1
|
Krovi SH, Kuchroo VK. Activation pathways that drive CD4 + T cells to break tolerance in autoimmune diseases . Immunol Rev 2022; 307:161-190. [PMID: 35142369 PMCID: PMC9255211 DOI: 10.1111/imr.13071] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/11/2022]
Abstract
Autoimmune diseases are characterized by dysfunctional immune systems that misrecognize self as non-self and cause tissue destruction. Several cell types have been implicated in triggering and sustaining disease. Due to a strong association of major histocompatibility complex II (MHC-II) proteins with various autoimmune diseases, CD4+ T lymphocytes have been thoroughly investigated for their roles in dictating disease course. CD4+ T cell activation is a coordinated process that requires three distinct signals: Signal 1, which is mediated by antigen recognition on MHC-II molecules; Signal 2, which boosts signal 1 in a costimulatory manner; and Signal 3, which helps to differentiate the activated cells into functionally relevant subsets. These signals are disrupted during autoimmunity and prompt CD4+ T cells to break tolerance. Herein, we review our current understanding of how each of the three signals plays a role in three different autoimmune diseases and highlight the genetic polymorphisms that predispose individuals to autoimmunity. We also discuss the drawbacks of existing therapies and how they can be addressed to achieve lasting tolerance in patients.
Collapse
Affiliation(s)
- Sai Harsha Krovi
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Atretkhany KSN, Gogoleva VS, Drutskaya MS, Nedospasov SA. Distinct modes of TNF signaling through its two receptors in health and disease. J Leukoc Biol 2020; 107:893-905. [PMID: 32083339 DOI: 10.1002/jlb.2mr0120-510r] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/03/2020] [Accepted: 01/21/2020] [Indexed: 12/14/2022] Open
Abstract
TNF is a key proinflammatory and immunoregulatory cytokine whose deregulation is associated with the development of autoimmune diseases and other pathologies. Recent studies suggest that distinct functions of TNF may be associated with differential engagement of its two receptors: TNFR1 or TNFR2. In this review, we discuss the relative contributions of these receptors to pathogenesis of several diseases, with the focus on autoimmunity and neuroinflammation. In particular, we discuss the role of TNFRs in the development of regulatory T cells during neuroinflammation and recent findings concerning targeting TNFR2 with agonistic and antagonistic reagents in various murine models of autoimmune and neuroinflammatory disorders and cancer.
Collapse
Affiliation(s)
- Kamar-Sulu N Atretkhany
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia
| | - Violetta S Gogoleva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marina S Drutskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergei A Nedospasov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia.,Sirius University of Science and Technology, Sochi, Russia
| |
Collapse
|
3
|
Imam T, Park S, Kaplan MH, Olson MR. Effector T Helper Cell Subsets in Inflammatory Bowel Diseases. Front Immunol 2018; 9:1212. [PMID: 29910812 PMCID: PMC5992276 DOI: 10.3389/fimmu.2018.01212] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/15/2018] [Indexed: 12/30/2022] Open
Abstract
The gastrointestinal tract is a site of high immune challenge, as it must maintain a delicate balance between tolerating luminal contents and generating an immune response toward pathogens. CD4+ T cells are key in mediating the host protective and homeostatic responses. Yet, CD4+ T cells are also known to be the main drivers of inflammatory bowel disease (IBD) when this balance is perturbed. Many subsets of CD4+ T cells have been identified as players in perpetuating chronic intestinal inflammation. Over the last few decades, understanding of how each subset of Th cells plays a role has dramatically increased. Simultaneously, this has allowed development of therapeutic innovation targeting specific molecules rather than broad immunosuppressive agents. Here, we review the emerging evidence of how each subset functions in promoting and sustaining the chronic inflammation that characterizes IBD.
