1
|
Mahmoud R, Abdelrahman ME, Mohamed HH, Elsedfy H. Gonadal changes in children and adolescents with congenital adrenal hyperplasia. J Pediatr Endocrinol Metab 2024:jpem-2024-0417. [PMID: 39488733 DOI: 10.1515/jpem-2024-0417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024]
Abstract
OBJECTIVES Testicular adrenal rest tumours (TARTs) are a common cause of infertility in males with congenital adrenal hyperplasia (CAH). Ovarian adrenal rest tumours (OARTs) and polycystic ovaries (PCO) can impair ovarian function in female patients with CAH. We aim to detect gonadal changes in children and adolescents with CAH. METHODS This study was conducted on 50 CAH patients (30 females and 20 males) with 21-hydroxylase deficiency (21-OHD), with a mean age of 10.35 ± 2.36 years. Testicular ultrasonography and pelvic magnetic resonance imaging (MRI) were done in males and females respectively. Glucocorticoid doses and biochemical data were obtained from the patients' medical records. RESULTS TARTs were detected in 10/20 male patients (50 %). There was a significant relation between presence of TARTs, body mass index (BMI) standard deviation score (SDS), and bone age (p=0.017 and 0.023; respectively). There was no significant relation between presence of TARTs, laboratory parameters, or treatment received (p>0.05). Of those subjected to genetic analysis, 48 % had I2 splice (c.290-13A/C>G) followed by P30L (c.89C>T) (40.7 %). P30L (c.89C>T) was the most common allele among the patients with TARTs (42.9 %). There was no significant relation between presence of TARTs, the genotype, alleles, or the genotype groups (p>0.05). Only one female patient had radiological evidence of bilateral polycystic ovaries and none had OARTs. CONCLUSIONS The prevalence of TARTs in our study was high (50 %). Screening for TARTs in males with CAH is crucial; however, routine ovarian imaging in CAH females is not indicated unless ovarian dysfunction is present.
Collapse
Affiliation(s)
- Rana Mahmoud
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Hasnaa Hassan Mohamed
- Department of Pediatrics, Faculty of Medicine, Edfu General Hospital, Assiut University, Assiut, Egypt
| | - Heba Elsedfy
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Noroozzadeh M, Rahmati M, Amiri M, Saei Ghare Naz M, Azizi F, Ramezani Tehrani F. Preconceptional maternal hyperandrogenism and metabolic syndrome risk in male offspring: a long-term population-based study. J Endocrinol Invest 2024; 47:2731-2743. [PMID: 38647948 DOI: 10.1007/s40618-024-02374-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE There is limited research on the effects of maternal hyperandrogenism (MHA) on cardiometabolic risk factors in male offspring. We aimed to compare the risk of metabolic syndrome (MetS) in sons of women with preconceptional hyperandrogenism (HA) to those of non-HA women in later life. METHODS Using data obtained from the Tehran Lipid and Glucose Cohort Study, with an average of 20 years follow-up, 1913 sons were divided into two groups based on their MHA status, sons with MHA (n = 523) and sons without MHA (controls n = 1390). The study groups were monitored from the baseline until either the incidence of events, censoring, or the end of the study period, depending on which occurred first. Age-scaled unadjusted and adjusted Cox regression models were utilized to evaluate the hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between MHA and MetS in their sons. RESULTS There was no significant association between MHA and HR of MetS in sons with MHA compared to controls, even after adjustment (unadjusted HR (95% CI) 0.94 (0.80-1.11), P = 0.5) and (adjusted HR (95% CI) 0.98 (0.81-1.18), P = 0.8). Sons with MHA showed a HR of 1.35 for developing high fasting blood sugar compared to controls (unadjusted HR (95% CI) 1.35 (1.01-1.81), P = 0.04), however, after adjustment this association did not remain significant (adjusted HR (95% CI) 1.25 (0.90-1.74), P = 0.1). CONCLUSION The results suggest that preconceptional MHA doesn't increase the risk of developing MetS in sons in later life. According to this suggestion, preconceptional MHA may not have long-term metabolic consequences in male offspring.
Collapse
Affiliation(s)
- M Noroozzadeh
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M Rahmati
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M Amiri
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- The Foundation for Research & Education Excellence, Vestavia Hills, AL, USA
| | - M Saei Ghare Naz
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - F Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - F Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- The Foundation for Research & Education Excellence, Vestavia Hills, AL, USA.
| |
Collapse
|
3
|
Sabag A, Patten RK, Moreno-Asso A, Colombo GE, Dafauce Bouzo X, Moran LJ, Harrison C, Kazemi M, Mousa A, Tay CT, Hirschberg AL, Redman LM, Teede HJ. Exercise in the management of polycystic ovary syndrome: A position statement from Exercise and Sports Science Australia. J Sci Med Sport 2024; 27:668-677. [PMID: 38960811 DOI: 10.1016/j.jsams.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/02/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024]
Abstract
Polycystic ovary syndrome (PCOS) is the most prevalent endocrine condition amongst females of reproductive age, leading to lifelong cardiometabolic, reproductive, psychological, and dermatologic symptoms as well as a reduced quality of life. Lifestyle interventions, which can include structured exercise programmes delivered by appropriately trained exercise professionals such as clinical exercise physiologists, are considered first-line strategies in PCOS management due to their therapeutic effects on various health outcomes and quality of life. This position statement builds on the 2023 International Evidence-based Guideline for the Assessment and Management of PCOS and describes the role of the exercise professional in the context of the multidisciplinary care team which includes physicians and allied health professionals. This position statement aims to equip exercise professionals with a broad understanding of the pathophysiology of PCOS, how it is diagnosed and managed in clinical practice, and evidence- and consensus-based recommendations for physical activity and exercise in PCOS management. In line with the physical activity recommendations for the general public, individuals with PCOS should aim to undertake between 150 to 300min of moderate-intensity or 75 to 150min of vigorous-intensity aerobic activity per week, or an equivalent combination of both spread throughout the week. Additionally, muscle-strengthening activities on two non-consecutive days per week are recommended to maintain health and prevent weight gain. For further health benefits and to achieve modest weight loss, individuals with PCOS should aim for a minimum of 250min of moderate-intensity or 150min of vigorous-intensity aerobic activity per week, or an equivalent combination of both spread throughout the week, plus muscle-strengthening activities on two non-consecutive days per week. Adolescents with PCOS should aim for a minimum of 60min moderate- to vigorous-intensity activity each day, incorporating muscle- and bone-strengthening activities three times per week. Finally, exercise professionals should consider the significant psychological burden, including weight stigma, and the high prevalence of comorbidities amongst individuals with PCOS and take appropriate measures to deliver safe and efficacious exercise interventions.
Collapse
Affiliation(s)
- Angelo Sabag
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Australia; Charles Perkins Centre, The University of Sydney, Australia.
| | - Rhiannon K Patten
- Institute for Health and Sport (iHeS), Victoria University, Australia
| | - Alba Moreno-Asso
- Institute for Health and Sport (iHeS), Victoria University, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, Australia
| | - Giorgia E Colombo
- Department of Obstetrics and Gynecology, Ospedale Regionale di Lugano, Switzerland
| | - Xela Dafauce Bouzo
- Centre for Health, Activity and Wellbeing Research (CAWR), School of Sport and Health Sciences, Cardiff Metropolitan University, UK
| | - Lisa J Moran
- Monash Centre for Health Research and Implementation, Monash University, Australia
| | - Cheryce Harrison
- Monash Centre for Health Research and Implementation, Monash University, Australia
| | - Maryam Kazemi
- Department of Nutrition, Harvard T.H. Chan School of Public Health, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, USA
| | - Aya Mousa
- Monash Centre for Health Research and Implementation, Monash University, Australia
| | - Chau Tien Tay
- Monash Centre for Health Research and Implementation, Monash University, Australia
| | - Angelica Lindén Hirschberg
- Department of Women's and Children's Health, Karolinska Institute, Sweden; Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Sweden
| | | | - Helena J Teede
- Monash Centre for Health Research and Implementation, Monash University, Australia
| |
Collapse
|
4
|
Markantes GK, Panagodimou E, Koika V, Mamali I, Kaponis A, Adonakis G, Georgopoulos NA. Placental mRNA Expression of Neurokinin B Is Increased in PCOS Pregnancies with Female Offspring. Biomedicines 2024; 12:334. [PMID: 38397936 PMCID: PMC10886712 DOI: 10.3390/biomedicines12020334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/21/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024] Open
Abstract
Current research suggests that polycystic ovary syndrome (PCOS) might originate in utero and implicates the placenta in its pathogenesis. Kisspeptin (KISS1) and neurokinin B (NKB) are produced by the placenta in high amounts, and they have been implicated in several pregnancy complications associated with placental dysfunction. However, their placental expression has not been studied in PCOS. We isolated mRNA after delivery from the placentae of 31 PCOS and 37 control women with term, uncomplicated, singleton pregnancies. The expression of KISS1, NKB, and neurokinin receptors 1, 2, and 3 was analyzed with real-time polymerase chain reaction, using β-actin as the reference gene. Maternal serum and umbilical cord levels of total testosterone, sex hormone-binding globulin (SHBG), free androgen index (FAI), androstenedione, dehydroepiandrosterone sulfate (DHEAS), Anti-Mullerian hormone (AMH), and estradiol were also assessed. NKB placental mRNA expression was higher in PCOS women versus controls in pregnancies with female offspring. NKB expression depended on fetal gender, being higher in pregnancies with male fetuses, regardless of PCOS. NKB was positively correlated with umbilical cord FAI and AMH, and KISS1 was positively correlated with cord testosterone and FAI; there was also a strong positive correlation between NKB and KISS1 expression. Women with PCOS had higher serum AMH and FAI and lower SHBG than controls. Our findings indicate that NKB might be involved in the PCOS-related placental dysfunction and warrant further investigation. Studies assessing the placental expression of NKB should take fetal gender into consideration.
Collapse
Affiliation(s)
- Georgios K Markantes
- Division of Endocrinology, Department of Internal Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece
| | - Evangelia Panagodimou
- Department of Obstetrics and Gynecology, School of Health Sciences, University of Patras, 26504 Patras, Greece
| | - Vasiliki Koika
- Division of Endocrinology, Department of Internal Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece
| | - Irene Mamali
- Division of Endocrinology, Department of Internal Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece
| | - Apostolos Kaponis
- Department of Obstetrics and Gynecology, School of Health Sciences, University of Patras, 26504 Patras, Greece
| | - George Adonakis
- Department of Obstetrics and Gynecology, School of Health Sciences, University of Patras, 26504 Patras, Greece
| | - Neoklis A Georgopoulos
- Division of Endocrinology, Department of Internal Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece
| |
Collapse
|
5
|
Mauvais-Jarvis F. Sex differences in energy metabolism: natural selection, mechanisms and consequences. Nat Rev Nephrol 2024; 20:56-69. [PMID: 37923858 DOI: 10.1038/s41581-023-00781-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 11/06/2023]
Abstract
Metabolic homeostasis operates differently in men and women. This sex asymmetry is the result of evolutionary adaptations that enable women to resist loss of energy stores and protein mass while remaining fertile in times of energy deficit. During starvation or prolonged exercise, women rely on oxidation of lipids, which are a more efficient energy source than carbohydrates, to preserve glucose for neuronal and placental function and spare proteins necessary for organ function. Carbohydrate reliance in men could be an evolutionary adaptation related to defence and hunting, as glucose, unlike lipids, can be used as a fuel for anaerobic high-exertion muscle activity. The larger subcutaneous adipose tissue depots in healthy women than in healthy men provide a mechanism for lipid storage. As female mitochondria have higher functional capacity and greater resistance to oxidative damage than male mitochondria, uniparental inheritance of female mitochondria may reduce the transmission of metabolic disorders. However, in women, starvation resistance and propensity to obesity have evolved in tandem, and the current prevalence of obesity is greater in women than in men. The combination of genetic sex, programming by developmental testosterone in males, and pubertal sex hormones defines sex-specific biological systems in adults that produce phenotypic sex differences in energy homeostasis, metabolic disease and drug responses.
