1
|
Abstract
Radiant skin and hair are universal indicators of good health. It was recently shown that feeding of probiotic bacteria to aged mice rapidly induced youthful vitality characterised by thick lustrous skin and hair, and enhanced reproductive fitness, not seen in untreated controls. Probiotic-treated animals displayed integrated immune and hypothalamic-pituitary outputs that were isolated mechanistically to microbe-induced anti-inflammatory interleukin-10 and neuropeptide hormone oxytocin. In this way, probiotic microbes interface with mammalian physiological underpinnings to impart superb physical and reproductive fitness displayed as radiant and resilient skin and mucosae, unveiling novel strategies for integumentary health.
Collapse
Affiliation(s)
- S E Erdman
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - T Poutahidis
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA Faculty of Veterinary Medicine, Laboratory of Pathology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
2
|
Levkovich T, Poutahidis T, Cappelle K, Smith MB, Perrotta A, Alm EJ, Erdman SE. 'Hygienic' lymphocytes convey increased cancer risk. JOURNAL OF ANALYTICAL ONCOLOGY 2014; 3:113-121. [PMID: 25722756 PMCID: PMC4338962 DOI: 10.6000/1927-7229.2014.03.03.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Risk of developing inflammation-associated cancers has increased in industrialized countries during the past 30 years. One possible explanation is societal hygiene practices with use of antibiotics and Caesarian births that provide too few early life exposures of beneficial microbes. Building upon a 'hygiene hypothesis' model whereby prior microbial exposures lead to beneficial changes in CD4+ lymphocytes, here we use an adoptive cell transfer model and find that too few prior microbe exposures alternatively result in increased inflammation-associated cancer growth in susceptible recipient mice. Specifically, purified CD4+ lymphocytes collected from 'restricted flora' donors increases multiplicity and features of malignancy in intestinal polyps of recipient ApcMin/+ mice, coincident with increased inflammatory cell infiltrates and instability of the intestinal microbiota. We conclude that while a competent immune system serves to maintain intestinal homeostasis and good health, under hygienic rearing conditions CD4+ lymphocytes instead exacerbate inflammation-associated tumorigenesis, subsequently contributing to more frequent cancers in industrialized societies.
Collapse
Affiliation(s)
- Tatiana Levkovich
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Theofilos Poutahidis
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Laboratory of Pathology, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, Greece 54124
| | - Kelsey Cappelle
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Mark B. Smith
- Biological Engineering, Massachusetts Institute of Technology, Cambridge MA 02139 United States
| | - Allison Perrotta
- Biological Engineering, Massachusetts Institute of Technology, Cambridge MA 02139 United States
| | - Eric J Alm
- Biological Engineering, Massachusetts Institute of Technology, Cambridge MA 02139 United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Susan E Erdman
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| |
Collapse
|
3
|
Microbial symbionts accelerate wound healing via the neuropeptide hormone oxytocin. PLoS One 2013; 8:e78898. [PMID: 24205344 PMCID: PMC3813596 DOI: 10.1371/journal.pone.0078898] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 09/17/2013] [Indexed: 02/07/2023] Open
Abstract
Wound healing capability is inextricably linked with diverse aspects of physical fitness ranging from recovery after minor injuries and surgery to diabetes and some types of cancer. Impact of the microbiome upon the mammalian wound healing process is poorly understood. We discover that supplementing the gut microbiome with lactic acid microbes in drinking water accelerates the wound-healing process to occur in half the time required for matched control animals. Further, we find that Lactobacillus reuteri enhances wound-healing properties through up-regulation of the neuropeptide hormone oxytocin, a factor integral in social bonding and reproduction, by a vagus nerve-mediated pathway. Bacteria-triggered oxytocin serves to activate host CD4+Foxp3+CD25+ immune T regulatory cells conveying transplantable wound healing capacity to naive Rag2-deficient animals. This study determined oxytocin to be a novel component of a multi-directional gut microbe-brain-immune axis, with wound-healing capability as a previously unrecognized output of this axis. We also provide experimental evidence to support long-standing medical traditions associating diet, social practices, and the immune system with efficient recovery after injury, sustained good health, and longevity.
