1
|
Shivanna AT, Dash BS, Lu YJ, Lin WT, Chen JP. Magnetic lipid-poly(lactic-co-glycolic acid) nanoparticles conjugated with epidermal growth factor receptor antibody for dual-targeted delivery of CPT-11. Int J Pharm 2024; 667:124856. [PMID: 39461680 DOI: 10.1016/j.ijpharm.2024.124856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/01/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
To entrap sparingly water-soluble drugs like CPT-11 (irinotecan), the poly(lactic-co-glycolic acid) (PLGA) nanoparticle (NP) is highly favored due to its low cytotoxicity and approval for clinical use. On the other hand, entrapping hydrophobic oleic acid-coated iron oxide magnetic nanoparticles (OMNP) in PLGA NP can provide a nanovehicle for magnetically targeted drug delivery. Our goal in this study is to develop a new dual-targeted magnetic lipid-polymer NP for the delivery of CPT-11. We first co-entrap OMNP and CPT-11 in self-assembled lipid-PLGA NP to prepare OLNP@CPT-11. The OLNP@CPT-11 surface was modified with an epidermal growth factor receptor (EGFR) antibody Cetuximab (CET), which can actively target the overexpressed EGFR on the U87 glioblastoma cell surface. The OLNP-CET@CPT-11 enables dual targeting through both external magnetic guidance and CET-mediated active targeting. The NP was characterized for physicochemical properties using various analytical techniques. In vitro study confirms ligand-receptor interaction results in enhanced endocytosis of OLNP-CET@CPT-11 by U87 cells, which offers increased cytotoxicity and elevated cell apoptosis rates. Furthermore, magnetic guidance of OLNP-CET@CPT-11 to U87 cells can induce cell death exclusively in the magnetically targeted zone. The dual-targeted strategy also provides the best therapeutic efficacy against subcutaneously implanted U87 tumors in nude mice with intravenously delivered OLNP-CET@CPT-11.
Collapse
Affiliation(s)
- Anilkumar T Shivanna
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Banendu Sunder Dash
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan
| | - Wei-Ting Lin
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan; Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan; Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan.
| |
Collapse
|
2
|
Rutihinda C, Haroun R, Ordonez JP, Mohssine S, Oweida H, Sharma M, Fares M, Ruiz-Dominguez N, Pacheco MFM, Naasri S, Saidi NE, Oweida AJ. Gingerol acts as a potent radiosensitizer in head and neck squamous cell carcinoma. Discov Oncol 2024; 15:553. [PMID: 39397185 PMCID: PMC11471747 DOI: 10.1007/s12672-024-01425-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/03/2024] [Indexed: 10/15/2024] Open
Abstract
Treatment options for advanced head and neck squamous cell carcinoma (HNSCC) are limited and often cause severe toxicity and debilitating long-term impacts. Developing effective and safer treatments is warranted. Several plant extracts have shown their effectiveness, but a comprehensive comparison between plant extracts in HNSCC has not been reported. Our aim was to investigate the effect of different plant extracts on the proliferation and viability of HNSCC cell lines. In addition, we investigated the efficacy of combining cytotoxic plant extracts with radiation. Since RT is a cornerstone in the treatment and management of HNSCC, it is desirable to enhance its efficacy through combination with cytotoxic agents that have minimal side effects. HNSCC cell lines were treated with various plant extracts at different concentrations. MTT assays were performed to identify the most potent anti-tumor plant extract. Colony-formation assays were performed to determine the radiosensitization effect. To investigate the effect on migration, transwell migration assays were performed. Annexin V staining was performed to analyze cell apoptosis. 6-gingerol resulted in the most significant dose-dependent inhibition in all cell lines compared to other plant extracts. Colony-formation assays showed a significant radiosensitizing effect when 6-gingerol was combined with radiation. In addition, the combination of 6-gingerol with radiation resulted in a significant decrease in HNSCC cell migration. Mechanistically, Annexin V staining showed that the combination of 6-gingerol and RT induces a synergistic apoptotic effect in MOC1, MOC2 and SCC9 cells compared to RT alone. In conclusion, 6-gingerol enhances the effect of radiation in HNSCC cell lines and could be a suitable candidate for combination therapy in HNSCC.
Collapse
Affiliation(s)
- Cleopatra Rutihinda
- Department of Medical Imaging and Radiation Sciences, Faculté de Médecine et des sciences de la santé, Université de Sherbrooke, 3001 12e avenue, Sherbrooke, QC, J1H 5N4, Canada
| | - Ryma Haroun
- Department of Medical Imaging and Radiation Sciences, Faculté de Médecine et des sciences de la santé, Université de Sherbrooke, 3001 12e avenue, Sherbrooke, QC, J1H 5N4, Canada
| | - Juan Pablo Ordonez
- Department of Medical Imaging and Radiation Sciences, Faculté de Médecine et des sciences de la santé, Université de Sherbrooke, 3001 12e avenue, Sherbrooke, QC, J1H 5N4, Canada
| | - Saad Mohssine
- Department of Medical Imaging and Radiation Sciences, Faculté de Médecine et des sciences de la santé, Université de Sherbrooke, 3001 12e avenue, Sherbrooke, QC, J1H 5N4, Canada
| | - Huda Oweida
- Department of Medical Imaging and Radiation Sciences, Faculté de Médecine et des sciences de la santé, Université de Sherbrooke, 3001 12e avenue, Sherbrooke, QC, J1H 5N4, Canada
| | - Muskaan Sharma
- Department of Medical Imaging and Radiation Sciences, Faculté de Médecine et des sciences de la santé, Université de Sherbrooke, 3001 12e avenue, Sherbrooke, QC, J1H 5N4, Canada
| | - Mohamed Fares
- Department of Medical Imaging and Radiation Sciences, Faculté de Médecine et des sciences de la santé, Université de Sherbrooke, 3001 12e avenue, Sherbrooke, QC, J1H 5N4, Canada
| | - Nancy Ruiz-Dominguez
- Department of Medical Imaging and Radiation Sciences, Faculté de Médecine et des sciences de la santé, Université de Sherbrooke, 3001 12e avenue, Sherbrooke, QC, J1H 5N4, Canada
| | - Maria Fernanda Meza Pacheco
- Department of Medical Imaging and Radiation Sciences, Faculté de Médecine et des sciences de la santé, Université de Sherbrooke, 3001 12e avenue, Sherbrooke, QC, J1H 5N4, Canada
| | - Sahar Naasri
- Department of Medical Imaging and Radiation Sciences, Faculté de Médecine et des sciences de la santé, Université de Sherbrooke, 3001 12e avenue, Sherbrooke, QC, J1H 5N4, Canada
| | - Nour Elhouda Saidi
- Department of Medical Imaging and Radiation Sciences, Faculté de Médecine et des sciences de la santé, Université de Sherbrooke, 3001 12e avenue, Sherbrooke, QC, J1H 5N4, Canada
| | - Ayman J Oweida
- Department of Medical Imaging and Radiation Sciences, Faculté de Médecine et des sciences de la santé, Université de Sherbrooke, 3001 12e avenue, Sherbrooke, QC, J1H 5N4, Canada.
| |
Collapse
|
3
|
Aboul-Ella H, Gohar A, Ali AA, Ismail LM, Mahmoud AEER, Elkhatib WF, Aboul-Ella H. Monoclonal antibodies: From magic bullet to precision weapon. MOLECULAR BIOMEDICINE 2024; 5:47. [PMID: 39390211 PMCID: PMC11467159 DOI: 10.1186/s43556-024-00210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Monoclonal antibodies (mAbs) are used to prevent, detect, and treat a broad spectrum of non-communicable and communicable diseases. Over the past few years, the market for mAbs has grown exponentially with an expected compound annual growth rate (CAGR) of 11.07% from 2024 (237.64 billion USD estimated at the end of 2023) to 2033 (679.03 billion USD expected by the end of 2033). Ever since the advent of hybridoma technology introduced in 1975, antibody-based therapeutics were realized using murine antibodies which further progressed into humanized and fully human antibodies, reducing the risk of immunogenicity. Some benefits of using mAbs over conventional drugs include a drastic reduction in the chances of adverse reactions, interactions between drugs, and targeting specific proteins. While antibodies are very efficient, their higher production costs impede the process of commercialization. However, their cost factor has been improved by developing biosimilar antibodies as affordable versions of therapeutic antibodies. Along with the recent advancements and innovations in antibody engineering have helped and will furtherly help to design bio-better antibodies with improved efficacy than the conventional ones. These novel mAb-based therapeutics are set to revolutionize existing drug therapies targeting a wide spectrum of diseases, thereby meeting several unmet medical needs. This review provides comprehensive insights into the current fundamental landscape of mAbs development and applications and the key factors influencing the future projections, advancement, and incorporation of such promising immunotherapeutic candidates as a confrontation approach against a wide list of diseases, with a rationalistic mentioning of any limitations facing this field.
Collapse
Affiliation(s)
- Hassan Aboul-Ella
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Asmaa Gohar
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), Giza, Egypt
- Egyptian Drug Authority (EDA), Giza, Egypt
| | - Aya Ahmed Ali
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Sinai, Egypt
| | - Lina M Ismail
- Department of Biotechnology and Molecular Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Creative Egyptian Biotechnologists (CEB), Giza, Egypt
| | | | - Walid F Elkhatib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Heba Aboul-Ella
- Department of Pharmacognosy, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University (ECU), Cairo, Egypt
- Scientific Research Group in Egypt (SRGE), Cairo, Egypt
| |
Collapse
|
4
|
Fournier L, Demir D, Elter D, Pekar L, Kolmar H, Toleikis L, Becker S. A platform for the early selection of non-competitive antibody-fragments from yeast surface display libraries. Biol Chem 2024:hsz-2024-0102. [PMID: 39344812 DOI: 10.1515/hsz-2024-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024]
Abstract
In this work, we report the development of a platform for the early selection of non-competitive antibody-fragments against cell surface receptors that do not compete for binding of their natural ligand. For the isolation of such subtype of blocking antibody-fragments, we applied special fluorescence-activated cell sorting strategies for antibody fragments isolation from yeast surface display libraries. Given that most of the monoclonal antibodies approved on the market are blocking ligand-receptor interactions often leading to resistance and/or side effects, targeting allosteric sites represents a promising mechanism of action to open new avenues for treatment. To directly identify these antibody-fragments during library screening, we employed immune libraries targeting the epidermal growth factor receptor as proof of concept. Incorporating a labeled orthosteric ligand during library sorting enables the early selection of non-competitive binders and introduces an additional criterion to refine the selection of candidates exhibiting noteworthy properties. Furthermore, after sequencing, more candidates were identified compared to classical sorting based solely on target binding. Hence, this platform can significantly improve the drug discovery process by the early selection of more candidates with desired properties.
Collapse
Affiliation(s)
- Léxane Fournier
- Early Protein Supply and Characterization, Merck Healthcare KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
- Institute of Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, D-64287 Darmstadt, Germany
| | - Deniz Demir
- Antibody Discovery and Protein Engineering, Merck Healthcare KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Desislava Elter
- Antibody Discovery and Protein Engineering, Merck Healthcare KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Lukas Pekar
- Antibody Discovery and Protein Engineering, Merck Healthcare KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Harald Kolmar
- Institute of Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, D-64287 Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Lars Toleikis
- Early Protein Supply and Characterization, Merck Healthcare KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Stefan Becker
- Early Protein Supply and Characterization, Merck Healthcare KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| |
Collapse
|
5
|
Yang YC, Ho KH, Pan KF, Hua KT, Tung MC, Ku CC, Chen JQ, Hsiao M, Chen CL, Lee WJ, Chien MH. ESM1 facilitates the EGFR/HER3-triggered epithelial-to-mesenchymal transition and progression of gastric cancer via modulating interplay between Akt and angiopoietin-2 signaling. Int J Biol Sci 2024; 20:4819-4837. [PMID: 39309430 PMCID: PMC11414391 DOI: 10.7150/ijbs.100276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
Gastric cancer (GC) poses global challenges due to its difficult early diagnosis and drug resistance, necessitating the identification of early detection markers and understanding of oncogenic pathways for effective GC therapy. Endothelial cell-specific molecule 1 (ESM1), a secreted glycoprotein, is elevated in various cancers, but its role in GC remains controversial. In our study, ESM1 was elevated in GC tissues, and its concentration was correlated with progression and poorer patient prognosis in independent cohorts. Functionally, ESM1 expression promoted proliferation, anoikis resistance, and motility of GC cells, as well as tumor growth in PDOs and in GC xenograft models. Mechanistically, ESM1 expression triggered the epithelial-to-mesenchymal transition (EMT) of GC cells by enhancing epidermal growth factor receptor (EGFR)/human EGFR 3 (HER3) association and activating the EGFR/HER3-Akt pathway. Additionally, angiopoietin-2 (ANGPT2) was found to be highly correlated with ESM1 and interplayed with Akt to induce the EMT and cancer progression. Use of a signal peptide deletion mutant (ESM1-19del) showed that the secreted form of ESM1 is crucial for its protumorigenic effects by activating the EGFR/HER3-Akt/ANGPT2 pathway to promote the EMT. Patients with high levels of both ESM1 and ANGPT2 had the poorest prognoses. Furthermore, therapeutic peptides successfully inhibited ESM1's induction of the aforementioned signals and motility of GC cells. ESM1's oncogenic role in GC involves activating the EGFR/HER3-Akt/ANGPT2 pathway, presenting a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Yi-Chieh Yang
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ko-Hao Ho
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ke-Fan Pan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Division of Colorectal Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuo-Tai Hua
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Min-Che Tung
- Department of Surgery, Tungs' Taichung Metro Harbor Hospital, Taichung, Taiwan
| | - Chia-Chi Ku
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ji-Qing Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Cancer Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chi-Long Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pathology, Taipei Medical University Hospital and College of Medicine, Taipei Medical University Taipei, Taiwan
| | - Wei-Jiunn Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital Taipei, Taiwan
| |
Collapse
|
6
|
Ebrahimpour M, Hosseinzadeh H, Abedi F, Nodeh MM, Allahyari A, Sahebkar A, Arasteh O. Enhancing treatment strategies for small bowel cancer: a clinical review of targeted therapy and immunotherapy approaches. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4601-4614. [PMID: 38329524 DOI: 10.1007/s00210-024-02992-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Small bowel cancer (SBC) is a rare and aggressive disease with a poor prognosis, necessitating the exploration of novel treatment approaches. This narrative review examines the current evidence on targeted therapy and immunotherapy for SBC, focusing on the two most common subtypes: adenocarcinoma and neuroendocrine tumor. A comprehensive search of PubMed, Scopus, and Google Scholar databases was conducted to identify relevant clinical trials and case reports published in English up to September 2023. The review includes 17 clinical trials and 10 case reports, indicating that targeted therapy and immunotherapy can have the potential to improve survival rates in patients with SBC. Notably, promising targeted medicines include bevacizumab, cetuximab, and trastuzumab, while pembrolizumab and nivolumab show potential as immunotherapies. However, it should be noted that the magnitude of the increase in survival rates with these interventions was small. Further research is needed to determine the optimal combination of targeted therapy and immunotherapy for individual patients with SBC.
