1
|
Susukida T, Aoki S, Shirayanagi T, Yamada Y, Kuwahara S, Ito K. HLA transgenic mice: application in reproducing idiosyncratic drug toxicity. Drug Metab Rev 2020; 52:540-567. [PMID: 32847422 DOI: 10.1080/03602532.2020.1800725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Various types of transgenic mice carrying either class I or II human leukocyte antigen (HLA) molecules are readily available, and reports describing their use in a variety of studies have been published for more than 30 years. Examples of their use include the discovery of HLA-specific antigens against viral infection as well as the reproduction of HLA-mediated autoimmune diseases for the development of therapeutic strategies. Recently, HLA transgenic mice have been used to reproduce HLA-mediated idiosyncratic drug toxicity (IDT), a rare and unpredictable adverse drug reaction that can result in death. For example, abacavir-induced IDT has successfully been reproduced in HLA-B*57:01 transgenic mice. Several reports using HLA transgenic mice for IDT have proven the utility of this concept for the evaluation of IDT using various HLA allele combinations and drugs. It has become apparent that such models may be a valuable tool to investigate the mechanisms underlying HLA-mediated IDT. This review summarizes the latest findings in the area of HLA transgenic mouse models and discusses the current challenges that must be overcome to maximize the potential of this unique animal model.
Collapse
Affiliation(s)
- Takeshi Susukida
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.,Laboratory of Cancer Biology and Immunology, Section of Host Defenses, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Shigeki Aoki
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Tomohiro Shirayanagi
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Yushiro Yamada
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Saki Kuwahara
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Kousei Ito
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
2
|
Kovalova N, Knierman MD, Brown-Augsburger PL, Wroblewski VJ, Chlewicki LK. Correlation between antidrug antibodies, pre-existing antidrug reactivity, and immunogenetics (MHC class II alleles) in cynomolgus macaque. Immunogenetics 2019; 71:605-615. [PMID: 31776588 DOI: 10.1007/s00251-019-01136-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/11/2019] [Indexed: 01/05/2023]
Abstract
Immunogenicity of biomolecules is one of the largest concerns in biological therapeutic drug development. Adverse immune responses as a result of immunogenicity to biotherapeutics range from mild hypersensitivity reactions to potentially life-threatening anaphylactic reactions and can negatively impact human health and drug efficacy. Numerous confounding patient-, product- or treatment-related factors can influence the development of an immune reaction against therapeutic proteins. The goal of this study was to investigate the relationship between pre-existing drug reactivity (PE-ADA), individual immunogenetics (MHC class II haplotypes), and development of treatment-induced antidrug antibodies (TE-ADA) in cynomolgus macaque. PE-ADA refers to the presence of antibodies immunoreactive against the biotherapeutic in treatment-naïve individuals. We observed that PE-ADA frequency against four different bispecific antibodies in naïve cynomolgus macaque is similar to that reported in humans. Additionally, we report a trend towards an increased incidence of TE-ADA development in macaques with high PE-ADA levels. In order to explore the relationship between MHC class II alleles and risk of ADA development, we obtained full-length MHC class II sequences from 60 cynomolgus macaques in our colony. We identified a total of 248 DR, DP, and DQ alleles and 236 unique haplotypes in our cohort indicating a genetically complex set of animals potentially reflective of the human population. Based on our observations, we propose the evaluation of the magnitude/frequency of pre-existing reactivity and consideration of MHC class II genetics as additional useful tools to understand the immunogenic potential of biotherapeutics.
Collapse
Affiliation(s)
- Natalia Kovalova
- Department of Drug Disposition, Lilly Research Laboratories; Eli Lilly and Company; Lilly Corporate Center, Indianapolis, IN, USA
| | | | - Patricia L Brown-Augsburger
- Department of Drug Disposition, Lilly Research Laboratories; Eli Lilly and Company; Lilly Corporate Center, Indianapolis, IN, USA
| | - Victor J Wroblewski
- Indiana Biosciences Research Institute, Indiana University - Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Lukasz K Chlewicki
- Department of Drug Disposition, Lilly Research Laboratories; Eli Lilly and Company; Lilly Corporate Center, Indianapolis, IN, USA.
| |
Collapse
|
3
|
Sun S, Summachiwakij S, Schneck O, Morshed SA, Ma R, Latif R, Davies TF. Antigenic "Hot- Spots" on the TSH Receptor Hinge Region. Front Endocrinol (Lausanne) 2019; 9:765. [PMID: 30666231 PMCID: PMC6330735 DOI: 10.3389/fendo.2018.00765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/05/2018] [Indexed: 12/29/2022] Open
Abstract
The TSH receptor (TSHR) hinge region was previously considered an inert scaffold connecting the leucine-rich ectodomain to the transmembrane region of the receptor. However, mutation studies have established the hinge region to be an extended hormone-binding site in addition to containing a region which is cleaved thus dividing the receptor intoα | ' (A) and β (B) subunits. Furthermore, we have shown in-vitro that monoclonal antibodies directed to the cleaved part of the hinge region (often termed "neutral" antibodies) can induce thyroid cell apoptosis in the absence of cyclic AMP signaling. The demonstration of neutral antibodies in patients with Graves' disease suggests their potential involvement in disease pathology thus making the hinge a potentially important antigenic target. Here we examine the evolution of the antibody immune response to the entire TSHR hinge region (aa280-410) after intense immunization with full-length TSHR cDNA in a mouse (BALB/c) model in order to examine the immunogenicity of this critical receptor structure. We found that TSHR hinge region antibodies were detected in 95% of the immunized mice. The antibody responses were largely restricted to residues 352-410 covering three major epitopes and not merely confined to the cleaved portion. These data indicated the presence of novel antigenic "hotspots" within the carboxyl terminus of the hinge region and demonstrate that the hinge region of the TSHR contains an immunogenic pocket that is involved in the highly heterogeneous immune response to the TSHR. The presence of such TSHR antibodies suggests that they may play an active role in the immune repertoire marshaled against the TSHR and may influence the Graves' disease phenotype.