Collapse
|
4
|
Haahtela T, Holgate S, Pawankar R, Akdis CA, Benjaponpitak S, Caraballo L, Demain J, Portnoy J, von Hertzen L. The biodiversity hypothesis and allergic disease: world allergy organization position statement. World Allergy Organ J 2013; 6:3. [PMID: 23663440 PMCID: PMC3646540 DOI: 10.1186/1939-4551-6-3] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 01/17/2013] [Indexed: 12/21/2022] Open
Abstract
Biodiversity loss and climate change secondary to human activities are now being associated with various adverse health effects. However, less attention is being paid to the effects of biodiversity loss on environmental and commensal (indigenous) microbiotas. Metagenomic and other studies of healthy and diseased individuals reveal that reduced biodiversity and alterations in the composition of the gut and skin microbiota are associated with various inflammatory conditions, including asthma, allergic and inflammatory bowel diseases (IBD), type1 diabetes, and obesity. Altered indigenous microbiota and the general microbial deprivation characterizing the lifestyle of urban people in affluent countries appear to be risk factors for immune dysregulation and impaired tolerance. The risk is further enhanced by physical inactivity and a western diet poor in fresh fruit and vegetables, which may act in synergy with dysbiosis of the gut flora. Studies of immigrants moving from non-affluent to affluent regions indicate that tolerance mechanisms can rapidly become impaired in microbe-poor environments. The data on microbial deprivation and immune dysfunction as they relate to biodiversity loss are evaluated in this Statement of World Allergy Organization (WAO). We propose that biodiversity, the variability among living organisms from all sources are closely related, at both the macro- and micro-levels. Loss of the macrodiversity is associated with shrinking of the microdiversity, which is associated with alterations of the indigenous microbiota. Data on behavioural means to induce tolerance are outlined and a proposal made for a Global Allergy Plan to prevent and reduce the global allergy burden for affected individuals and the societies in which they live.
Collapse
Affiliation(s)
- Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, PO Box 160, 00029, Helsinki, HUCH, Finland
| | - Stephen Holgate
- School of Medicine, University of Southampton, Southampton, UK
| | | | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research, University of Zurich, Davos, Switzerland
| | - Suwat Benjaponpitak
- Department of Pediatrics, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Jeffrey Demain
- Allergy, Asthma & Immunology Center of Alaska, Dept of Pediatrics, University of Washington, Washington, USA
| | - Jay Portnoy
- University of Missouri-Kansas City School of Medicine, Missouri, USA
| | - Leena von Hertzen
- Skin and Allergy Hospital, Helsinki University Hospital, PO Box 160, 00029, Helsinki, HUCH, Finland
| |
Collapse
|
5
|
Peakman M. Broadening the translational immunology landscape. Clin Exp Immunol 2012; 170:249-53. [DOI: 10.1111/j.1365-2249.2012.04671.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
SummaryIt is just over 5 years sinceClinical and Experimental Immunology came under the direction of a new team of Editors and made a concerted effort to refresh its approach to promoting clinical and applied immunology through its pages. There were two major objectives: to foster papers in a field which, at the time, we loosely termed ‘translational immunology’; and to create a forum for the presentation and discussion of immunology that is relevant to clinicians operating in this space. So, how are we doing with these endeavours? This brief paper aims to summarize some of the key learning points and successes and highlight areas in which translational gaps remain.
Collapse
Affiliation(s)
- M Peakman
- Department of Immunobiology, King's College London
- NIHR Comprehensive Biomedical Research Centre, Guy's and St Thomas’ NHS Foundation Trust and King's College London, London, UK
| |
Collapse
|
6
|
Zimmer J, Lange B, Frick JS, Sauer H, Zimmermann K, Schwiertz A, Rusch K, Klosterhalfen S, Enck P. A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. Eur J Clin Nutr 2011; 66:53-60. [PMID: 21811294 DOI: 10.1038/ejcn.2011.141] [Citation(s) in RCA: 295] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND/OBJECTIVES Consisting of ≈10(14) microbial cells, the intestinal microbiota represents the largest and the most complex microbial community inhabiting the human body. However, the influence of regular diets on the microbiota is widely unknown. SUBJECTS/METHODS We examined faecal samples of vegetarians (n=144), vegans (n=105) and an equal number of control subjects consuming ordinary omnivorous diet who were matched for age and gender. We used classical bacteriological isolation, identification and enumeration of the main anaerobic and aerobic bacterial genera and computed absolute and relative numbers that were compared between groups. RESULTS Total counts of Bacteroides spp., Bifidobacterium spp., Escherichia coli and Enterobacteriaceae spp. were significantly lower (P=0.001, P=0.002, P=0.006 and P=0.008, respectively) in vegan samples than in controls, whereas others (E. coli biovars, Klebsiella spp., Enterobacter spp., other Enterobacteriaceae, Enterococcus spp., Lactobacillus spp., Citrobacter spp. and Clostridium spp.) were not. Subjects on a vegetarian diet ranked between vegans and controls. The total microbial count did not differ between the groups. In addition, subjects on a vegan or vegetarian diet showed significantly (P=0.0001) lower stool pH than did controls, and stool pH and counts of E. coli and Enterobacteriaceae were significantly correlated across all subgroups. CONCLUSIONS Maintaining a strict vegan or vegetarian diet results in a significant shift in the microbiota while total cell numbers remain unaltered.
