dainty I, MacIntosh F, Phillips C, Gaw A, Mårdh CK. Pharmacological Characterization of AZD5069, a Slowly Reversible CXC Chemokine Receptor 2 Antagonist. J Pharmacol Exp Ther 2015; 353:340-50. [DOI: 10.1124/jpet.114.221358] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
25
|
Zielen S, Trischler J, Schubert R. Lipopolysaccharide challenge: immunological effects and safety in humans. Expert Rev Clin Immunol 2015; 11:409-18. [DOI: 10.1586/1744666x.2015.1012158] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
26
|
Adage T, Konya V, Weber C, Strutzmann E, Fuchs T, Zankl C, Gerlza T, Jeremic D, Heinemann A, Kungl AJ. Targeting glycosaminoglycans in the lung by an engineered CXCL8 as a novel therapeutic approach to lung inflammation. Eur J Pharmacol 2015; 748:83-92. [PMID: 25554213 DOI: 10.1016/j.ejphar.2014.12.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 12/16/2014] [Accepted: 12/18/2014] [Indexed: 01/13/2023]
Abstract
It is broadly recognized that chemokine-activated neutrophils play a crucial role in the inflammation and disruption of lung tissue observed in several acute and chronic lung diseases. Since glycosaminoglycan side chains of proteoglycans act as chemokine co-receptors in inflammation, we have used a CXCL8-based dominant-negative mutant, dnCXCL8, to displace neutrophil-related chemokines in murine lungs using models of lung inflammation. Treatment with dnCXCL8 resulted in a dose-dependent reduction of neutrophil counts in bronchoalveolar lavage (BAL) of mice exposed to lipopolysaccharide after intravenous, subcutaneous and intratracheal administration. A strong and significant therapeutic effect was achieved already at a dose of 40 µg/kg of dnCXCL8. A similar dose response, but showing a broader spectrum of reduced inflammatory cells and soluble inflammatory markers, was observed in a murine model of tobacco smoke (TS)-induced lung inflammation. The broad spectrum of reduced inflammatory cells and markers can be due to the strong inhibition of neutrophil extravasation into the lung parenchyma, and/or to a relatively broad protein displacement profile of dnCXCL8 which may compete not only with wtCXCL8 for glycosaminoglycan-binding but possibly also with other related glycosaminoglycan-binding pro-inflammatory chemokines. Overall our results demonstrate that antagonizing CXCL8/glycosaminoglycan binding reduces lung inflammation as well as associated lung tissue damage due to LPS and TS and may therefore be a new therapeutic approach for lung pathologies characterized by a neutrophilic inflammatory phenotype.
Collapse
Affiliation(s)
| | - Viktoria Konya
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | | - Akos Heinemann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Andreas J Kungl
- ProtAffin Biotechnologie AG, Graz, Austria; Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria.
| |
Collapse
|
27
|
Tomankova T, Kriegova E, Liu M. Chemokine receptors and their therapeutic opportunities in diseased lung: far beyond leukocyte trafficking. Am J Physiol Lung Cell Mol Physiol 2015; 308:L603-18. [PMID: 25637606 DOI: 10.1152/ajplung.00203.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 01/28/2015] [Indexed: 12/13/2022] Open
Abstract
Chemokine receptors and their chemokine ligands, key mediators of inflammatory and immune cell trafficking, are involved in the regulation of both physiological and pathological processes in the lung. The discovery that chemokine receptors/chemokines, typically expressed by inflammatory and immune cells, are also expressed in structural lung tissue cells suggests their role in mediating the restoration of lung tissue structure and functions. Thus, chemokine receptors/chemokines contribute not only to inflammatory and immune responses in the lung but also play a critical role in the regulation of lung tissue repair, regeneration, and remodeling. This review aims to summarize current state-of-the-art on chemokine receptors and their ligands in lung diseases such as chronic obstructive pulmonary disease, asthma/allergy, pulmonary fibrosis, acute lung injury, and lung infection. Furthermore, the therapeutic opportunities of chemokine receptors in aforementioned lung diseases are discussed. The review also aims to delineate the potential contribution of chemokine receptors to the processes leading to repair/regeneration of the lung tissue.