Collapse
Affiliation(s)
- Franck Mauvais-Jarvis
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine and Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA, USA.
- Endocrine service, Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA.
| |
Collapse
|
6
|
Zhang J, Jia H, Diao F, Ma X, Liu J, Cui Y. Efficacy of dehydroepiandrosterone priming in women with poor ovarian response undergoing IVF/ICSI: a meta-analysis. Front Endocrinol (Lausanne) 2023; 14:1156280. [PMID: 37361534 PMCID: PMC10288189 DOI: 10.3389/fendo.2023.1156280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Background Dehydroepiandrosterone (DHEA) may improve the outcomes of patients with poor ovarian response (POR) or diminished ovarian reserve (DOR) undergoing IVF/ICSI. However, the evidence remains inconsistent. This study aimed to investigate the efficacy of DHEA supplementation in patients with POR/DOR undergoing IVF/ICSI. Methods PubMed, Web of Science, Cochrane Library, China National Knowledge Infrastructure (CNKI) were searched up to October 2022. Results A total of 32 studies were retrieved, including 14 RCTs, 11 self-controlled studies and 7 case-controlled studies. In the subgroup analysis of only RCTs, DHEA treatment significantly increased the number of antral follicle count (AFC) (weighted mean difference : WMD 1.18, 95% confidence interval(CI): 0.17 to 2.19, P=0.022), while reduced the level of bFSH (WMD -1.99, 95% CI: -2.52 to -1.46, P<0.001), the need of gonadotropin (Gn) doses (WMD -382.29, 95% CI: -644.82 to -119.76, P=0.004), the days of stimulation (WMD -0.90, 95% CI: -1.34 to -0.47, P <0.001) and miscarriage rate (relative risk : RR 0.46, 95% CI: 0.29 to 0.73, P=0.001). The higher clinical pregnancy and live birth rates were found in the analysis of non-RCTs. However, there were no significant differences in the number of retrieved oocytes, the number of transferred embryos, and the clinical pregnancy and live birth rates in the subgroup analysis of only RCTs. Moreover, meta-regression analyses showed that women with lower basal FSH had more increase in serum FSH levels (b=-0.94, 95% CI: -1.62 to -0.25, P=0.014), and women with higher baseline AMH levels had more increase in serum AMH levels (b=-0.60, 95% CI: -1.15 to -0.06, P=0.035) after DHEA supplementation. In addition, the number of retrieved oocytes was higher in the studies on relatively younger women (b=-0.21, 95% CI: -0.39 to -0.03, P=0.023) and small sample sizes (b=-0.003, 95% CI: -0.006 to -0.0003, P=0.032). Conclusions DHEA treatment didn't significantly improve the live birth rate of women with DOR or POR undergoing IVF/ICSI in the subgroup analysis of only RCTs. The higher clinical pregnancy and live birth rates in those non-RCTs should be interpreted with caution because of potential bias. Further studies using more explicit criteria to subjects are needed. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD 42022384393.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongyan Jia
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Clinical Centre of Reproductive Medicine, Lianyungang Maternal and Child Health Hospital Kangda College of Nanjing Medical University, Lianyungang, China
| | - Feiyang Diao
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Ma
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yugui Cui
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Zhang S, He H, Wang Y, Wang X, Liu X. Transcutaneous auricular vagus nerve stimulation as a potential novel treatment for polycystic ovary syndrome. Sci Rep 2023; 13:7721. [PMID: 37173458 PMCID: PMC10182028 DOI: 10.1038/s41598-023-34746-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder in women of childbearing age. The etiology of PCOS is multifactorial, and current treatments for PCOS are far from satisfactory. Recently, an imbalanced autonomic nervous system (ANS) with sympathetic hyperactivity and reduced parasympathetic nerve activity (vagal tone) has aroused increasing attention in the pathogenesis of PCOS. In this paper, we review an innovative therapy for the treatment of PCOS and related co-morbidities by targeting parasympathetic modulation based on non-invasive transcutaneous auricular vagal nerve stimulation (ta-VNS). In this work, we present the role of the ANS in the development of PCOS and describe a large number of experimental and clinical reports that support the favorable effects of VNS/ta-VNS in treating a variety of symptoms, including obesity, insulin resistance, type 2 diabetes mellitus, inflammation, microbiome dysregulation, cardiovascular disease, and depression, all of which are also commonly present in PCOS patients. We propose a model focusing on ta-VNS that may treat PCOS by (1) regulating energy metabolism via bidirectional vagal signaling; (2) reversing insulin resistance via its antidiabetic effect; (3) activating anti-inflammatory pathways; (4) restoring homeostasis of the microbiota-gut-brain axis; (5) restoring the sympatho-vagal balance to improve CVD outcomes; (6) and modulating mental disorders. ta-VNS is a safe clinical procedure and it might be a promising new treatment approach for PCOS, or at least a supplementary treatment for current therapeutics.
Collapse
Affiliation(s)
- Shike Zhang
- Southern University of Science and Technology Yantian Hospital, Shenzhen, 518081, China
- Shenzhen Yantian District People's Hospital, Shenzhen, 518081, China
| | - Hui He
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Yu Wang
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xiao Wang
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Xiaofang Liu
- Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| |
Collapse
|
8
|
Banerjee S, Cooney LG, Stanic AK. Immune Dysfunction in Polycystic Ovary Syndrome. Immunohorizons 2023; 7:323-332. [PMID: 37195871 PMCID: PMC10579973 DOI: 10.4049/immunohorizons.2200033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 04/26/2023] [Indexed: 05/19/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in reproductive-aged individuals with ovaries. It is associated with anovulation and increased risk to fertility and metabolic, cardiovascular, and psychological health. The pathophysiology of PCOS is still inadequately understood, although there is evidence of persistent low-grade inflammation, which correlates with associated visceral obesity. Elevated proinflammatory cytokine markers and altered immune cells have been reported in PCOS and raise the possibility that immune factors contribute to ovulatory dysfunction. Because normal ovulation is modulated by immune cells and cytokines in the ovarian microenvironment, the endocrine and metabolic abnormalities associated with PCOS orchestrate the accompanying adverse effects on ovulation and implantation. This review evaluates the current literature on the relationship between PCOS and immune abnormalities, with a focus on emerging research in the field.
Collapse
Affiliation(s)
- Soma Banerjee
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Wisconsin–Madison, Madison, WI
| | - Laura G. Cooney
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Wisconsin–Madison
| | - Aleksandar K. Stanic
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Wisconsin–Madison, Madison, WI
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Wisconsin–Madison
| |
Collapse
|
9
|
Liu SC, Suresh M, Jaber M, Mercado Munoz Y, Sarafoglou K. Case Report: Anastrozole as a monotherapy for pre-pubertal children with non-classic congenital adrenal hyperplasia. Front Endocrinol (Lausanne) 2023; 14:1101843. [PMID: 36936152 PMCID: PMC10018749 DOI: 10.3389/fendo.2023.1101843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Most children with non-classic congenital adrenal hyperplasia (NC-CAH) due to 21-hydroxylase deficiency are asymptomatic and do not require cortisol replacement therapy unless they develop symptoms of hyperandrogenemia. The current practice is to treat symptomatic children with hydrocortisone aimed at suppressing excess adrenal androgen production irrespective of the child's level of endogenous cortisol production. Once on hydrocortisone therapy, even children with normal cortisol production require stress dosing. Some children with NC-CAH may present with premature adrenarche, growth acceleration, and advanced bone age, but with no signs of genital virilization and normal endogenous cortisol production. In these cases, an alternative therapy to hydrocortisone treatment that does not impact the hypothalamic-pituitary-adrenal axis, but targets increased estrogen production and its effects on bone maturation, could be considered. Aromatase inhibitors (AIs), which block the aromatization of androgen to estrogen, have been used off-label in men with short stature to delay bone maturation and as an adjunct therapy in children with classic CAH. The use of AI as a monotherapy for children with NC-CAH has never been reported. We present three pre-pubertal female children with a diagnosis of NC-CAH treated with anastrozole monotherapy after presenting with advanced bone age, early adrenarche, no signs of genital virilization, and normal peak cortisol in response to ACTH stimulation testing. Bone age z-scores normalized, and all three reached or exceeded their target heights. Monotherapy with anastrozole can be an effective alternative in slowing down bone maturation and improving height outcomes in children with NC-CAH and normal adrenal cortisol production.
Collapse
Affiliation(s)
- Sandy C. Liu
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Malavika Suresh
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Mutaz Jaber
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, United States
| | - Yesica Mercado Munoz
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Kyriakie Sarafoglou
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Minnesota Medical School, Minneapolis, MN, United States
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, United States
- *Correspondence: Kyriakie Sarafoglou,
| |
Collapse
|
10
|
Xiong T, Rodriguez Paris V, Edwards MC, Hu Y, Cochran BJ, Rye KA, Ledger WL, Padmanabhan V, Handelsman DJ, Gilchrist RB, Walters KA. Androgen signaling in adipose tissue, but less likely skeletal muscle, mediates development of metabolic traits in a PCOS mouse model. Am J Physiol Endocrinol Metab 2022; 323:E145-E158. [PMID: 35658542 DOI: 10.1152/ajpendo.00418.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a common, multifactorial disorder characterized by endocrine, reproductive, and metabolic dysfunction. As the etiology of PCOS is unknown, there is no cure and symptom-oriented treatments are suboptimal. Hyperandrogenism is a key diagnostic trait, and evidence suggests that androgen receptor (AR)-mediated actions are critical to PCOS pathogenesis. However, the key AR target sites involved remain to be fully defined. Adipocyte and muscle dysfunction are proposed as important sites involved in the manifestation of PCOS traits. We investigated the role of AR signaling in white adipose tissue (WAT), brown adipose tissue (BAT), and skeletal muscle in the development of PCOS in a hyperandrogenic PCOS mouse model. As expected, dihydrotestosterone (DHT) exposure induced key reproductive and metabolic PCOS traits in wild-type (WT) females. Transplantation of AR-insensitive (AR-/-) WAT or BAT from AR knockout females (ARKO) into DHT-treated WT mice ameliorated some metabolic PCOS features, including increased body weight, adiposity, and adipocyte hypertrophy, but not reproductive PCOS traits. In contrast, DHT-treated ARKO female mice transplanted with AR-responsive (AR+/+) WAT or BAT continued to resist developing PCOS traits. DHT-treated skeletal muscle-specific AR knockout females (SkMARKO) displayed a comparable phenotype with that of DHT-treated WT females, with full development of PCOS traits. Taken together, these findings infer that both WAT and BAT, but less likely skeletal muscle, are key sites of AR-mediated actions involved in the experimental pathogenesis of metabolic PCOS traits. These data further support targeting adipocyte AR-driven pathways in future research aimed at developing novel therapeutic interventions for PCOS.NEW & NOTEWORTHY Hyperandrogenism is a key feature in the pathogenesis of polycystic ovary syndrome (PCOS); however, the tissue sites of androgen receptor (AR) signaling are unclear. In this study, AR signaling in white and brown adipose tissue, but less likely in skeletal muscle, was found to be involved in the development of metabolic PCOS traits, highlighting the importance of androgen actions in adipose tissue and obesity in the manifestation of metabolic disturbances.