Collapse
Affiliation(s)
| | | | - Farshad Abedi
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Moeini Nodeh
- Department of Hematology and Oncology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolghasem Allahyari
- Department of Hematology and Oncology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Arasteh
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Zutshi N, Mohapatra BC, Mondal P, An W, Goetz BT, Wang S, Li S, Storck MD, Mercer DF, Black AR, Thayer SP, Black JD, Lin C, Band V, Band H. Cbl and Cbl-b ubiquitin ligases are essential for intestinal epithelial stem cell maintenance. iScience 2024; 27:109912. [PMID: 38974465 PMCID: PMC11225835 DOI: 10.1016/j.isci.2024.109912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 02/29/2024] [Accepted: 05/03/2024] [Indexed: 07/09/2024] Open
Abstract
Receptor tyrosine kinases (RTKs) control stem cell maintenance vs. differentiation decisions. Casitas B-lineage lymphoma (CBL) family ubiquitin ligases are negative regulators of RTKs, but their stem cell regulatory roles remain unclear. Here, we show that Lgr5+ intestinal stem cell (ISC)-specific inducible Cbl-knockout (KO) on a Cblb null mouse background (iDKO) induced rapid loss of the Lgr5 Hi ISCs with transient expansion of the Lgr5 Lo transit-amplifying population. LacZ-based lineage tracing revealed increased ISC commitment toward enterocyte and goblet cell fate at the expense of Paneth cells. Functionally, Cbl/Cblb iDKO impaired the recovery from radiation-induced intestinal epithelial injury. In vitro, Cbl/Cblb iDKO led to inability to maintain intestinal organoids. Single-cell RNA sequencing in organoids identified Akt-mTOR (mammalian target of rapamycin) pathway hyperactivation upon iDKO, and pharmacological Akt-mTOR axis inhibition rescued the iDKO defects. Our results demonstrate a requirement for Cbl/Cblb in the maintenance of ISCs by fine-tuning the Akt-mTOR axis to balance stem cell maintenance vs. commitment to differentiation.
Collapse
Affiliation(s)
- Neha Zutshi
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bhopal C. Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Pinaki Mondal
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Wei An
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Benjamin T. Goetz
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shuo Wang
- Department of Radiation Oncology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sicong Li
- Department of Radiation Oncology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Matthew D. Storck
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David F. Mercer
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Adrian R. Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sarah P. Thayer
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jennifer D. Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chi Lin
- Department of Radiation Oncology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vimla Band
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
8
|
Lee KW, Han SW, Kim TW, Ahn JB, Baek JY, Cho SH, Lee H, Kim JW, Kim JW, Kim TY, Hong YS, Beom SH, Cha Y, Choi Y, Kim S, Bang YJ. A Phase 1b/2a Study of GC1118 with 5-Fluorouracil, Leucovorin and Irinotecan (FOLFIRI) in Patients with Recurrent or Metastatic Colorectal Cancer. Cancer Res Treat 2024; 56:590-601. [PMID: 38062706 PMCID: PMC11016642 DOI: 10.4143/crt.2023.1117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/06/2023] [Indexed: 04/13/2024] Open
Abstract
PURPOSE GC1118 is a novel antibody targeting epidermal growth factor receptor (EGFR) with enhanced blocking activity against both low- and high-affinity EGFR ligands. A phase 1b/2a study was conducted to determine a recommended phase 2 dose (RP2D) of GC1118 in combination with 5-fluorouracil, leucovorin, and irinotecan (FOLFIRI) (phase 1b) and to assess the safety and efficacy of GC1118 plus FOLFIRI as a second-line therapy for recurrent/metastatic colorectal cancer (CRC) (phase 2a). MATERIALS AND METHODS Phase 1b was designed as a standard 3+3 dose-escalation study with a starting dose of GC1118 (3 mg/kg/week) in combination with biweekly FOLFIRI (irinotecan 180 mg/m2; leucovorin 400 mg/m2; 5-fluorouracil 400 mg/m2 bolus and 2,400 mg/m2 infusion over 46 hours) in patients with solid tumors refractory to standard treatments. The subsequent phase 2a part was conducted with objective response rate (ORR) as a primary endpoint. Patients with KRAS/NRAS/BRAF wild-type, EGFR-positive, recurrent/metastatic CRC resistant to the first-line treatment were enrolled in the phase 2a study. RESULTS RP2D of GC1118 was determined to be 3 mg/kg/wk in the phase 1b study (n=7). Common adverse drug reactions (ADRs) observed in the phase 2a study (n=24) were acneiform rash (95.8%), dry skin (66.7%), paronychia (58.3%), and stomatitis (50.0%). The most common ADR of ≥ grade 3 was neutropenia (33.3%). ORR was 42.5% (95% confidence interval [CI], 23.5 to 62.0), and median progression-free survival was 6.7 months (95% CI, 4.0-8.0). CONCLUSION GC1118 administered weekly at 3 mg/kg in combination with FOLFIRI appears as an effective and safe treatment option in recurrent/metastatic CRC.
Collapse
Affiliation(s)
- Keun-Wook Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Sae-Won Han
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Seoul National University Cancer Research Institute, Seoul, Korea
| | - Tae Won Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Joong Bae Ahn
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Yeon Baek
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Sang Hee Cho
- Division of Hemato-Oncology, Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Howard Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Jin Won Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Ji-Won Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Tae-You Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Seoul National University Cancer Research Institute, Seoul, Korea
| | - Yong Sang Hong
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seung-Hoon Beom
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Yongjun Cha
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | | | | | - Yung-Jue Bang
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Li Y, Lin H, Hong H, Li D, Gong L, Zhao J, Wang Z, Wu Z. Multivalent Rhamnose-Modified EGFR-Targeting Nanobody Gains Enhanced Innate Fc Effector Immunity and Overcomes Cetuximab Resistance via Recruitment of Endogenous Antibodies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307613. [PMID: 38286668 PMCID: PMC10987161 DOI: 10.1002/advs.202307613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/09/2024] [Indexed: 01/31/2024]
Abstract
Cetuximab resistance is a significant challenge in cancer treatment, requiring the development of novel therapeutic strategies. In this study, a series of multivalent rhamnose (Rha)-modified nanobody conjugates are synthesized and their antitumor activities and their potential to overcome cetuximab resistance are investigated. Structure-activity relationship studies reveal that the multivalent conjugate D5, bearing sixteen Rha haptens, elicits the most potent innate fragment crystallizable (Fc) effector immunity in vitro and exhibits an excellent in vivo pharmacokinetics by recruiting endogenous antibodies. Notably, it is found that the optimal conjugate D5 represents a novel entity capable of reversing cetuximab-resistance induced by serine protease (PRSS). Moreover, in a xenograft mouse model, conjugate D5 exhibits significantly improved antitumor efficacy compared to unmodified nanobodies and cetuximab. The findings suggest that Rha-Nanobody (Nb) conjugates hold promise as a novel therapeutic strategy for the treatment of cetuximab-resistant tumors by enhancing the innate Fc effector immunity and enhancing the recruitment of endogenous antibodies to promote cancer cell clearance by innate immune cells.
Collapse
Affiliation(s)
- Yanchun Li
- The Key Laboratory of Carbohydrate Chemistry & BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxi214122China
| | - Han Lin
- The Key Laboratory of Carbohydrate Chemistry & BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxi214122China
| | - Haofei Hong
- The Key Laboratory of Carbohydrate Chemistry & BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxi214122China
| | - Dan Li
- The Key Laboratory of Carbohydrate Chemistry & BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxi214122China
| | - Liang Gong
- The Key Laboratory of Carbohydrate Chemistry & BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxi214122China
| | - Jie Zhao
- The Key Laboratory of Carbohydrate Chemistry & BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxi214122China
| | - Zheng Wang
- The Key Laboratory of Carbohydrate Chemistry & BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxi214122China
| | - Zhimeng Wu
- The Key Laboratory of Carbohydrate Chemistry & BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxi214122China
| |
Collapse
|
10
|
Giuliani S, Paraboschi I, McNair A, Smith M, Rankin KS, Elson DS, Paleri V, Leff D, Stasiuk G, Anderson J. Monoclonal Antibodies for Targeted Fluorescence-Guided Surgery: A Review of Applicability across Multiple Solid Tumors. Cancers (Basel) 2024; 16:1045. [PMID: 38473402 DOI: 10.3390/cancers16051045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
This study aims to review the status of the clinical use of monoclonal antibodies (mAbs) that have completed or are in ongoing clinical trials for targeted fluorescence-guided surgery (T-FGS) for the intraoperative identification of the tumor margins of extra-hematological solid tumors. For each of them, the targeted antigen, the mAb generic/commercial name and format, and clinical indications are presented, together with utility, doses, and the timing of administration. Based on the current scientific evidence in humans, the top three mAbs that could be prepared in a GMP-compliant bank ready to be delivered for surgical purposes are proposed to speed up the translation to the operating room and produce a few readily available "off-the-shelf" injectable fluorescent probes for safer and more effective solid tumor resection.
Collapse
Affiliation(s)
- Stefano Giuliani
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London W1W 7TY, UK
- Cancer Section, Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
- Department of Specialist Neonatal and Paediatric Surgery, Great Ormond Street Hospital for Children NHS Trust, London WC1N 3JH, UK
| | - Irene Paraboschi
- Department of Biomedical and Clinical Science, University of Milano, 20157 Milan, Italy
| | - Angus McNair
- National Institute for Health Research Bristol Biomedical Research Centre, Bristol Centre for Surgical Research, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
- Department of Gastrointestinal Surgery, North Bristol NHS Trust, Bristol BS10 5NB, UK
| | - Myles Smith
- The Sarcoma, Melanoma and Rare Tumours Unit, The Royal Marsden Hospital, Institute Cancer of Research, London SW3 6JJ, UK
| | - Kenneth S Rankin
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- North of England Bone and Soft Tissue Tumour Service, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, UK
| | - Daniel S Elson
- Hamlyn Centre for Robotic Surgery, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - Vinidh Paleri
- Head and Neck Unit, The Royal Marsden Hospitals, London SW3 6JJ, UK
| | - Daniel Leff
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - Graeme Stasiuk
- Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, UK
| | - John Anderson
- Cancer Section, Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| |
Collapse
|
11
|
Kabil MF, Badary OA, Bier F, Mousa SA, El-Sherbiny IM. A comprehensive review on lipid nanocarrier systems for cancer treatment: fabrication, future prospects and clinical trials. J Liposome Res 2024; 34:135-177. [PMID: 37144339 DOI: 10.1080/08982104.2023.2204372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 04/02/2023] [Indexed: 05/06/2023]
Abstract
Over the last few decades, cancer has been considered a clinical challenge, being among the leading causes of mortality all over the world. Although many treatment approaches have been developed for cancer, chemotherapy is still the most utilized in the clinical setting. However, the available chemotherapeutics-based treatments have several caveats including their lack of specificity, adverse effects as well as cancer relapse and metastasis which mainly explains the low survival rate of patients. Lipid nanoparticles (LNPs) have been utilized as promising nanocarrier systems for chemotherapeutics to overcome the challenges of the currently applied therapeutic strategies for cancer treatment. Loading chemotherapeutic agent(s) into LNPs improves drug delivery at different aspects including specific targeting of tumours, and enhancing the bioavailability of drugs at the tumour site through selective release of their payload, thus reducing their undesired side effects on healthy cells. This review article delineates an overview of the clinical challenges in many cancer treatments as well as depicts the role of LNPs in achieving optimal therapeutic outcomes. Moreover, the review contains a comprehensive description of the many LNPs categories used as nanocarriers in cancer treatment to date, as well as the potential of LNPs for future applications in other areas of medicine and research.
Collapse
Affiliation(s)
- Mohamed Fawzi Kabil
- Nanomedicine Research Labs, Center for Materials Science (CMS), Zewail City of Science and Technology, Giza, Egypt
| | - Osama A Badary
- Clinical Pharmacy Department, Faculty of Pharmacy, The British University in Egypt, El-Shorouk City, Egypt
| | - Frank Bier
- AG Molekulare Bioanalytik und Bioelektronik, Institut für Biochemie und Biologie, Universität Potsdam Karl-Liebknecht-Straße 24/25, Potsdam (OT Golm), Germany
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Ibrahim M El-Sherbiny
- Nanomedicine Research Labs, Center for Materials Science (CMS), Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
12
|
Park W, Han JH, Wei S, Yang ES, Cheon SY, Bae SJ, Ryu D, Chung HS, Ha KT. Natural Product-Based Glycolysis Inhibitors as a Therapeutic Strategy for Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitor-Resistant Non-Small Cell Lung Cancer. Int J Mol Sci 2024; 25:807. [PMID: 38255882 PMCID: PMC10815680 DOI: 10.3390/ijms25020807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related deaths worldwide. Targeted therapy against the epidermal growth factor receptor (EGFR) is a promising treatment approach for NSCLC. However, resistance to EGFR tyrosine kinase inhibitors (TKIs) remains a major challenge in its clinical management. EGFR mutation elevates the expression of hypoxia-inducible factor-1 alpha to upregulate the production of glycolytic enzymes, increasing glycolysis and tumor resistance. The inhibition of glycolysis can be a potential strategy for overcoming EGFR-TKI resistance and enhancing the effectiveness of EGFR-TKIs. In this review, we specifically explored the effectiveness of pyruvate dehydrogenase kinase inhibitors and lactate dehydrogenase A inhibitors in combating EGFR-TKI resistance. The aim was to summarize the effects of these natural products in preclinical NSCLC models to provide a comprehensive understanding of the potential therapeutic effects. The study findings suggest that natural products can be promising inhibitors of glycolytic enzymes for the treatment of EGFR-TKI-resistant NSCLC. Further investigations through preclinical and clinical studies are required to validate the efficacy of natural product-based glycolytic inhibitors as innovative therapeutic modalities for NSCLC.