Collapse
Affiliation(s)
- Tereza Tomankova
- Faculty of Medicine and Dentistry, Department of Immunology, Palacky University Olomouc, Czech Republic; Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada; and
| | - Eva Kriegova
- Faculty of Medicine and Dentistry, Department of Immunology, Palacky University Olomouc, Czech Republic
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada; and Faculty of Medicine, Departments of Physiology, Surgery, and Medicine, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Michel O, Dinh PHD, Doyen V, Corazza F. Anti-TNF inhibits the airways neutrophilic inflammation induced by inhaled endotoxin in human. BMC Pharmacol Toxicol 2014; 15:60. [PMID: 25371053 PMCID: PMC4236481 DOI: 10.1186/2050-6511-15-60] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 10/14/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Inhaled endotoxin induces airways'neutrophilia, in human. TNF-a being a key cytokine in the response to endotoxin, the effect of anti-TNF on the endotoxin-induced neutrophilic response was evaluated among healthy volunteers. METHODS Among a population of 30 healthy subjects, an induced-sputum was collected 2 weeks before, and 24 hours after an inhalation of 20 mcg endotoxin (E. coli 026:B6). Then, the subjects were randomized into 3 parallel groups treated with control, oral methylprednisolone 20 mg/day during 7 days or anti-TNF (adalimumab, Humira®, Abbott) 40 mg s.c.. One week later, an induced-sputum was sampled, 24 hours after an inhalation of endotoxin. RESULTS After endotoxin inhalation, the number of total cells, neutrophils and macrophages was significantly increased (p <0.001). Compared to the response to endotoxin among the control group, anti-TNF inhibited the endotoxin-induced neutrophil influx, both in relative (51.3 (±6.4)% versus 26.2 (±5.3)%, p <0.002) and in absolute values (1321 (443-3935) cells/mcL versus 247 (68-906) cells/mcL, p <0.02). The endotoxin-induced neutrophilic response was not significantly modified among the control group and oral corticosteroid group. CONCLUSIONS While oral corticosteroid had no effect, anti-TNF inhibited the neutrophil influx in sputum, induced by inhalation of endotoxin, in human subject. The endotoxin model could be an early predictor of clinical efficacy of novel therapeutics. TRIAL REGISTRATION ClinicalTrials.gov NCT02252809 (EudraCT2008-005526-37).
Collapse
Affiliation(s)
- Olivier Michel
- Clinic of Allergology and Immunology, CHU Brugmann (Université Libre de Bruxelles - ULB), 4 pl Van Gehuchten, B -1020, Brussels, Belgium.
| | | | | | | |
Collapse
|
29
|
Maeda DY, Peck AM, Schuler A, Quinn MT, Kirpotina LN, Wicomb WN, Fan GH, Zebala JA. Discovery of 2-[5-(4-Fluorophenylcarbamoyl)pyridin-2-ylsulfanylmethyl]phenylboronic Acid (SX-517): Noncompetitive Boronic Acid Antagonist of CXCR1 and CXCR2. J Med Chem 2014; 57:8378-97. [PMID: 25254640 PMCID: PMC4207547 DOI: 10.1021/jm500827t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Indexed: 12/15/2022]
Abstract
The G protein-coupled chemokine receptors CXCR1 and CXCR2 play key roles in inflammatory diseases and carcinogenesis. In inflammation, they activate and recruit polymorphonuclear cells (PMNs) through binding of the chemokines CXCL1 (CXCR1) and CXCL8 (CXCR1 and CXCR2). Structure-activity studies that examined the effect of a novel series of S-substituted 6-mercapto-N-phenyl-nicotinamides on CXCL1-stimulated Ca(2+) flux in whole human PMNs led to the discovery of 2-[5-(4-fluorophenylcarbamoyl)pyridin-2-ylsulfanylmethyl]phenylboronic acid (SX-517), a potent noncompetitive boronic acid CXCR1/2 antagonist. SX-517 inhibited CXCL1-induced Ca(2+) flux (IC50 = 38 nM) in human PMNs but had no effect on the Ca(2+) flux induced by C5a, fMLF, or PAF. In recombinant HEK293 cells that stably expressed CXCR2, SX-517 antagonized CXCL8-induced [(35)S]GTPγS binding (IC50 = 60 nM) and ERK1/2 phosphorylation. Inhibition was noncompetitive, with SX-517 unable to compete the binding of [(125)I]-CXCL8 to CXCR2 membranes. SX-517 (0.2 mg/kg iv) significantly inhibited inflammation in an in vivo murine model. SX-517 is the first reported boronic acid chemokine antagonist and represents a novel pharmacophore for CXCR1/2 antagonism.