Collapse
Affiliation(s)
| | | | | | | | | | - Rauf Latif
- Thyroid Research Unit, Department of Medicine, James J. Peters VA Medical Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | |
Collapse
|
4
|
McLachlan SM, Rapoport B. Thyroid Autoantibodies Display both "Original Antigenic Sin" and Epitope Spreading. Front Immunol 2017; 8:1845. [PMID: 29326719 PMCID: PMC5742354 DOI: 10.3389/fimmu.2017.01845] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/06/2017] [Indexed: 11/13/2022] Open
Abstract
Evidence for original antigenic sin in spontaneous thyroid autoimmunity is revealed by autoantibody interactions with immunodominant regions on thyroid autoantigens, thyroglobulin (Tg), thyroid peroxidase (TPO), and the thyrotropin receptor (TSHR) A-subunit. In contrast, antibodies induced by immunization of rabbits or mice recognize diverse epitopes. Recognition of immunodominant regions persists despite fluctuations in autoantibody levels following treatment or over time. The enhancement of spontaneously arising pathogenic TSHR antibodies in transgenic human thyrotropin receptor/NOD.H2h4 mice by injecting a non-pathogenic form of TSHR A-subunit protein also provides evidence for original antigenic sin. From other studies, antigen presentation by B cells, not dendritic cells, is likely responsible for original antigenic sin. Recognition of restricted epitopes on the large glycosylated thyroid autoantigens (60-kDa A-subunit, 100-kDa TPO, and 600-kDa Tg) facilitates exploring the amino acid locations in the immunodominant regions. Epitope spreading has also been revealed by autoantibodies in thyroid autoimmunity. In humans, and in mice that spontaneously develop autoimmunity to all three thyroid autoantigens, autoantibodies develop first to Tg and later to TPO and the TSHR A-subunit. The pattern of intermolecular epitope spreading is related in part to the thyroidal content of Tg, TPO and TSHR A-subunit and to the molecular sizes of these proteins. Importantly, the epitope spreading pattern provides a rationale for future antigen-specific manipulation to block the development of all thyroid autoantibodies by inducing tolerance to Tg, first in the autoantigen cascade. Because of its abundance, Tg may be the autoantigen of choice to explore antigen-specific treatment, preventing the development of pathogenic TSHR antibodies.
Collapse
Affiliation(s)
- Sandra M McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA, United States
| | - Basil Rapoport
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA, United States
| |
Collapse
|
5
|
Luo Y, Yoshihara A, Oda K, Ishido Y, Suzuki K. Excessive Cytosolic DNA Fragments as a Potential Trigger of Graves' Disease: An Encrypted Message Sent by Animal Models. Front Endocrinol (Lausanne) 2016; 7:144. [PMID: 27895620 PMCID: PMC5107990 DOI: 10.3389/fendo.2016.00144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/27/2016] [Indexed: 01/13/2023] Open
Abstract
Graves' hyperthyroidism is caused by autoantibodies directed against the thyroid-stimulating hormone receptor (TSHR) that mimic the action of TSH. The establishment of Graves' hyperthyroidism in experimental animals has proven to be an important approach to dissect the mechanisms of self-tolerance breakdown that lead to the production of thyroid-stimulating TSHR autoantibodies (TSAbs). "Shimojo's model" was the first successful Graves' animal model, wherein immunization with fibroblasts cells expressing TSHR and a major histocompatibility complex (MHC) class II molecule, but not either alone, induced TSAb production in AKR/N (H-2k) mice. This model highlights the importance of coincident MHC class II expression on TSHR-expressing cells in the development of Graves' hyperthyroidism. These data are also in agreement with the observation that Graves' thyrocytes often aberrantly express MHC class II antigens via mechanisms that remain unclear. Our group demonstrated that cytosolic self-genomic DNA fragments derived from sterile injured cells can induce aberrant MHC class II expression and production of multiple inflammatory cytokines and chemokines in thyrocytes in vitro, suggesting that severe cell injury may initiate immune responses in a way that is relevant to thyroid autoimmunity mediated by cytosolic DNA signaling. Furthermore, more recent successful Graves' animal models were primarily established by immunizing mice with TSHR-expressing plasmids or adenovirus. In these models, double-stranded DNA vaccine contents presumably exert similar immune-activating effect in cells at inoculation sites and thus might pave the way toward successful Graves' animal models. This review focuses on evidence suggesting that cell injury-derived self-DNA fragments could act as Graves' disease triggers.
Collapse
Affiliation(s)
- Yuqian Luo
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Aya Yoshihara
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
- Department of Education Planning and Development, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Kenzaburo Oda
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
- Department of Internal Medicine, Division of Diabetes, Metabolism and Endocrinology, Toho University, Tokyo, Japan
| | - Yuko Ishido
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
- *Correspondence: Koichi Suzuki,
| |
Collapse
|
6
|
Inaba H, Moise L, Martin W, De Groot AS, Desrosiers J, Tassone R, Buchman G, Akamizu T, De Groot LJ. Epitope recognition in HLA-DR3 transgenic mice immunized to TSH-R protein or peptides. Endocrinology 2013; 154:2234-43. [PMID: 23592747 PMCID: PMC5393327 DOI: 10.1210/en.2013-1033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Development of Graves' disease is related to HLA-DR3. The extracellular domain (ECD) of human TSH receptor (hTSH-R) is a crucial antigen in Graves' disease. hTSH-R peptide 37 (amino acids 78-94) is an important immunogenic peptide in DR3 transgenic mice immunized to hTSH-R. This study examined the epitope recognition in DR3 transgenic mice immunized to hTSH-R protein and evaluated the ability of a mutant hTSH-R peptide to attenuate the immunogenicity of hTSH-R peptide 37. DR3 transgenic mice were immunized to recombinant hTSH-R-ECD protein or peptides. A mutant hTSH-R 37 peptide (ISRIYVSIDATLSQLES: 37 m), in which DR3 binding motif position 5 was mutated V>A, and position 8 Q>S, was synthesized. 37 m should bind to HLA-DR3 but not bind T cell receptors. DR3 transgenic mice were immunized to hTSH-R 37 and 37 m. Mice immunized to hTSH-R-ECD protein developed strong anti-hTSH-R antibody, and antisera reacted strongly with hTSH-R peptides 1-5 (20-94), 21 (258-277), 41 (283-297), 36 (376-389), and 31 (399-418). Strikingly, antisera raised to hTSH-R peptide 37 bound to hTSH-R peptides 1-7 (20-112), 10 (132-50), 33 (137-150), 41, 23 (286-305), 24 (301-320), 36, and 31 as well as to hTSH-R-ECD protein. Both antibody titers to hTSH-R 37 and reaction of splenocytes to hTSH-R 37 were significantly reduced in mice immunized to hTSH-R 37 plus 37 m, compared with mice immunized to hTSH-R 37 alone. The ability of immunization to a single peptide to induce antibodies that bind hTSH-R-ECD protein, and multiple unrelated peptides, is a unique observation. Immunogenic reaction to hTSH-R peptide 37 was partially suppressed by 37 m, and this may contribute to immunotherapy of autoimmune thyroid disease.