Collapse
Affiliation(s)
- Ting Xiong
- Fertility and Research Centre, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Valentina Rodriguez Paris
- Fertility and Research Centre, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Melissa C Edwards
- Fertility and Research Centre, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Andrology Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Ying Hu
- Fertility and Research Centre, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Blake J Cochran
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Kerry-Anne Rye
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - William L Ledger
- Fertility and Research Centre, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | | | - David J Handelsman
- Andrology Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Robert B Gilchrist
- Fertility and Research Centre, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Kirsty A Walters
- Fertility and Research Centre, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Andrology Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Tokhunts K, Adamyan M, Chopikyan A, Kayfajyan K, Khudaverdyan A, Tumanyan A. Is I-shaped uterus more common in patients with hyperandrogenism? Eur J Obstet Gynecol Reprod Biol 2022; 272:116-122. [PMID: 35303673 DOI: 10.1016/j.ejogrb.2022.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/16/2022] [Accepted: 03/08/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Subtypes of T-shaped uterus are rare uterine cavity anomalies and there are no morphometric criteria for the diagnosis. Earlier we established a high frequency of I-shaped uterus in patients with adrenalhyperandrogenism, which is more common in Armenian populations. The aim of the study was to determine the frequency of I-shaped uterus as a subtype of T-shaped uterus in patients with ovarian and adrenal hyperandrogenism, accompanied by infertility and miscarriage, as well as the development of it's ultrasonic morphometric criteria. STUDY DESIGN We conducted an ultrasound of 486 patients aged 19-40 years (mean 30.1 ± 5.5) who applied for infertility or habitual pregnancy loss.74 of them were diagnosed with the PCOS (Polycystic ovary syndrome) and 43-CAH (congenital adrenal hyperplasia). Ultrasound was performed in early luteal phase. The classification of uterine cavities was carried out according ESHRE/ESGE. RESULTS 299 had normal ultrasound morphology of the uterine cavity, 20.7% various uterine cavity abnormalities. T-shaped uterus was observed in 3.7%, I-shaped uterus exclusively in patients with hyperandrogenism, 24.3% with PCOS and 39.5% with CAH. To determine the relevant morphometric features as diagnostic criteria for the I-shaped uterus some measurements were performed. The values of dist1-dist2 and dist1-dist3 in the normal cavity had a significant difference (P1-2 0.3), also the cavity width in the middle third and the isthmic section did not have a significant difference (P > 0.05), while in the normal cavity shape these values were significantly different (P < 0.05). CONCLUSION Frequency of occurrence of the T-shaped uterus did not exceed that in comparison with a group of women with other causes of infertility, while I-shaped congenital anomaly of the uterine cavity was found in 24.3-39.5% patients with hyperandrogenism. The difference between the interostial and corporal distances and the interostial and isthmic distances was the most relevant morphometric attribute of I-shaped uterus.
Collapse
Affiliation(s)
- Karine Tokhunts
- Yerevan State Medical University, Department of Obstetrics-Gynecology, Yerevan, Armenia.
| | - Marianna Adamyan
- Nairi Medical Center, Department of Gynecology, Yerevan, Armenia.
| | - Armine Chopikyan
- Yerevan State Medical University, Department of Public Health And Healthcare Organization, Yerevan, Armenia.
| | | | - Anna Khudaverdyan
- Yerevan State Medical University, Department of Obstetrics-Gynecology, Yerevan, Armenia.
| | | |
Collapse
|
12
|
Nautiyal H, Imam SS, Alshehri S, Ghoneim MM, Afzal M, Alzarea SI, Güven E, Al-Abbasi FA, Kazmi I. Polycystic Ovarian Syndrome: A Complex Disease with a Genetics Approach. Biomedicines 2022; 10:biomedicines10030540. [PMID: 35327342 PMCID: PMC8945152 DOI: 10.3390/biomedicines10030540] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023] Open
Abstract
Polycystic ovarian syndrome (PCOS) is a complex endocrine disorder affecting females in their reproductive age. The early diagnosis of PCOS is complicated and complex due to overlapping symptoms of this disease. The most accepted diagnostic approach today is the Rotterdam Consensus (2003), which supports the positive diagnosis of PCOS when patients present two out of the following three symptoms: biochemical and clinical signs of hyperandrogenism, oligo, and anovulation, also polycystic ovarian morphology on sonography. Genetic variance, epigenetic changes, and disturbed lifestyle lead to the development of pathophysiological disturbances, which include hyperandrogenism, insulin resistance, and chronic inflammation in PCOS females. At the molecular level, different proteins and molecular and signaling pathways are involved in disease progression, which leads to the failure of a single genetic diagnostic approach. The genetic approach to elucidate the mechanism of pathogenesis of PCOS was recently developed, whereby four phenotypic variances of PCOS categorize PCOS patients into classic, ovulatory, and non-hyperandrogenic types. Genetic studies help to identify the root cause for the development of this PCOS. PCOS genetic inheritance is autosomal dominant but the latest investigations revealed it as a multigene origin disease. Different genetic loci and specific genes have been identified so far as being associated with this disease. Genome-wide association studies (GWAS) and related genetic studies have changed the scenario for the diagnosis and treatment of this reproductive and metabolic condition known as PCOS. This review article briefly discusses different genes associated directly or indirectly with disease development and progression.
Collapse
Affiliation(s)
- Himani Nautiyal
- Siddhartha Institute of Pharmacy, Near IT-Park, Sahastradhara Road, Dehradun 248001, India;
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (S.A.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (S.A.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Muhammad Afzal
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
- Correspondence: (M.A.); (I.K.)
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Emine Güven
- Biomedical Engineering Department, Faculty of Engineering, Düzce University, Düzce 81620, Turkey;
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Correspondence: (M.A.); (I.K.)
| |
Collapse
|
13
|
Claahsen - van der Grinten HL, Speiser PW, Ahmed SF, Arlt W, Auchus RJ, Falhammar H, Flück CE, Guasti L, Huebner A, Kortmann BBM, Krone N, Merke DP, Miller WL, Nordenström A, Reisch N, Sandberg DE, Stikkelbroeck NMML, Touraine P, Utari A, Wudy SA, White PC. Congenital Adrenal Hyperplasia-Current Insights in Pathophysiology, Diagnostics, and Management. Endocr Rev 2022; 43:91-159. [PMID: 33961029 PMCID: PMC8755999 DOI: 10.1210/endrev/bnab016] [Citation(s) in RCA: 187] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Indexed: 11/19/2022]
Abstract
Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders affecting cortisol biosynthesis. Reduced activity of an enzyme required for cortisol production leads to chronic overstimulation of the adrenal cortex and accumulation of precursors proximal to the blocked enzymatic step. The most common form of CAH is caused by steroid 21-hydroxylase deficiency due to mutations in CYP21A2. Since the last publication summarizing CAH in Endocrine Reviews in 2000, there have been numerous new developments. These include more detailed understanding of steroidogenic pathways, refinements in neonatal screening, improved diagnostic measurements utilizing chromatography and mass spectrometry coupled with steroid profiling, and improved genotyping methods. Clinical trials of alternative medications and modes of delivery have been recently completed or are under way. Genetic and cell-based treatments are being explored. A large body of data concerning long-term outcomes in patients affected by CAH, including psychosexual well-being, has been enhanced by the establishment of disease registries. This review provides the reader with current insights in CAH with special attention to these new developments.
Collapse
Affiliation(s)
| | - Phyllis W Speiser
- Cohen Children’s Medical Center of NY, Feinstein Institute, Northwell Health, Zucker School of Medicine, New Hyde Park, NY 11040, USA
| | - S Faisal Ahmed
- Developmental Endocrinology Research Group, School of Medicine Dentistry & Nursing, University of Glasgow, Glasgow, UK
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research (IMSR), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Endocrinology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Richard J Auchus
- Division of Metabolism, Endocrinology, and Diabetes, Departments of Internal Medicine and Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Henrik Falhammar
- Department of Molecular Medicine and Surgery, Karolinska Intitutet, Stockholm, Sweden
- Department of Endocrinology, Karolinska University Hospital, Stockholm, Sweden
| | - Christa E Flück
- Pediatric Endocrinology, Diabetology and Metabolism, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Bart’s and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Angela Huebner
- Division of Paediatric Endocrinology and Diabetology, Department of Paediatrics, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany
| | - Barbara B M Kortmann
- Radboud University Medical Centre, Amalia Childrens Hospital, Department of Pediatric Urology, Nijmegen, The Netherlands
| | - Nils Krone
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Deborah P Merke
- National Institutes of Health Clinical Center and the Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Walter L Miller
- Department of Pediatrics, Center for Reproductive Sciences, and Institute for Human Genetics, University of California, San Francisco, CA 94143, USA
| | - Anna Nordenström
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Endocrinology, Karolinska University Hospital, Stockholm, Sweden
| | - Nicole Reisch
- Medizinische Klinik IV, Klinikum der Universität München, Munich, Germany
| | - David E Sandberg
- Department of Pediatrics, Susan B. Meister Child Health Evaluation and Research Center, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Philippe Touraine
- Department of Endocrinology and Reproductive Medicine, Center for Rare Endocrine Diseases of Growth and Development, Center for Rare Gynecological Diseases, Hôpital Pitié Salpêtrière, Sorbonne University Medicine, Paris, France
| | - Agustini Utari
- Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Stefan A Wudy
- Steroid Research & Mass Spectrometry Unit, Laboratory of Translational Hormone Analytics, Division of Paediatric Endocrinology & Diabetology, Justus Liebig University, Giessen, Germany
| | - Perrin C White
- Division of Pediatric Endocrinology, UT Southwestern Medical Center, Dallas TX 75390, USA
| |
Collapse
|
14
|
Abdelhamed MH, Al-Ghamdi WM, Al-Agha AE. Polycystic Ovary Syndrome Among Female Adolescents With Congenital Adrenal Hyperplasia. Cureus 2021; 13:e20698. [PMID: 35106235 PMCID: PMC8787295 DOI: 10.7759/cureus.20698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2021] [Indexed: 11/09/2022] Open
Abstract
Objectives: Polycystic ovary syndrome is a common endocrine disease in adolescent females that is usually diagnosed based on clinical and hormonal abnormalities. Female adolescents with poorly controlled congenital adrenal hyperplasia are at increased risk of developing polycystic ovary syndrome. This study aimed to determine the prevalence of polycystic ovary syndrome and assess its relationship with hormonal control among adolescents with congenital adrenal hyperplasia. Methods: This retrospective descriptive study included 40 pubertal female adolescents aged between 12 and 20 years with at least two years after menarche diagnosed with classical congenital adrenal hyperplasia since birth who were screened routinely for polycystic ovary syndrome via pelvic ultrasonography between 2012 and 2020 at King Abdul-Aziz University Hospital, Jeddah, Saudi Arabia. Serum adrenocorticotropic hormone, 17-hydroxy -progesterone, testosterone, dehydroepiandrosterone sulfate, luteinizing hormone, and follicle-stimulating hormone levels were measured. Results: Polycystic ovary syndrome was detected via routine pelvic ultrasonography in 12/40 (30%) females. The median age of the affected females was 16.6 years, with the youngest female aged 12.5 years. The bone age of the patients had advanced ≤3 years. Further, serum adrenocorticotropic hormone was determined to be an independent factor affecting polycystic ovary syndrome development, indicating poor hormonal control (P = 0.005). Conclusion: Polycystic ovary disease is likely a complication of poorly controlled congenital adrenal hyperplasia disease. Therefore, increasing the awareness of polycystic ovary disease among congenital adrenal hyperplasia females via routine ultrasonography screening is advisable to facilitate the early diagnosis and improve disease management.
Collapse
|
15
|
Abstract
The approach to hyperandrogenism in women varies depending on the woman's age and severity of symptoms. Once tumorous hyperandrogenism is excluded, the most common cause is PCOS. Hirsutism is the most common presenting symptom. The woman's concern about her symptoms plays an important role in the management of disease. Although measurement of testosterone is useful in identifying an underlying cause, care must be taken when interpreting the less accurate assays that are available commercially. Surgical resection is curative in tumorous etiologies, whereas medical management is the mainstay for non-tumorous causes.