Collapse
Affiliation(s)
- Dean Y. Maeda
- Syntrix
Biosystems, 215 Clay
Street, Auburn, Washington 98001, United States
| | - Angela M. Peck
- Syntrix
Biosystems, 215 Clay
Street, Auburn, Washington 98001, United States
| | - Aaron
D. Schuler
- Syntrix
Biosystems, 215 Clay
Street, Auburn, Washington 98001, United States
| | - Mark T. Quinn
- Department
of Microbiology and Immunology, Montana
State University, 960
Technology Boulevard, Bozeman, Montana 59717, United States
| | - Liliya N. Kirpotina
- Department
of Microbiology and Immunology, Montana
State University, 960
Technology Boulevard, Bozeman, Montana 59717, United States
| | - Winston N. Wicomb
- Infectious
Disease Research Institute, 1616 Eastlake Avenue East, Seattle, Washington 98102, United States
| | - Guo-Huang Fan
- Department
of Pharmacology, Meharry Medical College, 1005 Dr. DB Todd Boulevard, Nashville, Tennessee 37208, United States
| | - John A. Zebala
- Syntrix
Biosystems, 215 Clay
Street, Auburn, Washington 98001, United States
| |
Collapse
|
30
|
Mari A, Antonietta Ciardiello M, Passalacqua G, Vliagoftis H, Wardlaw AJ, Wickman M. Developments in the field of allergy in 2012 through the eyes of Clinical & Experimental Allergy. Clin Exp Allergy 2014; 43:1309-32. [PMID: 24118214 DOI: 10.1111/cea.12212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In 2012, we received 683 submissions and published 20 editorials, 38 reviews, 11 letters and 128 original articles. This represents an acceptance rate for original papers in the range of 20%. About 30% of original papers were triaged not to go out to review, either because the editors did not feel they had sufficient priority for publication or because the topic did not feel right for the readers of the journal. We place great emphasis on obtaining sufficient high-quality reviews to make our decisions on publication fair and consistent. Inevitably, however, there is a degree of luck about what gets published and which papers miss out, and we are always happy to receive an appeal on our decisions either at the triage stage or after review. This gives us the opportunity to revisit the decision and revise it or explain in more detail to the authors the basis for the decision. Once again in 2012, we were delighted by the quality of the papers submitted and the breadth and depth of research into allergic disease that it revealed. The pattern of papers submitted was similar in previous years with considerable emphasis on all aspects of asthma and rhinitis. We were particularly pleased with our special issue on severe asthma. Elucidating mechanisms using either animal models or patients has always been a major theme of the journal, and the excellent work in these areas has been summarized by Harissios Vliagoftis with a particularly interesting section on early-life events guiding the development of allergic disease, which understandably continue to be a major theme of research. Magnus Wickman summarized the papers looking at the epidemiology of allergic disease including work from birth cohorts, which are an increasingly rich source of data on risk factors for allergic disease, and two papers on the epidemiology of anaphylaxis. Giovanni Passalacqua discussed the papers in the clinical allergy section of the journal, and Adriano Mari who runs the excellent Allergome website discussed the papers looking at allergens including characterization and the relative usefulness of allergen arrays versus single extracts in diagnosis and management.
Collapse
Affiliation(s)
- A Mari
- Allergome, Allergy Data Laboratories s.c., Latina, Italy
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Current analgesics predominately modulate pain transduction and transmission in neurons and have limited success in controlling disease progression. Accumulating evidence suggests that neuroinflammation, which is characterized by infiltration of immune cells, activation of glial cells and production of inflammatory mediators in the peripheral and central nervous system, has an important role in the induction and maintenance of chronic pain. This Review focuses on emerging targets - such as chemokines, proteases and the WNT pathway - that promote spinal cord neuroinflammation and chronic pain. It also highlights the anti-inflammatory and pro-resolution lipid mediators that act on immune cells, glial cells and neurons to resolve neuroinflammation, synaptic plasticity and pain. Targeting excessive neuroinflammation could offer new therapeutic opportunities for chronic pain and related neurological and psychiatric disorders.
