1
|
Sunamoto M, Morohoshi K, Sato B, Mihashi R, Inui M, Yamada M, Miyado K, Kawano N. Complement Factor B Deficiency Is Dispensable for Female Fertility but Affects Microbiome Diversity and Complement Activity. Int J Mol Sci 2025; 26:1393. [PMID: 39941161 PMCID: PMC11818189 DOI: 10.3390/ijms26031393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
Complement factor B (CFB) is a crucial component for the activation of the alternative pathway due to the formation of the C3 convertase with C3b, which further produces C3b to enhance the overall complement activity. Although Cfb is expressed not only in the immune tissues, but also in the reproductive tract, the physiological role of the alternative complement pathway in reproduction remains unclear. In this study, we addressed this issue by producing Cfb-knockout (KO) mice and analyzing their phenotypes. Sperm function, number of ovulated oocytes, and litter size were normal in KO mice. In contrast, the diversity of microbiomes in the gut and vaginal tract significantly increased in KO mice. Some serine protease activity in the serum from KO mice was lower than that of wild-type mice. Since the serum from KO mice showed significantly lower activity of the alternative complement pathway, CFB was found to be essential for this pathway. Our results indicate that although the alternative pathway is dispensable for normal fertility and development, it maintains the gut and vaginal microbiomes by suppressing their diversity and activating the alternative complement pathway.
Collapse
Affiliation(s)
- Manato Sunamoto
- Laboratory of Regulatory Biology, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Kawasaki 214-8571, Japan; (M.S.); (K.M.); (B.S.)
| | - Kazunori Morohoshi
- Laboratory of Regulatory Biology, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Kawasaki 214-8571, Japan; (M.S.); (K.M.); (B.S.)
- Division of Biomedical Engineering, National Defense Medical College Research Institute, 3-2 Namiki, Tokorozawa 359-8513, Japan
| | - Ban Sato
- Laboratory of Regulatory Biology, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Kawasaki 214-8571, Japan; (M.S.); (K.M.); (B.S.)
| | - Ryo Mihashi
- Laboratory of Regulatory Biology, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Kawasaki 214-8571, Japan; (M.S.); (K.M.); (B.S.)
| | - Masafumi Inui
- Laboratory of Animal Regeneration Systemology, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Kawasaki 214-8571, Japan;
| | - Mitsutoshi Yamada
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan;
| | - Kenji Miyado
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan;
| | - Natsuko Kawano
- Laboratory of Regulatory Biology, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Kawasaki 214-8571, Japan; (M.S.); (K.M.); (B.S.)
| |
Collapse
|
2
|
Marsh PL, Moore EE, Moore HB, Bunch CM, Aboukhaled M, Condon SM, Al-Fadhl MD, Thomas SJ, Larson JR, Bower CW, Miller CB, Pearson ML, Twilling CL, Reser DW, Kim GS, Troyer BM, Yeager D, Thomas SG, Srikureja DP, Patel SS, Añón SL, Thomas AV, Miller JB, Van Ryn DE, Pamulapati SV, Zimmerman D, Wells B, Martin PL, Seder CW, Aversa JG, Greene RB, March RJ, Kwaan HC, Fulkerson DH, Vande Lune SA, Mollnes TE, Nielsen EW, Storm BS, Walsh MM. Iatrogenic air embolism: pathoanatomy, thromboinflammation, endotheliopathy, and therapies. Front Immunol 2023; 14:1230049. [PMID: 37795086 PMCID: PMC10546929 DOI: 10.3389/fimmu.2023.1230049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/12/2023] [Indexed: 10/06/2023] Open
Abstract
Iatrogenic vascular air embolism is a relatively infrequent event but is associated with significant morbidity and mortality. These emboli can arise in many clinical settings such as neurosurgery, cardiac surgery, and liver transplantation, but more recently, endoscopy, hemodialysis, thoracentesis, tissue biopsy, angiography, and central and peripheral venous access and removal have overtaken surgery and trauma as significant causes of vascular air embolism. The true incidence may be greater since many of these air emboli are asymptomatic and frequently go undiagnosed or unreported. Due to the rarity of vascular air embolism and because of the many manifestations, diagnoses can be difficult and require immediate therapeutic intervention. An iatrogenic air embolism can result in both venous and arterial emboli whose anatomic locations dictate the clinical course. Most clinically significant iatrogenic air emboli are caused by arterial obstruction of small vessels because the pulmonary gas exchange filters the more frequent, smaller volume bubbles that gain access to the venous circulation. However, there is a subset of patients with venous air emboli caused by larger volumes of air who present with more protean manifestations. There have been significant gains in the understanding of the interactions of fluid dynamics, hemostasis, and inflammation caused by air emboli due to in vitro and in vivo studies on flow dynamics of bubbles in small vessels. Intensive research regarding the thromboinflammatory changes at the level of the endothelium has been described recently. The obstruction of vessels by air emboli causes immediate pathoanatomic and immunologic and thromboinflammatory responses at the level of the endothelium. In this review, we describe those immunologic and thromboinflammatory responses at the level of the endothelium as well as evaluate traditional and novel forms of therapy for this rare and often unrecognized clinical condition.
Collapse
Affiliation(s)
- Phillip L. Marsh
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Ernest E. Moore
- Department of Surgery, Ernest E. Moore Shock Trauma Center at Denver Health and University of Colorado Health Sciences Center, Denver, CO, United States
| | - Hunter B. Moore
- University of Colorado Health Transplant Surgery - Anschutz Medical Campus, Aurora, CO, United States
| | - Connor M. Bunch
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Michael Aboukhaled
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Shaun M. Condon
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States
| | | | - Samuel J. Thomas
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - John R. Larson
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
| | - Charles W. Bower
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
| | - Craig B. Miller
- Department of Family Medicine, Saint Joseph Health System, Mishawaka, IN, United States
| | - Michelle L. Pearson
- Department of Family Medicine, Saint Joseph Health System, Mishawaka, IN, United States
| | | | - David W. Reser
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
| | - George S. Kim
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
| | - Brittany M. Troyer
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
| | - Doyle Yeager
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
| | - Scott G. Thomas
- Department of Trauma & Surgical Research Services, South Bend, IN, United States
| | - Daniel P. Srikureja
- Department of Trauma & Surgical Research Services, South Bend, IN, United States
| | - Shivani S. Patel
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Sofía L. Añón
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Anthony V. Thomas
- Indiana University School of Medicine, South Bend, IN, United States
| | - Joseph B. Miller
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - David E. Van Ryn
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
- Department of Emergency Medicine, Beacon Health System, Elkhart, IN, United States
| | - Saagar V. Pamulapati
- Department of Internal Medicine, Mercy Health Internal Medicine Residency Program, Rockford, IL, United States
| | - Devin Zimmerman
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Byars Wells
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Peter L. Martin
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
| | - Christopher W. Seder
- Department of Cardiovascular and Thoracic Surgery, RUSH Medical College, Chicago, IL, United States
| | - John G. Aversa
- Department of Cardiovascular and Thoracic Surgery, RUSH Medical College, Chicago, IL, United States
| | - Ryan B. Greene
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Robert J. March
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Hau C. Kwaan
- Division of Hematology and Oncology, Department of Medicine, Northwestern University, Chicago, IL, United States
| | - Daniel H. Fulkerson
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
- Department of Trauma & Surgical Research Services, South Bend, IN, United States
| | - Stefani A. Vande Lune
- Department of Emergency Medicine, Naval Medical Center Portsmouth, Portsmouth, VA, United States
| | - Tom E. Mollnes
- Research Laboratory, Nordland Hospital, Bodø, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Erik W. Nielsen
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Anesthesia and Intensive Care Medicine, Surgical Clinic, Nordland Hospital, Bodø, Norway
- Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway
- Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| | - Benjamin S. Storm
- Department of Anesthesia and Intensive Care Medicine, Surgical Clinic, Nordland Hospital, Bodø, Norway
- Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway
- Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| | - Mark M. Walsh
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
- Indiana University School of Medicine, South Bend, IN, United States
| |
Collapse
|
3
|
Ekdahl KN, Fromell K, Mannes M, Grinnemo KH, Huber-Lang M, Teramura Y, Nilsson B. Therapeutic regulation of complement activation in extracorporeal circuits and intravascular treatments with special reference to the alternative pathway amplification loop. Immunol Rev 2023; 313:91-103. [PMID: 36258635 PMCID: PMC10092679 DOI: 10.1111/imr.13148] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A number of clinical treatment modalities involve contact between blood and biomaterials: these include extracorporeal circuits such as hemodialysis, cardiopulmonary bypass, plasmapheresis, and intravascular treatments. Common side effects arising from these treatments are caused by activation of the cascade systems of the blood. Many of these side effects are mediated via the complement system, including thromboinflammatory reactions and rejection of implants. Depending on the composition of the materials, complement activation is triggered via all the activation pathways but is by far mostly driven by the alternative pathway amplification loop. On biomaterial surfaces the alternative pathway amplification is totally unregulated and leads under optimal conditions to deposition of complement fragments, mostly C3b, on the surface leading to a total masking of the underlying surface. In this review, we discuss the mechanism of the complement activation, clinical consequences of the activation, and potential strategies for therapeutic regulation of the activation, using hemodialysis as demonstrator.