Collapse
Affiliation(s)
- Anu Sharma
- Division of Endocrinology, Metabolism and Diabetes, University of Utah, EIHG 2110A, 15 N 2030 E, Salt Lake City, UT 84112, USA
| | - Corrine K Welt
- Division of Endocrinology, Metabolism and Diabetes, University of Utah, EIHG 2110A, 15 N 2030 E, Salt Lake City, UT 84112, USA.
| |
Collapse
|
16
|
Koch T, Doherty DA, Dickinson JE, Juul A, Hart R, Bräuner EV, Hickey M. In utero exposure to maternal stressful life events and risk of polycystic ovary syndrome in the offspring: The Raine Study. Psychoneuroendocrinology 2021; 125:105104. [PMID: 33352473 DOI: 10.1016/j.psyneuen.2020.105104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/03/2020] [Accepted: 12/04/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND PCOS is the most common endocrine disorder in reproductive age women. The origins of PCOS are unknown but experimental and limited human evidence suggests that greater prenatal exposure to androgens may predispose to PCOS. Experimental evidence suggests that maternal stressors may affect reproductive function in the offspring via changes in prenatal androgen exposure. In this present study, we aim to investigate whether maternal stressful life events during pregnancy are associated with polycystic ovary morphology (PCOM) or polycystic ovary syndrome (PCOS) in adolescent offspring. METHOD In a large population-based pregnancy cohort study (The Raine Study) continuously followed from prenatal life through to adolescence we examined the association between maternal stressful life events during pregnancy in both early and late gestation, and subsequent circulating concentrations of ovarian and adrenal androgens, PCOM and PCOS in the normal menstrual cycle of offspring age 14-16 years. Maternal stressful life events were prospectively recorded during pregnancy at 18 and 34 weeks using a 10-point questionnaire. Female offspring (n = 223) completed a questionnaire about their menstrual cycles, underwent a clinical examination for hirsutism (Ferriman-Gallwey score) and transabdominal pelvic ultrasound examination to determine ovarian morphology according to standardized criteria for classification of PCOM. Plasma samples were obtained at day 2-6 of the normal menstrual cycle for measurement of androgens. PCOM was defined according to the international consensus definition, 2003 and the evidence-based guideline for the assessment and management of PCOS, 2018. PCOS was diagnosed according to Rotterdam criteria and National Institute of Health (NIH) criteria. Multivariate linear and logistic regression analyses were used to examine the associations between maternal stressful life event exposure and ovarian morphology (PCOM), circulating ovarian and adrenal androgens (clinical and biochemical hyperandrogenism (hirsutism)) and presence of PCOS. RESULTS Of 223 recruited adolescent girls, 78 (35.9%) and 68 (31.3%) had PCOM by the 2003 and 2018 criteria respectively, while 66 (29.6%) and 37 (16.6%) had PCOS, using Rotterdam and NIH criteria, respectively. Most girls (141/223, 63.2%) were exposed to at least one stressful life event in early gestation and around half (121/223, 54.3%) were exposed to at least one stressful life event in late gestation. Maternal stressful life events in early gestation were associated with a statistically significant lower prevalence of PCOM when applying the 2003 criteria [adjusted odds ratio [aOR] and 95% confidence intervals (CI): 0.74 (95% CI: 0.55; 0.99)], and a similar association was detected when applying the 2018 PCOM criteria (aOR, 0.69, 95% CI: 0.50; 0.95)]. Maternal stressful life events in early gestation were also associated with lower circulating concentrations of testosterone (β = -0.05, 95% CI: -0.09; -0.004) and androstenedione (β = -0.05, 95% CI: -0.10; -0.002) in the offspring. No similar effects for PCOM or circulating androgens were detected in late gestation. No statistically significant associations between maternal stressful life events in early or late gestation with PCOS (neither Rotterdam nor NIH criteria) in adolescence were detected. The prospective collection of maternal stressful life events during both early and late gestation and direct measurement of PCOM, PCOS and circulating androgens in adolescence and key co-variates implies minimal possibility of recall, information bias and selection bias. CONCLUSION Maternal exposure to stressful life events in early gestation is associated with significantly reduced circulating ovarian and adrenal androgen concentrations in adolescence (testosterone and androstenedione), and an indication of fewer cases of polycystic ovary morphology (PCOM) defined by the 2003 international consensus definition and by the 2018 international evidence-based guideline, but has no effect on polycystic ovary syndrome (PCOS), diagnosed using either Rotterdam or NIH criteria.
Collapse
Affiliation(s)
- T Koch
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Denmark; The International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Denmark
| | - D A Doherty
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Western Australia, Australia
| | - J E Dickinson
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Western Australia, Australia
| | - A Juul
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Denmark; The International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Denmark
| | - R Hart
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Western Australia, Australia; Fertility Specialists of Western Australia, Bethesda Hospital, Claremont, Western Australia, Australia
| | - E V Bräuner
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Denmark; The International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Denmark
| | - M Hickey
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
17
|
Zhu B, Chen Y, Xu F, Shen X, Chen X, Lv J, Zhang S. Androgens impair β-cell function in a mouse model of polycystic ovary syndrome by activating endoplasmic reticulum stress. Endocr Connect 2021; 10:265-272. [PMID: 33543730 PMCID: PMC8052571 DOI: 10.1530/ec-20-0608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/04/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Androgens excess results in endoplasmic reticulum (ER) stress, which is an important cause of β cells dysfunction. Here, we investigated the molecular regulation of androgens excess, ER stress, and β-cell function in polycystic ovary syndrome (PCOS). METHODS PCOS mouse model was established by injection of DHEA. Primary cultured mouse islets were used to detect testosterone (TE)-induced ER stress. The response of ER stress, apoptosis, and hyperinsulinemia were analyzed in INS-1 cells with or without TE exposure. Androgen receptor (AR) antagonist and ER stress inhibitor treatment was performed to evaluate the role of TE in ER stress and proinsulin secretion of PCOS mice. RESULTS PCOS mice had higher ER stress in islets. TE exposure induced ER stress and apoptosis significantly through sustaining insulin overexpression in β cells, which in turn impaired proinsulin maturation and secretion. Blocking this process could significantly relieve ER stress and apoptosis and improve insulin homeostasis. CONCLUSION ER stress activated by androgens excess in PCOS contributes to β cell dysfunction and hyperinsulinemia.
Collapse
Affiliation(s)
- Bo Zhu
- Department of Obstetrics and Gynecology, Assisted Reproduction Unit, Sir Run Run ShawHospital, Zhejiang University School of Medicine Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Gynecology and Obstetrics, Wenzhou People’s Hospital, Wenzhou Women and Children Health, Wenzhou, Zhejiang, China
| | - Yumei Chen
- Department of Gynecology and Obstetrics, Wenzhou People’s Hospital, Wenzhou Women and Children Health, Wenzhou, Zhejiang, China
| | - Fang Xu
- Department of Gynecology and Obstetrics, Wenzhou People’s Hospital, Wenzhou Women and Children Health, Wenzhou, Zhejiang, China
| | - Xiaolu Shen
- Department of Gynecology and Obstetrics, Wenzhou People’s Hospital, Wenzhou Women and Children Health, Wenzhou, Zhejiang, China
| | - Xuanyu Chen
- Department of Gynecology and Obstetrics, Wenzhou People’s Hospital, Wenzhou Women and Children Health, Wenzhou, Zhejiang, China
| | - Jieqiang Lv
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Songying Zhang
- Department of Obstetrics and Gynecology, Assisted Reproduction Unit, Sir Run Run ShawHospital, Zhejiang University School of Medicine Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
Cox MJ, Edwards MC, Rodriguez Paris V, Aflatounian A, Ledger WL, Gilchrist RB, Padmanabhan V, Handelsman DJ, Walters KA. Androgen Action in Adipose Tissue and the Brain are Key Mediators in the Development of PCOS Traits in a Mouse Model. Endocrinology 2020; 161:bqaa061. [PMID: 32301482 DOI: 10.1210/endocr/bqaa061] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a complex disorder characterized by endocrine, reproductive, and metabolic abnormalities. Despite PCOS being the most common endocrinopathy affecting women of reproductive age, the etiology of PCOS is poorly understood, so there is no cure and symptomatic treatment is suboptimal. Hyperandrogenism is the most consistent feature observed in PCOS patients, and recently aberrant neuroendocrine signaling and adipose tissue function have been proposed as playing a role in the development of PCOS. To investigate the role of adipose tissue and the brain as key sites for androgen receptor (AR)-mediated development of PCOS, we combined a white and brown adipose and brain-specific AR knockout (AdBARKO) mouse model with a dihydrotestosterone (DHT)-induced mouse model of PCOS. As expected, in wildtype (WT) control females, DHT exposure induced the reproductive PCOS traits of cycle irregularity, ovulatory dysfunction, and reduced follicle health, whereas in AdBARKO females, DHT did not produce the reproductive features of PCOS. The metabolic PCOS characteristics of increased adiposity, adipocyte hypertrophy, and hepatic steatosis induced by DHT in WT females were not evident in DHT-treated AdBARKO females, which displayed normal white adipose tissue weight and no adipocyte hypertrophy or liver steatosis. Dihydrotestosterone treatment induced increased fasting glucose levels in both WT and AdBARKO females. These findings demonstrate that adipose tissue and the brain are key loci of androgen-mediated actions involved in the developmental origins of PCOS. These data support targeting adipocyte and neuroendocrine AR-driven pathways in the future development of novel therapeutic strategies for PCOS.
Collapse
Affiliation(s)
- Madeleine J Cox
- Fertility and Research Centre, School of Women's & Children's Health, University of New South Wales, Sydney, Australia
| | - Melissa C Edwards
- Fertility and Research Centre, School of Women's & Children's Health, University of New South Wales, Sydney, Australia
- Andrology Laboratory, ANZAC Research Institute, University of Sydney, Sydney, Australia
| | - Valentina Rodriguez Paris
- Fertility and Research Centre, School of Women's & Children's Health, University of New South Wales, Sydney, Australia
| | - Ali Aflatounian
- Fertility and Research Centre, School of Women's & Children's Health, University of New South Wales, Sydney, Australia
| | - William L Ledger
- Fertility and Research Centre, School of Women's & Children's Health, University of New South Wales, Sydney, Australia
| | - Robert B Gilchrist
- Fertility and Research Centre, School of Women's & Children's Health, University of New South Wales, Sydney, Australia
| | | | - David J Handelsman
- Andrology Laboratory, ANZAC Research Institute, University of Sydney, Sydney, Australia
| | - Kirsty A Walters
- Fertility and Research Centre, School of Women's & Children's Health, University of New South Wales, Sydney, Australia
- Andrology Laboratory, ANZAC Research Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
19
|
New insights into anti-Müllerian hormone role in the hypothalamic-pituitary-gonadal axis and neuroendocrine development. Cell Mol Life Sci 2020; 78:1-16. [PMID: 32564094 PMCID: PMC7867527 DOI: 10.1007/s00018-020-03576-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/08/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022]
Abstract
Research into the physiological actions of anti-Müllerian hormone (AMH) has rapidly expanded from its classical role in male sexual differentiation to the regulation of ovarian function, routine clinical use in reproductive health and potential use as a biomarker in the diagnosis of polycystic ovary syndrome (PCOS). During the past 10 years, the notion that AMH could act exclusively at gonadal levels has undergone another paradigm shift as several exciting studies reported unforeseen AMH actions throughout the Hypothalamic–Pituitary–Gonadal (HPG) axis. In this review, we will focus on these findings reporting novel AMH actions across the HPG axis and we will discuss their potential impact and significance to better understand human reproductive disorders characterized by either developmental alterations of neuroendocrine circuits regulating fertility and/or alterations of their function in adult life. Finally, we will summarize recent preclinical studies suggesting that elevated levels of AMH may potentially be a contributing factor to the central pathophysiology of PCOS and other reproductive diseases.
Collapse
|
20
|
|
21
|
Wen L, Liu Q, Xu J, Liu X, Shi C, Yang Z, Zhang Y, Xu H, Liu J, Yang H, Huang H, Qiao J, Tang F, Chen ZJ. Recent advances in mammalian reproductive biology. SCIENCE CHINA. LIFE SCIENCES 2020; 63:18-58. [PMID: 31813094 DOI: 10.1007/s11427-019-1572-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/22/2019] [Indexed: 01/05/2023]
Abstract
Reproductive biology is a uniquely important topic since it is about germ cells, which are central for transmitting genetic information from generation to generation. In this review, we discuss recent advances in mammalian germ cell development, including preimplantation development, fetal germ cell development and postnatal development of oocytes and sperm. We also discuss the etiologies of female and male infertility and describe the emerging technologies for studying reproductive biology such as gene editing and single-cell technologies.