Collapse
|
32
|
Russo RC, Garcia CC, Teixeira MM, Amaral FA. The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases. Expert Rev Clin Immunol 2014; 10:593-619. [DOI: 10.1586/1744666x.2014.894886] [Citation(s) in RCA: 317] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Boppana NB, Devarajan A, Gopal K, Barathan M, Bakar SA, Shankar EM, Ebrahim AS, Farooq SM. Blockade of CXCR2 signalling: A potential therapeutic target for preventing neutrophil-mediated inflammatory diseases. Exp Biol Med (Maywood) 2014; 239:509-18. [DOI: 10.1177/1535370213520110] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Polymorphonuclear neutrophils (PMN) play a key role in host innate immune responses by migrating to the sites of inflammation. Furthermore, PMN recruitment also plays a significant role in the pathophysiology of a plethora of inflammatory disorders such as chronic obstructive pulmonary disease (COPD), gram negative sepsis, inflammatory bowel disease (IBD), lung injury, and arthritis. Of note, chemokine-dependent signalling is implicated in the amplification of immune responses by virtue of its role in PMN chemotaxis in most of the inflammatory diseases. It has been clinically established that impediment of PMN recruitment ameliorates disease severity and provides relief in majority of other immune-associated disorders. This review focuses on different novel approaches clinically proven to be effective in blocking chemokine signalling associated with PMN recruitment that includes CXCR2 antagonists, chemokine analogs, anti-CXCR2 monoclonal antibodies, and CXCR2 knock-out models. It also highlights the significance of the utility of nanoparticles in drugs used for blocking migration of PMN to the sites of inflammation.
Collapse
Affiliation(s)
- Nithin B Boppana
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Asokan Devarajan
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Westwood, CA 90095, USA
| | - Kaliappan Gopal
- Department of Orthopedics, Faculty of Medicine, National Orthopedics Center for Excellence in Research and Learning (NOCERAL), University of Malaya, Lembah Pantai, Kuala Lumpur 50603, Malaysia
| | - Muttiah Barathan
- Department of Medical Microbiology, Faculty of Medicine, Tropical Infectious Disease Research and Education Center (TIDREC), University of Malaya, Lembah Pantai, Kuala Lumpur 50603, Malaysia
| | - Sazaly A Bakar
- Department of Medical Microbiology, Faculty of Medicine, Tropical Infectious Disease Research and Education Center (TIDREC), University of Malaya, Lembah Pantai, Kuala Lumpur 50603, Malaysia
| | - Esaki M Shankar
- Department of Medical Microbiology, Faculty of Medicine, Tropical Infectious Disease Research and Education Center (TIDREC), University of Malaya, Lembah Pantai, Kuala Lumpur 50603, Malaysia
| | - Abdul S Ebrahim
- Department of Internal Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Shukkur M Farooq
- Department of Pharmacy Practice, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
34
|
Abstract
INTRODUCTION Small-molecule antagonists of CXC chemokine receptor 2 (CXCR2) have attracted a considerable amount of attention due to the key central role that this receptor plays in inflammatory conditions. Recently, several CXCR2 receptor antagonists have demonstrated promising proof of activity in early pulmonary clinical trials, which has stimulated additional efforts to identify new CXCR2 receptor antagonists. AREAS COVERED During the period 2009 - 2013, there were numerous patent publications from various companies claiming the discovery of novel CXCR2 receptor antagonists. Herein, an interpretation of these new patent publications combined with emerging disclosures from the peer-reviewed literature during this time frame is given. This review highlights the preferred or representative compounds from the patent applications along with relevant biological characterization. EXPERT OPINION Many of the new CXCR2 receptor antagonists described in this review represent closely related analogs to previously disclosed clinical candidates. With the recent discontinuation of several CXCR2 receptor antagonists in the clinic, additional clinical trial information for CXCR2 receptor antagonists, both past and present, will determine the long-term therapeutic potential of these compounds for the treatment of a variety of inflammatory disorders.