Collapse
Affiliation(s)
- Kristina N Ekdahl
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden.,Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Karin Fromell
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| | - Marco Mannes
- Institute for Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Karl-Henrik Grinnemo
- Department of Surgical Sciences, Division of Cardiothoracic Surgery, Uppsala University, Uppsala University Hospital, Uppsala, Sweden
| | - Markus Huber-Lang
- Institute for Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Yuji Teramura
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden.,Cellular and Molecular Biotechnology Research Institute (CMB), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.,Master's/Doctoral Program in Life Science Innovation (T-LSI), University of Tsukuba, Tsukuba, Japan
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Storm BS, Ludviksen JK, Christiansen D, Fure H, Pettersen K, Landsem A, Nilsen BA, Dybwik K, Braaten T, Nielsen EW, Mollnes TE. Venous Air Embolism Activates Complement C3 Without Corresponding C5 Activation and Trigger Thromboinflammation in Pigs. Front Immunol 2022; 13:839632. [PMID: 35371063 PMCID: PMC8964959 DOI: 10.3389/fimmu.2022.839632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/21/2022] [Indexed: 11/20/2022] Open
Abstract
Introduction Air embolism may complicate invasive medical procedures. Bubbles trigger complement C3-mediated cytokine release, coagulation, and platelet activation in vitro in human whole blood. Since these findings have not been verified in vivo, we aimed to examine the effects of air embolism in pigs on thromboinflammation. Methods Forty-five landrace pigs, average 17 kg (range 8.5-30), underwent intravenous air infusion for 300 or 360 minutes (n=29) or served as sham (n=14). Fourteen pigs were excluded due to e.g. infections or persistent foramen ovale. Blood was analyzed for white blood cells (WBC), complement activation (C3a and terminal C5b-9 complement complex [TCC]), cytokines, and hemostatic parameters including thrombin-antithrombin (TAT) using immunoassays and rotational thromboelastometry (ROTEM). Lung tissue was analyzed for complement and cytokines using qPCR and immunoassays. Results are presented as medians with interquartile range. Results In 24 pigs receiving air infusion, WBC increased from 17×109/L (10-24) to 28 (16-42) (p<0.001). C3a increased from 21 ng/mL (15-46) to 67 (39-84) (p<0.001), whereas TCC increased only modestly (p=0.02). TAT increased from 35 µg/mL (28-42) to 51 (38-89) (p=0.002). ROTEM changed during first 120 minutes: Clotting time decreased from 613 seconds (531-677) to 538 (399-620) (p=0.006), clot formation time decreased from 161 seconds (122-195) to 124 (83-162) (p=0.02) and α-angle increased from 62 degrees (57-68) to 68 (62-74) (p=0.02). In lungs from pigs receiving air compared to sham animals, C3a was 34 ng/mL (14-50) versus 4.1 (2.4-5.7) (p<0.001), whereas TCC was 0.3 CAU/mL (0.2-0.3) versus 0.2 (0.1-0.2) (p=0.02). Lung cytokines in pigs receiving air compared to sham animals were: IL-1β 302 pg/mL (190-437) versus 107 (66-120), IL-6 644 pg/mL (358-1094) versus 25 (23-30), IL-8 203 pg/mL (81-377) versus 21 (20-35), and TNF 113 pg/mL (96-147) versus 16 (13-22) (all p<0.001). Cytokine mRNA in lung tissue from pigs receiving air compared to sham animals increased 12-fold for IL-1β, 121-fold for IL-6, and 17-fold for IL-8 (all p<0.001). Conclusion Venous air embolism in pigs activated C3 without a corresponding C5 activation and triggered thromboinflammation, consistent with a C3-dependent mechanism. C3-inhibition might represent a therapeutic approach to attenuate this response.
Collapse
Affiliation(s)
- Benjamin S Storm
- Department of Anesthesia and Intensive Care Medicine, Nordland Hospital, Bodø, Norway.,Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway.,Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway.,Research Laboratory, Nordland Hospital Trust, Bodø, Norway
| | | | | | - Hilde Fure
- Research Laboratory, Nordland Hospital Trust, Bodø, Norway
| | | | - Anne Landsem
- Research Laboratory, Nordland Hospital Trust, Bodø, Norway
| | - Bent Aksel Nilsen
- Department of Anesthesia and Intensive Care Medicine, Nordland Hospital, Bodø, Norway.,Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| | - Knut Dybwik
- Department of Anesthesia and Intensive Care Medicine, Nordland Hospital, Bodø, Norway
| | - Tonje Braaten
- Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway.,Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Erik W Nielsen
- Department of Anesthesia and Intensive Care Medicine, Nordland Hospital, Bodø, Norway.,Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway.,Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway.,Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tom E Mollnes
- Research Laboratory, Nordland Hospital Trust, Bodø, Norway.,Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Faculty of Health Sciences, KG. Jebsen TREC, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Immunology, Oslo University Hospital, The University of Oslo, Oslo, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
5
|
Nilsson B, Eriksson O, Fromell K, Persson B, Ekdahl KN. How COVID-19 and other pathological conditions and medical treatments activate our intravascular innate immune system. Front Immunol 2022; 13:1030627. [PMID: 36820001 PMCID: PMC9938760 DOI: 10.3389/fimmu.2022.1030627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/09/2022] [Indexed: 02/09/2023] Open
Abstract
COVID-19 has been shown to have a multifaceted impact on the immune system. In a recently published article in Front Immunol, we show that the intravascular innate immune system (IIIS) is strongly activated in severe COVID-19 with ARDS and appears to be one of the causes leading to severe COVID-19. In this article, we describe the IIIS and its physiological function, but also the strong pro-inflammatory effects that are observed in COVID-19 and in various other pathological conditions and treatments such as during ischemia reperfusion injury and in treatments where biomaterials come in direct contact with blood in, e.g., extracorporeal and intravasal treatments. In the present article, we describe how the IIIS, a complex network of plasma proteins and blood cells, constitute the acute innate immune response of the blood and discuss the effects that the IIIS induces in pathological disorders and treatments in modern medicine.
Collapse
Affiliation(s)
- Bo Nilsson
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Uppsala, Sweden
| | - Oskar Eriksson
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Uppsala, Sweden
| | - Karin Fromell
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Uppsala, Sweden
| | - Barbro Persson
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Uppsala, Sweden
| | - Kristina N Ekdahl
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Uppsala, Sweden.,Linnæus Center of Biomaterials Chemistry, Linnæus University, Kalmar, Sweden
| |
Collapse
|
6
|
Wiles JA, Galvan MD, Podos SD, Geffner M, Huang M. Discovery and Development of the Oral Complement Factor D Inhibitor Danicopan (ACH-4471). Curr Med Chem 2020; 27:4165-4180. [PMID: 31573880 DOI: 10.2174/0929867326666191001130342] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 03/28/2019] [Accepted: 04/04/2019] [Indexed: 12/29/2022]
Abstract
Complement plays a vital role in our innate immune defense against invasive microorganisms. Excessive complement activation or insufficient control of activation on host cells, however, is associated with several chronic disorders. Essential to the activation and amplification of the Alternative Pathway (AP) of complement, Complement Factor D (CFD) is a specific serine protease that cleaves its unique substrate, Complement Factor B (CFB) in complex with an activated form of complement component 3 (C3), to generate the AP C3 convertases C3(H2O)Bb and C3bBb. These convertases comprise a central component in eliciting effector responses following AP activation, and they also enable a powerful amplification loop for both the Classical Pathway (CP) and Lectin Pathway (LP) of complement. Because CFD is not required for the activation of either the CP or LP, selective CFD inhibition presents a favorable therapeutic approach to modulating complement activity that leaves intact the effector functions following CP and LP activation and thus poses a lower risk of bacterial infection than other complement-directed approaches. This review provides an update on inhibitors of CFD, which have evolved from irreversible small molecules that demonstrate poor selectivity to reversible small molecules and monoclonal antibodies that demonstrate exceptional selectivity and potency. The reversible small-molecule inhibitor danicopan.
Collapse
Affiliation(s)
- Jason A Wiles
- Drug Discovery, Achillion Pharmaceuticals, New Haven, CT 06511, United States
| | - Manuel D Galvan
- Drug Discovery, Achillion Pharmaceuticals, New Haven, CT 06511, United States
| | - Steven D Podos
- Drug Discovery, Achillion Pharmaceuticals, New Haven, CT 06511, United States
| | - Michael Geffner
- Drug Development, Achillion Pharmaceuticals, New Haven, CT 06511, United States
| | - Mingjun Huang
- Drug Discovery, Achillion Pharmaceuticals, New Haven, CT 06511, United States
| |
Collapse
|
7
|
Ekdahl KN, Mohlin C, Adler A, Åman A, Manivel VA, Sandholm K, Huber-Lang M, Fromell K, Nilsson B. Is generation of C3(H 2O) necessary for activation of the alternative pathway in real life? Mol Immunol 2019; 114:353-361. [PMID: 31446306 DOI: 10.1016/j.molimm.2019.07.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/18/2019] [Accepted: 07/31/2019] [Indexed: 01/30/2023]
Abstract
In the alternative pathway (AP) an amplification loop is formed, which is strictly controlled by various fluid-phase and cell-bound regulators resulting in a state of homeostasis. Generation of the "C3b-like" C3(H2O) has been described as essential for AP activation, since it conveniently explains how the initial fluid-phase AP convertase of the amplification loop is generated. Also, the AP has a status of being an unspecific pathway despite thorough regulation at different surfaces. During complement attack in pathological conditions and inflammation, large amounts of C3b are formed by the classical/lectin pathway (CP/LP) convertases. After the discovery of LP´s recognition molecules and its tight interaction with the AP, it is increasingly likely that the AP acts in vivo mainly as a powerful amplification mechanism of complement activation that is triggered by previously generated C3b molecules initiated by the binding of specific recognition molecules. Also in many pathological conditions caused by a dysregulated AP amplification loop such as paroxysmal nocturnal hemoglobulinuria (PNH) and atypical hemolytic uremic syndrome (aHUS), C3b is available due to minute LP and CP activation and/or generated by non-complement proteases. Therefore, C3(H2O) generation in vivo may be less important for AP activation during specific attack or dysregulated homeostasis, but may be an important ligand for C3 receptors in cell-cell interactions and a source of C3 for the intracellular complement reservoir.