Collapse
Affiliation(s)
- Hidefumi Inaba
- Department of Cellular and Molecular Biology, University of Rhode Island, Kingston, Rhode Island 02881, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kong YCM, Brown NK, Flynn JC, McCormick DJ, Brusic V, Morris GP, David CS. Efficacy of HLA-DRB1∗03:01 and H2E transgenic mouse strains to correlate pathogenic thyroglobulin epitopes for autoimmune thyroiditis. J Autoimmun 2011; 37:63-70. [PMID: 21683551 PMCID: PMC3173590 DOI: 10.1016/j.jaut.2011.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 05/02/2011] [Indexed: 12/17/2022]
Abstract
Thyroglobulin (Tg), a homodimer of 660 kD comprising 2748 amino acids, is the largest autoantigen known. The prevalence of autoimmune thyroid disease, including Hashimoto's thyroiditis and Graves' disease, has provided the impetus for identifying pathogenic T cell epitopes from human Tg over two decades. With no known dominant epitopes, the search has long been a challenge for investigators. After identifying HLA-DRB1∗03:01 (HLA-DR3) and H2E(b) as susceptibility alleles for Tg-induced experimental autoimmune thyroiditis in transgenic mouse strains, we searched for naturally processed T cell epitopes with MHC class II-binding motif anchors and tested the selected peptides for pathogenicity in these mice. The thyroiditogenicity of one peptide, hTg2079, was confirmed in DR3 transgenic mice and corroborated in clinical studies. In H2E(b)-expressing transgenic mice, we identified three T cell epitopes from mouse Tg, mTg179, mTg409 and mTg2342, based on homology to epitopes hTg179, hTg410 and hTg2344, respectively, which we and others have found stimulatory or pathogenic in both DR3- and H2E-expressing mice. The high homology among these peptides with shared presentation by DR3, H2E(b) and H2E(k) molecules led us to examine the binding pocket residues of these class II molecules. Their similar binding characteristics help explain the pathogenic capacity of these T cell epitopes. Our approach of using appropriate human and murine MHC class II transgenic mice, combined with the synthesis and testing of potential pathogenic Tg peptides predicted from computational models of MHC-binding motifs, should continue to provide insights into human autoimmune thyroid disease.
Collapse
MESH Headings
- Animals
- Autoantigens/immunology
- Binding Sites/genetics
- Cells, Cultured
- Computational Biology
- Disease Models, Animal
- Epitope Mapping
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Genetic Predisposition to Disease
- HLA-DRB1 Chains/genetics
- Histocompatibility Antigens Class II/genetics
- Humans
- Mice
- Mice, Transgenic
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Polymorphism, Genetic
- Protein Binding/genetics
- Thyroglobulin/genetics
- Thyroglobulin/immunology
- Thyroglobulin/metabolism
- Thyroiditis, Autoimmune/genetics
- Thyroiditis, Autoimmune/immunology
- Thyroiditis, Autoimmune/physiopathology
Collapse
Affiliation(s)
- Yi-chi M Kong
- Department of Immunology and Microbiology, Wayne State University School of Medicine, 540 E. Canfield Avenue, Detroit, MI 48201, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Dağdelen S, Kong YCM, Banga JP. Toward better models of hyperthyroid Graves' disease. Endocrinol Metab Clin North Am 2009; 38:343-54, viii. [PMID: 19328415 DOI: 10.1016/j.ecl.2009.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Graves' disease affects only humans. Although it is a treatable illness, medical therapy with antithyroid drugs is imperfect, showing high rates of recurrence. Furthermore, the etiology and treatment of the associated ophthalmopathy still represent problematic issues. Animal models could contribute to the solution of such problems by providing a better understanding of the underlying pathogenesis and could be used for evaluating novel therapeutic strategies. This article discusses the pursuit of a better experimental model for hyperthyroid Graves' disease and outlines how this research has clarified the immunology of the disease.
Collapse
Affiliation(s)
- Selçuk Dağdelen
- Department of Diabetes and Endocrinology, King's College London School of Medicine, Denmark Hill Campus, The Rayne Institute, London, UK.
| | | | | |
Collapse
|
9
|
Kokaraki G, Daniilidis M, Yiangou M, Arsenakis M, Karyotis N, Tsilipakou M, Fleva A, Gerofotis A, Karadani N, Yovos JG. Major histocompatibility complex class II (DRB1*, DQA1*, and DQB1*) and DRB1*04 subtypes' associations of Hashimoto's thyroiditis in a Greek population. ACTA ACUST UNITED AC 2009; 73:199-205. [PMID: 19254248 DOI: 10.1111/j.1399-0039.2008.01182.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hashimoto's thyroiditis (HT) is an autoimmune disease resulting from complex interactions between genetic and environmental factors. The disease is associated with certain human leukocyte antigen (HLA) class II alleles in various populations. We aimed to determine in this study, for the first time in a Greek population, the association of HLA-DRB1*, -DQA1*, and -DQB1* alleles with HT. HLA-DRB1*, -DQA1*, and -DQB1* alleles' and -DRB1*04 subtypes' distribution was evaluated in 125 patients with HT and in 500 healthy control individuals by using a DNA-based sequence-specific primer method. Chi(_)squared tests and Bonferroni correction method were applied in the statistical analysis of the data. Significantly higher frequency of DRB1*04 (24.8% vs 7.7%, P < 0.0001) was observed in HT patients, while HLA-DRB1*07 was significantly decreased (2.8% vs 7.9%, P < 0.05). HLA-DRB1*04 subtyping showed a significant increase of DRB1*0405 (21% vs 7.8%, P < 0.0001) in HT patients. Also significant high frequencies of DQB1*0201 (14.8% vs 8.2%, P < 0.001), DQB1*0302 (18.8% vs 7.0%, P < 0.0001), and DQA1*0301 (25.6% vs 7.8%, P < 0.0001) were recorded in the patient group. Conducting the first research of this kind in a Greek population, our study tries to provide an evaluation of the prevalence of HT relating to HLA-DRB1*0405, and we report a relative risk of 2.7 for HT in a Greek population.