Collapse
Affiliation(s)
- Tanbeena Imam
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sungtae Park
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Mark H Kaplan
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Matthew R Olson
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
4
|
Brun P, Qesari M, Marconi PC, Kotsafti A, Porzionato A, Macchi V, Schwendener RA, Scarpa M, Giron MC, Palù G, Calistri A, Castagliuolo I. Herpes Simplex Virus Type 1 Infects Enteric Neurons and Triggers Gut Dysfunction via Macrophage Recruitment. Front Cell Infect Microbiol 2018; 8:74. [PMID: 29600197 PMCID: PMC5862801 DOI: 10.3389/fcimb.2018.00074] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/27/2018] [Indexed: 12/27/2022] Open
Abstract
Herpes Simplex Virus type 1 (HSV-1), a neurotropic pathogen widespread in human population, infects the enteric nervous system (ENS) in humans and rodents and causes intestinal neuromuscular dysfunction in rats. Although infiltration of inflammatory cells in the myenteric plexus and neurodegeneration of enteric nerves are common features of patients suffering from functional intestinal disorders, the proof of a pathogenic link with HSV-1 is still unsettled mainly because the underlying mechanisms are largely unknown. In this study we demonstrated that following intragastrical administration HSV-1 infects neurons within the myenteric plexus resulting in functional and structural alterations of the ENS. By infecting mice with HSV-1 replication-defective strain we revealed that gastrointestinal neuromuscular anomalies were however independent of viral replication. Indeed, enteric neurons exposed to UV-inactivated HSV-1 produced monocyte chemoattractant protein-1 (MCP-1/CCL2) to recruit activated macrophages in the longitudinal muscle myenteric plexus. Infiltrating macrophages produced reactive oxygen and nitrogen species and directly harmed enteric neurons resulting in gastrointestinal dysmotility. In HSV-1 infected mice intestinal neuromuscular dysfunctions were ameliorated by in vivo administration of (i) liposomes containing dichloromethylene bisphosphonic acid (clodronate) to deplete tissue macrophages, (ii) CCR2 chemokine receptor antagonist RS504393 to block the CCL2/CCR2 pathway, (iii) Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME) and AR-C 102222 to quench production of nitrogen reactive species produced via iNOS. Overall these data demonstrate that HSV-1 infection makes enteric neurons recruit macrophages via production of a specific chemoattractant factor. The resulting inflammatory reaction is mandatory for intestinal dysmotility. These findings provide insights into the neuro-immune communication that occurs in the ENS following HSV-1 infection and allow recognition of an original pathophysiologic mechanism underlying gastrointestinal diseases as well as identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Paola Brun
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Marsela Qesari
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Peggy C Marconi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Andromachi Kotsafti
- Esophageal and Digestive Tract Surgery Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | | | - Veronica Macchi
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Reto A Schwendener
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Marco Scarpa
- Esophageal and Digestive Tract Surgery Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Maria C Giron
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | |
Collapse
|
5
|
Rozas P, Lazcano P, Piña R, Cho A, Terse A, Pertusa M, Madrid R, Gonzalez-Billault C, Kulkarni AB, Utreras E. Targeted overexpression of tumor necrosis factor-α increases cyclin-dependent kinase 5 activity and TRPV1-dependent Ca2+ influx in trigeminal neurons. Pain 2016; 157:1346-1362. [PMID: 26894912 PMCID: PMC4868804 DOI: 10.1097/j.pain.0000000000000527] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We reported earlier that TNF-α, a proinflammatory cytokine implicated in many inflammatory disorders causing orofacial pain, increases the activity of Cdk5, a key kinase involved in brain development and function and recently found to be involved in pain signaling. To investigate a potential mechanism underlying inflammatory pain in trigeminal ganglia (TGs), we engineered a transgenic mouse model (TNF) that can conditionally overexpresses TNF-α upon genomic recombination by Cre recombinase. TNF mice were bred with Nav1.8-Cre mouse line that expresses the Cre recombinase in sensory neurons to obtain TNF-α:Nav1.8-Cre (TNF-α cTg) mice. Although TNF-α cTg mice appeared normal without any gross phenotype, they displayed a significant increase in TNF-α levels after activation of NFκB signaling in the TG. IL-6 and MCP-1 levels were also increased along with intense immunostaining for Iba1 and GFAP in TG, indicating the presence of infiltrating macrophages and the activation of satellite glial cells. TNF-α cTg mice displayed increased trigeminal Cdk5 activity, and this increase was associated with elevated levels of phospho-T407-TRPV1 and capsaicin-evocated Ca influx in cultured trigeminal neurons. Remarkably, this effect was prevented by roscovitine, an inhibitor of Cdk5, which suggests that TNF-α overexpression induced sensitization of the TRPV1 channel. Furthermore, TNF-α cTg mice displayed more aversive behavior to noxious thermal stimulation (45°C) of the face in an operant pain assessment device as compared with control mice. In summary, TNF-α overexpression in the sensory neurons of TNF-α cTg mice results in inflammatory sensitization and increased Cdk5 activity; therefore, this mouse model would be valuable for investigating the mechanism of TNF-α involved in orofacial pain.