Collapse
Affiliation(s)
- Michael P Dwyer
- Department of Medicinal Chemistry, Merck Research Laboratories , 126 E. Lincoln Ave, RY800-D101, Rahway, NJ 07065-0900 , USA +1 732 594 1733 ; +1 732 594 9490 ;
| | | |
Collapse
|
35
|
Leaker BR, Barnes PJ, O'Connor B. Inhibition of LPS-induced airway neutrophilic inflammation in healthy volunteers with an oral CXCR2 antagonist. Respir Res 2013; 14:137. [PMID: 24341382 PMCID: PMC3867427 DOI: 10.1186/1465-9921-14-137] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/12/2013] [Indexed: 01/21/2023] Open
Abstract
Background Inhaled lipopolysaccharide (LPS) induces a dose-dependent, acute neutrophilic response in the airways of healthy volunteers that can be quantified in induced sputum. Chemokines, such as CXCL1 and CXCL8, play an important role in neutrophilic inflammation in the lung through the activation of CXCR2 and small molecule antagonists of these receptors have now been developed. We investigated the effect of AZD8309, a CXCR2 antagonist, compared with placebo on LPS-induced inflammation measured in sputum of healthy volunteers. Methods Twenty healthy subjects were randomized in a double-blind placebo-controlled, cross-over study. AZD8309 (300 mg) or placebo was dosed twice daily orally for 3 days prior to challenge with inhaled LPS and induced sputum was collected 6 h later. Results Treatment with AZD8309 showed a mean 77% reduction in total sputum cells (p < 0.001) and 79% reduction in sputum neutrophils (p < 0.05) compared with placebo after LPS challenge. There was also a reduction in neutrophil elastase activity (p < 0.05) and CXCL1 (p < 0.05) and trends for reductions in sputum macrophages (47%), leukotriene B4 (39%) and CXCL8 (52%). Conclusions AZD8309 inhibited LPS-induced inflammation measured in induced sputum of normal volunteers, indicating that this treatment may be useful in the treatment of neutrophilic diseases of the airways, such as COPD, severe asthma and cystic fibrosis. Trial registration NCT00860821.
Collapse
Affiliation(s)
- Brian R Leaker
- Respiratory Clinical Trials Ltd, 20 Queen Anne Street, London W1G 8HU, UK.
| | | | | |
Collapse
|
36
|
Bachelerie F, Ben-Baruch A, Burkhardt AM, Combadiere C, Farber JM, Graham GJ, Horuk R, Sparre-Ulrich AH, Locati M, Luster AD, Mantovani A, Matsushima K, Murphy PM, Nibbs R, Nomiyama H, Power CA, Proudfoot AEI, Rosenkilde MM, Rot A, Sozzani S, Thelen M, Yoshie O, Zlotnik A. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev 2013; 66:1-79. [PMID: 24218476 DOI: 10.1124/pr.113.007724] [Citation(s) in RCA: 680] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sixteen years ago, the Nomenclature Committee of the International Union of Pharmacology approved a system for naming human seven-transmembrane (7TM) G protein-coupled chemokine receptors, the large family of leukocyte chemoattractant receptors that regulates immune system development and function, in large part by mediating leukocyte trafficking. This was announced in Pharmacological Reviews in a major overview of the first decade of research in this field [Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, and Power CA (2000) Pharmacol Rev 52:145-176]. Since then, several new receptors have been discovered, and major advances have been made for the others in many areas, including structural biology, signal transduction mechanisms, biology, and pharmacology. New and diverse roles have been identified in infection, immunity, inflammation, development, cancer, and other areas. The first two drugs acting at chemokine receptors have been approved by the U.S. Food and Drug Administration (FDA), maraviroc targeting CCR5 in human immunodeficiency virus (HIV)/AIDS, and plerixafor targeting CXCR4 for stem cell mobilization for transplantation in cancer, and other candidates are now undergoing pivotal clinical trials for diverse disease indications. In addition, a subfamily of atypical chemokine receptors has emerged that may signal through arrestins instead of G proteins to act as chemokine scavengers, and many microbial and invertebrate G protein-coupled chemokine receptors and soluble chemokine-binding proteins have been described. Here, we review this extended family of chemokine receptors and chemokine-binding proteins at the basic, translational, and clinical levels, including an update on drug development. We also introduce a new nomenclature for atypical chemokine receptors with the stem ACKR (atypical chemokine receptor) approved by the Nomenclature Committee of the International Union of Pharmacology and the Human Genome Nomenclature Committee.