Collapse
Affiliation(s)
- Wonyoung Park
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea; (E.-S.Y.); (S.-Y.C.)
| | - Jung Ho Han
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea;
| | - Shibo Wei
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Eun-Sun Yang
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea; (E.-S.Y.); (S.-Y.C.)
| | - Se-Yun Cheon
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea; (E.-S.Y.); (S.-Y.C.)
| | - Sung-Jin Bae
- Department of Molecular Biology and Immunology, Kosin University College of Medicine, Busan 49267, Republic of Korea;
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea;
| | - Hwan-Suck Chung
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea;
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea; (E.-S.Y.); (S.-Y.C.)
| |
Collapse
|
13
|
Lee CH, Park S, Kim S, Hyun JY, Lee HS, Shin I. Engineering of cell-surface receptors for analysis of receptor internalization and detection of receptor-specific glycosylation. Chem Sci 2024; 15:555-565. [PMID: 38179521 PMCID: PMC10762726 DOI: 10.1039/d3sc05054h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
The epidermal growth factor receptor (EGFR) is a cell-surface glycoprotein that is involved mainly in cell proliferation. Overexpression of this receptor is intimately related to the development of a broad spectrum of tumors. In addition, glycans linked to the EGFR are known to affect its EGF-induced activation. Because of the pathophysiological significance of the EGFR, we prepared a fluorescently labeled EGFR (EGFR128-AZDye 488) on the cell surface by employing the genetic code expansion technique and bioorthogonal chemistry. EGFR128-AZDye 488 was initially utilized to investigate time-dependent endocytosis of the EGFR in live cells. The results showed that an EGFR inhibitor and antibody suppress endocytosis of the EGFR promoted by the EGF, and that lectins recognizing glycans of the EGFR do not enhance EGFR internalization into cells. Observations made in studies of the effects of appended glycans on the entry of the EGFR into cells indicate that a de-sialylated or de-fucosylated EGFR is internalized into cells more efficiently than a wild-type EGFR. Furthermore, by using the FRET-based imaging method of cells which contain an EGFR linked to AZDye 488 (a FRET donor) and cellular glycans labeled with rhodamine (a FRET acceptor), sialic acid residues attached to the EGFR were specifically detected on the live cell surface. Taken together, the results suggest that a fluorescently labeled EGFR will be a valuable tool in studies aimed at gaining an understanding of cellular functions of the EGFR.
Collapse
Affiliation(s)
- Chang-Hee Lee
- Department of Chemistry, Yonsei University Seoul 03722 Republic of Korea
| | - Sookil Park
- Department of Chemistry, Yonsei University Seoul 03722 Republic of Korea
| | - Sanggil Kim
- Department of Chemistry, Sogang University Seoul 04107 Republic of Korea
| | - Ji Young Hyun
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University Seoul 04107 Republic of Korea
| | - Injae Shin
- Department of Chemistry, Yonsei University Seoul 03722 Republic of Korea
| |
Collapse
|
14
|
Fournier L, Pekar L, Leuthner B, Kolmar H, Toleikis L, Becker S. Discovery of potent allosteric antibodies inhibiting EGFR. MAbs 2024; 16:2406548. [PMID: 39304998 PMCID: PMC11418213 DOI: 10.1080/19420862.2024.2406548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
In this work, we report the discovery of potent anti-epidermal growth factor receptor (EGFR) allosteric heavy-chain antibodies by combining camelid immunization and fluorescence-activated cell sorting (FACS). After immunization and yeast surface display library construction, allosteric clones were obtained by introducing the labeled EGF Fc fusion protein as an additional criterion for FACS. This sorting method enabled the identification of 11 heavy-chain antibodies that did not compete with the orthosteric ligand EGF for the binding to EGFR. These antibodies bind to a triple-negative breast cancer cell line expressing EGFR with affinities in the picomolar to nanomolar range. Those camelid-derived antibodies also exhibit interesting properties by modulating EGFR affinity for EGF. Moreover, they are also able to inhibit EGF-induced downstream signaling pathways. In particular, we identified one clone that is more potent than the approved blocking antibody cetuximab in inhibiting both PI3K/AKT and MAPK/ERK pathways. Our results suggest that allosteric antibodies may be potential new modalities for therapeutics.
Collapse
Affiliation(s)
- Léxane Fournier
- Early Protein Supply and Characterization, Merck Healthcare KGaA, Darmstadt, Germany
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Lukas Pekar
- Antibody Discovery and Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | | | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Lars Toleikis
- Early Protein Supply and Characterization, Merck Healthcare KGaA, Darmstadt, Germany
| | - Stefan Becker
- Early Protein Supply and Characterization, Merck Healthcare KGaA, Darmstadt, Germany
| |
Collapse
|
15
|
Akunevich AA, Khrustalev VV, Khrustaleva TA, Yermalovich MA. The Agonistic Activity of the Human Epidermal Growth Factor is Reduced by the D46G Substitution. Protein Pept Lett 2024; 31:504-518. [PMID: 39041280 DOI: 10.2174/0109298665297321240708044223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/14/2024] [Accepted: 06/05/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Resistance to anti-tumor agents targeting the epidermal growth factor receptor (EGFR) reduces treatment response and requires the development of novel EGFR antagonists. Mutant epidermal growth factor (EGF) forms with reduced agonistic activity could be promising agents in cancer treatment. METHODS EGF D46G affinity to EGFR domain III was assessed with affinity chromatography. EGF D46G acute toxicity in Af albino mice at 320 and 3200 μg/kg subcutaneous doses was evaluated. EGF D46G activity in human epidermoid carcinoma cells at 10 ng/mL concentration in serum-free medium and in subcutaneous Ehrlich ascites carcinoma mice model at 320 μg/kg dose was studied. RESULTS The D46G substitution decreases the thermal stability of EGF complexes with EGFR domain III by decreasing the ability of the C-terminus to be released from the intermolecular β- sheet. However, with remaining binding sites for EGFR domain I, EGF D46G effectively competes with other EGF-like growth factors for binding to EGFR and does not demonstrate toxic effects in mice. EGF D46G inhibits the proliferation of human epidermoid carcinoma cells compared to native EGF. A single subcutaneous administration of EGF D46G along with Ehrlich carcinoma cells injection inhibits the proliferation of these cells and delays tumor formation for up to seven days. CONCLUSION EGF D46G can be defined as a partial EGFR agonist as this mutant form demonstrates reduced agonistic activity compared to native EGF. The study emphasizes the role of the EGF C-terminus in establishing interactions with EGFR domain III, which are necessary for EGFR activation and subsequent proliferation of cells.
Collapse
Affiliation(s)
| | | | | | - Marina Anatolyevna Yermalovich
- Laboratory of Vaccine Controlled Infections, Republican Research and Practical Center for Epidemiology and Microbiology, Filimonava 23, Minsk, 220114, Belarus
| |
Collapse
|
16
|
Liu S, Wang Z, Wei Q, Duan X, Liu Y, Wu M, Ding J. Biomaterials-enhanced bioactive agents to efficiently block spinal metastases of cancers. J Control Release 2023; 363:721-732. [PMID: 37741462 DOI: 10.1016/j.jconrel.2023.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
The spine is the most common site of bone metastases, as 20%-40% of cancer patients suffer from spinal metastases. Treatments for spinal metastases are scarce and palliative, primarily aiming at relieving bone pain and preserving neurological function. The bioactive agents-mediated therapies are the most effective modalities for treating spinal metastases because they achieve systematic and specific tumor regression. However, the clinical applications of some bioactive agents are limited due to the lack of targeting capabilities, severe side effects, and vulnerability of drug resistance. Fortunately, advanced biomaterials have been developed as excipients to enhance these treatments, including chemotherapy, phototherapy, magnetic hyperthermia therapy, and combination therapy, by improving tumor targeting and enabling sustaining and stimuli-responsive release of various therapeutic agents. Herein, the review summarizes the development of biomaterials-mediated bioactive agents for enhanced treatments of spinal metastases and predicts future research trends.
Collapse
Affiliation(s)
- Shixian Liu
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, PR China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, PR China
| | - Qi Wei
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China; Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, PR China
| | - Xuefeng Duan
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, PR China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Yang Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Minfei Wu
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, PR China.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China; Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, 388 Yuhangtang Road, Hangzhou 310058, PR China.
| |
Collapse
|
17
|
VanSlyke JK, Boswell BA, Musil LS. ErbBs in Lens Cell Fibrosis and Secondary Cataract. Invest Ophthalmol Vis Sci 2023; 64:6. [PMID: 37418274 PMCID: PMC10337807 DOI: 10.1167/iovs.64.10.6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
Purpose TGFβ-induced epithelial-to-myofibroblast transition (EMyT) of lens cells has been linked to the most common vision-disrupting complication of cataract surgery-namely, posterior capsule opacification (PCO; secondary cataract). Although inhibitors of the ErbB family of receptor tyrosine kinases have been shown to block some PCO-associated processes in model systems, our knowledge of ErbB signaling in the lens is very limited. Here, we investigate the expression of ErbBs and their ligands in primary cultures of chick lens epithelial cells (dissociated cell-derived monolayer cultures [DCDMLs]) and how TGFβ affects ErbB function. Methods DCDMLs were analyzed by immunofluorescence microscopy and Western blotting under basal and profibrotic conditions. Results Small-molecule ErbB kinase blockers, including the human therapeutic lapatinib, selectively inhibit TGFβ-induced EMyT of DCDMLs. Lens cells constitutively express ErbB1 (EGFR), ErbB2, and ErbB4 protein on the plasma membrane and release into the medium ErbB-activating ligand. Culturing DCDMLs with TGFβ increases soluble bioactive ErbB ligand and markedly alters ErbBs, reducing total and cell surface ErbB2 and ErbB4 while increasing ErbB1 expression and homodimer formation. Similar, TGFβ-dependent changes in relative ErbB expression are induced when lens cells are exposed to the profibrotic substrate fibronectin. A single, 1-hour treatment with lapatinib inhibits EMyT in DCDMLs assessed 6 days later. Short-term exposure to lower doses of lapatinib is also capable of eliciting a durable response when combined with suboptimal levels of a mechanistically distinct multikinase inhibitor. Conclusions Our findings support ErbB1 as a therapeutic target for fibrotic PCO, which could be leveraged to pharmaceutically preserve the vision of millions of patients with cataracts.
Collapse
Affiliation(s)
- Judy K. VanSlyke
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Bruce A. Boswell
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Linda S. Musil
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| |
Collapse
|
18
|
Doan NQH, Nguyen NTK, Nguyen NB, Tran TT, Tran QN, Truong TN. Design, synthesis, in vitro and in silico evaluation of anti-colorectal cancer activity of curcumin analogues containing 1,3-diphenyl-1H-pyrazole targeting EGFR tyrosine kinase. Biochim Biophys Acta Gen Subj 2023:130414. [PMID: 37331408 DOI: 10.1016/j.bbagen.2023.130414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Recent studies have shown that monocarbonyl analogues of curcumin (MACs) and 1H-pyrazole heterocycle both demonstrated promising anticancer activities, in which several compounds containing these scaffolds could target EGFR. In this research, 24 curcumin analogues containing 1H-pyrazole (a1-f4) were synthesized and characterized by using modern spectroscopic techniques. Firstly, synthetic MACs were screened for cytotoxicity against human cancer cell lines such as SW480, MDA-MB-231 and A549, from which the 10 most potential cytotoxic compounds were identified and selected. Subsequently, the selected MACs were further screened for their inhibition against tyrosine kinases, which showed that a4 demonstrated the most significant inhibitory effects on EGFRWT and EGFRL858R. Based on the results, a4 further demonstrated its ability to cause morphological changes, to increase the percentage of apoptotic cells, and to increase caspase-3 activity, suggesting its apoptosis-inducing activity on SW480 cells. In addition, the effect of a4 on the SW480 cell cycle revealed its ability to arrest SW480 cells at G2/M phase. In subsequent computer-based assessments, a4 was predicted to possess several promising physicochemical, pharmacokinetic, and toxicological properties. Via molecular docking and molecular dynamics simulation, a reversible binding mode between a4 and EGFRWT, EGFRL858R, or EGFRG719S, remained stable within the 100-ns simulation due to effective interactions especially the hydrogen bonding with M793. Finally, free binding energy calculations suggested that a4 could inhibit the activity of EGFRG719S more effectively than other EGFR forms. In conclusion, our work would provide the basis for the future design of promising synthetic compounds as anticancer agents targeting EGFR tyrosine kinase.