Collapse
Affiliation(s)
- Lu Wen
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Qiang Liu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Jingjing Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Xixi Liu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Chaoyi Shi
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Zuwei Yang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Yili Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Hong Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Jiang Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Hui Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Hefeng Huang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China.
| | - Jie Qiao
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Zi-Jiang Chen
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250021, China.
| |
Collapse
|
22
|
Khan MJ, Ullah A, Basit S. Genetic Basis of Polycystic Ovary Syndrome (PCOS): Current Perspectives. Appl Clin Genet 2019; 12:249-260. [PMID: 31920361 PMCID: PMC6935309 DOI: 10.2147/tacg.s200341] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/05/2019] [Indexed: 12/18/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common infertility disorder affecting a significant proportion of the global population. It is the main cause of anovulatory infertility in women and is the most common endocrinopathy affecting reproductive-aged women, with a prevalence of 8-13% depending on the criteria used and population studied. The disease is multifactorial and complex and, therefore, often difficult to diagnose due to overlapping symptoms. Multiple etiological factors have been implicated in PCOS. Due to the complex pathophysiology involving multiple pathways and proteins, single genetic diagnostic tests cannot be determined. Progress has been achieved in the management and diagnosis of PCOS; however, not much is known about the molecular players and signaling pathways underlying it. Conclusively PCOS is a polygenic and multifactorial syndromic disorder. Many genes have been associated with PCOS, which affect fertility either directly or indirectly. However, studies conducted on PCOS patients from multiple families failed to find a fully penetrant variant(s). The present study was designed to review the current genetic understanding of the disease. In the present review, we have discussed the clinical spectrum, the genetics, and the variants identified as being associated with PCOS. The mechanisms by which variants in the genes confer risk to PCOS and the nature of the physical and genetic interaction between the genetic elements underlying PCOS remain to be determined. Elucidation of genetic players and cellular pathways underlying PCOS will certainly increase our understanding of the pathophysiology of this syndrome. The study also discusses the current status of the treatment modalities for PCOS, which is important to find new ways of treatment.
Collapse
Affiliation(s)
- Muhammad Jaseem Khan
- Institute of Paramedical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Anwar Ullah
- Institute of Paramedical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Sulman Basit
- Center for Genetics and Inherited Diseases, Taibah University Almadinah Almunawwarrah, Peshawar, Saudi Arabia
| |
Collapse
|
23
|
Ruddenklau A, Campbell RE. Neuroendocrine Impairments of Polycystic Ovary Syndrome. Endocrinology 2019; 160:2230-2242. [PMID: 31265059 DOI: 10.1210/en.2019-00428] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent and distressing disorder of largely unknown etiology. Although PCOS defined by ovarian dysfunction, accumulating evidence supports a critical role for the brain in the ontogeny and pathophysiology of PCOS. A critical pathological feature of PCOS is impaired gonadal steroid hormone negative feedback to the GnRH neuronal network in the brain that regulates fertility. This impairment is associated with androgen excess, a cardinal feature of PCOS. Impaired steroid hormone feedback to GnRH neurons is thought to drive hyperactivity of the neuroendocrine axis controlling fertility, leading to a vicious cycle of androgen excess and reproductive dysfunction. Decades of clinical research have been unable to uncover the mechanisms underlying this impairment, because of the extreme difficulty in studying the brain in humans. It is only recently, with the development of preclinical models of PCOS, that we have begun to unravel the role of the brain in the development and progression of PCOS. Here, we provide a succinct overview of what is known about alterations in the steroid hormone-sensitive GnRH neuronal network that may underlie the neuroendocrine defects in clinical PCOS, with a particular focus on those that may contribute to impaired progesterone negative feedback, and the likely role of androgens in driving this impairment.
Collapse
Affiliation(s)
- Amy Ruddenklau
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Rebecca E Campbell
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
24
|
Abstract
Fertility rates in classic congenital adrenal hyperplasia caused by 21-hydroxylase deficiency are substantially decreased for various reasons, including hormonal, anatomic, psychosocial, and psychosexual causes. However, fecundity is comparable with the general population. Under optimal hormone replacement, the course and outcome of pregnancies is also good. This article summarizes successful gestational management, including preconceptional considerations, adjustment of hormone replacement during pregnancy, delivery and lactation, as well as the prevention of adrenal crises. In nonclassic 21-hydroxylase deficiency, preconceptional low-dose hydrocortisone replacement normalizes the otherwise increased miscarriage rate. Pregnancy reports in rarer forms of congenital adrenal hyperplasia are summarized as well.
Collapse
Affiliation(s)
- Nicole Reisch
- Medizinische Klinik IV, Department of Endocrinology, Klinikum der Universität München, Ziemssenstraße 1, München 80336, Germany.
| |
Collapse
|
25
|
Rodriguez Paris V, Bertoldo MJ. The Mechanism of Androgen Actions in PCOS Etiology. Med Sci (Basel) 2019; 7:medsci7090089. [PMID: 31466345 PMCID: PMC6780983 DOI: 10.3390/medsci7090089] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/05/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine condition in reproductive-age women. By comprising reproductive, endocrine, metabolic and psychological features—the cause of PCOS is still unknown. Consequently, there is no cure, and management is persistently suboptimal as it depends on the ad hoc management of symptoms only. Recently it has been revealed that androgens have an important role in regulating female fertility. Androgen actions are facilitated via the androgen receptor (AR) and transgenic Ar knockout mouse models have established that AR-mediated androgen actions have a part in regulating female fertility and ovarian function. Considerable evidence from human and animal studies currently reinforces the hypothesis that androgens in excess, working via the AR, play a key role in the origins of polycystic ovary syndrome (PCOS). Identifying and confirming the locations of AR-mediated actions and the molecular mechanisms involved in the development of PCOS is critical to provide the knowledge required for the future development of innovative, mechanism-based interventions for the treatment of PCOS. This review summarises fundamental scientific discoveries that have improved our knowledge of androgen actions in PCOS etiology and how this may form the future development of effective methods to reduce symptoms in patients with PCOS.
Collapse
Affiliation(s)
- Valentina Rodriguez Paris
- Fertility and Research Centre, School of Women's and Children's Health, University of New South Wales Sydney, NSW 2052, Australia
| | - Michael J Bertoldo
- Fertility and Research Centre, School of Women's and Children's Health, University of New South Wales Sydney, NSW 2052, Australia.
- School of Medical Sciences, University of New South Wales Sydney, NSW 2052, Australia.
| |
Collapse
|
26
|
Photobiomodulation can improve ovarian activity in polycystic ovary syndrome-induced rats. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 194:6-13. [PMID: 30897401 DOI: 10.1016/j.jphotobiol.2019.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/04/2018] [Accepted: 03/10/2019] [Indexed: 11/20/2022]
Abstract
Follicular cystic ovary disease is a common reproductive disorder in women and females of domestic animals, characterized by anovulation and the persistence of follicle is a common cause of reproductive failure in mammalian. Polycystic ovary syndrome (PCOS) is characterized by hyperandrogenism (HA), chronic anovulation and polycystic ovaries, and it is a common reproductive endocrine disease with clinical manifestations including hirsutism, acne, infertility and obesity that can affect 5-20% of women in their reproductive age. Photobiomodulation (PBM) has been investigated and used in clinical practice, related to biomodulatory influences on cellular functions in animals and humans, both in vivo and in vitro. In this study, we include endocrine and reproductive features in a rat model for PCOS and the effects of PBM on ovarian activities. Forty-five adult female Wistar rats PCOS-induced by a single dose of the estradiol valerate (EV) were used in the study. After the EV injection for PCO induction, rats were divided into 9 groups (n = 5/group) named C30, C45 and C60 (Control group), S30, S45 and S60 (PCO group) and L30, L45 and L60 (PCO/Laser group). The rats were irradiated with laser 3 times/week. The results shown that EV PCO-induced rats had increased body mass, reduced ovary mass, and reduced GSI. The plasma levels of P4 and T were increased, and the LH plasma level was decreased by PBM stimulation. The number of ovarian follicles and corpus luteum were increased, and the number of ovarian cysts was decreased by PBM stimulation. Thus, reproductive and endocrine characteristics were modulated by PBM.
Collapse
|
27
|
Hatzirodos N, Hummitzsch K, Irving-Rodgers HF, Breen J, Perry VEA, Anderson RA, Rodgers RJ. Transcript abundance of stromal and thecal cell related genes during bovine ovarian development. PLoS One 2019; 14:e0213575. [PMID: 30856218 PMCID: PMC6411104 DOI: 10.1371/journal.pone.0213575] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 02/25/2019] [Indexed: 12/14/2022] Open
Abstract
Movement and expansion of mesonephric-derived stroma appears to be very important in the development of the ovary. Here, we examined the expression of 24 genes associated with stroma in fetal ovaries during gestation (n = 17; days 58-274) from Bos taurus cattle. RNA was isolated from ovaries for quantitative RT-PCR. Expression of the majority of genes in TGFβ signalling, stromal transcription factors (NR2F2, AR), and some stromal matrix genes (COL1A1, COL3A1 and FBN1, but not FBN3) showed a positive linear increase with gestational age. Expression of genes associated with follicles (INSL3, CYP17A1, CYP11A1 and HSD3B1), was low until mid-gestation and then increased with gestational age. LHCGR showed an unusual bimodal pattern; high levels in the first and last trimesters. RARRES1 and IGFBP3 also increased with gestational age. To relate changes in gene expression in stromal cells with that in non stromal cells during development of the ovary we combined the data on the stromal genes with another 20 genes from non stromal cells published previously and then performed hierarchical clustering analysis. Three major clusters were identified. Cluster 1 genes (GATA4, FBN3, LHCGR, CYP19A1, ESR2, OCT4, DSG2, TGFB1, CCND2, LGR5, NR5A1) were characterised by high expression only in the first trimester. Cluster 2 genes (FSHR, INSL3, HSD3B1, CYP11A1, CYP17A1, AMH, IGFBP3, INHBA) were highly expressed in the third trimester and largely associated with follicle function. Cluster 3 (COL1A1, COL3A1, FBN1, TGFB2 TGFB3, TGFBR2, TGFBR3, LTBP2, LTBP3, LTBP4, TGFB1I1, ALDH1A1, AR, ESR1, NR2F2) had much low expression in the first trimester rising in the second trimester and remaining at that level during the third trimester. Cluster 3 contained members of two pathways, androgen and TGFβ signalling, including a common member of both pathways namely the androgen receptor cofactor TGFβ1 induced transcript 1 protein (TGFB1I1; hic5). GATA4, FBN3 and LHCGR, were highly correlated with each other and were expressed highly in the first trimester during stromal expansion before follicle formation, suggesting that this could be a critical phase in the development of the ovarian stroma.