Collapse
Affiliation(s)
- Kristina N Ekdahl
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala, Sweden; Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden.
| | - Camilla Mohlin
- Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Anna Adler
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala, Sweden
| | - Amanda Åman
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala, Sweden
| | - Vivek Anand Manivel
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala, Sweden
| | - Kerstin Sandholm
- Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Markus Huber-Lang
- Institute for Clinical and Experimental Trauma Immunology, University Hospital of Ulm, Ulm, Germany
| | - Karin Fromell
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala, Sweden
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala, Sweden
| |
Collapse
|
8
|
Elvington M, Liszewski MK, Liszewski AR, Kulkarni HS, Hachem RR, Mohanakumar T, Kim AHJ, Atkinson JP. Development and Optimization of an ELISA to Quantitate C3(H 2 O) as a Marker of Human Disease. Front Immunol 2019; 10:703. [PMID: 31019515 PMCID: PMC6458276 DOI: 10.3389/fimmu.2019.00703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/14/2019] [Indexed: 12/31/2022] Open
Abstract
Discovery of a C3(H2O) uptake pathway has led to renewed interest in this alternative pathway triggering form of C3 in human biospecimens. Previously, a quantifiable method to measure C3(H2O), not confounded by other complement activation products, was unavailable. Herein, we describe a sensitive and specific ELISA for C3(H2O). We initially utilized this assay to determine baseline C3(H2O) levels in healthy human fluids and to define optimal sample storage and handling conditions. We detected ~500 ng/ml of C3(H2O) in fresh serum and plasma, a value substantially lower than what was predicted based on previous studies with purified C3 preparations. After a single freeze-thaw cycle, the C3(H2O) concentration increased 3- to 4-fold (~2,000 ng/ml). Subsequent freeze-thaw cycles had a lesser impact on C3(H2O) generation. Further, we found that storage of human sera or plasma samples at 4°C for up to 22 h did not generate additional C3(H2O). To determine the potential use of C3(H2O) as a biomarker, we evaluated specimens from patients with inflammatory-driven diseases. C3(H2O) concentrations were moderately increased (1.5- to 2-fold) at baseline in sera from active systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) patients compared to healthy controls. In addition, upon challenge with multiple freeze-thaw cycles or incubation at 22 or 37°C, C3(H2O) generation was significantly enhanced in SLE and RA patients' sera. In bronchoalveolar lavage fluid from lung-transplant recipients, we noted a substantial increase in C3(H2O) within 3 months of acute antibody-mediated rejection. In conclusion, we have established an ELISA for assessing C3(H2O) as a diagnostic and prognostic biomarker in human diseases.
Collapse
Affiliation(s)
- Michelle Elvington
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - M Kathryn Liszewski
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Alexis R Liszewski
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Hrishikesh S Kulkarni
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Ramsey R Hachem
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | | | - Alfred H J Kim
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - John P Atkinson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
9
|
Ekdahl KN, Teramura Y, Hamad OA, Asif S, Duehrkop C, Fromell K, Gustafson E, Hong J, Kozarcanin H, Magnusson PU, Huber-Lang M, Garred P, Nilsson B. Dangerous liaisons: complement, coagulation, and kallikrein/kinin cross-talk act as a linchpin in the events leading to thromboinflammation. Immunol Rev 2017; 274:245-269. [PMID: 27782319 DOI: 10.1111/imr.12471] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Innate immunity is fundamental to our defense against microorganisms. Physiologically, the intravascular innate immune system acts as a purging system that identifies and removes foreign substances leading to thromboinflammatory responses, tissue remodeling, and repair. It is also a key contributor to the adverse effects observed in many diseases and therapies involving biomaterials and therapeutic cells/organs. The intravascular innate immune system consists of the cascade systems of the blood (the complement, contact, coagulation, and fibrinolytic systems), the blood cells (polymorphonuclear cells, monocytes, platelets), and the endothelial cell lining of the vessels. Activation of the intravascular innate immune system in vivo leads to thromboinflammation that can be activated by several of the system's pathways and that initiates repair after tissue damage and leads to adverse reactions in several disorders and treatment modalities. In this review, we summarize the current knowledge in the field and discuss the obstacles that exist in order to study the cross-talk between the components of the intravascular innate immune system. These include the use of purified in vitro systems, animal models and various types of anticoagulants. In order to avoid some of these obstacles we have developed specialized human whole blood models that allow investigation of the cross-talk between the various cascade systems and the blood cells. We in particular stress that platelets are involved in these interactions and that the lectin pathway of the complement system is an emerging part of innate immunity that interacts with the contact/coagulation system. Understanding the resulting thromboinflammation will allow development of new therapeutic modalities.
Collapse
Affiliation(s)
- Kristina N Ekdahl
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden.,Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Yuji Teramura
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden.,Department of Bioengineering, The University of Tokyo, Tokyo, Japan
| | - Osama A Hamad
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| | - Sana Asif
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| | - Claudia Duehrkop
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| | - Karin Fromell
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| | - Elisabet Gustafson
- Department of Women's and Children's Health, Uppsala University Hospital, Uppsala, Sweden
| | - Jaan Hong
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| | - Huda Kozarcanin
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| | - Peetra U Magnusson
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| | - Markus Huber-Lang
- Department of Orthopedic Trauma, Hand, Plastic and Reconstructive Surgery, University of Ulm, Ulm, Germany
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Faculty of Health and Medical Sciences, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
10
|
Chun N, Haddadin AS, Liu J, Hou Y, Wong KA, Lee D, Rushbrook JI, Gulaya K, Hines R, Hollis T, Nistal Nuno B, Mangi AA, Hashim S, Pekna M, Catalfamo A, Chin HY, Patel F, Rayala S, Shevde K, Heeger PS, Zhang M. Activation of complement factor B contributes to murine and human myocardial ischemia/reperfusion injury. PLoS One 2017; 12:e0179450. [PMID: 28662037 PMCID: PMC5491012 DOI: 10.1371/journal.pone.0179450] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/29/2017] [Indexed: 12/28/2022] Open
Abstract
The pathophysiology of myocardial injury that results from cardiac ischemia and reperfusion (I/R) is incompletely understood. Experimental evidence from murine models indicates that innate immune mechanisms including complement activation via the classical and lectin pathways are crucial. Whether factor B (fB), a component of the alternative complement pathway required for amplification of complement cascade activation, participates in the pathophysiology of myocardial I/R injury has not been addressed. We induced regional myocardial I/R injury by transient coronary ligation in WT C57BL/6 mice, a manipulation that resulted in marked myocardial necrosis associated with activation of fB protein and myocardial deposition of C3 activation products. In contrast, in fB-/- mice, the same procedure resulted in significantly reduced myocardial necrosis (% ventricular tissue necrotic; fB-/- mice, 20 ± 4%; WT mice, 45 ± 3%; P < 0.05) and diminished deposition of C3 activation products in the myocardial tissue (fB-/- mice, 0 ± 0%; WT mice, 31 ± 6%; P<0.05). Reconstitution of fB-/- mice with WT serum followed by cardiac I/R restored the myocardial necrosis and activated C3 deposition in the myocardium. In translational human studies we measured levels of activated fB (Bb) in intracoronary blood samples obtained during cardio-pulmonary bypass surgery before and after aortic cross clamping (AXCL), during which global heart ischemia was induced. Intracoronary Bb increased immediately after AXCL, and the levels were directly correlated with peripheral blood levels of cardiac troponin I, an established biomarker of myocardial necrosis (Spearman coefficient = 0.465, P < 0.01). Taken together, our results support the conclusion that circulating fB is a crucial pathophysiological amplifier of I/R-induced, complement-dependent myocardial necrosis and identify fB as a potential therapeutic target for prevention of human myocardial I/R injury.