Collapse
Affiliation(s)
- Nam Q H Doan
- Faculty of Pharmacy, Van Lang University, 69/68 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City 70000, Viet Nam.
| | - Ngan T K Nguyen
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 41-43 Dinh Tien Hoang Street, Ben Nghe Ward, District 1, Ho Chi Minh City 70000, Viet Nam.
| | - Ngoc B Nguyen
- Quality Assurance, Hasan Dermapharm Joint Venture Co., Ltd., Lot B, Dong An Industrial Park, Binh Duong Province 75000, Viet Nam.
| | - Thi T Tran
- Faculty of Medicine and Pharmacy, Thu Dau Mot University, 06 Tran Van On Street, Phu Hoa Ward, Thu Dau Mot City, Binh Duong Province 75000, Viet Nam.
| | - Quang N Tran
- School of Chemical Engineering, Biological and Environmental Engineering, Oregon State University, 116 Johnson Hall, 105 SW 26th Street, Corvallis, OR 97331, USA.
| | - Tuyen N Truong
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 41-43 Dinh Tien Hoang Street, Ben Nghe Ward, District 1, Ho Chi Minh City 70000, Viet Nam.
| |
Collapse
|
19
|
Zutshi N, Mohapatra BC, Mondal P, An W, Goetz BT, Wang S, Li S, Storck MD, Mercer DF, Black AR, Thayer SP, Black JD, Lin C, Band V, Band H. Cbl and Cbl-b Ubiquitin Ligases are Essential for Intestinal Epithelial Stem Cell Maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541154. [PMID: 37292716 PMCID: PMC10245689 DOI: 10.1101/2023.05.17.541154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Among the signaling pathways that control the stem cell self-renewal and maintenance vs. acquisition of differentiated cell fates, those mediated by receptor tyrosine kinase (RTK) activation are well established as key players. CBL family ubiquitin ligases are negative regulators of RTKs but their physiological roles in regulating stem cell behaviors are unclear. While hematopoietic Cbl/Cblb knockout (KO) leads to a myeloproliferative disease due to expansion and reduced quiescence of hematopoietic stem cells, mammary epithelial KO led to stunted mammary gland development due to mammary stem cell depletion. Here, we examined the impact of inducible Cbl/Cblb double-KO (iDKO) selectively in the Lgr5-defined intestinal stem cell (ISC) compartment. Cbl/Cblb iDKO led to rapid loss of the Lgr5 Hi ISC pool with a concomitant transient expansion of the Lgr5 Lo transit amplifying population. LacZ reporter-based lineage tracing showed increased ISC commitment to differentiation, with propensity towards enterocyte and goblet cell fate at the expense of Paneth cells. Functionally, Cbl/Cblb iDKO impaired the recovery from radiation-induced intestinal epithelial injury. In vitro , Cbl/Cblb iDKO led to inability to maintain intestinal organoids. Single cell RNAseq analysis of organoids revealed Akt-mTOR pathway hyperactivation in iDKO ISCs and progeny cells, and pharmacological inhibition of the Akt-mTOR axis rescued the organoid maintenance and propagation defects. Our results demonstrate a requirement for Cbl/Cblb in the maintenance of ISCs by fine tuning the Akt-mTOR axis to balance stem cell maintenance vs. commitment to differentiation.
Collapse
|
20
|
Ejaz SA, Aziz M, Fawzy Ramadan M, Fayyaz A, Bilal MS. Pharmacophore-Based Virtual Screening and In-Silico Explorations of Biomolecules (Curcumin Derivatives) of Curcuma longa as Potential Lead Inhibitors of ERBB and VEGFR-2 for the Treatment of Colorectal Cancer. Molecules 2023; 28:molecules28104044. [PMID: 37241785 DOI: 10.3390/molecules28104044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 05/28/2023] Open
Abstract
The newly FDA-approved drug, Axitinib, is an effective therapy against RTKs, but it possesses severe adverse effects like hypertension, stomatitis, and dose-dependent toxicity. In order to ameliorate Axitinib's downsides, the current study is expedited to search for energetically stable and optimized pharmacophore features of 14 curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione) derivatives. The rationale behind the selection of curcumin derivatives is their reported anti-angiogenic and anti-cancer properties. Furthermore, they possessed a low molecular weight and a low toxicity profile. In the current investigation, the pharmacophore model-based drug design, facilitates the filtering of curcumin derivatives as VEGFR2 interfacial inhibitors. Initially, the Axitinib scaffold was used to build a pharmacophore query model against which curcumin derivatives were screened. Then, top hits from pharmacophore virtual screening were subjected to in-depth computational studies such as molecular docking, density functional theory (DFT) studies, molecular dynamics (MD) simulations, and ADMET property prediction. The findings of the current investigation revealed the substantial chemical reactivity of the compounds. Specifically, compounds S8, S11, and S14 produced potential molecular interactions against all four selected protein kinases. Docking scores of -41.48 and -29.88 kJ/mol for compounds S8 against VEGFR1 and VEGFR3, respectively, were excellent. Whereas compounds S11 and S14 demonstrated the highest inhibitory potential against ERBB and VEGFR2, with docking scores of -37.92 and -38.5 kJ/mol against ERBB and -41.2 and -46.5 kJ/mol against VEGFR-2, respectively. The results of the molecular docking studies were further correlated with the molecular dynamics simulation studies. Moreover, HYDE energy was calculated through SeeSAR analysis, and the safety profile of the compounds was predicted through ADME studies.
Collapse
Affiliation(s)
- Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Mubashir Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Mohamed Fawzy Ramadan
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ammara Fayyaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Sajjad Bilal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
21
|
Maity P, Chatterjee J, Patil KT, Arora S, Katiyar MK, Kumar M, Samarbakhsh A, Joshi G, Bhutani P, Chugh M, Gavande NS, Kumar R. Targeting the Epidermal Growth Factor Receptor with Molecular Degraders: State-of-the-Art and Future Opportunities. J Med Chem 2023; 66:3135-3172. [PMID: 36812395 DOI: 10.1021/acs.jmedchem.2c01242] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Epidermal growth factor receptor (EGFR) is an oncogenic drug target and plays a critical role in several cellular functions including cancer cell growth, survival, proliferation, differentiation, and motility. Several small-molecule tyrosine kinase inhibitors (TKIs) and monoclonal antibodies (mAbs) have been approved for targeting intracellular and extracellular domains of EGFR, respectively. However, cancer heterogeneity, mutations in the catalytic domain of EGFR, and persistent drug resistance limited their use. Different novel modalities are gaining a position in the limelight of anti-EGFR therapeutics to overcome such limitations. The current perspective reflects upon newer modalities, importantly the molecular degraders such as PROTACs, LYTACs, AUTECs, and ATTECs, etc., beginning with a snapshot of traditional and existing anti-EGFR therapies including small molecule inhibitors, mAbs, and antibody drug conjugates (ADCs). Further, a special emphasis has been made on the design, synthesis, successful applications, state-of-the-art, and emerging future opportunities of each discussed modality.
Collapse
Affiliation(s)
- Pritam Maity
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Joydeep Chatterjee
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Kiran T Patil
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Sahil Arora
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Madhurendra K Katiyar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Manvendra Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Amirreza Samarbakhsh
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, United States
| | - Gaurav Joshi
- Department of Pharmaceutical Science, Hemvati Nandan Bahuguna Garhwal (A Central) University, Srinagar 246174, Dist. Garhwal (Uttarakhand), India
| | | | - Manoj Chugh
- In Vitro Diagnostics, Transasia BioMedical Pvt. Ltd. 400072 Mumbai, India
| | - Navnath S Gavande
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, United States.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201, United States
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| |
Collapse
|
22
|
Mohiuddin TM, Zhang C, Sheng W, Al-Rawe M, Zeppernick F, Meinhold-Heerlein I, Hussain AF. Near Infrared Photoimmunotherapy: A Review of Recent Progress and Their Target Molecules for Cancer Therapy. Int J Mol Sci 2023; 24:2655. [PMID: 36768976 PMCID: PMC9916513 DOI: 10.3390/ijms24032655] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023] Open
Abstract
Near infrared photoimmunotherapy (NIR-PIT) is a newly developed molecular targeted cancer treatment, which selectively kills cancer cells or immune-regulatory cells and induces therapeutic host immune responses by administrating a cancer targeting moiety conjugated with IRdye700. The local exposure to near-infrared (NIR) light causes a photo-induced ligand release reaction, which causes damage to the target cell, resulting in immunogenic cell death (ICD) with little or no side effect to the surrounding normal cells. Moreover, NIR-PIT can generate an immune response in distant metastases and inhibit further cancer attack by combing cancer cells targeting NIR-PIT and immune regulatory cells targeting NIR-PIT or other cancer treatment modalities. Several recent improvements in NIR-PIT have been explored such as catheter-driven NIR light delivery, real-time monitoring of cancer, and the development of new target molecule, leading to NIR-PIT being considered as a promising cancer therapy. In this review, we discuss the progress of NIR-PIT, their mechanism and design strategies for cancer treatment. Furthermore, the overall possible targeting molecules for NIR-PIT with their application for cancer treatment are briefly summarised.
Collapse
|
23
|
Khadela A, Shah Y, Mistry P, Mansuri M, Sureja D, Bodiwala K. A review of efficacy and safety of cetuximab and bevacizumab-based monoclonal antibodies in head and neck cancer. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:66. [PMID: 36583766 DOI: 10.1007/s12032-022-01939-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022]
Abstract
A combination of monoclonal antibodies prescribed along with the conventional standard of care has a potential to provide significant improvement in patients suffering from head and neck cancer. This combination has also shown a significant decrease in toxicities and improved overall quality of life. Cetuximab acts by inhibiting the human epidermal growth factors as its overexpression in head and neck tumours that are responsible for treatment failure, resistance, and metastasis. Whereas, bevacizumab acts by inhibiting the vascular endothelial growth factor since its overexpression leads to induction of tumour angiogenesis. Current research has not shown any remarkable beneficial effect in disease outcomes. Thus, the addition of these monoclonal antibodies to the standard regimen for head and neck cancer can be considered a prospect that might be beneficial. Cetuximab has already been included as an option under special recommendations in recurrent/metastatic head and neck cancer by NCCN in a platinum-based regimen as well as in combination with radiation therapy. This review outlines the applicability of cetuximab and bevacizumab in the treatment of head and neck cancer as well as the clinical trials performed that give an idea about the efficacy and safety of these monoclonal antibodies. Based upon the literature reviewed, it can be deduced that immunotherapy is to be adopted and different targets are to be explored in it in order to combat head and neck cancer. Currently, immunotherapeutic drugs of two major targets have been discussed. These agents are even effective in combination with other therapeutic modalities that are not being able to achieve desirable outcomes due to issues such as resistance and toxicities. Thus, newer targets as well as newer agents acting on established targets are to be explored in order to improve disease outcomes.
Collapse
Affiliation(s)
- Avinash Khadela
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India.
| | - Yesha Shah
- Pharm.D Section, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Priya Mistry
- Pharm.D Section, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Mustakim Mansuri
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Dipen Sureja
- Department of Pharmaceutical Chemistry, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Kunjan Bodiwala
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India
| |
Collapse
|
24
|
Conformation specific antagonistic high affinity antibodies to the RON receptor kinase for imaging and therapy. Sci Rep 2022; 12:22564. [PMID: 36581692 PMCID: PMC9800565 DOI: 10.1038/s41598-022-26404-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/14/2022] [Indexed: 12/31/2022] Open
Abstract
The RON receptor tyrosine kinase is an exceptionally interesting target in oncology and immunology. It is not only overexpressed in a wide variety of tumors but also has been shown to be expressed on myeloid cells associated with tumor infiltration, where it serves to dampen tumour immune responses and reduce the efficacy of anti-CTLA4 therapy. Potent and selective inhibitory antibodies to RON might therefore both inhibit tumor cell growth and stimulate immune rejection of tumors. We derived cloned and sequenced a new panel of exceptionally avid anti-RON antibodies with picomolar binding affinities that inhibit MSP-induced RON signaling and show remarkable potency in antibody dependent cellular cytotoxicity. Antibody specificity was validated by cloning the antibody genes and creating recombinant antibodies and by the use of RON knock out cell lines. When radiolabeled with 89-Zirconium, the new antibodies 3F8 and 10G1 allow effective immuno-positron emission tomography (immunoPET) imaging of RON-expressing tumors and recognize universally exposed RON epitopes at the cell surface. The 10G1 was further developed into a novel bispecific T cell engager with a 15 pM EC50 in cytotoxic T cell killing assays.
Collapse
|
25
|
Cohen T, Halfon M, Carter L, Sharkey B, Jain T, Sivasubramanian A, Schneidman-Duhovny D. Multi-state modeling of antibody-antigen complexes with SAXS profiles and deep-learning models. Methods Enzymol 2022; 678:237-262. [PMID: 36641210 DOI: 10.1016/bs.mie.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antibodies are an established class of human therapeutics. Epitope characterization is an important part of therapeutic antibody discovery. However, structural characterization of antibody-antigen complexes remains challenging. On the one hand, X-ray crystallography or cryo-electron microscopy provide atomic resolution characterization of the epitope, but the data collection process is typically long and the success rate is low. On the other hand, computational methods for modeling antibody-antigen structures from the individual components frequently suffer from a high false positive rate, rarely resulting in a unique solution. Recent deep learning models for structure prediction are also successful in predicting protein-protein complexes. However, they do not perform well for antibody-antigen complexes. Small Angle X-ray Scattering (SAXS) is a reliable technique for rapid structural characterization of protein samples in solution albeit at low resolution. Here, we present an integrative approach for modeling antigen-antibody complexes using the antibody sequence, antigen structure, and experimentally determined SAXS profiles of the antibody, antigen, and the complex. The method models antibody structures using a novel deep-learning approach, NanoNet. The structures of the antibodies and antigens are represented using multiple 3D conformations to account for compositional and conformational heterogeneity of the protein samples that are used to collect the SAXS data. The complexes are predicted by integrating the SAXS profiles with scoring functions for protein-protein interfaces that are based on statistical potentials and antibody-specific deep-learning models. We validated the method via application to four Fab:EGFR and one Fab:PCSK9 antibody:antigen complexes with experimentally available SAXS datasets. The integrative approach returns accurate predictions (interface RMSD<4Å) in the top five predictions for four out of five complexes (respective interface RMSD values of 1.95, 2.18, 2.66 and 3.87Å), providing support for the utility of such a computational pipeline for epitope characterization during therapeutic antibody discovery.