Collapse
Affiliation(s)
- Nicholas Hatzirodos
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Katja Hummitzsch
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Helen F. Irving-Rodgers
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- School of Medical Science, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| | - James Breen
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- University of Adelaide Bioinformatics Hub, Adelaide, South Australia, Australia
| | - Viv E. A. Perry
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, United Kingdom
| | - Richard A. Anderson
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, United Kingdom
| | - Raymond J. Rodgers
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
28
|
Papadakis G, Kandaraki EA, Tseniklidi E, Papalou O, Diamanti-Kandarakis E. Polycystic Ovary Syndrome and NC-CAH: Distinct Characteristics and Common Findings. A Systematic Review. Front Endocrinol (Lausanne) 2019; 10:388. [PMID: 31275245 PMCID: PMC6593353 DOI: 10.3389/fendo.2019.00388] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 05/30/2019] [Indexed: 12/18/2022] Open
Abstract
Background: Twenty-one-hydroxylase-deficient non-classic adrenal hyperplasia (NC-CAH) is a very common autosomal recessive syndrome with prevalence between 1:1,000 and 1:2,000 individuals and the frequency varies according to ethnicity. On the other hand, polycystic ovary syndrome has a familial basis and it is inherited under a complex hereditary trait. This syndrome affects 6 to 10% of women in reproductive age and it is the most common endocrine disorder in young women. Our aim was to investigate, through a systematic review, the distinct characteristics and common findings of these syndromes. Methods: The search period covered January 1970 to November 2018, using the scientific databases PubMed. Inclusion criteria were adult women patients with PCOS or NC-CAH. Search terms were "polycystic ovary syndrome," "PCOS," "non-classical adrenal hyperplasia," "NC-CAH," "21-hydroxylase deficiency." From an initial 16,255 titles, the evaluations led to the final inclusion of 97 papers. Results: The clinical features of NC-CAH are hirsutism and ovulatory and menstrual dysfunction therefore; differentiation between these two syndromes is difficult based on clinical grounds only. Additionally, NC-CAH and PCOS are both associated with obesity, insulin resistance, and dyslipidaemia. Reproductive abnormalities are also common between these hyperandrogenemic disorders since in patients with NC-CAH polycystic ovarian morphology and subfertility are present as they are in women with PCOS. The diagnosis of PCOS, is confirmed once other disorders that mimic PCOS have been excluded e.g., conditions that are related to oligoovulation or anovulation and/or hyperandrogenism, such as hyperprolactinaemia, thyroid disorders, non-classic congenital adrenal hyperplasia, and androgen-producing neoplasms. Conclusions: The screening tool to distinguish non-classic adrenal hyperplasia from PCOS is the measurement of 17-hydroxyprogesterone levels. The basal levels of 17-hydroxyprogesterone may overlap, but ACTH stimulation testing can distinguish the two entities. In this review these two common endocrine disorders are discussed in an effort to unveil their commonalities and to illuminate their shadowed distinctive characteristics.
Collapse
Affiliation(s)
| | - Eleni A. Kandaraki
- Department of Endocrinology and Diabetes, HYGEIA Hospital, Athens, Greece
| | - Ermioni Tseniklidi
- Department of Endocrinology and Diabetes, HYGEIA Hospital, Athens, Greece
| | - Olga Papalou
- Department of Endocrinology and Diabetes, HYGEIA Hospital, Athens, Greece
| | - Evanthia Diamanti-Kandarakis
- Department of Endocrinology and Diabetes, HYGEIA Hospital, Athens, Greece
- *Correspondence: Evanthia Diamanti-Kandarakis
| |
Collapse
|
29
|
Gomes LG, Bachega TA, Mendonca BB. Classic congenital adrenal hyperplasia and its impact on reproduction. Fertil Steril 2019; 111:7-12. [DOI: 10.1016/j.fertnstert.2018.11.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/25/2018] [Accepted: 11/27/2018] [Indexed: 01/30/2023]
|
30
|
Walters KA, Gilchrist RB, Ledger WL, Teede HJ, Handelsman DJ, Campbell RE. New Perspectives on the Pathogenesis of PCOS: Neuroendocrine Origins. Trends Endocrinol Metab 2018; 29:841-852. [PMID: 30195991 DOI: 10.1016/j.tem.2018.08.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 11/25/2022]
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine condition in reproductive-aged women. It is characterized by reproductive, endocrine, metabolic, and psychological features. The cause of PCOS is unknown, thus there is no cure and its management remains suboptimal because it relies on the ad hoc empirical management of symptoms only. We review here the strong support for PCOS having a neuroendocrine origin. In particular, we focus on the role of aberrant hypothalamic-pituitary function and associated hyperandrogenism, and their role as major drivers of the mechanisms underpinning the development of PCOS. This important information now provides a target site and a potential mechanism for the future development of novel, targeted, and mechanism-based effective therapies for the treatment of PCOS.
Collapse
Affiliation(s)
- Kirsty A Walters
- Fertility and Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, NSW 2052, Australia; https://research.unsw.edu.au/people/dr-kirsty-walters.
| | - Robert B Gilchrist
- Fertility and Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - William L Ledger
- Fertility and Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Helena J Teede
- Monash Centre for Health Research and Implementation, Monash Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3168, Australia
| | - David J Handelsman
- Andrology Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales 2139, Australia
| | - Rebecca E Campbell
- Centre of Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
31
|
Puttabyatappa M, Padmanabhan V. Ovarian and Extra-Ovarian Mediators in the Development of Polycystic Ovary Syndrome. J Mol Endocrinol 2018; 61:R161-R184. [PMID: 29941488 PMCID: PMC6192837 DOI: 10.1530/jme-18-0079] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/14/2018] [Accepted: 06/25/2018] [Indexed: 12/16/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a heterogeneous endocrine disorder affecting women of reproductive age. The origin of PCOS is still not clear and appears to be a function of gene x environment interactions. This review addresses the current knowledge of the genetic and developmental contributions to the etiology of PCOS, the ovarian and extra-ovarian mediators of PCOS and the gaps and key challenges that need to be addressed in the diagnosis, treatment and prevention of PCOS.
Collapse
|
32
|
Steffensen LL, Ernst EH, Amoushahi M, Ernst E, Lykke-Hartmann K. Transcripts Encoding the Androgen Receptor and IGF-Related Molecules Are Differently Expressed in Human Granulosa Cells From Primordial and Primary Follicles. Front Cell Dev Biol 2018; 6:85. [PMID: 30148131 PMCID: PMC6095988 DOI: 10.3389/fcell.2018.00085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/18/2018] [Indexed: 11/13/2022] Open
Abstract
Bidirectional cross talk between granulosa cells and oocytes is known to be important in all stages of mammalian follicular development. Insulin-like growth factor (IGF) signaling is a prominent candidate to be involved in the activation of primordial follicles, and may be be connected to androgen-signaling. In this study, we interrogated transcriptome dynamics in granulosa cells isolated from human primordial and primary follicles to reveal information of growth factors and androgens involved in the physiology of ovarian follicular activation. Toward this, a transcriptome comparison study on primordial follicles (n = 539 follicles) and primary follicles (n = 261 follicles) donated by three women having ovarian tissue cryopreserved before chemotherapy was performed. The granulosa cell contribution in whole follicle isolates was extracted in silico. Modeling of complex biological systems was performed using IPA® software. We found the granulosa cell compartment of the human primordial and primary follicles to be extensively enriched in genes encoding IGF-related factors, and the Androgen Receptor (AR) enriched in granulosa cells of primordial follicles. Our study hints the possibility that primordial follicles may indeed be androgen responsive, and that the action of androgens represents a connection to the expression of key players in the IGF-signaling pathway including IGF1R, IGF2, and IGFBP3, and that this interaction could be important for early follicular activation. In line with this, several androgen-responsive genes were noted to be expressed in both oocytes and granulosa cells from human primordial and primary follicle. We present a detailed description of AR and IGF gene activities in the human granulosa cell compartment of primordial and primary follicles, suggesting that these cells may be or prepare to be responsive toward androgens and IGFs.
Collapse
Affiliation(s)
| | - Emil H Ernst
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Erik Ernst
- The Fertility Clinic, Horsens Hospital, Horsens, Denmark.,The Fertility Clinic, Aarhus University Hospital, Aarhus, Denmark
| | - Karin Lykke-Hartmann
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
33
|
Walters KA, Bertoldo MJ, Handelsman DJ. Evidence from animal models on the pathogenesis of PCOS. Best Pract Res Clin Endocrinol Metab 2018; 32:271-281. [PMID: 29779581 DOI: 10.1016/j.beem.2018.03.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Polycystic ovarian syndrome (PCOS) is the most common endocrine condition in women, and is characterized by reproductive, endocrine and metabolic features. However, there is no simple unequivocal diagnostic test for PCOS, its etiology remains unknown and there is no cure. Hence, the management of PCOS is suboptimal as it relies on the ad hoc empirical management of its symptoms only. Decisive studies are required to unravel the origins of PCOS, but due to ethical and logistical reasons these are not possible in humans. Experimental animal models for PCOS have been established which have enhanced our understanding of the mechanisms underlying PCOS and propose novel mechanism-based therapies to treat the condition. This review examines the findings from various animal models to reveal the current knowledge of the mechanisms underpinning the development of PCOS, and also provides insights into the implications from these studies for improved clinical management of this disorder.
Collapse
Affiliation(s)
- K A Walters
- Fertility and Research Centre, School of Women's & Children's Health, University of New South Wales, Sydney, NSW 2052, Australia.
| | - M J Bertoldo
- Fertility and Research Centre, School of Women's & Children's Health, University of New South Wales, Sydney, NSW 2052, Australia.
| | - D J Handelsman
- Andrology Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales 2139, Australia.
| |
Collapse
|
34
|
Barrett ES, Hoeger KM, Sathyanarayana S, Abbott DH, Redmon JB, Nguyen RHN, Swan SH. Anogenital distance in newborn daughters of women with polycystic ovary syndrome indicates fetal testosterone exposure. J Dev Orig Health Dis 2018; 9:307-314. [PMID: 29310733 PMCID: PMC5997496 DOI: 10.1017/s2040174417001118] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polycystic ovary syndrome (PCOS) affects ~7% of reproductive age women. Although its etiology is unknown, in animals, excess prenatal testosterone (T) exposure induces PCOS-like phenotypes. While measuring fetal T in humans is infeasible, demonstrating in utero androgen exposure using a reliable newborn biomarker, anogenital distance (AGD), would provide evidence for a fetal origin of PCOS and potentially identify girls at risk. Using data from a pregnancy cohort (The Infant Development and Environment Study), we tested the novel hypothesis that infant girls born to women with PCOS have longer AGD, suggesting higher fetal T exposure, than girls born to women without PCOS. During pregnancy, women reported whether they ever had a PCOS diagnosis. After birth, infant girls underwent two AGD measurements: anofourchette distance (AGD-AF) and anoclitoral distance (AGD-AC). We fit adjusted linear regression models to examine the association between maternal PCOS and girls' AGD. In total, 300 mother-daughter dyads had complete data and 23 mothers reported PCOS. AGD was longer in the daughters of women with a PCOS diagnosis compared with daughters of women with no diagnosis (AGD-AF: β=1.21, P=0.05; AGD-AC: β=1.05, P=0.18). Results were stronger in analyses limited to term births (AGD-AF: β=1.65, P=0.02; AGD-AC: β=1.43, P=0.09). Our study is the first to examine AGD in offspring of women with PCOS. Our results are consistent with findings that women with PCOS have longer AGD and suggest that during PCOS pregnancies, daughters may experience elevated T exposure. Identifying the underlying causes of PCOS may facilitate early identification and intervention for those at risk.
Collapse
Affiliation(s)
- Emily S. Barrett
- Division of Epidemiology and Biostatistics, Environmental and Occupational Health Sciences Institute and Department of Epidemiology, Rutgers School of Public Health, Piscataway, NJ 08854
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Kathleen M. Hoeger
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Sheela Sathyanarayana
- Departments of Pediatrics and Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98121; Seattle Children’s Research Institute, Seattle, WA
| | - David H. Abbott
- Departments of Obstetrics and Gynecology and Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53703; Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715
| | - J. Bruce Redmon
- Department of Medicine, University of Minnesota, Minneapolis, MN 55454
| | - Ruby H. N. Nguyen
- Department of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN 55454
| | - Shanna H. Swan
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
35
|
Morford JJ, Wu S, Mauvais-Jarvis F. The impact of androgen actions in neurons on metabolic health and disease. Mol Cell Endocrinol 2018; 465:92-102. [PMID: 28882554 PMCID: PMC5835167 DOI: 10.1016/j.mce.2017.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/25/2017] [Accepted: 09/01/2017] [Indexed: 01/03/2023]
Abstract
The male hormone testosterone exerts different effects on glucose and energy homeostasis in males and females. Testosterone deficiency predisposes males to visceral obesity, insulin resistance and type 2 diabetes. However, testosterone excess predisposes females to similar metabolic dysfunction. Here, we review the effects of testosterone actions in the central nervous system on metabolic function in males and females. In particular, we highlight changes within the hypothalamus that control glucose and energy homeostasis. We distinguish the organizational effects of testosterone in the programming of neural circuitry during development from the activational effects of testosterone during adulthood. Finally, we explore potential sites where androgen might be acting to impact metabolism within the central nervous system.