Collapse
Affiliation(s)
- Nicholas Chun
- Nephrology Division, Department of Medicine and Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ala S. Haddadin
- Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Junying Liu
- Department of Anesthesiology, College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Yunfang Hou
- Department of Anesthesiology, College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Karen A. Wong
- Department of Anesthesiology, College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Daniel Lee
- Department of Surgery, College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Julie I. Rushbrook
- Department of Anesthesiology, College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Karan Gulaya
- Department of Anesthesiology, College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Roberta Hines
- Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Tamika Hollis
- Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Beatriz Nistal Nuno
- Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Abeel A. Mangi
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Sabet Hashim
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Marcela Pekna
- Department of Medical Chemistry and Cell Biology, Göteborg University, Göteborg, Sweden
| | - Amy Catalfamo
- Department of Anesthesiology, College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Hsiao-ying Chin
- Department of Anesthesiology, College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Foramben Patel
- Department of Biomedical Sciences, Long Island University, Brookville, New York, United States of America
| | - Sravani Rayala
- Department of Biomedical Sciences, Long Island University, Brookville, New York, United States of America
| | - Ketan Shevde
- Department of Anesthesiology, College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Peter S. Heeger
- Nephrology Division, Department of Medicine and Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ming Zhang
- Department of Anesthesiology, College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
- Department of Cell Biology, College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| |
Collapse
|
11
|
Hamad OA, Mitroulis I, Fromell K, Kozarcanin H, Chavakis T, Ricklin D, Lambris JD, Ekdahl KN, Nilsson B. Contact activation of C3 enables tethering between activated platelets and polymorphonuclear leukocytes via CD11b/CD18. Thromb Haemost 2015; 114:1207-17. [PMID: 26293614 DOI: 10.1160/th15-02-0162] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/05/2015] [Indexed: 12/19/2022]
Abstract
Complement component C3 has a potential role in thrombotic pathologies. It is transformed, without proteolytic cleavage, into C3(H2O) upon binding to the surface of activated platelets. We hypothesise that C3(H2O) bound to activated platelets and to platelet-derived microparticles (PMPs) contributes to platelet-PMN complex (PPC) formation and to the binding of PMPs to PMNs. PAR-1 activation of platelets in human whole blood from normal individuals induced the formation of CD16+/CD42a+ PPC. The complement inhibitor compstatin and a C5a receptor antagonist inhibited PPC formation by 50 %, while monoclonal antibodies to C3(H2O) or anti-CD11b inhibited PPC formation by 75-100 %. Using plasma protein-depleted blood and blood from a C3-deficient patient, we corroborated the dependence on C3, obtaining similar results after reconstitution with purified C3. By analogy with platelets, PMPs isolated from human serum were found to expose C3(H2O) and bind to PMNs. This interaction was also blocked by the anti-C3(H2O) and anti-CD11b monoclonal antibodies, indicating that C3(H2O) and CD11b are involved in tethering PMPs to PMNs. We confirmed the direct interaction between C3(H2O) and CD11b by quartz crystal microbalance analysis using purified native C3 and recombinant CD11b/CD18 and by flow cytometry using PMP and recombinant CD11b. Transfectants expressing CD11b/CD18 were also shown to specifically adhere to surface-bound C3(H2O). We have identified contact-activated C3(H2O) as a novel ligand for CD11b/CD18 that mediates PPC formation and the binding of PMPs to PMNs. Given the various roles of C3 in thrombotic reactions, this finding is likely to have important pathophysiological implications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Bo Nilsson
- Bo Nilsson, Dept. of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, SE-751 85 Uppsala, Sweden, Tel.: +46 70 9423977, Fax: +46 18 553149, E-mail:
| |
Collapse
|
12
|
Teligui L, Dalmayrac E, Corbeau JJ, Bouquet E, Godon A, Denommé AS, Binuani P, Verron L, Boer C, Baufreton C. Ex vivo simulation of cardiopulmonary bypass with human blood for hemocompatibility testing. Perfusion 2015; 31:376-83. [PMID: 26243277 DOI: 10.1177/0267659115599454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECT Experimental circuits for biomaterial surface testing are frequently limited by the tested blood volume, composition of the circuit, flow conditions and the use of animal blood. This report describes an ex vivo set-up for simulated cardiopulmonary bypass with human blood perfusion. We investigated the clinical generalizability of the observed effects on hematological and metabolic parameters and the hemocompatibility of the system. METHODS The simulated cardiopulmonary bypass circuit consisted of a heparin-coated tubing system connected to an oxygenator and a venous reservoir. Normothermic flow of blood obtained from healthy donors was maintained at 2.4 L/min/m(2) by a roller pump. Heparin was dosed to obtain a target activated clotting time (ACT) ⩾500 s. Blood was drawn at baseline and 0, 10, 60 and 120 minutes following the initiation of blood flow to determine hematological and metabolic parameters and the hemocompatibility of the extracorporeal system. Data were analyzed using repeated measures ANOVA. RESULTS Two hours of blood perfusion resulted in a small, but clinically unimportant reduction in hematocrit, whereas hemoglobin levels and red blood cell, platelet and leukocyte counts remained stable. There was a significant increase in ACT throughout the experiment. While pO2 levels and the pH remained unaltered during the experiment, pCO2 values decreased from 51 ± 6 mmHg at T0 to 41 ± 3 mmHg at T120 (p<0.001). Simulated cardiopulmonary bypass induced a two-fold increase in C3a (p=0.001) while tissue factor was decreased from 44 ± 14 pg/mL at T0 to 38 ± 13 pg/mL at T120 (p=0.009). Levels of CD40L, prothrombin fragment 1+2, β-thromboglobulin and factor VIIa remained stable over time. CONCLUSION The ex vivo set-up for simulated cardiopulmonary bypass mimicked the clinical cardiosurgical setting. Exposure of fresh donor blood to the extracorporeal circuit showed a good hemocompatibility, indicated by maintained hematological parameters and a mild immune response.
Collapse
Affiliation(s)
- Leylah Teligui
- Department of Cardiac and Thoracic Surgery, University Hospital of Angers, Angers, France Department of Anesthesiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Emilie Dalmayrac
- Department of Cardiac and Thoracic Surgery, University Hospital of Angers, Angers, France
| | | | - Emmanuelle Bouquet
- Department of Cardiac and Thoracic Surgery, University Hospital of Angers, Angers, France
| | - Alban Godon
- Laboratory of Hematology, University Hospital of Angers, Angers, France
| | | | - Partrice Binuani
- Department of Cardiac and Thoracic Surgery, University Hospital of Angers, Angers, France
| | - Laurence Verron
- Department of Cardiac and Thoracic Surgery, University Hospital of Angers, Angers, France
| | - Christa Boer
- Department of Anesthesiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Christophe Baufreton
- Department of Cardiac and Thoracic Surgery, University Hospital of Angers, Angers, France
| |
Collapse
|
13
|
Mediation of a non-proteolytic activation of complement component C3 by phospholipid vesicles. Biomaterials 2014; 35:3688-96. [DOI: 10.1016/j.biomaterials.2013.12.085] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 12/22/2013] [Indexed: 11/21/2022]
|
14
|
Nilsson B, Nilsson Ekdahl K. The tick-over theory revisited: Is C3 a contact-activated protein? Immunobiology 2012; 217:1106-10. [DOI: 10.1016/j.imbio.2012.07.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 07/15/2012] [Accepted: 07/16/2012] [Indexed: 12/16/2022]
|
15
|
MASP-2 activation is involved in ischemia-related necrotic myocardial injury in humans. Int J Cardiol 2011; 166:499-504. [PMID: 22178059 DOI: 10.1016/j.ijcard.2011.11.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 11/08/2011] [Accepted: 11/24/2011] [Indexed: 01/17/2023]
Abstract
BACKGROUND/OBJECTIVES Insufficient blood supply to the heart results in ischemic injury manifested clinically as myocardial infarction (MI). Following ischemia, inflammation is provoked and related to the clinical outcomes. A recent basic science study indicates that complement factor MASP-2 plays an important role in animal models of ischemia/reperfusion injury. We investigated the role of MASP-2 in human acute myocardial ischemia in two clinical settings: (1) Acute MI, and (2) Open heart surgery. METHODS A total of 187 human subjects were enrolled in this study, including 50 healthy individuals, 27 patients who were diagnosed of coronary artery disease (CAD) but without acute MI, 29 patients with acute MI referred for coronary angiography, and 81 cardiac surgery patients with surgically-induced global heart ischemia. Circulating MASP-2 levels were measured by ELISA. RESULTS MASP-2 levels in the peripheral circulation were significantly reduced in MI patients compared with those of healthy individuals or of CAD patients without acute MI. The hypothesis that MASP-2 was activated during acute myocardial ischemia was evaluated in cardiac patients undergoing surgically-induced global heart ischemia. MASP-2 was found to be significantly reduced in the coronary circulation of such patients, and the reduction of MASP-2 levels correlated independently with the increase of the myocardial necrosis marker, cardiac troponin I. CONCLUSIONS These results indicate an involvement of MASP-2 in ischemia-related necrotic myocardial injury in humans.
Collapse
|
16
|
Forsberg U, Jonsson P, Stegmayr C, Stegmayr B. Microemboli, developed during haemodialysis, pass the lung barrier and may cause ischaemic lesions in organs such as the brain. Nephrol Dial Transplant 2010; 25:2691-5. [PMID: 20305135 DOI: 10.1093/ndt/gfq116] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Chronic haemodialysis (HD) may relieve some medical problems of terminal uraemia, but the life expectancy of patients is still significantly shortened, and there is a greatly increased morbidity. This includes pulmonary morbidity and chronic central nervous system (CNS) abnormalities. Previous studies have shown that a considerable amount of air microbubbles emanate within the blood lines of the dialysis device and pass the air detector without sounding an alarm. The aim of this study was to investigate whether microemboli can pass to the patient and whether they could be detected in the carotid artery. METHODS A total of 54 patients on chronic HD (16 with central dialysis catheter) were investigated with an ultrasound detector (Hatteland, Røyken, Norway) for the presence of microemboli at the arteriovenous (AV) fistula/graft and at the common carotid artery before and during HD. Measurements were taken for 2 and 5 min, respectively. Non-parametric paired statistics were used (Wilcoxon). RESULTS The median number (range) and mean +/- SD of microembolic signals detected at the AV access site before commencing dialysis and during HD were 0 (0-3) and 0.2+/- 0.5 versus 4 (0-85) and 13.5 +/- 20 (P = 0.000); at the carotid artery, 1 (0-14) and 1.7 +/- 2.9 versus 2 (0-36) and 3.5 +/- 5.8 (P = 0.008). CONCLUSIONS The infused and returning fluid from HD devices contains air microbubbles that enter the patient without triggering any alarms. These small emboli pass the lung and may cause ischaemic lesions in organs supported by the arterial circuit, such as the brain.