Collapse
Affiliation(s)
- G Kokaraki
- Department of Genetics, Development & Molecular Biology, Faculty of Sciences, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Mizutori Y, Nagayama Y, Flower D, Misharin A, Aliesky HA, Rapoport B, McLachlan SM. Role of the transgenic human thyrotropin receptor A-subunit in thyroiditis induced by A-subunit immunization and regulatory T cell depletion. Clin Exp Immunol 2008; 154:305-15. [PMID: 18811696 DOI: 10.1111/j.1365-2249.2008.03769.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Transgenic BALB/c mice that express intrathyroidal human thyroid stimulating hormone receptor (TSHR) A-subunit, unlike wild-type (WT) littermates, develop thyroid lymphocytic infiltration and spreading to other thyroid autoantigens after T regulatory cell (T(reg)) depletion and immunization with human thyrotropin receptor (hTSHR) adenovirus. To determine if this process involves intramolecular epitope spreading, we studied antibody and T cell recognition of TSHR ectodomain peptides (A-Z). In transgenic and WT mice, regardless of T(reg) depletion, TSHR antibodies bound predominantly to N-terminal peptide A and much less to a few downstream peptides. After T(reg) depletion, splenocytes from WT mice responded to peptides C, D and J (all in the A-subunit), but transgenic splenocytes recognized only peptide D. Because CD4(+) T cells are critical for thyroid lymphocytic infiltration, amino acid sequences of these peptides were examined for in silico binding to BALB/c major histocompatibility complex class II (IA-d). High affinity subsequences (inhibitory concentration of 50% < 50 nm) are present in peptides C and D (not J) of the hTSHR and mouse TSHR equivalents. These data probably explain why transgenic splenocytes do not recognize peptide J. Mouse TSHR mRNA levels are comparable in transgenic and WT thyroids, but only transgenics have human A-subunit mRNA. Transgenic mice can present mouse TSHR and human A-subunit-derived peptides. However, WT mice can present only mouse TSHR, and two to four amino acid species differences may preclude recognition by CD4+ T cells activated by hTSHR-adenovirus. Overall, thyroid lymphocytic infiltration in the transgenic mice is unrelated to epitopic spreading but involves human A-subunit peptides for recognition by T cells activated using the hTSHR.
Collapse
Affiliation(s)
- Y Mizutori
- Autoimmune Disease Unit, Cedars-Sinai Research Institute and UCLA School of Medicine, Los Angeles, CA 90048, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Banga JP, Nielsen CH, Gilbert JA, El Fassi D, Hegedus L. Application of new therapies in Graves' disease and thyroid-associated ophthalmopathy: animal models and translation to human clinical trials. Thyroid 2008; 18:973-81. [PMID: 18752425 DOI: 10.1089/thy.2007.0406] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Most current approaches for treating Graves' disease are based essentially upon regimes developed nearly 50 years ago. Moreover, therapeutic approaches for complications such as thyroid-associated ophthalmopathy (TAO) and dermopathy are singularly dependent on conventional approaches of nonspecific immunosuppression. The recent development of an induced model of experimental Graves' disease, although incomplete as it lacks the extrathyroidal manifestations, provided opportunities to investigate immune intervention strategies, including influence upon the autoreactive B and T cell players in the autoimmune process. These major advances are generating new possibilities for therapeutic interventions for patients with Graves' disease and TAO.
Collapse
Affiliation(s)
- J Paul Banga
- Division of Gene and Cell Based Therapy, King's College London School of Medicine, London, United Kingdom.
| | | | | | | | | |
Collapse
|
12
|
McLachlan SM, Nagayama Y, Pichurin PN, Mizutori Y, Chen CR, Misharin A, Aliesky HA, Rapoport B. The link between Graves' disease and Hashimoto's thyroiditis: a role for regulatory T cells. Endocrinology 2007; 148:5724-33. [PMID: 17823263 DOI: 10.1210/en.2007-1024] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hyperthyroidism in Graves' disease is caused by thyroid-stimulating autoantibodies to the TSH receptor (TSHR), whereas hypothyroidism in Hashimoto's thyroiditis is associated with thyroid peroxidase and thyroglobulin autoantibodies. In some Graves' patients, thyroiditis becomes sufficiently extensive to cure the hyperthyroidism with resultant hypothyroidism. Factors determining the balance between these two diseases, the commonest organ-specific autoimmune diseases affecting humans, are unknown. Serendipitous findings in transgenic BALB/c mice, with the human TSHR A-subunit targeted to the thyroid, shed light on this relationship. Of three transgenic lines, two expressed high levels and one expressed low intrathyroidal A-subunit levels (Hi- and Lo-transgenics, respectively). Transgenics and wild-type littermates were depleted of T regulatory cells (Treg) using antibodies to CD25 (CD4(+) T cells) or CD122 (CD8(+) T cells) before TSHR-adenovirus immunization. Regardless of Treg depletion, high-expressor transgenics remained tolerant to A-subunit-adenovirus immunization (no TSHR antibodies and no hyperthyroidism). Tolerance was broken in low-transgenics, although TSHR antibody levels were lower than in wild-type littermates and no mice became hyperthyroid. Treg depletion before immunization did not significantly alter the TSHR antibody response. However, Treg depletion (particularly CD25) induced thyroid lymphocytic infiltrates in Lo-transgenics with transient or permanent hypothyroidism (low T(4), elevated TSH). Neither thyroid lymphocytic infiltration nor hypothyroidism developed in similarly treated wild-type littermates. Remarkably, lymphocytic infiltration was associated with intermolecular spreading of the TSHR antibody response to other self thyroid antigens, murine thyroid peroxidase and thyroglobulin. These data suggest a role for Treg in the natural progression of hyperthyroid Graves' disease to Hashimoto's thyroiditis and hypothyroidism in humans.