Collapse
Affiliation(s)
- J Zimmer
- Department of Internal Medicine VI, University Hospital, Tübingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Hewitson JP, Harcus Y, Murray J, van Agtmaal M, Filbey KJ, Grainger JR, Bridgett S, Blaxter ML, Ashton PD, Ashford DA, Curwen RS, Wilson RA, Dowle AA, Maizels RM. Proteomic analysis of secretory products from the model gastrointestinal nematode Heligmosomoides polygyrus reveals dominance of venom allergen-like (VAL) proteins. J Proteomics 2011; 74:1573-94. [PMID: 21722761 DOI: 10.1016/j.jprot.2011.06.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Revised: 05/20/2011] [Accepted: 06/05/2011] [Indexed: 01/25/2023]
Abstract
The intestinal helminth parasite, Heligmosomoides polygyrus bakeri offers a tractable experimental model for human hookworm infections such as Ancylostoma duodenale and veterinary parasites such as Haemonchus contortus. Parasite excretory-secretory (ES) products represent the major focus for immunological and biochemical analyses, and contain immunomodulatory molecules responsible for nematode immune evasion. In a proteomic analysis of adult H. polygyrus secretions (termed HES) matched to an extensive transcriptomic dataset, we identified 374 HES proteins by LC-MS/MS, which were distinct from those in somatic extract HEx, comprising 446 identified proteins, confirming selective export of ES proteins. The predominant secreted protein families were proteases (astacins and other metalloproteases, aspartic, cysteine and serine-type proteases), lysozymes, apyrases and acetylcholinesterases. The most abundant products were members of the highly divergent venom allergen-like (VAL) family, related to Ancylostoma secreted protein (ASP); 25 homologues were identified, with VAL-1 and -2 also shown to be associated with the parasite surface. The dominance of VAL proteins is similar to profiles reported for Ancylostoma and Haemonchus ES products. Overall, this study shows that the secretions of H. polygyrus closely parallel those of clinically important GI nematodes, confirming the value of this parasite as a model of helminth infection.
Collapse
Affiliation(s)
- James P Hewitson
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3JT, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
The human interface with the microbial world has so far largely been considered through the somewhat restrictive angle of host-pathogen interactions resulting in disease. It has consequently largely ignored the daily symbiosis with the microbiota, an ensemble of symbiotic microorganisms engaged in a commensal, and for some of them mutualistic, interaction. This microbiota heavily populates essential surfaces such as the oral and intestinal cavity, the upper respiratory tract, the vagina, and the skin. Host response to the pathogens is characterized by quick recognition combined with strong innate (i.e., inflammatory) and adaptive immune responses, causing microbial eradication often at the cost of significant tissue damage. Response to the symbiotic microbiota is characterized by a process called tolerance that encompasses a complex integration of microbial recognition and tightly controlled innate (i.e., physiological inflammation) and adaptive immune responses. This dichotomy in host response is critical at the gut mucosal surface that is massively colonized by a diverse population of bacteria. The host is therefore permanently facing the challenge of discriminating among symbiotic and pathogenic bacteria in order to offer an adapted response. This asks the fundamental existential question: "to be or not to be… a pathogen." This review has attempted to consider this question from the host angle. What do host mucosal sensing systems see in the bacteria to which they become exposed to establish proper discrimination? A new facet of medicine resides in the dysfunction of this complex balance that has likely forged the complexity of the immune system.