Collapse
Affiliation(s)
- Tomer Cohen
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Matan Halfon
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lester Carter
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, United States
| | - Beth Sharkey
- High-Throughput Expression, Adimab LLC, Lebanon, NH, United States
| | - Tushar Jain
- Computational Biology, Adimab LLC, Palo Alto, CA, United States
| | | | - Dina Schneidman-Duhovny
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
26
|
Chen Q, Lu L, Ma W. Efficacy, Safety, and Challenges of CAR T-Cells in the Treatment of Solid Tumors. Cancers (Basel) 2022; 14:cancers14235983. [PMID: 36497465 PMCID: PMC9739567 DOI: 10.3390/cancers14235983] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/18/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy has been the fifth pillar of cancer treatment in the past decade. Chimeric antigen receptor (CAR) T-cell therapy is a newly designed adoptive immunotherapy that is able to target and further eliminate cancer cells by engaging with MHC-independent tumor-antigens. CAR T-cell therapy has exhibited conspicuous clinical efficacy in hematological malignancies, but more than half of patients will relapse. Of note, the efficacy of CAR T-cell therapy has been even more disappointing in solid tumors. These challenges mainly include (1) the failures of CAR T-cells to treat highly heterogeneous solid tumors due to the difficulty in identifying unique tumor antigen targets, (2) the expression of target antigens in non-cancer cells, (3) the inability of CAR T-cells to effectively infiltrate solid tumors, (4) the short lifespan and lack of persistence of CAR T-cells, and (5) cytokine release syndrome and neurotoxicity. In combination with these characteristics, the ideal CAR T-cell therapy for solid tumors should maintain adequate T-cell response over a long term while sparing healthy tissues. This article reviewed the status, clinical application, efficacy, safety, and challenges of CAR T-cell therapies, as well as the latest progress of CAR T-cell therapies for solid tumors. In addition, the potential strategies to improve the efficacy of CAR T-cells and prevent side effects in solid tumors were also explored.
Collapse
Affiliation(s)
- Qiuqiang Chen
- Key Laboratory for Translational Medicine, The First Affiliated Hospital, Huzhou University School of Medicine, Huzhou 313000, China
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, School of Medicine, Yale School of Public Health, New Haven, CT 06520, USA
- Yale Cancer Center and Center for Biomedical Data Science, Yale University, 60 College Street, New Haven, CT 06520, USA
| | - Wenxue Ma
- Sanford Stem Cell Clinical Center, Moores Cancer Center, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Correspondence: ; Tel.: +1-858-246-1477
| |
Collapse
|
27
|
Liu L, Chen J. Therapeutic antibodies for precise cancer immunotherapy: current and future perspectives. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:555-569. [PMID: 37724258 PMCID: PMC10471122 DOI: 10.1515/mr-2022-0033] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/25/2022] [Indexed: 09/20/2023]
Abstract
Antibodies, as one of the most important components of host adaptive immune system, play an important role in defense of infectious disease, immune surveillance, and autoimmune disease. Due to the development of recombinant antibody technology, antibody therapeutics become the largest and rapidly expanding drug to provide major health benefits to patients, especially for the treatment of cancer patients. Many antibody-based therapeutic strategies have been developed including monoclonal antibodies, antibody-drug conjugates, bispecific and trispecific antibodies and pro-antibodies with promising results from both clinical and pre-clinical trials. However, the response rate and side-effect still vary between patients with undefined mechanisms. Here, we summarized the current and future perspectives of antibody-based cancer immunotherapeutic strategies for designing next-generation drugs.
Collapse
Affiliation(s)
- Longchao Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jiahui Chen
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
28
|
Rosenquist R, Cuppen E, Buettner R, Caldas C, Dreau H, Elemento O, Frederix G, Grimmond S, Haferlach T, Jobanputra V, Meggendorfer M, Mullighan CG, Wordsworth S, Schuh A. Clinical utility of whole-genome sequencing in precision oncology. Semin Cancer Biol 2022; 84:32-39. [PMID: 34175442 DOI: 10.1016/j.semcancer.2021.06.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/02/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022]
Abstract
Precision diagnostics is one of the two pillars of precision medicine. Sequencing efforts in the past decade have firmly established cancer as a primarily genetically driven disease. This concept is supported by therapeutic successes aimed at particular pathways that are perturbed by specific driver mutations in protein-coding domains and reflected in three recent FDA tissue agnostic cancer drug approvals. In addition, there is increasing evidence from studies that interrogate the entire genome by whole-genome sequencing that acquired global and complex genomic aberrations including those in non-coding regions of the genome might also reflect clinical outcome. After addressing technical, logistical, financial and ethical challenges, national initiatives now aim to introduce clinical whole-genome sequencing into real-world diagnostics as a rational and potentially cost-effective tool for response prediction in cancer and to identify patients who would benefit most from 'expensive' targeted therapies and recruitment into clinical trials. However, so far, this has not been accompanied by a systematic and prospective evaluation of the clinical utility of whole-genome sequencing within clinical trials of uniformly treated patients of defined clinical outcome. This approach would also greatly facilitate novel predictive biomarker discovery and validation, ultimately reducing size and duration of clinical trials and cost of drug development. This manuscript is the third in a series of three to review and critically appraise the potential and challenges of clinical whole-genome sequencing in solid tumors and hematological malignancies.
Collapse
Affiliation(s)
- Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Genetics, Karolinska University Hospital, Solna, Sweden
| | - Edwin Cuppen
- Hartwig Medical Foundation, Amsterdam, The Netherlands; Center for Molecular Medicine and Oncode Institute, University Medical Center, Utrecht, The Netherlands
| | | | - Carlos Caldas
- Cancer Research UK Cambridge Institute and Department of Oncology, University of Cambridge, United Kingdom
| | - Helene Dreau
- NIHR Oxford Biomedical Research Centre and Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Olivier Elemento
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, United States; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, United States
| | - Geert Frederix
- Julius Center for Health Sciences and Primary Care, University Medical Center, Utrecht, The Netherlands
| | - Sean Grimmond
- Centre for Cancer Research, University of Melbourne, Melbourne, Australia
| | | | - Vaidehi Jobanputra
- New York Genome Center, 101 Avenue of the Americas, New York, NY 100132, United States; Columbia University Medical Center, 650 W 168th St, New York, NY 10032, United States
| | | | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, United States
| | - Sarah Wordsworth
- Nuffield Department of Population Health and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Anna Schuh
- NIHR Oxford Biomedical Research Centre and Department of Oncology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
29
|
Extracellular vesicles as an emerging drug delivery system for cancer treatment: Current strategies and recent advances. Biomed Pharmacother 2022; 153:113480. [DOI: 10.1016/j.biopha.2022.113480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/19/2022] Open
|
30
|
Mussafi O, Mei J, Mao W, Wan Y. Immune checkpoint inhibitors for PD-1/PD-L1 axis in combination with other immunotherapies and targeted therapies for non-small cell lung cancer. Front Oncol 2022; 12:948405. [PMID: 36059606 PMCID: PMC9430651 DOI: 10.3389/fonc.2022.948405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/22/2022] [Indexed: 12/13/2022] Open
Abstract
It has been widely acknowledged that the use of immune checkpoint inhibitors (ICI) is an effective therapeutic treatment in many late-stage cancers. However, not all patients could benefit from ICI therapy. Several biomarkers, such as high expression of PD-L1, high mutational burden, and higher number of tumor infiltration lymphocytes have shown to predict clinical benefit from immune checkpoint therapies. One approach using ICI in combination with other immunotherapies and targeted therapies is now being investigated to enhance the efficacy of ICI alone. In this review, we summarized the use of other promising immunotherapies and targeted therapies in combination with ICI in treatment of lung cancers. The results from multiple animals and clinical trials were reviewed. We also briefly discussed the possible outlooks for future treatment.
Collapse
Affiliation(s)
- Ofek Mussafi
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY, United States
| | - Jie Mei
- Department of Oncology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Wenjun Mao
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Yuan Wan
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY, United States
| |
Collapse
|
31
|
Abstract
EGFR is a member of the ERBB family. It plays a significant role in cellular processes such as growth, survival and differentiation via the activation of various signaling pathways. EGFR deregulation is implicated in various human malignancies, and therefore EGFR has emerged as an attractive anticancer target. EGFR inhibition using strategies such as tyrosine kinase inhibitors and monoclonal antibodies hinders cellular proliferation and promotes apoptosis in cancer cells in vitro and in vivo. EGFR inhibition by tyrosine kinase inhibitors has been shown to be a better treatment option than chemotherapy for advanced-stage EGFR-driven non-small-cell lung cancer, yet de novo and acquired resistance limits the clinical benefit of these therapeutic molecules. This review discusses the cellular signaling pathways activated by EGFR. Further, current therapeutic strategies to target aberrant EGFR signaling in cancer and mechanisms of resistance to them are highlighted.
Collapse
|
32
|
Ferreira A, Pereira F, Reis C, Oliveira MJ, Sousa MJ, Preto A. Crucial Role of Oncogenic KRAS Mutations in Apoptosis and Autophagy Regulation: Therapeutic Implications. Cells 2022; 11:cells11142183. [PMID: 35883626 PMCID: PMC9319879 DOI: 10.3390/cells11142183] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/05/2022] [Accepted: 07/10/2022] [Indexed: 11/16/2022] Open
Abstract
KRAS, one of the RAS protein family members, plays an important role in autophagy and apoptosis, through the regulation of several downstream effectors. In cancer cells, KRAS mutations confer the constitutive activation of this oncogene, stimulating cell proliferation, inducing autophagy, suppressing apoptosis, altering cell metabolism, changing cell motility and invasion and modulating the tumor microenvironment. In order to inhibit apoptosis, these oncogenic mutations were reported to upregulate anti-apoptotic proteins, including Bcl-xL and survivin, and to downregulate proteins related to apoptosis induction, including thymine-DNA glycosylase (TDG) and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL). In addition, KRAS mutations are known to induce autophagy in order to promote cell survival and tumor progression through MAPK and PI3K regulation. Thus, these mutations confer resistance to anti-cancer drug treatment and, consequently, result in poor prognosis. Several therapies have been developed in order to overcome KRAS-induced cell death resistance and the downstream signaling pathways blockade, especially by combining MAPK and PI3K inhibitors, which demonstrated promising results. Understanding the involvement of KRAS mutations in apoptosis and autophagy regulation, might bring new avenues to the discovery of therapeutic approaches for CRCs harboring KRAS mutations.
Collapse
Affiliation(s)
- Anabela Ferreira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (A.F.); (F.P.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Flávia Pereira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (A.F.); (F.P.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (C.R.); (M.J.O.)
- Institute of Biomedical Engineering (INEB), University of Porto, 4200-135 Porto, Portugal
| | - Celso Reis
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (C.R.); (M.J.O.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Maria José Oliveira
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (C.R.); (M.J.O.)
- Institute of Biomedical Engineering (INEB), University of Porto, 4200-135 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Maria João Sousa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (A.F.); (F.P.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Ana Preto
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (A.F.); (F.P.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- Correspondence: ; Tel.: +351-253-601524
| |
Collapse
|
33
|
B-Cell-Based Immunotherapy: A Promising New Alternative. Vaccines (Basel) 2022; 10:vaccines10060879. [PMID: 35746487 PMCID: PMC9227543 DOI: 10.3390/vaccines10060879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
The field of immunotherapy has undergone radical conceptual changes over the last decade. There are various examples of immunotherapy, including the use of monoclonal antibodies, cancer vaccines, tumor-infecting viruses, cytokines, adjuvants, and autologous T cells carrying chimeric antigen receptors (CARs) that can bind cancer-specific antigens known as adoptive immunotherapy. While a lot has been achieved in the field of T-cell immunotherapy, only a fraction of patients (20%) see lasting benefits from this mode of treatment, which is why there is a critical need to turn our attention to other immune cells. B cells have been shown to play both anti- and pro-tumorigenic roles in tumor tissue. In this review, we shed light on the dual nature of B cells in the tumor microenvironment. Furthermore, we discussed the different factors affecting the biology and function of B cells in tumors. In the third section, we described B-cell-based immunotherapies and their clinical applications and challenges. These current studies provide a springboard for carrying out future mechanistic studies to help us unleash the full potential of B cells in immunotherapy.
Collapse
|
34
|
Janani B, Vijayakumar M, Priya K, Kim JH, Prabakaran DS, Shahid M, Al-Ghamdi S, Alsaidan M, Othman Bahakim N, Hassan Abdelzaher M, Ramesh T. EGFR-Based Targeted Therapy for Colorectal Cancer—Promises and Challenges. Vaccines (Basel) 2022; 10:vaccines10040499. [PMID: 35455247 PMCID: PMC9030067 DOI: 10.3390/vaccines10040499] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
Colorectal carcinoma (CRC) is the most lethal and common form of cancer in the world. It was responsible for almost 881,000 cancer deaths in 2018. Approximately 25% of cases are diagnosed at advanced stages with metastasis—this poses challenges for effective surgical control and future tumor-related mortality. There are numerous diagnostic methods that can be used to reduce the risk of colorectal carcinoma. Among these, targeted nanotherapy aims to eliminate the tumor and any metastasis. Active targeting can increase the effectiveness and quantity of drugs delivered to the target site. Antibodies that target overexpressed receptors on cell surfaces and indicators are coupled with drug-loaded carriers. The major target receptors of chemotherapeutic drugs delivery include VEGFR, EGFR, FGFR, HER2, and TGF. On account of its major and diverse roles in cancer, it is important to target EGFR in particular for better tumor selection, as EGFR is overexpressed in 25 to 82% of colorectal carcinoma cases. The EGFR monoclonal immunoglobulins cetuximab/panitumumab can thus be used to treat colorectal cancer. This review examines carriers that contain cetuximab-conjugated therapeutic drugs as well as their efficacy in anticancer activities.