Collapse
Affiliation(s)
- Sandra M McLachlan
- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Flynn JC, Gilbert JA, Meroueh C, Snower DP, David CS, Kong YCM, Banga JP. Chronic exposure in vivo to thyrotropin receptor stimulating monoclonal antibodies sustains high thyroxine levels and thyroid hyperplasia in thyroid autoimmunity-prone HLA-DRB1*0301 transgenic mice. Immunology 2007; 122:261-7. [PMID: 17535305 PMCID: PMC2265995 DOI: 10.1111/j.1365-2567.2007.02635.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 02/26/2007] [Accepted: 04/10/2007] [Indexed: 11/29/2022] Open
Abstract
We have examined the induction of autoimmunity and the maintenance of sustained hyperthyroidism in autoimmunity-prone human leucocyte antigen (HLA) DR3 transgenic non-obese diabetic (NOD) mice following chronic stimulation of the thyrotropin receptor (TSHR) by monoclonal thyroid-stimulating autoantibodies (TSAbs). Animals received weekly injections over the course of 9 weeks of monoclonal antibodies (mAbs) with strong thyroid-stimulating properties. Administration of the mAbs KSAb1 (IgG2b) or KSAb2 (IgG2a), which have similar stimulating properties but different TSH-binding blocking activity, resulted in significantly elevated serum thyroxine (T(4)) levels and thyroid hyperplasia. After the first injection, an initial surge then fall in serum T(4) levels was followed by sustained elevated levels with subsequent injections for at least 63 days. Examination of KSAb1 and KSAb2 serum bioactivity showed that the accumulation of the TSAbs in serum was related to their subclass half-lives. The thyroid glands were enlarged and histological examination showed hyperplastic follicles, with minimal accompanying thyroid inflammation. Our results show that chronic in vivo administration of mAbs with strong thyroid-stimulating activity resulted in elevated T(4) levels, suggesting persistent stimulation without receptor desensitization, giving a potential explanation for the sustained hyperthyroid status in patients with Graves' disease. Moreover, despite the presence of HLA disease susceptibility alleles and the autoimmune prone NOD background genes, chronic stimulation of the thyroid gland did not lead to immune cell-mediated follicular destruction, suggesting the persistence of immunoregulatory influences to suppress autoimmunity.
Collapse
Affiliation(s)
- Jeffrey C Flynn
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
In the past decade, we participated in the increased use of HLA class II transgenic mice to delineate genetic control in autoimmune diseases. Our studies began with individual class II transgenes to determine permissiveness for experimental autoimmune thyroiditis (EAT), first in resistant strains and then in the absence of endogenous H2 class II molecules. Polymorphism for HLA-DRB1 was observed, as DR3, but not DR2 or DR4, molecules serve as a determinant for EAT induction with either mouse thyroglobulin (mTg) or human thyroglobulin (hTg). This delineation enabled identification of pathogenic Tg peptides, based on DR3-binding motifs. HLA-DQ polymorphism was also detectable; hTg induced moderate EAT in DQ8(+), but not DQ6(+), mice. Coexpressing permissive and nonpermissive alleles, DR3(+) mice showed reduced EAT severity in the presence of DQ8, but not DQ6, DR2, or DR4. Determining the regulatory T cell (Treg) influences showed that Treg depletion increased thyroiditis incidence and severity without altering the major histocompatibility complex-based hierarchy in susceptibility. This increase after Treg depletion can also be observed in NaI-induced thyroiditis in DR3(+) mice, a means to study a major environmental factor in thyroid autoimmunity. DR3(+) mice were also immunized with human thyroid peroxidase cDNA, resulting in thyroiditis and an antibody (Ab) profile resembling patient antibodies (Abs). Similar immunization with human TSH receptor cDNA resulted in thyroid-stimulating Abs and elevated T(4) levels with moderate thyroiditis in some animals, suggesting a potential Graves' disease model that due to thyroid lesions is more complete than other models. Recently, Treg manipulation in cancer immunotherapy trials has triggered various autoimmune disorders. Thus, DR3(+) mice are being used to monitor a known risk factor for autoimmune thyroid disease in attempts to enhance tumor immunity.
Collapse
Affiliation(s)
- Yi-Chi M Kong
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
15
|
Lee SI, Kwon HJ, Lee ES, Yang BC, Bang D, Lee S, Sohn S. Using pCIN-mIL-4 DNA vector to express mRNA and protein and to improve herpes simplex virus-induced Behcet's disease symptoms in mice. Vaccine 2007; 25:7047-55. [PMID: 17822810 DOI: 10.1016/j.vaccine.2007.07.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2007] [Revised: 06/28/2007] [Accepted: 07/30/2007] [Indexed: 10/22/2022]
Abstract
Behcet's disease (BD) is a chronic, recurrent, inflammatory, multisystemic disorder characterized primarily by vasculitis. The etiopathogenesis of BD involves immunogenetics, infectious organisms (streptococcus, herpes simplex virus), immunoregulation and vascular dysfunctions. We previously found that immunoregulation associated with viral infection was important to the development of BD-like symptoms. Recently, we demonstrated that Th2 cytokines up-regulated by Th2 adjuvant were efficient in attenuating or improving these BD-like symptoms. In order to directly augment IL-4 expression, a DNA vector (pCIN-mIL-4) was administered to BD-like mice using the Helios gene gun system. Two injections of the pCIN-mIL-4 vector, spread over 2 weeks, attenuated or improved the mucocutaneous symptoms of 10 out of 12 BD-like mice in our study. The improved mucocutaneous symptoms were crust in face, ulcer in mouth, scruff, back, genital and erythema. This improvement also correlated with induction of IL-4 mRNA in lymph nodes, protein in serum and intracellular IL-4 staining in splenocytes. Normal control mice (n = 10) injected with the pCIN-mIL-4 vector expressed IL-4 mRNA and showed more splenocytes stained with anti-IL-4 antibody (5.77 +/- 0.92%) than did mice injected with the pCIN control vector (3.34 +/- 0.25%; p = 0.02). These findings indicate that an IL-4 DNA vector could be used to express mRNA and protein in vivo and further suggest that such an IL-4 DNA vector could be used as a therapeutic treatment in recurrent inflammation shifted to T helper type 1 cytokine production.