Collapse
Affiliation(s)
- Ulf Forsberg
- Medicin-Geriatriska Kliniken, Skelleftea lasarett, Lasarettsvagen 29, Skelleftea, Sweden.
| | | | | | | |
Collapse
|
17
|
Abstract
Complement plays a vital role in the body's defence systems. Cardiopulmonary bypass induces a detrimental inflammatory reaction in which the complement system is known to participate through direct effects as well as through activation of neutrophils, platelets and endothelial cells. On the other hand, it has been suggested that in the setting of cardiopulmonary bypass, complement may be activated by neutrophils, perhaps due to fragmentation caused by the heart-lung machine. We therefore investigated whether intact or fragmented neutrophils were able to activate the complement system, and whether neutrophil-platelet interaction could influence such complement activation. Lepirudin-anticoagulated plasma was incubated at 37 degrees C with resting or activated intact neutrophils or neutrophils combined with platelets, or increasing amounts of fragmented neutrophils. Complement activation was evaluated by measurement of C1rs-C1 inhibitor complexes, C4bc, C3bBbP, C3bc, C5a and sC5b-9. We found significant activation of complement only by unphysiological doses of fragmented neutrophils or supernatant from fragmented neutrophils, consistent with a limited clinical significance related to neutrophil destruction during cardiopulmonary bypass. Unstimulated neutrophils induced C3bPBb formation but little formation of other activation products, indicating an increased C3 hydrolysis which was kept under control by regulatory mechanisms. Neutrophils and platelets combined increased classical activation and decreased alternative activation, similar to the findings with platelets alone. Our data confirm that in the setting of acute neutrophil fragmentation or activation, complement activation is much more important in the inflammatory network as an event upstream to neutrophil activation than vice versa.
Collapse
Affiliation(s)
- A E Asberg
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | |
Collapse
|
18
|
The tick-over theory revisited: formation and regulation of the soluble alternative complement C3 convertase (C3(H2O)Bb). Mol Immunol 2007; 45:2370-9. [PMID: 18096230 DOI: 10.1016/j.molimm.2007.11.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 10/19/2007] [Accepted: 11/08/2007] [Indexed: 11/20/2022]
Abstract
The molecular interactions between the components of the C3 convertase of the alternative pathway (AP) of complement and its regulators, in both surface-bound and fluid-phase form, are still incompletely understood. The fact that the AP convertase is labile makes studies difficult to perform. According to the so called tick-over theory, hydrolyzed C3, called C3(H(2)O), forms the initial convertase in fluid phase together with factor B. In the present study, we have applied western blot analysis and ELISA together with fluorescence resonance energy transfer (FRET) to study the formation of the fluid-phase AP convertases C3(H(2)O)Bb and C3bBb and their regulation by factor H and factor I at specific time points and, with FRET, in real time. In our hands, factor B showed a higher affinity for C3(H(2)O) than for C3b, although in both cases it was readily activated to Bb. However, the convertase activity of C3bBb was approximately twice that of C3(H(2)O)Bb, as monitored by the generation of C3a. But in contrast, the C3(H(2)O)Bb convertase was more resistant to inactivation by factor H and factor I than was the C3bBb convertase. Under conditions that totally inactivated C3bBb, C3(H(2)O)Bb still retained approximately 25% of its initial activity.
Collapse
|
19
|
Nilsson B, Ekdahl KN, Mollnes TE, Lambris JD. The role of complement in biomaterial-induced inflammation. Mol Immunol 2006; 44:82-94. [PMID: 16905192 DOI: 10.1016/j.molimm.2006.06.020] [Citation(s) in RCA: 290] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 06/25/2006] [Accepted: 06/27/2006] [Indexed: 12/11/2022]
Abstract
Biomaterials are regularly used in various types of artificial tissues and organs, such as oxygenators, plasmapheresis equipment, hemodialysers, catheters, prostheses, stents, vascular grafts, miniature pumps, sensors and heart aids. Although progress has been made regarding bioincompatibility, many materials and procedures are associated with side effects, in particular bioincompatibility-induced inflammation, infections and subsequent loss of function. After cardiopulmonary bypass, coagulopathies can occur and lead to cognitive disturbances, stroke and extended hospitalization. Hemodialysis is associated with anaphylatoid reactions that cause whole-body inflammation and may contribute to accelerated arteriosclerosis. Stents cause restenosis and, in severe cases, thrombotic reactions. This situation indicates that there is still a need to try to understand the mechanisms involved in these incompatibility reactions in order to be able to improve the biomaterials and to develop treatments that attenuate the reactions and thereby reduce patients' discomfort, treatment time and cost. This overview deals with the role of complement in the incompatibility reactions that occur when biomaterials come in contact with blood and other body fluids.
Collapse
Affiliation(s)
- Bo Nilsson
- Department of Radiology, Oncology and Clinical Immunology, Division of Clinical Immunology, The Rudbeck Laboratory, University Hospital, Uppsala, Sweden
| | | | | | | |
Collapse
|
20
|
Andersson J, Ekdahl KN, Lambris JD, Nilsson B. Binding of C3 fragments on top of adsorbed plasma proteins during complement activation on a model biomaterial surface. Biomaterials 2005; 26:1477-85. [PMID: 15522749 DOI: 10.1016/j.biomaterials.2004.05.011] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Accepted: 05/26/2004] [Indexed: 10/26/2022]
Abstract
In the present study we investigate whether complement activation in blood in contact with a model biomaterial surface (polystyrene) occurs directly on the material surface or on top of an adsorbed plasma protein layer. Quartz crystal microbalance-dissipation analysis (QCM-D) complemented with enzyme immunoassays and Western blotting were used. QCM-D showed that the surface was immediately covered with a plasma protein film of approximately 8 nm. Complement activation that started concomitantly with the adsorption of the protein film was triggered by a self-limiting classical pathway activation. After adsorption of the protein film, alternative pathway activation provided the bulk of the C3b deposition that added 25% more mass to the surface. The build up of alternative pathway convertase complexes using purified C3 and factors B and D on different protein films as monitored by QCM-D showed that only adsorbed albumin, IgG, but not fibrinogen, allowed C3b binding, convertase assembly and amplification. Western blotting of eluted proteins from the material surface demonstrated that the C3 fragments were covalently bound to other proteins. This is consistent with a model in which the activation is triggered by initiating convertases formed by means of the initially adsorbed proteins and the main C3b binding is mediated by the alternative pathway on top of the adsorbed protein film.
Collapse
Affiliation(s)
- Jonas Andersson
- Department of Oncology, Radiology and Clinical Immunology, Section of Clinical Immunology, Rudbeck Laboratory C5, Uppsala University Hospital, SE-751 85 Uppsala, Sweden
| | | | | | | |
Collapse
|
21
|
Abstract
Based on a literature search, an overview is presented of the pathophysiology of venous and arterial gas embolism in the experimental and clinical environment, as well as the relevance and aims of diagnostics and treatment of gas embolism. The review starts with a few historical observations and then addresses venous air embolism by discussing pulmonary vascular filtration, entrapment, and the clinical occurrence of venous air emboli. The section on arterial gas embolism deals with the main mechanisms involved, coronary and cerebral air embolism (CAE), and the effects of bubbles on the blood-brain barrier. The diagnosis of CAE uses various techniques including ultrasound, perioperative monitoring, computed tomography, brain magnetic resonance imaging and other modalities. The section on therapy starts by addressing the primary treatment goals and the roles of adequate oxygenation and ventilation. Then the rationale for hyperbaric oxygen as a therapy for CAE based on its physiological mode of action is discussed, as well as some aspects of adjuvant drug therapy. A few animal studies are presented, which emphasize the importance of the timing of therapy, and the outcome of patients with air embolism (including clinical patients, divers and submariners) is described.
Collapse
Affiliation(s)
- Robert A van Hulst
- Department of Anesthesiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | |
Collapse
|
22
|
Andersson J, Larsson R, Richter R, Ekdahl KN, Nilsson B. Binding of a model regulator of complement activation (RCA) to a biomaterial surface: surface-bound factor H inhibits complement activation. Biomaterials 2001; 22:2435-43. [PMID: 11511041 DOI: 10.1016/s0142-9612(00)00431-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The complement system is an important inflammatory mediator during procedures such as cardiopulmonary bypass and hemodialysis when blood is exposed to large areas of biomaterial surface. This contact between blood and the biomaterials of implants and extracorporeal circuits leads to an inflammatory response mediated by the complement system. The aim of this study was to assess the ability of a complement regulator (factor H) immobilised on a biomaterial surface to inhibit complement cascade mediated inflammatory responses. The cross-linker N-succinimidyl 3-(2-pyridyldithio) propionate was used to immobilise factor H on a model biomaterial surface without affecting the biological activity of the inhibitor. Binding of factor H was then characterised using quartz crystal microbalance-dissipation (QCM-D) and enzyme immunoassays for products of complement activation: bound C3 fragments and soluble C3a, sC5b-9, and C1s-C1INA. Immobilised factor H reduced the amount C3 fragments deposited on the biomaterial surface after incubation with serum, plasma. or whole blood. In addition, lower levels of soluble C3a and sC5b-9 were generated after incubation with whole blood. In summary, we have demonstrated that complement activation on a highly activating model surface can be inhibited by immobilised factor H and have defined prerequisites for the preparation of future biomaterial surfaces with immobilised regulators of complement activation.