Collapse
Affiliation(s)
- Balakarthikeyan Janani
- Department of Biochemistry, PSG College of Arts and Science (Autonomous), Bharathiar University, Coimbatore 641014, Tamil Nadu, India;
| | - Mayakrishnan Vijayakumar
- Department of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, 209 Neugdong-ro, Gwangjin-gu, Seoul 05006, Korea; (M.V.); (J.H.K.)
| | - Kannappan Priya
- Department of Biochemistry, PSG College of Arts and Science (Autonomous), Bharathiar University, Coimbatore 641014, Tamil Nadu, India;
- Correspondence: (K.P.); (T.R.)
| | - Jin Hee Kim
- Department of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, 209 Neugdong-ro, Gwangjin-gu, Seoul 05006, Korea; (M.V.); (J.H.K.)
| | - D. S. Prabakaran
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju 28644, Korea;
- Department of Biotechnology, Ayya Nadar Janaki Ammal College (Autonomous), Srivilliputhur Main Road, Sivakasi 626124, Tamil Nadu, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (M.S.); (N.O.B.); (M.H.A.)
| | - Sameer Al-Ghamdi
- Family and Community Medicine Department, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Mohammed Alsaidan
- Internal Medicine Department, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Nasraddin Othman Bahakim
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (M.S.); (N.O.B.); (M.H.A.)
| | - Mohammad Hassan Abdelzaher
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (M.S.); (N.O.B.); (M.H.A.)
- Department of Medical Biochemistry, Faculty of Medicine, Al-Azhar University (Assiut Branch), Assiut 71515, Egypt
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (M.S.); (N.O.B.); (M.H.A.)
- Correspondence: (K.P.); (T.R.)
| |
Collapse
|
35
|
Mussini A, Uriati E, Bianchini P, Diaspro A, Cavanna L, Abbruzzetti S, Viappiani C. Targeted photoimmunotherapy for cancer. Biomol Concepts 2022; 13:126-147. [PMID: 35304984 DOI: 10.1515/bmc-2022-0010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is a clinically approved procedure that can exert a curative action against malignant cells. The treatment implies the administration of a photoactive molecular species that, upon absorption of visible or near infrared light, sensitizes the formation of reactive oxygen species. These species are cytotoxic and lead to tumor cell death, damage vasculature, and induce inflammation. Clinical investigations demonstrated that PDT is curative and does not compromise other treatment options. One of the major limitations of the original method was the low selectivity of the photoactive compounds for malignant over healthy tissues. The development of conjugates with antibodies has endowed photosensitizing molecules with targeting capability, so that the compounds are delivered with unprecedented precision to the site of action. Given their fluorescence emission capability, these supramolecular species are intrinsically theranostic agents.
Collapse
Affiliation(s)
- Andrea Mussini
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università Degli Studi di Parma, Parma, Italy
| | - Eleonora Uriati
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università Degli Studi di Parma, Parma, Italy.,Department of Nanophysics, Nanoscopy, Istituto Italiano di Tecnologia, Genova, Italy
| | - Paolo Bianchini
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università Degli Studi di Parma, Parma, Italy.,Department of Nanophysics, Nanoscopy, Istituto Italiano di Tecnologia, Genova, Italy.,DIFILAB, Dipartimento di Fisica, Università Degli Studi di Genova, Genova, Italy
| | - Alberto Diaspro
- Department of Nanophysics, Nanoscopy, Istituto Italiano di Tecnologia, Genova, Italy.,DIFILAB, Dipartimento di Fisica, Università Degli Studi di Genova, Genova, Italy
| | - Luigi Cavanna
- Dipartimento di Oncologia-Ematologia, Azienda USL di Piacenza, Piacenza, Italy
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università Degli Studi di Parma, Parma, Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università Degli Studi di Parma, Parma, Italy
| |
Collapse
|
36
|
Sahu R, Sharma P, Kumar A. An Insight into Cholangiocarcinoma and Recent Advances in its Treatment. J Gastrointest Cancer 2022; 54:213-226. [PMID: 35023010 DOI: 10.1007/s12029-021-00728-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a malignant disease of the epithelial cells of the intrahepatic and extrahepatic bile ducts. This review focuses on various aspects of cholangiocarcinoma such as its associated causes, treatment criteria, and more. METHODS Although it remains a rare malignancy and is the second most common primary malignancy of the liver, the incidence is increasing, especially the incidence of intrahepatic CCA. Several studies suggested that surgery is not only solution; recently, reported targeted drugs may have the potential to become an alternative option. RESULTS This review provides an overview of the current scenario of targeted therapies for CCA, which were tabulated with their current status and it also included its associated causes and its treatment criteria. CONCLUSION Because of its rarity and complexity, surgery remains the preferred treatment in resectable patients. Howerver, the studies suggested that the recently reported drugs may have the potential to be an alternative option for the treatment of CCA and related complications. In addition, this review will certainly benefit the community and researcher for further investigation.
Collapse
Affiliation(s)
- Rakesh Sahu
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida, 201310, Uttar Pradesh, India
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | - Praveen Sharma
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida, 201310, Uttar Pradesh, India
| | - Ajay Kumar
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-II, 201306, Greater Noida, India
| |
Collapse
|
37
|
Selection of antibody and light exposure regimens alters therapeutic effects of EGFR-targeted near-infrared photoimmunotherapy. Cancer Immunol Immunother 2022; 71:1877-1887. [PMID: 35013765 PMCID: PMC9271517 DOI: 10.1007/s00262-021-03124-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/26/2021] [Indexed: 11/27/2022]
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a cell-specific cancer therapy that uses an antibody-photoabsorber (IRDye700DX, IR700) conjugate (APC) and NIR light. Intravenously injected APC binds the target cells, and subsequent NIR light exposure induces immunogenic cell death only in targeted cells. Panitumumab and cetuximab are antibodies that target human epidermal growth factor receptor (hEGFR) and are suitable for NIR-PIT. In athymic nude mouse models, panitumumab-based NIR-PIT showed superior therapeutic efficacy compared to cetuximab-based NIR-PIT because of the longer half-life of panitumumab-IR700 (pan-IR700) compared with cetuximab-IR700 (cet-IR700). Two light exposures on two consecutive days have also been shown to induce superior effects compared to a single light exposure in the athymic nude mouse model. However, the optimal regimen has not been assessed in immunocompetent mice. In this study, we compared panitumumab and cetuximab in APCs for NIR-PIT, and single and double light exposures using a newly established hEGFR-expressing cancer cell line derived from immunocompetent C57BL/6 mice (mEERL-hEGFR cell line). Fluorescence imaging showed that the decline of pan-IR700 was slower than cet-IR700 confirming a longer clearance time. Among all the combinations tested, mice receiving pan-IR700 and double light exposure showed the greatest tumor growth inhibition. This group was also shown to activate CD8+ T lymphocytes in lymph nodes and accumulate CD8+ T lymphocytes to a greater extent within the tumor compared with the control group. These results showed that APCs with longer half-life and double light exposure lead to superior outcomes in cancer cell-targeted NIR-PIT in an immunocompetent mouse model.
Collapse
|
38
|
Mohindroo C, Unver N. Mechanisms of Antitumor Immunity and Immunosurveillance. Methods Mol Biol 2022; 2435:1-6. [PMID: 34993935 DOI: 10.1007/978-1-0716-2014-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The immune system has a well-defined role in all stages of carcinogenesis. The current chapter presents a discussion of various constituents of immunity involved in tumorigenesis along with their mechanisms, forming the basis for immunoprevention and immunotherapy.
Collapse
Affiliation(s)
- Chirayu Mohindroo
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nese Unver
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
39
|
Sepahdar Z, Miroliaei M, Bouzari S, Khalaj V, Salimi M. Surface Engineering of Escherichia coli-Derived OMVs as Promising Nano-Carriers to Target EGFR-Overexpressing Breast Cancer Cells. Front Pharmacol 2021; 12:719289. [PMID: 34867325 PMCID: PMC8638777 DOI: 10.3389/fphar.2021.719289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial outer membrane vesicles (OMVs) have recently drawn a great deal of attention due to their therapeutic efficiency and ability to target specific cells. In the present study, we sought to probe engineered OMVs as novel and promising carriers to target breast cancer cells. Following the fusion of the affiEGFR-GALA structure to the C-terminal of ClyA as an anchor protein, the ClyA-affiEGFR-GALA construct was successfully expressed on the surface of ∆msbB/∆pagP E. coli W3110-derived OMVs. Morphological features of the engineered and wild-type OMVs were identical. The engineered OMVs induced no endotoxicity, cytotoxicity, or immunogenicity, indicating the safety of their application. These OMVs could specifically bind to EGF receptors of MDA-MB-468 cells expressing high levels of EGFR and not to those with low levels of EGFR (HEK293T cells). Interestingly, despite a lower binding affinity of the engineered OMVs relative to the positive control Cetuximab, it was strong enough to identify these cells. Moreover, confocal microscopy revealed no uptake of the modified OMVs by the EGFR-overexpressing cells in the presence of EGFR competitors. These results suggest that OMVs might internalize into the cells with EGF receptors, as no OMVs entered the cells with any EGFR expression or those pretreated with EGF or Cetuximab. Regarding the EGFR-binding affinity of the engineered OMVs and their cellular uptake, they are presented here as a potential carrier for cell-specific drug delivery to treat a wide variety of cancer cells. Interestingly, the engineered OMVs are capable of reaching the cytoplasm while escaping the endosome due to the incorporation of a fusogenic GALA peptide in the construct.
Collapse
Affiliation(s)
- Zahra Sepahdar
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mehran Miroliaei
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Vahid Khalaj
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mona Salimi
- Physiology and Pharmacology Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
40
|
Saraon P, Snider J, Schormann W, Rai A, Radulovich N, Sánchez-Osuna M, Coulombe-Huntington J, Huard C, Mohammed M, Lima-Fernandes E, Thériault B, Halabelian L, Chan M, Joshi D, Drecun L, Yao Z, Pathmanathan S, Wong V, Lyakisheva A, Aboualizadeh F, Niu L, Li F, Kiyota T, Subramanian R, Joseph B, Aman A, Prakesch M, Isaac M, Mamai A, Poda G, Vedadi M, Marcellus R, Uehling D, Leighl N, Sacher A, Samaržija M, Jakopović M, Arrowsmith C, Tyers M, Tsao MS, Andrews D, Al-Awar R, Stagljar I. Chemical Genetics Screen Identifies COPB2 Tool Compounds That Alters ER Stress Response and Induces RTK Dysregulation in Lung Cancer Cells. J Mol Biol 2021; 433:167294. [PMID: 34662547 DOI: 10.1016/j.jmb.2021.167294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022]
Abstract
Activating mutations in the epidermal growth factor receptor (EGFR) are common driver mutations in non-small cell lung cancer (NSCLC). First, second and third generation EGFR tyrosine kinase inhibitors (TKIs) are effective at inhibiting mutant EGFR NSCLC, however, acquired resistance is a major issue, leading to disease relapse. Here, we characterize a small molecule, EMI66, an analog of a small molecule which we previously identified to inhibit mutant EGFR signalling via a novel mechanism of action. We show that EMI66 attenuates receptor tyrosine kinase (RTK) expression and signalling and alters the electrophoretic mobility of Coatomer Protein Complex Beta 2 (COPB2) protein in mutant EGFR NSCLC cells. Moreover, we demonstrate that EMI66 can alter the subcellular localization of EGFR and COPB2 within the early secretory pathway. Furthermore, we find that COPB2 knockdown reduces the growth of mutant EGFR lung cancer cells, alters the post-translational processing of RTKs, and alters the endoplasmic reticulum (ER) stress response pathway. Lastly, we show that EMI66 treatment also alters the ER stress response pathway and inhibits the growth of mutant EGFR lung cancer cells and organoids. Our results demonstrate that targeting of COPB2 with EMI66 presents a viable approach to attenuate mutant EGFR signalling and growth in NSCLC.
Collapse
Affiliation(s)
- Punit Saraon
- Drug Discovery Program, Ontario Institute for Cancer Research, Ontario, Canada.
| | - Jamie Snider
- Donnelly Centre, University of Toronto, Ontario, Canada
| | - Wiebke Schormann
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Ankit Rai
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3548CH Utrecht, the Netherlands
| | - Nikolina Radulovich
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Maria Sánchez-Osuna
- Institute for Research in Immunology and Cancer, Université de Montréal, PO Box 6128, Downtown Station, Montreal, QC H3C 3J7, Canada
| | - Jasmin Coulombe-Huntington
- Institute for Research in Immunology and Cancer, Université de Montréal, PO Box 6128, Downtown Station, Montreal, QC H3C 3J7, Canada
| | - Caroline Huard
- Institute for Research in Immunology and Cancer, Université de Montréal, PO Box 6128, Downtown Station, Montreal, QC H3C 3J7, Canada
| | - Mohammed Mohammed
- Drug Discovery Program, Ontario Institute for Cancer Research, Ontario, Canada
| | | | - Brigitte Thériault
- Drug Discovery Program, Ontario Institute for Cancer Research, Ontario, Canada
| | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Manuel Chan
- Drug Discovery Program, Ontario Institute for Cancer Research, Ontario, Canada
| | - Dhananjay Joshi
- Drug Discovery Program, Ontario Institute for Cancer Research, Ontario, Canada
| | - Luka Drecun
- Donnelly Centre, University of Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Zhong Yao
- Donnelly Centre, University of Toronto, Ontario, Canada
| | - Shivanthy Pathmanathan
- Donnelly Centre, University of Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Victoria Wong
- Donnelly Centre, University of Toronto, Ontario, Canada
| | | | | | - Li Niu
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Taira Kiyota
- Drug Discovery Program, Ontario Institute for Cancer Research, Ontario, Canada
| | | | - Babu Joseph
- Drug Discovery Program, Ontario Institute for Cancer Research, Ontario, Canada
| | - Ahmed Aman
- Drug Discovery Program, Ontario Institute for Cancer Research, Ontario, Canada
| | - Michael Prakesch
- Drug Discovery Program, Ontario Institute for Cancer Research, Ontario, Canada
| | - Methvin Isaac
- Drug Discovery Program, Ontario Institute for Cancer Research, Ontario, Canada
| | - Ahmed Mamai
- Drug Discovery Program, Ontario Institute for Cancer Research, Ontario, Canada
| | - Gennady Poda
- Drug Discovery Program, Ontario Institute for Cancer Research, Ontario, Canada; University of Toronto, Leslie Dan Faculty of Pharmacy, Toronto, Ontario, Canada
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Ontario, Canada
| | - Richard Marcellus
- Drug Discovery Program, Ontario Institute for Cancer Research, Ontario, Canada
| | - David Uehling
- Drug Discovery Program, Ontario Institute for Cancer Research, Ontario, Canada
| | - Natasha Leighl
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Adrian Sacher
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Miroslav Samaržija
- Department for Lung Diseases Jordanovac, Clinical Hospital Centre Zagreb, University of Zagreb, Zagreb, Croatia
| | - Marko Jakopović
- Department for Lung Diseases Jordanovac, Clinical Hospital Centre Zagreb, University of Zagreb, Zagreb, Croatia
| | - Cheryl Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, Université de Montréal, PO Box 6128, Downtown Station, Montreal, QC H3C 3J7, Canada
| | - Ming-Sound Tsao
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - David Andrews
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Rima Al-Awar
- Drug Discovery Program, Ontario Institute for Cancer Research, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Ontario, Canada.