Collapse
Affiliation(s)
- Seung Ihm Lee
- Laboratory of Cell Biology, Ajou University Institute for Medical Sciences, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
16
|
Pichurin P, Pham N, David CS, Rapoport B, McLachlan SM. HLA-DR3 transgenic mice immunized with adenovirus encoding the thyrotropin receptor: T cell epitopes and functional analysis of the CD40 Graves' polymorphism. Thyroid 2006; 16:1221-7. [PMID: 17199432 DOI: 10.1089/thy.2006.16.1221] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The major histocompatibility (MHC) molecule HLA-DR3 is a susceptibility gene for Graves' disease (GD) in Caucasians. Mice lacking murine MHC and expressing human HLA-DR3 develop thyrotropin receptor (TSHR) antibodies and sometimes hyperthyroidism after vaccination with TSHR-DNA. MHC molecules present peptides processed from antigens to T cells. Therefore, we used DR3-transgenic mice to investigate recognition of TSHR ectodomain peptides. After immunization with TSHR A-subunit adenovirus (A-subunit-Ad) but not control-adenovirus (Control-Ad), splenocytes from DR3 mice responded to A-subunit protein in culture by producing interferon-gamma (IFN-gamma). When challenged with 29 overlapping TSHR peptides, splenocytes from A-subunit-Ad- or Control-Ad-immunized mice responded to several peptides. However, in splenocytes from A-subunit-Ad but not Control-Ad mice, a peptide containing TSHR residues 142-161 induced significantly more IFN-gamma than the same splenocytes in medium alone. Immunized DR3 mice also permitted testing the TSHR-specific function of the CD40 single nucleotide polymorphism (C vs. T) associated with GD. Of three human DR3 human Epstein-Barr virus lines (EBVL), two had C in both alleles (CC) and one was CT. However, these EBVL presented peptides poorly and there was no difference between CC vs. CT EBVL in peptide presentation to splenocytes from immunized mice. A peptide corresponding to residues 145-163 is one of seven suggested to be important in GD based on HLA-binding affinities, T-epitope algorithms, and human studies. Consequently, as in human GD, TSHR amino acids 142-161 appear to include a major T cell epitope in HLA-DR3 transgenic mice immunized with A-subunit-Ad.
Collapse
Affiliation(s)
- Pavel Pichurin
- Autoimmune Disease Unit, Cedars-Sinai Research Institute and UCLA School of Medicine, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
17
|
Abstract
BALB/c mice are susceptible to the induction of Graves' hyperthyroidism. To investigate the susceptibility of BALB/c substrains of mice to the induction of hyperthyroidism, we immunized BALB/cJ and BALB/cByJ mice with an adenovirus expressing amino acid residues 1-289 of thyrotropin receptor (TSHR). The data presented in this article showed that 17 of 26 (65%) BALB/c and only 4 of 30 (13%) BALB/cBy mice developed hyperthyroidism. Hyperthyroid mice displayed characteristics of Graves' disease, such as thyroid-stimulating antibodies and enlarged thyroid glands. To explore the differences in the susceptibility of these substrains for hyperthyroidism, we examined the TSHR antibodies in three different assays. The TSHR antibodies determined in a radioreceptor assay (TSH binding inhibitory immunoglobulins) were similar in both of these BALB/c substrains. The TSHR antibody titers of total IgG, IgG1, and IgG2a were measured by an enzyme-linked immunosorbent assay and were found to be similar in these mice. There were no significant differences between these two groups of mice in the thyroid-stimulating antibody activity. However, BALB/cBy mice had significantly higher TSH-blocking antibody activity compared to BALB/c mice. TSHR-specific proliferation of splenocytes and secretion of cytokines interferon-gamma and interleukin-4 by spleen cells were comparable in both the groups. BALB/cJ and BALB/cByJ mice both belong to same MHC haplotype, H-2(d), but differ in the Qa-2 region of class Ib molecule. This report shows the importance of other genes, such as Qa-2 region of class Ib molecule in addition to MHC class II, in the susceptibility of Graves' hyperthyroidism.
Collapse
Affiliation(s)
- Gattadahalli S Seetharamaiah
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Evansville, Indiana 47712, USA.
| | | |
Collapse
|
18
|
Drabko K, Winnicka D, Gaworczyk A, Beń-Skowronek I, Skomra D, Kowalczyk JR. Donor origin of Graves disease in a BMT recipient: evidence from FISH studies of thyroid tissue. Bone Marrow Transplant 2006; 37:789-91. [PMID: 16518432 DOI: 10.1038/sj.bmt.1705316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Rybaczyk LA, Bashaw MJ, Pathak DR, Moody SM, Gilders RM, Holzschu DL. An overlooked connection: serotonergic mediation of estrogen-related physiology and pathology. BMC WOMENS HEALTH 2005; 5:12. [PMID: 16368009 PMCID: PMC1327664 DOI: 10.1186/1472-6874-5-12] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Accepted: 12/20/2005] [Indexed: 11/10/2022]
Abstract
BACKGROUND In humans, serotonin has typically been investigated as a neurotransmitter. However, serotonin also functions as a hormone across animal phyla, including those lacking an organized central nervous system. This hormonal action allows serotonin to have physiological consequences in systems outside the central nervous system. Fluctuations in estrogen levels over the lifespan and during ovarian cycles cause predictable changes in serotonin systems in female mammals. DISCUSSION We hypothesize that some of the physiological effects attributed to estrogen may be a consequence of estrogen-related changes in serotonin efficacy and receptor distribution. Here, we integrate data from endocrinology, molecular biology, neuroscience, and epidemiology to propose that serotonin may mediate the effects of estrogen. In the central nervous system, estrogen influences pain transmission, headache, dizziness, nausea, and depression, all of which are known to be a consequence of serotonergic signaling. Outside of the central nervous system, estrogen produces changes in bone density, vascular function, and immune cell self-recognition and activation that are consistent with serotonin's effects. For breast cancer risk, our hypothesis predicts heretofore unexplained observations of the opposing effects of obesity pre- and post-menopause and the increase following treatment with hormone replacement therapy using medroxyprogesterone. SUMMARY Serotonergic mediation of estrogen has important clinical implications and warrants further evaluation.