Collapse
Affiliation(s)
- J Andersson
- Section of Clinical Immunology, University Hospital, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
23
|
Fung M, Loubser PG, Undar A, Mueller M, Sun C, Sun WN, Vaughn WK, Fraser CD. Inhibition of complement, neutrophil, and platelet activation by an anti-factor D monoclonal antibody in simulated cardiopulmonary bypass circuits. J Thorac Cardiovasc Surg 2001; 122:113-22. [PMID: 11436043 DOI: 10.1067/mtc.2001.114777] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Patients undergoing cardiopulmonary bypass frequently manifest generalized systemic inflammation and occasionally manifest serious multiorgan failure. Inflammatory responses of bypass are triggered by contact of blood with artificial surfaces of the bypass circuits, surgical trauma, and ischemia-reperfusion injury. We studied the effects of specific inhibition of the alternative complement cascade by using an anti-factor D monoclonal antibody (166-32) in extracorporeal circulation of human whole blood used as a simulated model of cardiopulmonary bypass. METHODS Five healthy blood donors were used in the study. Monoclonal antibody 166-32 was added to freshly collected, heparinized human blood recirculated in a pediatric cardiopulmonary bypass circuit at a final concentration of 18 microg/mL. An irrelevant monoclonal antibody was used as a negative control with the same donor blood in a parallel bypass circuit on the same day. Blood samples were collected at different time points during recirculation for measurement of activation of complement, neutrophils, and platelets by immunofluorocytometric methods and enzyme-linked immunosorbent assays. RESULTS Monoclonal antibody 166-32 inhibited the alternative complement activation and the production of Bb, C3a, sC5b-9, and C5a. Upregulation of CD11b on neutrophils and CD62P on platelets was also significantly inhibited by monoclonal antibody 166-32. This is consistent with the inhibition of the release of neutrophil-specific myeloperoxidase and elastase and platelet thrombospondin. The production of proinflammatory cytokine interleukin 8 was also suppressed by the antibody. CONCLUSIONS The alternative complement cascade is predominantly activated during extracorporeal circulation. Anti-factor D monoclonal antibody 166-32 is effective in inhibiting the activation of complement, neutrophils, and platelets. Inhibition of the alternative complement pathway by targeting factor D could be useful in reducing systemic inflammation in patients undergoing cardiopulmonary bypass.
Collapse
Affiliation(s)
- M Fung
- Tanox, Inc, Houston, TX, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Soulika AM, Khan MM, Hattori T, Bowen FW, Richardson BA, Hack CE, Sahu A, Edmunds LH, Lambris JD. Inhibition of heparin/protamine complex-induced complement activation by Compstatin in baboons. Clin Immunol 2000; 96:212-21. [PMID: 10964539 DOI: 10.1006/clim.2000.4903] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Complement activation products are major components of the inflammatory response induced by cardiac surgery and cardiopulmonary bypass which contribute to postoperative organ dysfunction, fluid accumulation, and morbidity. Activation of the complement system occurs during extracorporeal circulation, during reperfusion of ischemic tissue, and after the formation of heparin-protamine complexes. In this study we examine the efficacy of Compstatin, a recently discovered peptide inhibitor of complement, in preventing heparin/protamine-induced complement activation in baboons. The study was performed in baboons because Compstatin binds to baboon C3 and is resistant to proteolytic cleavage in baboon blood (similar to humans); Compstatin inhibits only the activation of primates' complement system. After testing various doses and administration regimens, Compstatin produced complete inhibition at a total dose of 21 mg/kg when given as a combination of bolus injection and infusion. Compstatin completely inhibited in vivo heparin/protamine-induced complement activation without adverse effects on heart rate or systemic arterial, central venous, and pulmonary arterial pressures. This study indicates that Compstatin is a safe and effective complement inhibitor that has the potential to prevent complement activation during and after clinical cardiac surgery. Furthermore, Compstatin can serve as the prototype for designing an orally administrated drug.
Collapse
Affiliation(s)
- A M Soulika
- Department of Pathology and Laboratory Medicine School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sahu A, Lambris JD. Complement inhibitors: a resurgent concept in anti-inflammatory therapeutics. IMMUNOPHARMACOLOGY 2000; 49:133-48. [PMID: 10904113 DOI: 10.1016/s0162-3109(00)80299-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In addition to its essential role in immune defense, the complement system contributes to tissue damage in many clinical conditions. Thus, there is a pressing need to develop therapeutically effective complement inhibitors to prevent these adverse effects. This concept, though old, received little scientific attention until recently. Data from animal models of diseases that have been produced using complement-deficient, knockout, and transgenic animals, as well as data demonstrating that complement proteins are produced in many important tissue sites (including the brain) have attracted the interest of many basic research scientists and applied scientists from the biotechnology field and larger pharmaceutical firms. This resurgence of interest has generated a wealth of new information in the field of complement inhibition. In this article, we comprehensively review up-to-date information in the field of complement inhibitors.
Collapse
Affiliation(s)
- A Sahu
- Protein Chemistry Laboratory, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | |
Collapse
|
26
|
Compstatin Inhibits Complement and Cellular Activation in Whole Blood in Two Models of Extracorporeal Circulation. Blood 1998. [DOI: 10.1182/blood.v92.5.1661] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractRecently, a C3-binding cyclic synthetic peptide (Compstatin) has been identified that binds to complement component C3 and inhibits complement activation. Here we have examined the influence of Compstatin on complement activation and its indirect effects on cellular responses in whole blood in two models for extracorporeal circulation. Compstatin effectively inhibited the generation of C3a and sC5b-9 and the binding of C3/ C3 fragments to the polymer surface. As a result of the inhibition of complement activation, the activation of polymorphonuclear leukocytes (PMNs; as assessed by the expression of CD11b) and the binding of these cells (CD16+) to the polymer surface were almost completely lost. In contrast, blood cell counts were not affected. Using surface plasmon resonance technology, we have confirmed that Compstatin exerts its inhibitory effect on complement activation by binding to native C3. These data show that complement activation, leading to activation and binding of PMNs to the biomaterial surface, can be abolished by the addition of Compstatin. The properties of Compstatin make Compstatin a promising drug for use in extracorporeal circuits to avoid bioincompatibility reactions, eg, during cardiopulmonary bypass, but also a favorable precursor peptide for the development of an anticomplement drug for oral use.© 1998 by The American Society of Hematology.
Collapse
|
27
|
Compstatin Inhibits Complement and Cellular Activation in Whole Blood in Two Models of Extracorporeal Circulation. Blood 1998. [DOI: 10.1182/blood.v92.5.1661.417k34_1661_1667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently, a C3-binding cyclic synthetic peptide (Compstatin) has been identified that binds to complement component C3 and inhibits complement activation. Here we have examined the influence of Compstatin on complement activation and its indirect effects on cellular responses in whole blood in two models for extracorporeal circulation. Compstatin effectively inhibited the generation of C3a and sC5b-9 and the binding of C3/ C3 fragments to the polymer surface. As a result of the inhibition of complement activation, the activation of polymorphonuclear leukocytes (PMNs; as assessed by the expression of CD11b) and the binding of these cells (CD16+) to the polymer surface were almost completely lost. In contrast, blood cell counts were not affected. Using surface plasmon resonance technology, we have confirmed that Compstatin exerts its inhibitory effect on complement activation by binding to native C3. These data show that complement activation, leading to activation and binding of PMNs to the biomaterial surface, can be abolished by the addition of Compstatin. The properties of Compstatin make Compstatin a promising drug for use in extracorporeal circuits to avoid bioincompatibility reactions, eg, during cardiopulmonary bypass, but also a favorable precursor peptide for the development of an anticomplement drug for oral use.© 1998 by The American Society of Hematology.
Collapse
|
28
|
Morikis D, Assa-Munt N, Sahu A, Lambris JD. Solution structure of Compstatin, a potent complement inhibitor. Protein Sci 1998; 7:619-27. [PMID: 9541394 PMCID: PMC2143948 DOI: 10.1002/pro.5560070311] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The third component of complement, C3, plays a central role in activation of the classical, alternative, and lectin pathways of complement activation. Recently, we have identified a 13-residue cyclic peptide (named Compstatin) that specifically binds to C3 and inhibits complement activation. To investigate the topology and the contribution of each critical residue to the binding of Compstatin to C3, we have now determined the solution structure using 2D NMR techniques; we have also synthesized substitution analogues and used these to study the structure-function relationships involved. Finally, we have generated an ensemble of a family of solution structures of the peptide with a hybrid distance geometry-restrained simulated-annealing methodology, using distance, dihedral angle, and 3J(NH-Halpha)-coupling constant restraints. The Compstatin structure contained a type I beta-turn comprising the segment Gln5-Asp6-Trp7-Gly8. Preference for packing of the hydrophobic side chains of Val3, Val4, and Trp7 was observed. The generated structure was also analyzed for consistency using NMR parameters such as NOE connectivity patterns, 3J(NH-Halpha)-coupling constants, and chemical shifts. Analysis of Ala substitution analogues suggested that Val3, Gln5, Asp6, Trp7, and Gly8 contribute significantly to the inhibitory activity of the peptide. Substitution of Gly8 caused a 100-fold decrease in inhibitory potency. In contrast, substitution of Val4, His9, His10, and Arg11 resulted in minimal change in the activity. These findings indicate that specific side-chain interactions and the beta-turn are critical for preservation of the conformational stability of Compstatin and they might be significant for maintaining the functional activity of Compstatin.
Collapse
Affiliation(s)
- D Morikis
- The Burnham Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
29
|
Sahu A, Sunyer JO, Moore WT, Sarrias MR, Soulika AM, Lambris JD. Structure, functions, and evolution of the third complement component and viral molecular mimicry. Immunol Res 1998; 17:109-21. [PMID: 9479573 DOI: 10.1007/bf02786436] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The third component of the complement system, C3, is a common denominator in the activation of the classical, alternative, and lectin pathways. The ability of C3 molecule to interact with at least 20 different proteins makes it the most versatile component of this system. Since these interactions are important for phagocytic, immunoregulatory, and immune evasion mechanisms, the analysis of its structure and functions has been a subject of intense research. Here we review our current work on the C3-ligand interactions, C3-related viral molecular mimicry, evolution of the complement system, and identification of C3-based complement inhibitors.