| | - Igor Stagljar
- Donnelly Centre, University of Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Ontario, Canada; Mediterranean Institute for Life Sciences, Split, Croatia; School of Medicine, University of Split, Split, Croatia.
| |
Collapse
|
41
|
Liu L, Lim MA, Jung SN, Oh C, Won HR, Jin YL, Piao Y, Kim HJ, Chang JW, Koo BS. The effect of Curcumin on multi-level immune checkpoint blockade and T cell dysfunction in head and neck cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153758. [PMID: 34592487 DOI: 10.1016/j.phymed.2021.153758] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/13/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Despite recent advances in understanding the complex immunologic dysfunction in the tumor microenvironment (TME), fewer than 20% of patients with head and neck squamous cell carcinoma (HNSCC) respond to immune checkpoint blockade (ICB). Thus, it is important to understand how inhibitory IC receptors maintain the suppressed dysfunctional TME, and to develop more effective combination immunotherapy. This study evaluated the immune-modulating effects of Curcumin, which has well-established anti-cancer and chemopreventive properties, and its long-term safety as a phytochemical drug. METHODS We carried out the western blot and small interfering RNA (siRNA) transfection assay to evaluate the effects of Curcumin on IC ligands and IC ligands function in HNSCC. Through T-cell cytotoxicity assay and measurements of cytokine secretion, we assessed the effects of combination of Curcumin with programmed death-ligand 1 (PD-L1) Ab on cancer cell killing. Flow cytometry were used to analyze the effects of Curcumin on the expression of programmed cell death protein 1 (PD-1) and T-cell immunoglobulin and mucin-domain3 (TIM-3) on CD4, CD8 and Treg. Immunofluorescence, immunohistochemistry and western blot were used to detecte the cytokine (IFN-γ, Granzyme B), IC receptors (PD-1 and TIM-3) and its ligands (PD-L1, PD-L2, Galectin-9) in xenograft mouse model and 4-nitroquinoline-1-oxide (4-NQO) oral cancer model. RESULTS We found that Curcumin decreased the expression of IC ligands such as PD-L1, PD-L2, and Galectin-9 in HNSCC, leading to regulation of epithelial-to-mesenchymal transition-associated tumor invasion. Curcumin also effectively restored the ability of CD8+ cytotoxic T cells to lyse cancer cells. To evaluate the effect of Curcumin on the TME further, the 4-NQO oral cancer model was used. Curcumin increased T-cell proliferation, tumor-infiltrating lymphocytes (TILs), and effector cytokines, and decreased the expression of PD-1, TIM-3, suppressive IC receptors and their ligands (PD-L1, PD-L2, and Galectin-9) in the TME, implying reinvigoration of the exhausted CD8+ T cells. In addition, Curcumin inhibited expression of CD4+CD25+FoxP3+ Treg cells as well as PD-1 and TIM-3. CONCLUSIONS These results show that Curcumin reinvigorates defective T cells via multiple (PD-1 and TIM-3) and multi-level (IC receptors and its ligands) IC axis suppression, thus providing a rationale to combine Curcumin with conventional targeted therapy or ICB as a multi-faceted approach for treating patients with HNSCC.
Collapse
Affiliation(s)
- Lihua Liu
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Mi Ae Lim
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Seung-Nam Jung
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Chan Oh
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Ho-Ryun Won
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea; Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Yan Li Jin
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Yudan Piao
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hae Jong Kim
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jae Won Chang
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea; Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
| | - Bon Seok Koo
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea; Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
| |
Collapse
|
42
|
Ren K, Gong H, Ma Z, Tian L, Ye W, Lv X, Wu C. Structure and activity of an anti-epidermal growth factor receptor antibody without galactose-α-1,3-galactose residues. Drug Dev Res 2021; 83:637-645. [PMID: 34725841 DOI: 10.1002/ddr.21894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/22/2021] [Accepted: 10/03/2021] [Indexed: 11/12/2022]
Abstract
Epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein, which has been considered as one of the key targets for cancer therapy. However, currently approved therapeutic anti-EGFR antibody may cause the hypersensitivity reaction induced by galactose-α-1,3-galactose (α-Gal) structure, which is inevitable in insect cell expression system. In this study, the Chinese hamster ovary cell line was used to produce a monoclonal antibody containing simplified glycosylation patterns (code: AB01). And cetuximab was used as a control. The two antibodies were highly similar in molecular weight, secondary structure, binding affinity and endocytosis behavior, whereas the glycotypes are extremely distinct. The flow cytometry assay suggested that AB01 induced cell cycle arrest in G1, thus inhibit cell proliferation. Moreover, both cetuximab and AB01 showed similar sensitivity for all tested cell lines in this research. In conclusion, AB01 could be a potential anti-EGFR drug candidate for cancer therapy.
Collapse
Affiliation(s)
- Keyun Ren
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,The experimental laboratory, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hao Gong
- The Innovative Drug R & D Center of Wuhan Junke-Optical Valley, Wuhan, Hubei, China
| | - Zheng Ma
- The Innovative Drug R & D Center of Wuhan Junke-Optical Valley, Wuhan, Hubei, China
| | - Lvming Tian
- The Innovative Drug R & D Center of Wuhan Junke-Optical Valley, Wuhan, Hubei, China
| | - Wei Ye
- The Innovative Drug R & D Center of Wuhan Junke-Optical Valley, Wuhan, Hubei, China
| | - Xingkai Lv
- The Innovative Drug R & D Center of Wuhan Junke-Optical Valley, Wuhan, Hubei, China
| | - Chutse Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,The experimental laboratory, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
43
|
Pekar L, Klewinghaus D, Arras P, Carrara SC, Harwardt J, Krah S, Yanakieva D, Toleikis L, Smider VV, Kolmar H, Zielonka S. Milking the Cow: Cattle-Derived Chimeric Ultralong CDR-H3 Antibodies and Their Engineered CDR-H3-Only Knobbody Counterparts Targeting Epidermal Growth Factor Receptor Elicit Potent NK Cell-Mediated Cytotoxicity. Front Immunol 2021; 12:742418. [PMID: 34759924 PMCID: PMC8573386 DOI: 10.3389/fimmu.2021.742418] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/04/2021] [Indexed: 01/11/2023] Open
Abstract
In this work, we have generated epidermal growth factor receptor (EGFR)-specific cattle-derived ultralong CDR-H3 antibodies by combining cattle immunization with yeast surface display. After immunization, ultralong CDR-H3 regions were specifically amplified and grafted onto an IGHV1-7 scaffold by homologous recombination to facilitate Fab display. Antigen-specific clones were readily obtained by fluorescence-activated cell sorting (FACS) and reformatted as chimeric antibodies. Binning experiments revealed epitope targeting of domains I, II, and IV of EGFR with none of the generated binders competing with Cetuximab, Matuzumab, or EGF for binding to EGFR. Cattle-derived chimeric antibodies were potent in inducing antibody-dependent cell-mediated cytotoxicity (ADCC) against EGFR-overexpressing tumor cells with potencies (EC50 killing) in the picomolar range. Moreover, most of the antibodies were able to significantly inhibit EGFR-mediated downstream signaling. Furthermore, we demonstrate that a minor fraction of CDR-H3 knobs derived from generated antibodies was capable of independently functioning as a paratope facilitating EGFR binding when grafted onto the Fc part of human IgG1. Besides slightly to moderately diminished capacities, these engineered Knobbodies largely retained main properties of their parental antibodies such as cellular binding and triggering of ADCC. Hence, Knobbodies might emerge as promising tools for biotechnological applications upon further optimization.
Collapse
Affiliation(s)
- Lukas Pekar
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Daniel Klewinghaus
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Paul Arras
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Stefania C. Carrara
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Julia Harwardt
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Simon Krah
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Desislava Yanakieva
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Lars Toleikis
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Vaughn V. Smider
- The Applied Biomedical Science Institute, San Diego, CA, United States
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| |
Collapse
|
44
|
Jiwacharoenchai N, Tabtimmai L, Kiriwan D, Suwattanasophon C, Seetaha S, Sinthuvanich C, Choowongkomon K. A novel cyclic NP1 reveals obstruction of EGFR kinase activity and attenuation of EGFR-driven cell lines. J Cell Biochem 2021; 123:248-258. [PMID: 34633106 DOI: 10.1002/jcb.30160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/30/2021] [Accepted: 09/29/2021] [Indexed: 11/11/2022]
Abstract
Aberrations of the epidermal growth factor receptor (EGFR), for example, mutations and overexpression, play pivotal roles in various cellular functions, such as proliferation, migration, and cell differentiation. Approved small molecule-based inhibitors, including gefitinib and erlotinib, are used clinically to target the tyrosine kinase domain of EGFR (TK-EGFR). However, the severity of the side effects, off-target effects, and drug resistance is a concern. Cyclic peptides are a well-known peptide format with high stability and are promising molecules for drug development. Herein, the Ph.D.™-C7C phage display library was used to screen cyclic peptides against TK-EGFR. Biopanning, both with and without propagation methods, was performed to assess the highest capacity peptides using the enzymatic activity of TK-EGFR. Interestingly, NP1, a peptide selected during biopanning without propagation demonstrated an inhibitory effect against TK-EGFR at IC50 within the nanomolar range; this effect was better than that of P1 obtained using biopanning with propagation. Moreover, NP1 elicited EGFR with an affinity binding (KD ) value of 18.40 ± 5.50 µM by surface plasmon resonance (SPR). Introducing cell-penetrating peptides or Arginine-9 (Arg9) at the N-terminus of NP1 thus improves cell-penetrability and can lead to the inhibition of EGFR-driven cancer cell lines; however, it exhibits no hepatotoxicity. Furthermore, NP1 caused a decrease in phosphorylated EGFR after activation within cells. A docking model shows that NP1 interacted primarily with TK-EGFR via hydrogen bonding. Together, this suggests that NP1 is a novel EGFR peptide inhibitor candidate with specificity and selectivity toward TK-EGFR, and may be applied to targeted therapy.
Collapse
Affiliation(s)
- Nattanan Jiwacharoenchai
- Genetic Engineering Interdisciplinary Program, Graduate School, Kasetsart University, Bangkok, Thailand
| | - Lueacha Tabtimmai
- Department of Biotechnology, Faculty of Applied Science, King Mongkut University of North Bangkok, Bangkok, Thailand
| | - Duangnapa Kiriwan
- Genetic Engineering Interdisciplinary Program, Graduate School, Kasetsart University, Bangkok, Thailand
| | | | - Supaphorn Seetaha
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Chomdao Sinthuvanich
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Center for Advanced Studies in Nanotechnology for Chemical Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
45
|
Si Y, Zhang Y, Guan JS, Ngo HG, Totoro A, Singh AP, Chen K, Xu Y, Yang ES, Zhou L, Liu R, Liu X(M. Anti-CD47 Monoclonal Antibody-Drug Conjugate: A Targeted Therapy to Treat Triple-Negative Breast Cancers. Vaccines (Basel) 2021; 9:882. [PMID: 34452008 PMCID: PMC8402537 DOI: 10.3390/vaccines9080882] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/31/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
Triple-negative breast cancers (TNBCs) are frequently recurrent due to the development of drug resistance post chemotherapy. Both the existing literature and our study found that surface receptor CD47 (cluster of differentiation 47) was upregulated in chemotherapy-treated TNBC cells. The goal of this study was to develop a monoclonal antibody (mAb)-based targeting strategy to treat TNBC after standard treatment. Specifically, a new mAb that targets the extracellular domain of receptor CD47 was developed using hybridoma technology and produced in fed-batch culture. Flow cytometry, confocal microscopy, and in vivo imaging system (IVIS) showed that the anti-CD47 mAb effectively targeted human and mouse TNBC cells and xenograft models with high specificity. The antibody-drug conjugate (ADC) carrying mertansine was constructed and demonstrated higher potency with reduced IC50 in TNBC cells than did the free drug and significantly inhibited tumor growth post gemcitabine treatment in MDA-MB-231 xenograft NSG model. Finally, whole blood analysis indicated that the anti-CD47 mAb had no general immune toxicity, flow cytometry analysis of lymph nodes revealed an increase of CD69+ NK, CD11c+ DC, and CD4+ T cells, and IHC staining showed tumoral infiltration of macrophage in the 4T1 xenograft BALB/cJ model. This study demonstrated that targeting CD47 with ADC has great potential to treat TNBCs as a targeted therapy.
Collapse
Affiliation(s)
- Yingnan Si
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (J.-S.G.); (H.G.N.); (A.T.); (A.P.S.); (K.C.); (L.Z.)
| | - Ya Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (J.-S.G.); (H.G.N.); (A.T.); (A.P.S.); (K.C.); (L.Z.)
| | - Jia-Shiung Guan
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (J.-S.G.); (H.G.N.); (A.T.); (A.P.S.); (K.C.); (L.Z.)
| | - Hanh Giai Ngo
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (J.-S.G.); (H.G.N.); (A.T.); (A.P.S.); (K.C.); (L.Z.)
| | - Angela Totoro
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (J.-S.G.); (H.G.N.); (A.T.); (A.P.S.); (K.C.); (L.Z.)
| | - Ajeet Pal Singh
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (J.-S.G.); (H.G.N.); (A.T.); (A.P.S.); (K.C.); (L.Z.)
| | - Kai Chen
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (J.-S.G.); (H.G.N.); (A.T.); (A.P.S.); (K.C.); (L.Z.)
| | - Yuanxin Xu
- Department of Medicine, University of Alabama at Birmingham (UAB), 703 19th Street South, Birmingham, AL 35294, USA;
| | - Eddy S. Yang
- Department of Radiation Oncology, University of Alabama at Birmingham (UAB), 1808 7th Avenue South, Birmingham, AL 35294, USA;
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham (UAB), 1824 6th Avenue South, Birmingham, AL 35233, USA
| | - Lufang Zhou
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (J.-S.G.); (H.G.N.); (A.T.); (A.P.S.); (K.C.); (L.Z.)