Collapse
Affiliation(s)
- Pablo Rozas
- Laboratory of Molecular and Cellular Mechanisms of Pain, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
- Laboratory of Cellular and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Pablo Lazcano
- Laboratory of Molecular and Cellular Mechanisms of Pain, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
- Laboratory of Cellular and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Ricardo Piña
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Andrew Cho
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Anita Terse
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Maria Pertusa
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Rodolfo Madrid
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Christian Gonzalez-Billault
- Laboratory of Cellular and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Ashok B. Kulkarni
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Elias Utreras
- Laboratory of Molecular and Cellular Mechanisms of Pain, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
6
|
Sena AA, Pedrotti LP, Barrios BE, Cejas H, Balderramo D, Diller A, Correa SG. Lack of TNFRI signaling enhances annexin A1 biological activity in intestinal inflammation. Biochem Pharmacol 2015; 98:422-31. [PMID: 26386311 DOI: 10.1016/j.bcp.2015.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 09/11/2015] [Indexed: 12/19/2022]
Abstract
We evaluated whether the lack of TNF-α signaling increases mucosal levels of annexin A1 (AnxA1); the hypothesis stems from previous findings showing that TNF-α neutralization in Crohn's disease patients up-regulates systemic AnxA1 expression. Biopsies from healthy volunteers and patients under anti-TNF-α therapy with remittent ulcerative colitis (UC) showed higher AnxA1 expression than those with active disease. We also evaluated dextran sulfate sodium (DSS)-acute colitis in TNF-α receptor 1 KO (TNFR1-/-) strain with impaired TNF-α signaling and C57BL/6 (WT) mice. Although both strains developed colitis, TNFR1-/- mice showed early clinical recovery, lower myeloperoxidase (MPO) activity and milder histopathological alterations. Colonic epithelium from control and DSS-treated TNFR1-/- mice showed intense AnxA1 expression and AnxA1+ CD4+ and CD8+ T cells were more frequent in TNFR1-/- animals, suggesting an extra supply of AnxA1. The pan antagonist of AnxA1 receptors exacerbated the colitis outcome in TNFR1-/- mice, supporting the pivotal role of AnxA1 in the early recovery. Our findings demonstrate that the TNF-α signaling reduction favors the expression and biological activity of AnxA1 in inflamed intestinal mucosa.
Collapse
Affiliation(s)
- Angela A Sena
- Immunology, Department of Clinical Biochemistry, CIBICI (CONICET), Faculty of Chemical Sciences, National University of Cordoba, Córdoba, Argentina
| | - Luciano P Pedrotti
- Immunology, Department of Clinical Biochemistry, CIBICI (CONICET), Faculty of Chemical Sciences, National University of Cordoba, Córdoba, Argentina
| | - Bibiana E Barrios
- Immunology, Department of Clinical Biochemistry, CIBICI (CONICET), Faculty of Chemical Sciences, National University of Cordoba, Córdoba, Argentina
| | - Hugo Cejas
- Immunology, Department of Clinical Biochemistry, CIBICI (CONICET), Faculty of Chemical Sciences, National University of Cordoba, Córdoba, Argentina
| | - Domingo Balderramo
- Gastroenterology Department, Hospital Privado, Centro Médico, Córdoba, Argentina
| | - Ana Diller
- Pathology Department, Hospital Privado, Centro Médico, Córdoba, Argentina
| | - Silvia G Correa
- Immunology, Department of Clinical Biochemistry, CIBICI (CONICET), Faculty of Chemical Sciences, National University of Cordoba, Córdoba, Argentina.
| |
Collapse
|
7
|
Dubé PE, Punit S, Polk DB. Redeeming an old foe: protective as well as pathophysiological roles for tumor necrosis factor in inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol 2015; 308:G161-70. [PMID: 25477373 PMCID: PMC4312954 DOI: 10.1152/ajpgi.00142.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Tumor necrosis factor (TNF) and its receptors TNFR1 and TNFR2 are major therapeutic targets for inflammatory bowel disease. Research advances have demonstrated that TNF produces pleiotropic responses in the gastrointestinal (GI) tract. Although in excess TNF can contribute to GI pathology, TNF is also a critical protective factor to promote GI homeostasis following injury and inflammation. Genetic studies using candidate and genome-wide association study approaches have identified variants in TNF or its receptors that are associated with Crohn's disease or ulcerative colitis in multiple populations, although the basis for these associations remains unclear. This review considers the efficacy and mechanism of anti-TNF therapies for inflammatory bowel disease to reconcile the many disparate aspects of TNF research and to consider the potential protective effects of TNF signaling in GI health.