Collapse
Affiliation(s)
- A Sahu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | | | |
Collapse
|
30
|
Larsson R, Elgue G, Larsson A, Ekdahl KN, Nilsson UR, Nilsson B. Inhibition of complement activation by soluble recombinant CR1 under conditions resembling those in a cardiopulmonary circuit: reduced up-regulation of CD11b and complete abrogation of binding of PMNs to the biomaterial surface. IMMUNOPHARMACOLOGY 1997; 38:119-27. [PMID: 9476123 DOI: 10.1016/s0162-3109(97)00064-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The influence of soluble recombinant CR1 (sCR1) on complement activation, and its indirect effects on the coagulation system and cellular responses were assessed in two models for the study of blood/surface and blood/air interactions, as are encountered in e.g. cardiopulmonary bypass circuits. The concentrations of C3a and sC5b-9 and the amount of bound C3/C3 fragments were analyzed as indicators of complement activation. Thrombin-antithrombin complexes, the platelet count, surface-ATP, beta-thromboglobulin, and the expression of CD11b on leukocytes were the parameters analyzed to reflect coagulation and cellular responses. In addition, immunochemical analyses of the phenotypes of surface-bound leukocytes and platelets were performed. Recombinant sCR1, at doses ranging between 0.1-0.25 mg/ml, was found to completely inhibit the generation of sC5b-9, and of C3a by two thirds; the binding of C3 and/or C3 fragments to the surface was almost entirely abolished. As a result of the inhibition of complement activation, the expression of CD11b on PMNs, and the binding of these cells to the biomaterial surface was almost completely lost. In contrast, the thrombin-antithrombin complexes, the platelet count, and the adherence of platelets to the surface, as reflected by the ATP binding and the release of beta-thromboglobulin, were not affected. These data show that complement activation, in association with extra-corporeal treatment, causes activation and binding of PMNs to the biomaterial and that these effects can be completely abolished by the addition of soluble recombinant sCR1.
Collapse
Affiliation(s)
- R Larsson
- Department of Clinical Chemistry, University Hospital, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
31
|
Belboul A, al-Khaja N. Does heparin coating improve biocompatibility? A study on complement, blood cells and postoperative morbidity during cardiac surgery. Perfusion 1997; 12:385-91. [PMID: 9413851 DOI: 10.1177/026765919701200607] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To evaluate whether the effect of heparin coating the extracorporeal circuit resulted in differences in patient outcome and haemostatic alteration, 24 patients undergoing elective, isolated coronary artery bypass were randomized prospectively to cardiopulmonary bypass (CPB) with heparin-coated circuits (group H, n = 12) or uncoated circuits (group C, n = 12). The technique of CPB, heparinization and its reversal were the same in both groups. We studied complement status (C3d, C3, C3d/C3, C4 and C-function), white blood cell counts with differentiation and the postoperative morbidity. The results confirmed that CPB activates complement and increases neutrophils in both the H and C groups. A significantly lower level of leucocytosis was seen in group H compared to the C group (p < 0.05). The complement function via the classical pathway (C-function), expressed as a percentage of the function of a reference serum pool (the values of normal sera were 75-125%), was significantly reduced in both heparin-coated and uncoated circuits (p < 0.05). There was no significant intergroup difference regarding C3, C3d/C3, C4 and C-function during the study period. A lower frequency of postoperative morbidity was present in the H group. We conclude that heparin-coated surfaces elicit less leucocytosis and decrease postoperative morbidity in patients undergoing cardiac surgery but do not cause a significant difference regarding activation of the complement system as reported by many other investigators.
Collapse
Affiliation(s)
- A Belboul
- Department of Thoracic and Cardiovascular Surgery, University of Gothenbourg, Sahlgrenska Hospital, Sweden
| | | |
Collapse
|
32
|
Høgevold HE, Moen O, Fosse E, Venge P, Bråten J, Andersson C, Lyberg T. Effects of heparin coating on the expression of CD11b, CD11c and CD62L by leucocytes in extracorporeal circulation in vitro. Perfusion 1997; 12:9-20. [PMID: 9131716 DOI: 10.1177/026765919701200103] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Leucocyte adhesion molecules are involved in the leucocyte-endothelial interaction and in the activation of coagulation and binding of complement and endotoxin. Thus, they are important in inflammation, systemic acute phase reaction, ischaemia reperfusion injury and resistance against infections. The expression of the adhesion molecules CD11b, CD11c and CD62L on leucocytes and changes in plasma products of neutrophil activation (myeloperoxidase, lactoferrin) and complement activation (C3bc, SC5b-9 (TCC)) were examined in an extracorporeal circulation (ECC) model and the effects of Carmeda bioactive surface (CBAS) heparin coating (n = 7) of the circuits were compared to uncoated control circuits (n = 5). In this model, new 'unactivated' cells mobilized from the bone marrow could not interfere with descriptive measures of cell activation as seen in in vivo studies. In the control group, CD11b and CD11c were upregulated on monocytes and granulocytes during ECC, whereas CD62L was downregulated. Heparin coating reduced the increase in CD11b and CD11c on granulocytes (p < 0.02 at 2 h), but the delayed increase in CD11c on monocytes and the delayed downregulation of CD62L on granulocytes and monocytes did not reach statistical significance. Further, heparin coating also reduced the initial decrease in the absolute cell counts of monocytes and granulocytes (p = 0.01 at 2 h), reflecting reduced adhesion to the oxygenator/tubing. The increases in plasma myeloperoxidase, lactoferrin, C3bc and TCC were lower in the heparin-coated group compared to the control group. The increases in plasma myeloperoxidase and lactoferrin correlated significantly to the increase in CD11b (r = 0.71, p = 0.02 and r = 0.64, p = 0.05, respectively) and CD11c (r = 0.72, p = 0.008 and r = 0.72, p = 0.008, respectively) on granulocytes, suggesting interacting regulatory pathways in the process of neutrophil adhesion, activation and degranulation. Thus, in this in vitro ECC model, heparin coating of oxygenator/tubing sets reduced leucocyte activation and leucocyte adhesion-related phenomena.
Collapse
Affiliation(s)
- H E Høgevold
- Department of Surgery and Research Forum, Ullevål Hospital, University of Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
33
|
Lundberg F, Lea T, Ljungh A. Vitronectin-binding staphylococci enhance surface-associated complement activation. Infect Immun 1997; 65:897-902. [PMID: 9038294 PMCID: PMC175066 DOI: 10.1128/iai.65.3.897-902.1997] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Coagulase-negative staphylococci are well recognized in medical device-associated infections. Complement activation is known to occur at the biomaterial surface, resulting in unspecific inflammation around the biomaterial. The human serum protein vitronectin (Vn), a potent inhibitor of complement activation by formation of an inactive terminal complement complex, adsorbs to biomaterial surfaces in contact with blood. In this report, we discuss the possibility that surface-immobilized Vn inhibits complement activation and the effect of Vn-binding staphylococci on complement activation on surfaces precoated with Vn. The extent of complement activation was measured with a rabbit anti-human C3c antibody and a mouse anti-human C9 antibody, raised against the neoepitope of C9. Our data show that Vn immobilized on a biomaterial surface retains its ability to inhibit complement activation. The additive complement activation-inhibitory effect of Vn on a heparinized surface is very small. In the presence of Vn-binding strain, Staphylococcus hemolyticus SM131, complement activation on a surface precoated with Vn occurred as it did in the absence of Vn precoating. For S. epidermidis 3380, which does not express binding of Vn, complement activation on a Vn-precoated surface was significantly decreased. The results could be repeated on heparinized surfaces. These data suggest that Vn adsorbed to a biomaterial surface may serve to protect against surface-associated complement activation. Furthermore, Vn-binding staphylococcal cells may enhance surface-associated complement activation by blocking the inhibitory effect of preadsorbed Vn.
Collapse
Affiliation(s)
- F Lundberg
- Department of Medical Microbiology, Lund University, Sweden
| | | | | |
Collapse
|
34
|
Shapira OM, Aldea GS, Zelingher J, Volpe C, Fitzgerald C, DeAndrade K, Lazar HL, Shemin RJ. Enhanced blood conservation and improved clinical outcome after valve surgery using heparin-bonded cardiopulmonary bypass circuits. J Card Surg 1996; 11:307-17. [PMID: 8969375 DOI: 10.1111/j.1540-8191.1996.tb00055.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Recently, heparin-bonded (HBC) cardiopulmonary bypass circuits (CPB) were formed to be associated with improved outcome after coronary artery bypass grafting. There are very few reports on the efficacy and safety of these circuits in valve surgery. METHODS A retrospective cohort study of all patient populations undergoing first time valve surgery from 1992 to 1995 in a tertiary teaching hospital. Outcomes of 120 patients undergoing valve surgery using HBC and lower anticoagulation HBC were compared to 232 patients treated with conventional circuits and full heparinization (nonheparin-bonded-circuit [NHBC]). RESULTS Postoperative 24-hour chest tube drainage (558 +/- 466 mL vs 1054 +/- 911 mL, p < 0.00001), and reoperation for bleeding (2.5% vs 8.2%, p = 0.04) were lower in the HBC group. HBC patients required significantly less transfusions (total donor exposure of 6.9 +/- 13.0 units vs 18.6 +/- 26.2 units, p < 0.00001). Multiple linear regression analysis identified CPB time as a predictor of increased homologous blood transfusions, and the use of HBC, a large body surface area, and elective procedure as predictors of decreased transfusions. Perioperative mortality was similar (HBC 2.5%, NHBC 4.7%, p = 0.24). Overall complications were lower in the HBC group (42% vs 56.2%, p = 0.02). Perioperative myocardial infarction (0.8% vs 1.3%, p = 0.58) and cerebrovascular accident (3.3% vs 3.9%, p = 0.53) were similar. Two (1.7%) HBC patients had valve re-replacement compared to none in the NHBC (p = 0.22). Multiple logistic regression model revealed that age and CPB time were associated with increased complications, and the use of HBC with reduced complications. CONCLUSION Use of HBCs with lower anticoagulation in valve surgery resulted in a significant reduction of transfusion requirements and improved clinical outcome. Because of a potential for early mechanical valve thrombosis, until further data is available, conventional levels of systemic anticoagulation should be achieved when using HBC in valve surgery.