Collapse
Affiliation(s)
- Leszek A Rybaczyk
- Integrated Biomedical Science Graduate Program, The Ohio State University, 1190 Graves Hall, 333 West 10th Avenue, Columbus, OH, 43210-1218, USA
| | - Meredith J Bashaw
- Department of Psychology, 200 Porter Hall, Ohio University, Athens, OH 45701, USA
| | - Dorothy R Pathak
- Departments of Epidemiology and Family Practice, A641 West Fee Hall, Michigan State University, East Lansing, MI48824, USA
| | - Scott M Moody
- Department of Biological Sciences, 318 Irvine Hall, Ohio University, Athens, OH 45701-2939, USA
| | - Roger M Gilders
- School of Recreation and Sport Sciences, E184 Grover Center, Ohio University, Athens, Ohio 45701, USA
| | - Donald L Holzschu
- Department of Biological Sciences, 239 Life Sciences Building, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
20
|
Abstract
Graves' hyperthyroidism can be induced in mice or hamsters by novel approaches, namely injecting cells expressing the TSH receptor (TSHR) or vaccination with TSHR-DNA in plasmid or adenoviral vectors. These models provide unique insight into several aspects of Graves' disease: 1) manipulating immunity toward Th1 or Th2 cytokines enhances or suppresses hyperthyroidism in different models, perhaps reflecting human disease heterogeneity; 2) the role of TSHR cleavage and A subunit shedding in immunity leading to thyroid-stimulating antibodies (TSAbs); and 3) epitope spreading away from TSAbs and toward TSH-blocking antibodies in association with increased TSHR antibody titers (as in rare hypothyroid patients). Major developments from the models include the isolation of high-affinity monoclonal TSAbs and analysis of antigen presentation, T cells, and immune tolerance to the TSHR. Studies of inbred mouse strains emphasize the contribution of non-MHC vs. MHC genes, as in humans, supporting the relevance of the models to human disease. Moreover, other findings suggest that the development of Graves' disease is affected by environmental factors, including infectious pathogens, regardless of modifications in the Th1/Th2 balance. Finally, developing immunospecific forms of therapy for Graves' disease will require painstaking dissection of immune recognition and responses to the TSHR.
Collapse
Affiliation(s)
- Sandra M McLachlan
- Autoimmune Disease Unit, Cedars-Sinai Medical Center, University of California Los Angeles School of Medicine, CA 90048, USA.
| | | | | |
Collapse
|
21
|
Abstract
Graves' disease is a common organ-specific autoimmune disease characterized by overstimulation of the thyroid gland with agonistic anti-thyrotropin (TSH) receptor autoantibodies, which leads to hyperthyroidism and diffuse hyperplasia of the thyroid gland. Several groups including us have recently established several animal models of Graves' hyperthyroidism using novel immunization approaches, such as in vivo expression of the TSH receptor by injecting syngeneic living cells co-expressing the TSH receptor, the major histocompatibility complex (MHC) class II antigen and a costimulatory molecule, or genetic immunization using plasmid or adenovirus vectors coding the TSH receptor. This breakthrough has made it possible for us to study the pathogenesis of Graves' disease in more detail and has provided important insights into our understanding of disease pathogenesis. The important new findings that have emerged include: (i) the shed A subunit being the major autoantigen for TSAb, (ii) the significant role played by dendritic cells (DCs) as professional antigen-presenting cells in initiating disease development, (iii) contribution of MHC and particularly non-MHC genetic backgrounds in disease susceptibility, and (iv) influence of some particular infectious pathogens on disease development. However, the data regarding Th1/Th2 balance of TSH receptor-specific immune response or the association of Graves' hyperthyroidism with intrathyroidal lymphocytic infiltration are rather inconsistent. Future studies with these models will hopefully lead to better understanding of disease pathogenesis and help develop novel strategies for treatment and ultimately prevention of Graves' disease in humans.
Collapse
Affiliation(s)
- Yuji Nagayama
- Department of Medical Gene Technology, Atomic Bomb Disease Institute, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki
| |
Collapse
|
22
|
Chistiakov DA. Immunogenetics of Hashimoto's thyroiditis. JOURNAL OF AUTOIMMUNE DISEASES 2005; 2:1. [PMID: 15762980 PMCID: PMC555850 DOI: 10.1186/1740-2557-2-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Accepted: 03/11/2005] [Indexed: 02/04/2023]
Abstract
Hashimoto's thyroiditis (HT) is an organ-specific T-cell mediated disease. It is a complex disease, with a strong genetic component. To date, significant progress has been made towards the identification and functional characterization of HT susceptibility genes. In this review, we will summarize the recent advances in our understanding of the genetic input to the pathogenesis of HT.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Laboratory of Aquatic Ecology, Katholieke Universiteit Leuven, Ch, De Beriotstraat 32, B-3000 Leuven, Belgium.
| |
Collapse
|
23
|
Pichurin PN, Chazenbalk GD, Aliesky H, Pichurina O, Rapoport B, McLachlan SM. "Hijacking" the thyrotropin receptor: A chimeric receptor-lysosome associated membrane protein enhances deoxyribonucleic acid vaccination and induces Graves' hyperthyroidism. Endocrinology 2004; 145:5504-14. [PMID: 15331574 DOI: 10.1210/en.2004-0530] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Naked DNA vaccination with the TSH receptor (TSHR) does not, in most studies, induce TSHR antibodies and never induces hyperthyroidism in BALB/c mice. Proteins expressed endogenously by vaccination are preferentially presented by major histocompatibility complex class I, but optimal T cell help for antibody production requires lysosomal processing and major histocompatibility complex class II presentation. To divert protein expression to lysosomes, we constructed a plasmid with the TSHR ectodomain spliced between the signal peptide and transmembrane-intracellular region of lysosome-associated membrane protein (LAMP)-1, a lysosome-associated membrane protein. BALB/c mice pretreated with cardiotoxin were primed intramuscularly using this LAMP-TSHR chimera and boosted twice with DNA encoding wild-type TSHR, TSHR A-subunit, or LAMP-TSHR. With each protocol, spleen cells responded to TSHR antigen by secreting interferon-gamma, and 60% or more mice had TSHR antibodies detectable by ELISA. TSH binding inhibitory activity was present in seven, four, and two of 10 mice boosted with TSHR A-subunit, LAMP-TSHR, or wild-type TSHR, respectively. Importantly, six of 30 mice had elevated T4 levels and goiter (5 of 6 with detectable thyroid-stimulating antibodies). Injecting LAMP-TSHR intradermally without cardiotoxin pretreatment induced TSHR antibodies detectable by ELISA but not by TSH binding inhibitory activity, and none became hyperthyroid. These findings are consistent with a role for cardiotoxin-recruited macrophages in which (unlike in fibroblasts) LAMP-TSHR can be expressed intracellularly and on the cell surface. In conclusion, hijacking the TSHR to lysosomes enhances T cell responses and TSHR antibody generation and induces Graves'-like hyperthyroidism in BALB/c mice by intramuscular naked DNA vaccination.