Collapse
Affiliation(s)
- Jamie J Morford
- Department of Medicine, Section of Endocrinology and Metabolism, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, USA
| | - Sheng Wu
- Department of Pediatrics and Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Franck Mauvais-Jarvis
- Department of Medicine, Section of Endocrinology and Metabolism, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
36
|
Walters KA, Handelsman DJ. Role of androgens in the ovary. Mol Cell Endocrinol 2018; 465:36-47. [PMID: 28687450 DOI: 10.1016/j.mce.2017.06.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 11/18/2022]
Abstract
It has been well established for decades that androgens, namely testosterone (T) plays an important role in female reproductive physiology as the precursor for oestradiol (E2). However, in the last decade a direct role for androgens, acting via the androgen receptor (AR), in female reproductive function has been confirmed. Deciphering the specific roles of androgens in ovarian function has been hindered as complete androgen resistant females cannot be generated by natural breeding. In addition, androgens can be converted into estrogens which has caused confusion when interpreting findings from pharmacological studies, as observed effects could have been mediated via the AR or estrogen receptor. The creation and analysis of genetic mouse models with global and cell-specific disruption of the Ar gene, the sole mediator of pure androgenic action, has now allowed the elucidation of a role for AR-mediated androgen actions in the regulation of normal and pathological ovarian function. This review aims to summarize findings from clinical, animal, pharmacological and novel genetic AR mouse models to provide an understanding of the important roles androgens play in the ovary, as well as providing insights into the human implications of these roles.
Collapse
Affiliation(s)
- K A Walters
- Discipline of Obstetrics & Gynaecology, School of Women's & Children's Health, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - D J Handelsman
- Andrology Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales 2139, Australia
| |
Collapse
|
37
|
Silva MS, Prescott M, Campbell RE. Ontogeny and reversal of brain circuit abnormalities in a preclinical model of PCOS. JCI Insight 2018; 3:99405. [PMID: 29618656 DOI: 10.1172/jci.insight.99405] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/28/2018] [Indexed: 12/31/2022] Open
Abstract
Androgen excess is a hallmark of polycystic ovary syndrome (PCOS), a prevalent yet poorly understood endocrine disorder. Evidence from women and preclinical animal models suggests that elevated perinatal androgens can elicit PCOS onset in adulthood, implying androgen actions in both PCOS ontogeny and adult pathophysiology. Prenatally androgenized (PNA) mice exhibit a robust increase of progesterone-sensitive GABAergic inputs to gonadotropin-releasing hormone (GnRH) neurons implicated in the pathogenesis of PCOS. It is unclear when altered GABAergic wiring develops in the brain, and whether these central abnormalities are dependent upon adult androgen excess. Using GnRH-GFP-transgenic mice, we determined that increased GABA input to GnRH neurons occurs prior to androgen excess and the manifestation of reproductive impairments in PNA mice. These data suggest that brain circuit abnormalities precede the postpubertal development of PCOS traits. Despite the apparent developmental programming of circuit abnormalities, long-term blockade of androgen receptor signaling from early adulthood rescued normal GABAergic wiring onto GnRH neurons, improved ovarian morphology, and restored reproductive cycles in PNA mice. Therefore, androgen excess maintains changes in female brain wiring linked to PCOS features and the blockade of androgen receptor signaling reverses both the central and peripheral PNA-induced PCOS phenotype.
Collapse
|
38
|
Wang Z, Shen M, Xue P, DiVall SA, Segars J, Wu S. Female Offspring From Chronic Hyperandrogenemic Dams Exhibit Delayed Puberty and Impaired Ovarian Reserve. Endocrinology 2018; 159:1242-1252. [PMID: 29315373 PMCID: PMC5793796 DOI: 10.1210/en.2017-03078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/28/2017] [Indexed: 11/19/2022]
Abstract
Female offspring of many species exposed to high doses of androgens in utero experience endocrine dysfunction during adulthood. The phenotype of offspring from females with prepregnancy hyperandrogenemia and impaired ovulation, however, has not been examined. We developed a mouse model of hyperandrogenemia by implanting a low-dose dihydrotestosterone (DHT) pellet 15 days before conception. Female offspring born to dams with hyperandrogenemia (DHT daughters) had delayed puberty (P < 0.05) with first estrus on postnatal day (PND) 41 compared with daughters from dams with physiological levels of DHT (non-DHT daughters, PND37.5). Serum follicle-stimulating hormone (FSH) levels in the DHT daughters were fourfold higher (P < 0.05) on PND21, and anti-Müllerian hormone levels were higher (P < 0.05) on PND26 than in non-DHT daughters (controls). DHT daughters showed an extended time in metestrus/diestrus and a shorter time in the proestrus/estrus phase compared with non-DHT daughters (P < 0.05). To examine ovarian response to gonadotropins, superovulation was induced and in vitro fertilization (IVF) was performed. Fewer numbers of oocytes were retrieved from the DHT daughters compared with non-DHT daughters (P < 0.05). At IVF, there was no difference in rates of fertilization or cleavage of oocytes from either group. There were fewer (P < 0.01) primordial follicles (6.5 ± 0.8 vs 14.5 ± 2.1 per ovary) in the ovaries of DHT daughters compared with non-DHT daughters. Daughters from hyperandrogenemic females exhibited elevated prepubertal FSH levels, diminished ovarian response to superovulation, impaired estrous cyclicity, delayed onset of puberty, and reduced ovarian reserve, suggesting that fetal androgen exposure had lasting effects on female reproductive function.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Mingjie Shen
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
- Department of Gynecology/Obstetrics, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 21203, People’s Republic of China
| | - Ping Xue
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Sara A. DiVall
- Department of Pediatrics, Seattle Children’s Hospital, Seattle, Washington 98105
| | - James Segars
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Sheng Wu
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| |
Collapse
|
39
|
Abstract
Androgen production by the ovary is an essential requirement for normal cyclical secretion of estradiol but its physiological role extends to important actions on both preantral and antral follicle development, including promotion of granulosa cell proliferation. It is likely only in mature antral follicles that androgens encourage apoptosis and consequent follicle atresia, and this may be an important mechanism to ensure mono-follicular ovulation in primates, including humans. Recent studies have provided new insight into the mechanism of androgen signaling in the ovary which involves both genomic and non-genomic effects that are complementary in effecting a cellular response. In polycystic ovary syndrome, a condition characterized by intra-ovarian androgen excess, aberrant development of both preantral and antral follicles is a salient feature. We present evidence that local action of androgens plays a part in such abnormalities. Finally, we review the role of androgens in follicle atresia and conclude that the effects are part of the normal physiology of follicle maturation.
Collapse
|
40
|
Filippou P, Homburg R. Is foetal hyperexposure to androgens a cause of PCOS? Hum Reprod Update 2017; 23:421-432. [PMID: 28531286 DOI: 10.1093/humupd/dmx013] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 05/04/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is the most common endocrinopathy affecting reproductive-aged women. The pathophysiology of this syndrome is still not completely understood but recent evidence suggests that the intra-uterine environment may be a key factor in the pathogenesis of PCOS, in particular, hyperexposure of the foetus to androgens. High concentrations of maternal serum testosterone during pregnancy have been shown to influence behaviour during childhood, the prevalence of autism disorders and anti-Mullerian hormone (AMH) concentrations in adolescence. They are also thought to re-programme the female reproductive axis to induce the features of PCOS in later life: oligo/anovulation, polycystic ovaries, hyperandrogenism and insulin resistance (IR). Support for this developmental theory for the aetiology of PCOS is gathering momentum, following results from first animal studies and now human data, which lend credence to many aspects of this hypothesis. OBJECTIVE AND RATIONALE In this review the recent available evidence is presented to support the hypothesis that hyperandrogenic changes in the intra-uterine environment could play a major part in the aetiological basis of PCOS. SEARCH METHODS An extensive PubMED and MEDline database search was conducted. Relevant studies were identified using a combination of search terms: 'polycystic ovary syndrome', 'PCOS', 'aetiology', 'anti-Mullerian hormone', 'AMH', 'pathogenesis', 'kisspeptin', 'hyperandrogenism', 'insulin resistance', 'metabolic factors', 'placenta', 'developmental hypothesis', 'genetic and epigenetic origins'. OUTCOMES A total of 82 studies were finally included in this review. There is robust evidence that a hyperandrogenic intra-uterine environment 'programmes' the genes concerned with ovarian steroidogenesis, insulin metabolism, gonadotrophin secretion and ovarian follicle development resulting in the development of PCOS in adult life. WIDER IMPLICATIONS Once the evidence supporting this hypothesis has been expanded by additional studies, the door would be open to find innovative treatments and preventative measures for this very prevalent condition. Such measures could considerably ease the human and economic burden that PCOS creates.
Collapse
Affiliation(s)
- Panagiota Filippou
- Homerton Fertility Centre, Homerton University Hospital, London E9 6SR, UK
| | | |
Collapse
|
41
|
Noroozzadeh M, Ramezani Tehrani F, Bahri Khomami M, Azizi F. A Comparison of Sexual Function in Women with Polycystic Ovary Syndrome (PCOS) Whose Mothers Had PCOS During Their Pregnancy Period with Those Without PCOS. ARCHIVES OF SEXUAL BEHAVIOR 2017; 46:2033-2042. [PMID: 28070801 DOI: 10.1007/s10508-016-0919-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 08/25/2016] [Accepted: 12/07/2016] [Indexed: 06/06/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women during reproductive ages. Clinical symptoms associated with PCOS, such as hirsutism, acne, alopecia, obesity, and infertility, may lead to emotional morbidity and then impaired sexual function in those affected. During intrauterine development, the fetus may program the development of diseases during adulthood. In this study, we aimed to examine sexual function in women with PCOS, exposed to maternal androgen excess during their prenatal life compared to non-exposed PCOS patients. In this cross-sectional study, 768 married women with PCOS, aged 18-49 years, were subdivided into two groups, based on their mothers' PCOS status: women whose mothers had PCOS (N = 94) and women whose mothers did not have PCOS (N = 674). Data were collected using a questionnaire including information on demographics, anthropometric and reproductive characteristics, and the Female Sexual Function Index. Blood serum samples were collected from patients for assessment of total testosterone and sex hormone-binding globulin levels. Results revealed that sexual dysfunction was significantly higher in PCOS women whose mothers also had PCOS, compared to those whose mothers did not (38.6 vs. 25.3%, p = .01). After adjusting for confounding variables, logistic regression analysis showed that odds ratios for sexual dysfunction (total) and sexual dysfunction in the pain domain were significantly higher in the exposed PCOS women versus the non-exposed women (OR 1.81, 95% CI 1.06-3.07, p = .02 and 1.68, 95% CI 1.01-2.77, p = .04, respectively). Our study demonstrates increased sexual dysfunction in PCOS women whose mothers also had PCOS.
Collapse
Affiliation(s)
- Mahsa Noroozzadeh
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, 1985717413, Tehran, Iran
| | - Fahimeh Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, 1985717413, Tehran, Iran.
| | - Mahnaz Bahri Khomami
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, 1985717413, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Morford J, Mauvais-Jarvis F. Sex differences in the effects of androgens acting in the central nervous system on metabolism. DIALOGUES IN CLINICAL NEUROSCIENCE 2017. [PMID: 28179813 PMCID: PMC5286727 DOI: 10.31887/dcns.2016.18.4/fmauvais] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the most sexually dimorphic aspects of metabolic regulation is the bidirectional modulation of glucose and energy homeostasis by testosterone in males and females. Testosterone deficiency predisposes men to metabolic dysfunction, with excess adiposity, insulin resistance, and type 2 diabetes, whereas androgen excess predisposes women to insulin resistance, adiposity, and type 2 diabetes. This review discusses how testosterone acts in the central nervous system, and especially the hypothalamus, to promote metabolic homeostasis or dysfunction in a sexually dimorphic manner. We compare the organizational actions of testosterone, which program the hypothalamic control of metabolic homeostasis during development, and the activational actions of testosterone, which affect metabolic function after puberty. We also discuss how the metabolic effect of testosterone is centrally mediated via the androgen receptor.