Collapse
Affiliation(s)
- Francoise Bachelerie
- Chair, Subcommittee on Chemokine Receptors, Nomenclature Committee-International Union of Pharmacology, Bldg. 10, Room 11N113, NIH, Bethesda, MD 20892.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Rationale and Means to Target Pro-Inflammatory Interleukin-8 (CXCL8) Signaling in Cancer. Pharmaceuticals (Basel) 2013; 6:929-59. [PMID: 24276377 PMCID: PMC3817732 DOI: 10.3390/ph6080929] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/03/2013] [Accepted: 07/29/2013] [Indexed: 12/13/2022] Open
Abstract
It is well established that chronic inflammation underpins the development of a number of human cancers, with pro-inflammatory signaling within the tumor microenvironment contributing to tumor progression and metastasis. CXCL8 is an ELR+ pro-inflammatory CXC-chemokine which mediates its effects via signaling through two G protein-coupled receptors, CXCR1 and CXCR2. Elevated CXCL8-CXCR1/2 signaling within the tumor microenvironment of numerous cancers is known to enhance tumor progression via activation of signaling pathways promoting proliferation, angiogenesis, migration, invasion and cell survival. This review provides an overview of established roles of CXCL8-CXCR1/2 signaling in cancer and subsequently, discusses the possible strategies of targeting CXCL8-CXCR1/2 signaling in cancer, covering indirect strategies (e.g., anti-inflammatories, NFκB inhibitors) and direct CXCL8 or CXCR1/2 inhibition (e.g., neutralizing antibodies, small molecule receptor antagonists, pepducin inhibitors and siRNA strategies). Reports of pre-clinical cancer studies and clinical trials using CXCL8-CXCR1/2-targeting strategies for the treatment of inflammatory diseases will be discussed. The future translational opportunities for use of such agents in oncology will be discussed, with emphasis on exploitation in stratified populations.
Collapse
|
38
|
Ngkelo A, Adcock IM. New treatments for COPD. Curr Opin Pharmacol 2013; 13:362-9. [DOI: 10.1016/j.coph.2013.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/03/2013] [Accepted: 03/28/2013] [Indexed: 12/20/2022]
|
39
|
Gwinn WM, Johnson BT, Kirwan SM, Sobel AE, Abraham SN, Gunn MD, Staats HF. A comparison of non-toxin vaccine adjuvants for their ability to enhance the immunogenicity of nasally-administered anthrax recombinant protective antigen. Vaccine 2013; 31:1480-9. [PMID: 23352329 DOI: 10.1016/j.vaccine.2013.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 12/19/2012] [Accepted: 01/04/2013] [Indexed: 10/27/2022]
Abstract
Development of nasal immunization for human use is hindered by the lack of acceptable adjuvants. Although CT is an effective adjuvant, its toxicity will likely prevent its use in nasal vaccines. This study compared non-toxin adjuvants to CT for their ability to induce protective antibody responses with nasal immunization. C3H/HeN and C57BL/6 mice were immunized with rPA formulated with the following adjuvants: CT, IL-1α, LPS, CpG, Pam3CSK4, 3M-019, resiquimod/R848 or c48/80. Serum and nasal wash cytokine concentrations were monitored 6h post-vaccination as biomarkers for acute activation of the innate immune system. Not all of the adjuvants induced significant changes in innate serum or nasal wash cytokines, but when changes were observed, the cytokine signatures were unique for each adjuvant. All adjuvants except Pam3CSK4 induced significantly increased anti-rPA serum IgG titers in both strains of mice, while only IL-1α, c48/80 and CpG enhanced mucosal anti-rPA IgA. Pam3CSK4 was the only adjuvant unable to enhance the induction of serum LeTx-neutralizing antibodies in C3H/HeN mice while c48/80 was the only adjuvant to induce increased serum LeTx-neutralizing antibodies in C57BL/6 mice. Only CT enhanced total serum IgE in C3H/HeN mice while IL-1α enhanced total serum IgE in C57BL/6 mice. The adjuvant influenced antigen-specific serum IgG subclass and T cell cytokine profiles, but these responses did not correlate with the induction of LeTx-neutralizing activity. Our results demonstrate the induction of diverse innate and adaptive immune responses by non-toxin nasal vaccine adjuvants that lead to protective humoral immunity comparable to CT and that these responses may be influenced by the host strain.
Collapse
Affiliation(s)
- William M Gwinn
- Duke University Medical Center, Department of Pathology, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Abstract
Leukocyte recruitment to sites of infection or tissue damage plays a crucial role for the innate immune response. Chemokine-dependent signaling in immune cells is a very important mechanism leading to integrin activation and leukocyte recruitment. CXC chemokine receptor 2 (CXCR2) is a prominent chemokine receptor on neutrophils. During the last years, several studies were performed investigating the role of CXCR2 in different diseases. Until now, many CXCR2 inhibitors are tested in animal models and clinical trials and promising results were obtained. This review gives an overview of the structure of CXCR2 and the signaling pathways that are activated following CXCR2 stimulation. We discuss in detail the role of this chemokine receptor in different disease models including acute lung injury, COPD, sepsis, and ischemia-reperfusion-injury. Furthermore, this review summarizes the results of clinical trials which used CXCR2 inhibitors.
Collapse
Affiliation(s)
- Anika Stadtmann
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Münster Münster, Germany
| | | |
Collapse
|