Collapse
Affiliation(s)
- Pavel N Pichurin
- Autoimmune Disease Unit, Cedars-Sinai Research Institute and University of California, Los Angeles School of Medicine, Los Angeles, California 90048, USA
| | | | | | | | | | | |
Collapse
|
24
|
Chen CR, Aliesky H, Pichurin PN, Nagayama Y, McLachlan SM, Rapoport B. Susceptibility rather than resistance to hyperthyroidism is dominant in a thyrotropin receptor adenovirus-induced animal model of Graves' disease as revealed by BALB/c-C57BL/6 hybrid mice. Endocrinology 2004; 145:4927-33. [PMID: 15284197 DOI: 10.1210/en.2004-0716] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We investigated why TSH receptor (TSHR) adenovirus immunization induces hyperthyroidism more commonly in BALB/c than in C57BL/6 mice. Recent modifications of the adenovirus model suggested that using adenovirus expressing the TSHR A subunit (A-subunit-Ad), rather than the full-length TSHR, and injecting fewer viral particles would increase the frequency of hyperthyroidism in C57BL/6 mice. This hypothesis was not fulfilled; 65% of BALB/c but only 5% of C57BL/6 mice developed hyperthyroidism. TSH binding inhibitory antibody titers were similar in each strain. Functional TSHR antibody measurements provided a better indication for this strain difference. Whereas thyroid-stimulating antibody activity was higher in C57BL/6 than BALB/c mice, TSH blocking antibody activity was more potent in hyperthyroid-resistant C57BL/6 mice. F(1) hybrids (BALB/c x C57BL/6) responded to A-subunit-Ad immunization with hyperthyroidism and TSHR antibody profiles similar to those of the hyperthyroid-susceptible parental BALB/c strain. In contrast, ELISA of TSHR antibodies revealed that the IgG subclass distribution in the F(1) mice resembled the disease-resistant C57BL/6 parental strain. Because the IgG subclass distribution is dependent on the T helper 1/T helper 2 cytokine balance, this paradigm can likely be excluded as an explanation for susceptibility to hyperthyroidism. In summary, our data for BALB/c, C57BL/6, and F(1) strains suggest that BALB/c mice carry a dominant gene(s) for susceptibility to induction of a thyroid-stimulating antibody/TSH blocking antibody balance that results in hyperthyroidism. Study of this genetic influence will provide useful information on potential candidate genes in human Graves' disease.
Collapse
Affiliation(s)
- Chun-Rong Chen
- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Suite B-131, Los Angeles, California 90048, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Flynn JC, Gardas A, Wan Q, Gora M, Alsharabi G, Wei WZ, Giraldo AA, David CS, Kong YM, Banga JP. Superiority of thyroid peroxidase DNA over protein immunization in replicating human thyroid autoimmunity in HLA-DRB1*0301 (DR3) transgenic mice. Clin Exp Immunol 2004; 137:503-12. [PMID: 15320899 PMCID: PMC1809151 DOI: 10.1111/j.1365-2249.2004.02553.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2004] [Indexed: 11/26/2022] Open
Abstract
Murine experimental autoimmune thyroiditis (EAT), characterized by thyroid destruction after immunization with thyroglobulin (Tg), has long been a useful model of organ-specific autoimmune disease. More recently, porcine thyroid peroxidase (pTPO) has also been shown to induce thyroiditis, but these results have not been confirmed. When (C57BL/6 x CBA)F(1) mice, recently shown to be susceptible to mouse TPO-induced EAT, were immunized with plasmid DNA to human TPO (hTPO) and cytokines IL-12 or GM-CSF, significant antibody (Ab) titres were generated, but minimal thyroiditis was detected in one mouse only from the TPO + GM-CSF immunized group. However, after TPO DNA immunization of HLA-DR3 transgenic class II-deficient NOD mice, thyroiditis was present in 23% of mice injected with TPO + IL-12 or GM-CSF. We also used another marker for assessing the closeness of the model to human thyroid autoimmunity by examining the epitope profile of the anti-TPO Abs to immunodominant determinants on TPO. Remarkably, the majority of the anti-TPO Abs was directed to immunodominant regions A and B, demonstrating the close replication of the model to human autoimmunity. TPO protein immunizations of HLA-DR3 transgenic mice with recombinant hTPO did not result in thyroiditis, nor did immunization of other mice expressing HLA class II transgenes HLA-DR4 or HLA-DQ8, with differential susceptibility to Tg-induced EAT. Moreover, our efforts to duplicate exactly the experimental procedures used with pTPO also failed to induce thyroiditis. The success of hTPO plasmid DNA immunization of DR3(+) mice, similar to our reports on Tg-induced thyroiditis and thyrotropin receptor DNA-induced Graves' hyperthyroidism, underscores the importance of DR3 genes for all three major thyroid antigens, and provides another humanized model to study autoimmune thyroid disease.
Collapse
Affiliation(s)
- J C Flynn
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Flynn JC, McCormick DJ, Brusic V, Wan Q, Panos JC, Giraldo AA, David CS, Kong YCM. Pathogenic human thyroglobulin peptides in HLA-DR3 transgenic mouse model of autoimmune thyroiditis. Cell Immunol 2004; 229:79-85. [PMID: 15474522 DOI: 10.1016/j.cellimm.2004.07.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Accepted: 07/05/2004] [Indexed: 01/13/2023]
Abstract
To identify pathogenic epitopes on human thyroglobulin (hTg), a homodimer of 660kDa, we have applied a computer-based algorithm to predict potential HLA-DR3-binding peptides and have tested them in DR3-transgenic mice. Of the 39 peptides selected, four stimulated a proliferative response from hTg-primed cells of DR3+ mice, but not DQ8+ mice. Of the four peptides, one, hTg2079, was consistently pathogenic. Thyroiditis was not only produced by adoptive transfer of hTg-primed, hTg2079-activated cells but also by direct immunization with the peptide. These results demonstrate the utility of using this computer-based algorithm with synthetic peptides to help identify pathogenic T cell epitopes on hTg.
Collapse
Affiliation(s)
- Jeffrey C Flynn
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | |
Collapse
|