Collapse
Affiliation(s)
- Jamie Morford
- Department of Medicine, Section of Endocrinology and Metabolism, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana, USA
| | - Franck Mauvais-Jarvis
- Department of Medicine, Section of Endocrinology and Metabolism, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
43
|
Moore AM, Campbell RE. Polycystic ovary syndrome: Understanding the role of the brain. Front Neuroendocrinol 2017; 46:1-14. [PMID: 28551304 DOI: 10.1016/j.yfrne.2017.05.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/19/2017] [Accepted: 05/20/2017] [Indexed: 01/09/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder and the leading cause of anovulatory infertility. Characterised by hyperandrogenism, menstrual dysfunction and polycystic ovaries, PCOS is a broad-spectrum disorder unlikely to stem from a single common origin. Although commonly considered an ovarian disease, the brain is now a prime suspect in both the ontogeny and pathology of PCOS. We discuss here the neuroendocrine impairments present in PCOS that implicate involvement of the brain and review evidence gained from pre-clinical models of the syndrome about the specific brain circuitry involved. In particular, we focus on the impact that developmental androgen excess and adult hyperandrogenemia have in programming and regulating brain circuits important in the central regulation of fertility. The studies discussed here provide compelling support for the importance of the brain in PCOS ontogeny and pathophysiology and highlight the need for a better understanding of the underlying mechanisms involved.
Collapse
Affiliation(s)
- Aleisha M Moore
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Rebecca E Campbell
- Centre for Neuroendocrinology and Department of Physiology, Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
44
|
Hakim C, Padmanabhan V, Vyas AK. Gestational Hyperandrogenism in Developmental Programming. Endocrinology 2017; 158:199-212. [PMID: 27967205 PMCID: PMC5413081 DOI: 10.1210/en.2016-1801] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/07/2016] [Indexed: 12/16/2022]
Abstract
Androgen excess (hyperandrogenism) is a common endocrine disorder affecting women of reproductive age. The potential causes of androgen excess in women include polycystic ovary syndrome, congenital adrenal hyperplasia (CAH), adrenal tumors, and racial disparity among many others. During pregnancy, luteoma, placental aromatase deficiency, and fetal CAH are additional causes of gestational hyperandrogenism. The present report reviews the various phenotypes of hyperandrogenism during pregnancy and its origin, pathophysiology, and the effect of hyperandrogenism on the fetal developmental trajectory and offspring consequences.
Collapse
Affiliation(s)
- Christopher Hakim
- College of Human Medicine, Michigan State University, East Lansing, Michigan 48824
| | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48109; and
| | - Arpita K. Vyas
- College of Human Medicine, Michigan State University, East Lansing, Michigan 48824
- Department of Pediatrics, Texas Tech University Health Sciences Center, Permian Basin Campus, Odessa, Texas 79763
| |
Collapse
|
45
|
Ma Y, Andrisse S, Chen Y, Childress S, Xue P, Wang Z, Jones D, Ko C, Divall S, Wu S. Androgen Receptor in the Ovary Theca Cells Plays a Critical Role in Androgen-Induced Reproductive Dysfunction. Endocrinology 2017; 158:98-108. [PMID: 27841936 PMCID: PMC5412974 DOI: 10.1210/en.2016-1608] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/08/2016] [Indexed: 11/19/2022]
Abstract
Androgen and its receptor (AR) play a critical role in reproductive function under both physiological and pathophysiological conditions. Female AR global knockout mice are subfertile due to both neuroendocrine and ovarian defects. Female offspring from prenatally androgenized heterozygous AR pregnant mice showed rescued estrous cyclicity and fertility. Ar is expressed in granulosa cells, theca interstitial cells, and oocytes in the ovary. We created mice with theca-specific deletion of Ar (ThARKO) by crossing Cyp17-iCre mice that express Cre recombinase under cytochrome P450 17A1 (Cyp17) promoter with Arfl/fl mice. ThARKO mice exhibited no significant differences in pubertal onset or fertility compared with control littermates, and neither estrogen or testosterone levels were different between these groups. Therefore, Ar expression in theca cells likely does not influence fertility nor androgen levels in female mice. We then tested the role of AR in theca cells under hyperandrogenemic condition. After treatment with a pathophysiological level of dihydrotestosterone (DHT), control mice (control-DHT) showed acyclicity and infertility. However, estrous cycles and fertility were altered to a significantly less degree in ThARKO-DHT mice than in control-DHT mice. Messenger RNA (mRNA) levels of Lhcgr (luteinizing hormone receptor) and Timp1 (tissue inhibitor of metalloproteinase 1, and inhibitor of matrix metalloproteinase) were significantly lower in control-DHT ovary compared with control-no DHT ovaries, whereas mRNA levels of Fshr (follicle-stimulating hormone receptor) were significantly higher. Timp1 gene expression was comparable in the ThARKO-DHT and the control-no DHT ovary. We speculate that the preserved level of Timp1 in ThARKO-DHT mice contributes to retained reproductive function.
Collapse
Affiliation(s)
- Yaping Ma
- Division of Endocrinology and Metabolism, Department of Pediatrics, and
| | - Stanley Andrisse
- Division of Endocrinology and Metabolism, Department of Pediatrics, and
| | - Yi Chen
- Division of Endocrinology and Metabolism, Department of Pediatrics, and
| | - Shameka Childress
- Division of Endocrinology and Metabolism, Department of Pediatrics, and
| | - Ping Xue
- Division of Endocrinology and Metabolism, Department of Pediatrics, and
| | - Zhiqiang Wang
- Division of Endocrinology and Metabolism, Department of Pediatrics, and
| | - Dustin Jones
- Department of Cellular and Molecular Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - CheMyong Ko
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; and
| | - Sara Divall
- Seattle Children’s Hospital, Center for Clinical and Translational Research, Seattle, Washington 98105
| | - Sheng Wu
- Division of Endocrinology and Metabolism, Department of Pediatrics, and
- Department of Cellular and Molecular Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| |
Collapse
|
46
|
Kyritsi EM, Dimitriadis GK, Kyrou I, Kaltsas G, Randeva HS. PCOS remains a diagnosis of exclusion: a concise review of key endocrinopathies to exclude. Clin Endocrinol (Oxf) 2017; 86:1-6. [PMID: 27664414 DOI: 10.1111/cen.13245] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/13/2016] [Accepted: 09/15/2016] [Indexed: 11/28/2022]
Abstract
Polycystic ovarian syndrome (PCOS) is a heterogenous disorder associated with clinical, endocrine and ultrasonographic features that can also be encountered in a number of other diseases. It has traditionally been suggested that prolactin excess, enzymatic steroidogenic abnormalities and thyroid disorders need to be excluded before a diagnosis of PCOS is made. However, there is paucity of data regarding the prevalence of PCOS phenotype in some of these disorders, whereas other endocrine diseases that exhibit PCOS-like features may elude diagnosis and proper management if not considered. This article reviews the data of currently included entities that exhibit a PCOS phenotype and those that potentially need to be looked for, and attempts to identify specific features that distinguish them from idiopathic PCOS.
Collapse
Affiliation(s)
- Eleni Magdalini Kyritsi
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals of Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
| | - George K Dimitriadis
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals of Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- Division of Translational and Experimental Medicine, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Division of Endocrinology and Investigative Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals of Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- Division of Translational and Experimental Medicine, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, United Kingdom
| | - Gregory Kaltsas
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals of Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- Division of Pathophysiology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Harpal S Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals of Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- Division of Translational and Experimental Medicine, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, United Kingdom
| |
Collapse
|
47
|
Li S, Zhu D, Duan H, Tan Q. The epigenomics of polycystic ovarian syndrome: from pathogenesis to clinical manifestations. Gynecol Endocrinol 2016; 32:942-946. [PMID: 27425146 DOI: 10.1080/09513590.2016.1203409] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Polycystic ovarian syndrome (PCOS) is a complex condition of ovarian dysfunction and metabolic abnormalities with widely varying clinical manifestations resulting from interference of the genome and the environment through integrative biological mechanisms with the emerging field of epigenetics offering an appealing tool for studying the nature and nurture of the disease. We review the current literature of epigenetic studies on PCOS from disease development to the association analysis of the DNA methylome and to exploratory studies on the molecular mechanisms of disease heterogeneity and comorbidity. Recent data based on profiling of the DNA methylome of PCOS in different tissues provided consistent molecular evidence in support of epidemiological findings on disease comorbidity suggesting a possible autoimmune basis in the pathogenesis of the disease. We show that the field of epigenetics and epigenomics could serve to link molecular regulatory mechanisms with disease development and disease manifestation which could contribute to PCOS prevention and treatment and eventually promote reproductive health in fertile age women. We summarize the up-to-date findings and discuss the implications of various studies and point to new avenues of research on PCOS in the rapidly developing field of epigenetics and epigenomics.
Collapse
Affiliation(s)
- Shuxia Li
- a Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark , Odense , Denmark
| | - Dongyi Zhu
- b Center of Reproductive Medicine, Linyi People's Hospital , Linyi , China
- c Department of Obstetrics and Gynecology , Shandong Medical College , Linyi , China
| | - Hongmei Duan
- d Department of Medicine , Kolding Hospital , Kolding , Denmark , and
| | - Qihua Tan
- a Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark , Odense , Denmark
- e Epidemiology, Biostatistics, and Biodemography, Department of Public Health, University of Southern Denmark , Odense , Denmark
| |
Collapse
|
48
|
Puttabyatappa M, Cardoso RC, Padmanabhan V. Effect of maternal PCOS and PCOS-like phenotype on the offspring's health. Mol Cell Endocrinol 2016; 435:29-39. [PMID: 26639019 PMCID: PMC4884168 DOI: 10.1016/j.mce.2015.11.030] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/02/2015] [Accepted: 11/24/2015] [Indexed: 12/17/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a heterogeneous endocrine disorder with both reproductive and metabolic abnormalities affecting women of reproductive age. While the exact origin of PCOS is unknown, observations from clinical and animal studies suggest that maternal hyperandrogenism may be a contributing factor. Because women with PCOS manifest hyperandrogenism during pregnancy, changes in the gestational endocrine milieu may play a role in the vertical transmission of this syndrome. This review discusses the potential developmental origins of PCOS, the impact of maternal PCOS on the offspring's health and contributions of the postnatal environment, capitalizing on findings from animal models that exhibit a PCOS-like phenotype. In addition, this review highlights the scarcity of data at early gestational stages in humans and the importance of animal experimentation to better understand the cellular and molecular mechanisms involved in the programming of adult diseases, therefore, helping identify therapeutic targets for preventive and treatment strategies.
Collapse
Affiliation(s)
| | - Rodolfo C Cardoso
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
49
|
Azziz R, Slayden SM. The 21-Hydroxylase-Deficient Adrenal Hyperplasias: More Than ACTH Oversecretion. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155769600300601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - Scott M. Slayden
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, The University of Alabama at Birmingham, Alabama
| |
Collapse
|
50
|
The 'Developmental Origins' Hypothesis: relevance to the obstetrician and gynecologist. J Dev Orig Health Dis 2016; 6:415-24. [PMID: 26347389 DOI: 10.1017/s2040174415001324] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The recognition of 'fetal origins of adult disease' has placed new responsibilities on the obstetrician, as antenatal care is no longer simply about ensuring good perinatal outcomes, but also needs to plan for optimal long-term health for mother and baby. Recently, it has become clear that the intrauterine environment has a broad and long-lasting impact, influencing fetal and childhood growth and development as well as future cardiovascular health, non-communicable disease risk and fertility. This article looks specifically at the importance of the developmental origins of ovarian reserve and ageing, the role of the placenta and maternal nutrition before and during pregnancy. It also reviews recent insights in developmental medicine of relevance to the obstetrician, and outlines emerging evidence supporting a proactive clinical approach to optimizing periconceptional as well as antenatal care aimed to protect newborns against long-term disease susceptibility.
Collapse
|