Collapse
Affiliation(s)
- O M Shapira
- Department of Cardiothoracic Surgery, Boston University Medical Center, Massachusetts 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Gong J, Larsson R, Ekdahl KN, Mollnes TE, Nilsson U, Nilsson B. Tubing loops as a model for cardiopulmonary bypass circuits: both the biomaterial and the blood-gas phase interfaces induce complement activation in an in vitro model. J Clin Immunol 1996; 16:222-9. [PMID: 8840224 DOI: 10.1007/bf01541228] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We describe here a model for the study of blood/surface and blood/air interaction as encountered in cardiopulmonary bypass (CPB) circuits. Polyethylene tubing was filled with serum or blood and closed end to end into loops whereby the volume of the remaining air bubble was inversely varied with respect to that of the fluid. The loops were rotated vertically in a water bath at 37 degrees C. The profiles of C3a, iC3, and TCC generation were similar to those observed at surgery, involving CPB. Soluble heparin and heparan sulfate inhibited both C3a and TCC formation, but surface-conjugated heparin had only a minor effect. Binding of C3 and/or C3 fragments to the heparin surface was much reduced compared to the amine matrix to which heparin was linked, but compared with the polyethylene surface the effect was less pronounced. These data suggest that, in addition to the biomaterial surface, the blood-gas interface seems to play an important role in the activation of complement and that this activation is inhibitable by high concentrations of soluble glucose aminoglycans.
Collapse
Affiliation(s)
- J Gong
- Department of Clinical Immunology and Transfusion Medicine, University Hospital, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
36
|
te Velthuis H, Jansen PG, Hack CE, Eijsman L, Wildevuur CR. Specific complement inhibition with heparin-coated extracorporeal circuits. Ann Thorac Surg 1996; 61:1153-7. [PMID: 8607674 DOI: 10.1016/0003-4975(95)01199-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Although it is well established that heparin-coated extracorporeal circuits reduce complement activation during cardiac operations, little in vivo information is available on the reduction in alternative and classic pathway activation. METHODS In a prospective, randomized study involving patients undergoing coronary artery bypass grafting with standard full heparinization, we compared heparin-coated circuits (Duraflo II) (10 patients) with uncoated circuits (10 patients) and assessed the extent of initiation of complement activation by detecting iC3 (C3b-like C3) concentrations, classic pathway activation by C4b/c (C4b, iC4b, C4c) concentrations, terminal pathway activation by soluble C5b-9 concentrations, and C3 activation by C3a (C3a desArg) and C3b/c (C3b, iC3b, C3c) concentrations. RESULTS Heparin-coated extracorporeal circuits significantly reduced circulating complement activation product C3b/c and soluble C5b-9 concentrations at the end of cardiopulmonary bypass and after protamine sulfate administration compared with the uncoated circuits, but not iC3, C4b/c, or C3a concentrations. CONCLUSIONS Heparin-coated extracorporeal circuits reduce complement activation through the alternative complement pathway, probably at the C3 convertase level, and, consequently, the terminal pathway. C3b/c seems to be a more sensitive marker than C3a to assess complement activation during cardiac operations.
Collapse
Affiliation(s)
- H te Velthuis
- Centre for Cardiopulmonary Surgery Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
37
|
Moen O, Fosse E, Bråten J, Andersson C, Høgåsen K, Mollnes TE, Venge P, Kierulf P. Differences in blood activation related to roller/centrifugal pumps and heparin-coated/uncoated surfaces in a cardiopulmonary bypass model circuit. Perfusion 1996; 11:113-23. [PMID: 8740352 DOI: 10.1177/026765919601100205] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An in vitro model cardiopulmonary bypass (CPB) circuit consisting ot tubing, oxygenator and venous reservoirs with either a roller or a centrifugal pump, and with either heparin-coated (Carmeda Bioactive Surface, CBAS) or uncoated surfaces, was studied with respect to 'blood activation', using small-scale-based blood volume (450 + 500 ml). Sixteen circuits were tested in each pump group, eight with and eight without heparin-coated surfaces, by circulating heparinized fresh human blood for 72 hours at 30 degrees C. Blood plasma, sampled at defined intervals, was analysed for haemolysis (lactate dehydrogenase and potassium), complement activation (C3bc and C5b-9 (TCC)), complement lytic inhibitors (vitronectin and clusterin), coagulation activation (fibrinopeptide A), granulocyte (lactoferrin and myeloperoxidase) and platelet (beta-thromboglobulin) activation and contaminating endotoxin. The heparin coating significantly reduced the concentrations of C3bc, TCC, fibrinopeptide A, lactoferrin, myeloperoxidase and beta-thromboglobulin. The two pump types did not differ with respect to these parameters, but the roller pump caused significantly higher increases in plasma LDH and potassium and significantly greater reductions in clusterin and vitronectin than the centrifugal pump. Endotoxin concentration was low at the start and after 24 hours in all groups. These results confirm that heparin-coated CPB surfaces reduce blood activation, and suggest that centrifugal pumps cause less haemolysis and less reduction in lytic complement inhibitors than roller pumps.
Collapse
Affiliation(s)
- O Moen
- Department of Cardiothoracic Surgery, University of Oslo, Ullevaål Hospital, Norway
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Hornick P, George A. Blood contact activation: pathophysiological effects and therapeutic approaches. Perfusion 1996; 11:3-19. [PMID: 8904322 DOI: 10.1177/026765919601100102] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- P Hornick
- Departments of Cardiothoracic Surgery and Immunology, Royal Postgraduate Medical School, Hammersmith Hospital, London, UK
| | | |
Collapse
|
39
|
Moen O, Fosse E, Brockmeier V, Andersson C, Mollnes TE, Høgåsen K, Venge P. Disparity in blood activation by two different heparin-coated cardiopulmonary bypass systems. Ann Thorac Surg 1995; 60:1317-23. [PMID: 8526620 DOI: 10.1016/0003-4975(95)00777-i] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Several studies have indicated reduced "blood activation" in heparin-coated cardiopulmonary bypass systems. The present study compares the effect of two different heparin coatings on different blood activation indices. METHODS Low-risk patients (n = 40) were randomized to coronary artery bypass grafting using cardiopulmonary bypass with surfaces coated entirely by either the Duraflo II heparin coat or the Carmeda Biological Active Surface, or with identical uncoated equipment. In all cases, a standard systemic heparin dosage was used. Complement activation (C3 activation products C3bc and C3a and formation of fluid phase terminal SC5b-9 complement complex), neutrophil activation (lactoferrin and myeloperoxidase), and lytic inhibitors (vitronectin and clusterin) were quantified during cardiopulmonary bypass and 6 hours postoperatively. RESULTS Heparin coating by either method reduced the formation of terminal SC5b-9 complement complex and the release of lactoferrin and myeloperoxidase compared with uncoated systems. Lactoferrin and myeloperoxidase levels increased significantly during cardiopulmonary bypass in the Duraflo II group, whereas no significant increase was observed in the Carmeda Biological Active Surface group. The least formation of terminal SC5b-9 complement complex and neutrophil activation was observed with the Maxima Carmeda Biological Active Surface-coated equipment. The vitronectin and clusterin concentrations were significantly less reduced in the Duraflo II compared with the control group. This study underlines the importance of terminal SC5b-9 complement complex as a suitable marker in the evaluation of complement activation during cardiopulmonary bypass. CONCLUSIONS Both heparin coatings reduce blood activation, probably more so with Carmeda Biological Active Surface than with Duraflo II.
Collapse
Affiliation(s)
- O Moen
- Department of Surgery, Institute for Experimental Research, Ullevaal Hospital, Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
40
|
Pekna M, Hagman L, Haldén E, Nilsson UR, Nilsson B, Thelin S. Complement activation during cardiopulmonary bypass: effects of immobilized heparin. Ann Thorac Surg 1994; 58:421-4. [PMID: 8067842 DOI: 10.1016/0003-4975(94)92219-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The role of complement in biocompatibility reactions and the correlation between complement activation during cardiopulmonary bypass (CPB) and postperfusion syndrome have inspired attempts to improve the biocompatibility of extracorporeal blood oxygenation devices. Here we assessed the effect of immobilized heparin on the generation of C3a and terminal complement complexes during CPB. Thirty patients undergoing aortocoronary bypass were randomized to CPB with either heparin-coated (Duraflo II; Bentley, Irvine, CA) or noncoated control membrane oxygenators (Univox; Bentley). A standard dose of heparin (300 IU/kg) was given to the control group while the heparin dose was reduced to 30% (100 IU/kg) in the heparin-coated group. Significantly lower levels of terminal complement complexes were detected in the heparin-coated group by the end of CPB. From 28 +/- 5 AU/mL (heparin-coated group) and 26 +/- 3 AU/mL (control group, mean +/- standard error of the mean) the terminal complement complex levels increased to 391 +/- 35 AU/mL and 602 +/- 47 AU/mL, respectively (p < 0.002). This difference was still apparent 180 minutes after CPB. Although there was no difference in C3a levels between the two groups at the end of CPB, C3a levels were significantly lower in the heparin-coated group 30 minutes after CPB (194 +/- 18 ng/mL and 307 +/- 18 ng/mL in heparin-coated and control groups, respectively; p < 0.001). We conclude that the heparin-coated surface is more biocompatible with regard to complement activation than is the ordinary unmodified surface in extracorporeal circuits.
Collapse
Affiliation(s)
- M Pekna
- Department of Clinical Immunology and Transfusion Medicine, University Hospital, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|