Collapse
|
9
|
Mastelic B, Ahmed S, Egan WM, Del Giudice G, Golding H, Gust I, Neels P, Reed SG, Sheets RL, Siegrist CA, Lambert PH. Mode of action of adjuvants: implications for vaccine safety and design. Biologicals 2010; 38:594-601. [PMID: 20659806 DOI: 10.1016/j.biologicals.2010.06.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 06/27/2010] [Indexed: 11/18/2022] Open
Abstract
For decades, the search for new vaccine adjuvants has been largely empirical. A series of new adjuvants and related formulations are now emerging that are acting through identified immunological mechanisms. Understanding adjuvant mechanism of action is crucial for vaccine design, since this allows for directing immune responses towards efficacious disease-specific effector mechanisms and appropriate memory. It is also of great importance to build new paradigms for assessing adjuvant safety at development stages and at regulatory level. This report reflects the conclusions of a group of scientists from academia, regulatory agencies and industry who attended a conference, organized by the International Association for Biologicals (IABS), on the mode of action of adjuvants on 29-30 April 2010 in Bethesda, Maryland, USA, particularly focusing on how understanding adjuvants mode of action can impact on the assessment of vaccine safety and help to develop target-specific vaccines. More information on the conference output can be found on the IABS website, http://www.iabs.org/.
Collapse
Affiliation(s)
- Béatris Mastelic
- WHO-Center for Vaccinology and Neonatal Immunology, CMU, 1 rue Michel-Servet, 1211 Geneva, 4, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ehlers S, Kaufmann SHE. 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: lifestyle changes affecting the host-environment interface. Clin Exp Immunol 2010; 160:10-4. [PMID: 20415845 PMCID: PMC2841829 DOI: 10.1111/j.1365-2249.2010.04120.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In industrialized nations and high-income regions of the world, the decline of infectious diseases is paralleled by an increase in allergic, autoimmune and chronic inflammatory diseases (AACID). Changes in lifestyle in westernized societies, which impact individually and collectively on intestinal microbiota, may – at least in part – account for the AACID pandemic. Many disease genes that contribute to AACID encode pattern recognition and signalling molecules in barrier-associated cells. Interactions between gene products and environmental factors depend highly upon the host's state of maturation, the composition of the skin and gut microflora, and exposure to pollutants, antibiotics and nutrients. Inflammatory stress responses, if regulated appropriately, ensure immunity, health and relative longevity; when they are dysregulated, they can no longer be terminated appropriately and thus precipitate AACID. The 99th Dahlem Conference brought together experts of various disciplines (genetics, evolution biology, molecular biology, structural biology, cell biology, immunology, microbiology, nutrition science, epidemiology and clinical medicine) to discuss the multi-faceted relationships between infection, immunity and inflammation in barrier organs and the development of AACID. In Clinical and Experimental Immunology we are presenting a compilation of background papers that formed the basis of discussions. Controversial viewpoints and gaps in current knowledge were examined and new concepts for prevention and treatment of CID were formulated.
Collapse
Affiliation(s)
- S Ehlers
- Cluster of Excellence Inflammation at Interfaces, Research Center Borstel, Borstel, Germany.
| | | |
Collapse
|
11
|
Rook GAW. 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: darwinian medicine and the 'hygiene' or 'old friends' hypothesis. Clin Exp Immunol 2010; 160:70-9. [PMID: 20415854 PMCID: PMC2841838 DOI: 10.1111/j.1365-2249.2010.04133.x] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2010] [Indexed: 12/18/2022] Open
Abstract
The current synthesis of the 'hygiene hypothesis' suggests that the recent increase in chronic inflammatory disorders is at least partly attributable to immunodysregulation resulting from lack of exposure to microorganisms that have evolved an essential role in the establishment of the immune system. This document provides a background for discussion of the following propositions. 1. The essential role of these organisms is an example of 'evolved dependence'. 2. The most relevant organisms are those that co-evolved with mammals, and already accompanied early hominids in the Paleolithic. 3. More recently evolved 'childhood infections' are not likely to have evolved this role, and recent epidemiology supports this contention. 4. This mechanism is interacting with other modern environmental changes that also lead to enhanced inflammatory responses [inappropriate diet, obesity, psychological stress, vitamin D deficiency, pollution (dioxins), etc.]. 5. The range of chronic inflammatory disorders that is affected is potentially larger than usually assumed [allergies, autoimmunity, inflammatory bowel disease, but also vascular disease, some cancers, depression/anxiety (when accompanied by raised inflammatory cytokines), and perhaps neurodegenerative disorders and type 2 diabetes].
Collapse
Affiliation(s)
- G A W Rook
- Department Infection, University College London (UCL), London, UK.
| |
Collapse
|