Collapse
Affiliation(s)
- Philip E. Dubé
- 1Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California; ,2Department of Pediatrics, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California; and
| | - Shivesh Punit
- 1Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California; ,2Department of Pediatrics, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California; and
| | - D. Brent Polk
- 1Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California; ,2Department of Pediatrics, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California; and ,3Department of Biochemistry and Molecular Biology, University of Southern California Keck School of Medicine, Los Angeles, California
| |
Collapse
|
8
|
Prevention of DSS induced acute colitis by Petit Vert, a newly developed function improved vegetable, in mice. PHARMANUTRITION 2014. [DOI: 10.1016/j.phanu.2013.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
Wang Y, Han G, Chen Y, Wang K, Liu G, Wang R, Xiao H, Li X, Hou C, Shen B, Guo R, Li Y, Chen G. Protective role of tumor necrosis factor (TNF) receptors in chronic intestinal inflammation: TNFR1 ablation boosts systemic inflammatory response. J Transl Med 2013; 93:1024-35. [PMID: 23897411 DOI: 10.1038/labinvest.2013.89] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/13/2013] [Accepted: 06/18/2013] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor-α (TNF-α) acts as a key factor for the development of inflammatory bowel diseases (IBDs), whose function is known to be mediated by TNF receptor 1 (TNFR1) or TNFR2. However, the precise role of the two receptors in IBD remains poorly understood. Herein, chronic colitis was established by oral administration of dextran sulfate sodium (DSS) in TNFR1 or TNFR2-/- mice. Unexpectedly, TNFR1 or TNFR2 deficiency led to exacerbation of signs of colitis compared with wild-type (WT) counterparts. Of note, TNFR1 ablation rendered significantly increased mortality compared with TNFR2 and WT mice after DSS. Aggravated pathology of colitis in TNFR1-/- or TNFR2-/- mice correlated with elevated colonic expression of proinflammatory cytokines and chemokines. Importantly, ablation of TNFR1 or TNFR2 increased apoptosis of colonic epithelial cells, which might be due to the heightened ratio of Bax/Bcl-2 and increased expression of caspase-8. Intriguingly, despite comparable intensity of intestinal inflammation in TNFR-deficient mice after DSS, systemic inflammatory response (including splenomegaly and myeloid expansion) was augmented dramatically in TNFR1-/- mice, instead of TNFR2-/- mice. Granulocyte-macrophage colony-stimulating factor (GMCSF) was identified as a key mediator in this process, as neutralization of GMCSF dampened peripheral inflammatory reaction and reduced mortality in TNFR1-/- mice. These data suggest that signaling via TNFR1 or TNFR2 has a protective role in chronic intestinal inflammation, and that lacking TNFR1 augments systemic inflammatory response in GMCSF-dependent manner.
Collapse
Affiliation(s)
- Yi Wang
- Department of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Opposite role of tumor necrosis factor receptors in dextran sulfate sodium-induced colitis in mice. PLoS One 2012; 7:e52924. [PMID: 23285227 PMCID: PMC3532169 DOI: 10.1371/journal.pone.0052924] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 11/21/2012] [Indexed: 01/15/2023] Open
Abstract
Tumor necrosis factor-α (TNF-α) is a key factor for the pathogenesis of inflammatory bowel diseases (IBD), whose function is known to be mediated by TNF receptor 1 (TNFR1) or 2. However, the precise role of the two receptors in IBD remains poorly understood. Herein, acute colitis was induced by dextran sulfate sodium (DSS) instillation in TNFR1 or 2−/− mice. TNFR1 ablation led to exacerbation of signs of colitis, including more weight loss, increased mortality, colon shortening and oedema, severe intestinal damage, and higher levels of myeloperoxidase compared to wild-type counterparts. While, TNFR2 deficiency had opposite effects. This discrepancy was reflected by alteration of proinflammatory cytokine and chemokine production in the colons. Importantly, TNFR1 ablation rendered enhanced apoptosis of colonic epithelial cells and TNFR2 deficiency conferred pro-apoptotic effects of lamina propria (LP)-immune cells, as shown by the decreased ratio of Bcl-2/Bax and enhanced nuclear factor (NF)-κB activity.
Collapse
|