- Department of Medicine, University of Alabama at Birmingham (UAB), 703 19th Street South, Birmingham, AL 35294, USA;
| | - Runhua Liu
- Department of Genetics, University of Alabama at Birmingham (UAB), 702 20th St., Birmingham, AL 35233, USA;
| | - Xiaoguang (Margaret) Liu
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (J.-S.G.); (H.G.N.); (A.T.); (A.P.S.); (K.C.); (L.Z.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham (UAB), 1824 6th Avenue South, Birmingham, AL 35233, USA
| |
Collapse
|
46
|
Maruoka Y, Wakiyama H, Choyke PL, Kobayashi H. Near infrared photoimmunotherapy for cancers: A translational perspective. EBioMedicine 2021; 70:103501. [PMID: 34332294 PMCID: PMC8340111 DOI: 10.1016/j.ebiom.2021.103501] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/20/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a newly-developed, highly-selective cancer treatment, which utilizes a monoclonal antibody conjugated to a photoabsorbing dye, IRDye700DX (IR700). The antibody conjugate is injected into the patient and accumulates in the tumour. Within 24 h of injection the tumour is exposed to NIR light which activates the conjugate and causes rapid, selective cancer cell death. A global phase III clinical trial of NIR-PIT in recurrent head and neck squamous cell cancer (HNSCC) patients is currently underway. Conditional clinical approval for NIR-PIT in recurrent HNSCC has been granted in Japan as of September 2020. Not only does NIR-PIT induce highly selective and immediate cancer cell killing, but it also stimulates highly active anti-tumour immunity. While monotherapy with NIR-PIT has proven effective it is likely that combinations with immune-checkpoint inhibitors or additional NIR-PIT targeting immune suppressive cells in the tumour microenvironment will further improve results. In this review, we discuss the translational aspects of NIR-PIT especially in HNSCC, and potential future applications.
Collapse
Affiliation(s)
- Yasuhiro Maruoka
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Departments of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroaki Wakiyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
47
|
Wingert S, Reusch U, Knackmuss S, Kluge M, Damrat M, Pahl J, Schniegler-Mattox U, Mueller T, Fucek I, Ellwanger K, Tesar M, Haneke T, Koch J, Treder M, Fischer W, Rajkovic E. Preclinical evaluation of AFM24, a novel CD16A-specific innate immune cell engager targeting EGFR-positive tumors. MAbs 2021; 13:1950264. [PMID: 34325617 PMCID: PMC8331026 DOI: 10.1080/19420862.2021.1950264] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epidermal growth factor receptor (EGFR)-targeted cancer therapy such as anti-EGFR monoclonal antibodies and tyrosine kinase inhibitors have demonstrated clinical efficacy. However, there remains a medical need addressing limitations of these therapies, which include a narrow therapeutic window mainly due to skin and organ toxicity, and primary and secondary resistance mechanisms of the EGFR-signaling cascade (e.g., RAS-mutated colorectal cancer). Using the redirected optimized cell killing (ROCK®) antibody platform, we have developed AFM24, a novel bispecific, IgG1-scFv fusion antibody targeting CD16A on innate immune cells, and EGFR on tumor cells. We herein demonstrate binding of AFM24 to CD16A on natural killer (NK) cells and macrophages with KD values in the low nanomolar range and to various EGFR-expressing tumor cells. AFM24 was highly potent and effective for antibody-dependent cell-mediated cytotoxicity via NK cells, and also mediated antibody-dependent cellular phagocytosis via macrophages in vitro. Importantly, AFM24 was effective toward a variety of EGFR-expressing tumor cells, regardless of EGFR expression level and KRAS/BRAF mutational status. In vivo, AFM24 was well tolerated up to the highest dose (75 mg/kg) when administered to cynomolgus monkeys once weekly for 28 days. Notably, skin and other toxicities were not observed. A transient elevation of interleukin-6 levels was detected at all dose levels, 2-4 hours post-dose, which returned to baseline levels after 24 hours. These results emphasize the promise of bispecific innate cell engagers as an alternative cancer therapy and demonstrate the potential for AFM24 to effectively target tumors expressing varying levels of EGFR, regardless of their mutational status.Abbreviations: ADA: antidrug antibody; ADCC: antibody-dependent cell-mediated cytotoxicity; ADCP: antibody-dependent cellular phagocytosis; AUC: area under the curve; CAR: chimeric-antigen receptor; CD: Cluster of differentiation; CRC :colorectal cancer; ECD: extracellular domain; EGF: epidermal growth factorEGFR epidermal growth factor receptor; ELISA: enzyme-linked immunosorbent assay; FACS: fluorescence-activated cell sorting; Fc: fragment, crystallizableFv variable fragment; HNSCC: head and neck squamous carcinomaIL interleukinm; Ab monoclonal antibody; MOA: mechanism of action; NK :natural killer; NSCLC: non-small cell lung cancer; PBMC: peripheral blood mononuclear cell; PBS: phosphate-buffered saline; PD: pharmacodynamic; ROCK: redirected optimized cell killing; RSV: respiratory syncytial virus; SABC: specific antibody binding capacity; SD: standard deviation; TAM: tumor-associated macrophage; TKI: tyrosine kinase inhibitor; WT: wildtype.
Collapse
Affiliation(s)
| | - Uwe Reusch
- Research & Development, Affimed GmbH, Heidelberg, Germany
| | | | - Michael Kluge
- Research & Development, Affimed GmbH, Heidelberg, Germany
| | - Michael Damrat
- Research & Development, Affimed GmbH, Heidelberg, Germany
| | - Jens Pahl
- Research & Development, Affimed GmbH, Heidelberg, Germany
| | | | - Thomas Mueller
- Research & Development, Affimed GmbH, Heidelberg, Germany
| | - Ivica Fucek
- Research & Development, Affimed GmbH, Heidelberg, Germany
| | | | - Michael Tesar
- Research & Development, Affimed GmbH, Heidelberg, Germany
| | - Torsten Haneke
- Research & Development, Affimed GmbH, Heidelberg, Germany
| | - Joachim Koch
- Research & Development, Affimed GmbH, Heidelberg, Germany
| | - Martin Treder
- Formerly Affimed GmbH, Heidelberg, Germany. Now: Arjuna Therapeutics, Santiago De Compostela, Spain
| | | | - Erich Rajkovic
- Research & Development, Affimed GmbH, Heidelberg, Germany
| |
Collapse
|
48
|
Abdelbaky SB, Ibrahim MT, Samy H, Mohamed M, Mohamed H, Mustafa M, Abdelaziz MM, Forrest ML, Khalil IA. Cancer immunotherapy from biology to nanomedicine. J Control Release 2021; 336:410-432. [PMID: 34171445 DOI: 10.1016/j.jconrel.2021.06.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 02/06/2023]
Abstract
With the significant drawbacks of conventional cancer chemotherapeutics, cancer immunotherapy has demonstrated the ability to eradicate cancer cells and circumvent multidrug resistance (MDR) with fewer side effects than traditional cytotoxic therapies. Various immunotherapeutic agents have been investigated for that purpose including checkpoint inhibitors, cytokines, monoclonal antibodies and cancer vaccines. All these agents aid immune cells to recognize and engage tumor cells by acting on tumor-specific pathways, antigens or cellular targets. However, immunotherapeutics are still associated with some concerns such as off-target side effects and poor pharmacokinetics. Nanomedicine may resolve some limitations of current immunotherapeutics such as localizing delivery, controlling release and enhancing the pharmacokinetic profile. Herein, we discuss recent advances of immunotherapeutic agents with respect to their development and biological mechanisms of action, along with the advantages that nanomedicine strategies lend to immunotherapeutics by possibly improving therapeutic outcomes and minimizing side effects.
Collapse
Affiliation(s)
- Salma B Abdelbaky
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt; Molecular, Cellular, and Developmental Biology, College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, United States of America
| | - Mayar Tarek Ibrahim
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt; Department of Chemistry, Center for Scientific Computation, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States of America
| | - Hebatallah Samy
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Menatalla Mohamed
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt; Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Hebatallah Mohamed
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt; Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Mahmoud Mustafa
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt
| | - Moustafa M Abdelaziz
- Department of Bioengineering, School of Engineering, The University of Kansas, Lawrence, KS 66045, USA
| | - M Laird Forrest
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS 66047, USA.
| | - Islam A Khalil
- Department of Pharmaceutics, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology (MUST), 6th of October, Giza 12582, Egypt.
| |
Collapse
|
49
|
Ye Q, Wang Y, Shen S, Xu C, Wang J. Biomaterials-Based Delivery of Therapeutic Antibodies for Cancer Therapy. Adv Healthc Mater 2021; 10:e2002139. [PMID: 33870637 DOI: 10.1002/adhm.202002139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/05/2021] [Indexed: 12/19/2022]
Abstract
Considerable breakthroughs in the treatment of malignant tumors using antibody drugs, especially immunomodulating monoclonal antibodies (mAbs), have been made in the past decade. Despite technological advancements in antibody design and manufacture, multiple challenges face antibody-mediated cancer therapy, such as instability in vivo, poor tumor penetration, limited response rate, and undesirable off-target cytotoxicity. In recent years, an increasing number of biomaterials-based delivery systems have been reported to enhance the antitumor efficacy of antibody drugs. This review summarizes the advances and breakthroughs in integrating biomaterials with therapeutic antibodies for enhanced cancer therapy. A brief introduction to the principal mechanism of antibody-based cancer therapy is first established, and then various antibody immobilization strategies are provided. Finally, the current state-of-the-art in biomaterials-based antibody delivery systems and their applications in cancer treatment are summarized, highlighting how the delivery systems augment the therapeutic efficacy of antibody drugs. The outlook and perspective on biomaterials-based delivery of antitumor antibodies are also discussed.
Collapse
Affiliation(s)
- Qian‐Ni Ye
- School of Biomedical Sciences and Engineering South China University of Technology Guangzhou International Campus Guangzhou 511442 P. R. China
| | - Yue Wang
- School of Biomedical Sciences and Engineering South China University of Technology Guangzhou International Campus Guangzhou 511442 P. R. China
- Shenzhen Bay Laboratory Shenzhen 518132 P. R. China
| | - Song Shen
- School of Biomedical Sciences and Engineering South China University of Technology Guangzhou International Campus Guangzhou 511442 P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education South China University of Technology Guangzhou 510006 P. R. China
| | - Cong‐Fei Xu
- School of Biomedical Sciences and Engineering South China University of Technology Guangzhou International Campus Guangzhou 511442 P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education South China University of Technology Guangzhou 510006 P. R. China
| | - Jun Wang
- School of Biomedical Sciences and Engineering South China University of Technology Guangzhou International Campus Guangzhou 511442 P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 P. R. China
| |
Collapse
|
50
|
Bhattacharya S. Anti-EGFR-mAb and 5-Fluorouracil Conjugated Polymeric Nanoparticles for Colorectal Cancer. Recent Pat Anticancer Drug Discov 2021; 16:84-100. [PMID: 33349222 DOI: 10.2174/1574892815666201221121859] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/08/2020] [Accepted: 11/12/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Due to the higher intake of junk food and unhealthy lifestyle, the percentage of U.S. adults aged 50 to 75 years who were up-to-date with colorectal cancer screening increased 1.4 percentage points, from 67.4% in 2016 to 68.8% in 2018. This represents an additional 3.5 million adults screened for colorectal cancer. This is a severe concern of this research, and an attempt was made to prepare a target-specific formulation that could circumvent chemotherapy-related compilation and improvise higher cellular uptake. The fundamental agenda of this research was to prepare and develop Anti-EGFR mAb and 5-Fluorouracil (5-FU) fabricated polymeric nanoparticles for colorectal cancer. OBJECTIVE The main objective of this research was to prepare and evaluate more target specific formulation for the treatment of colorectal cancer. PLGA and PEG-based polymeric nanoparticles are capable of preventing opsonization via the reticuloendothelial system. Hence, prepared polymeric nanoparticles are capable of higher cellular uptake. METHODS The Poly(d,1-lactide-co-glycolide) (PLGA) and Polyethylene Glycol (PEG) were combined utilizing the ring-opening polymerization method. The presence of PEG prevents opsonization and distinguished blood concentration along with enhanced targeting. The presence of PLGA benefits in the sustained release of polymeric formulations. The optimized formulation (5-FU-PLGA- PEG-NP) was lyophilized using 4% trehalose (cryoprotectants) and conjugated with Anti- EGFR mAb on its surface to produce Anti-EGFR-5-FU-PLGA-PEG-NP; the final formulation, which increases target specificity and drug delivery system of nanoparticles. RESULTS The spherical shaped optimized formulation, 5-FU-PLGA-PEG-NP-3 was found to have higher percentage drug entrapment efficacy (71.23%), higher percentage drug content (1.98 ± 0.34%) with minimum particles size (252.3nm) and anionic zeta potential (-31.23mV). The IC50 value of Anti-EGFR-5-FU-PLGA-PEG-NP was 1.01μg/mL after 48 hours incubation period in the HCT 116 cell line, indicating higher anticancer effects of the final formulation. CONCLUSION From the outcomes of various experiments, it was concluded that Anti-EGFR-5-FUPLGA- PEG-NP has biphasic drug release kinetics, higher cellular uptake and higher cytotoxicity. Therefore, anti-EGFR-5-FU-PLGA-PEG-NP holds excellent potential for drug delivery to EGFR positive colorectal cancer cells.
Collapse
Affiliation(s)
- Sankha Bhattacharya
- ISF College of Pharmacy, GT Road (NH-95), Ghal Kalan, Moga, Punjab 142001, India
| |
Collapse
|