1
|
Annibalini G, Di Patria L, Valli G, Bocconcelli M, Saltarelli R, Ferri L, Barberi L, Fanelli F, Morrone A, Barone R, Guerrini R, Musarò A, Stocchi V, Barbieri E. Impaired myoblast differentiation and muscle IGF-1 receptor signaling pathway activation after N-glycosylation inhibition. FASEB J 2024; 38:e23797. [PMID: 38963344 DOI: 10.1096/fj.202400213rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/08/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
The role of N-glycosylation in the myogenic process remains poorly understood. Here, we evaluated the impact of N-glycosylation inhibition by Tunicamycin (TUN) or by phosphomannomutase 2 (PMM2) gene knockdown, which encodes an enzyme essential for catalyzing an early step of the N-glycosylation pathway, on C2C12 myoblast differentiation. The effect of chronic treatment with TUN on tibialis anterior (TA) and extensor digitorum longus (EDL) muscles of WT and MLC/mIgf-1 transgenic mice, which overexpress muscle Igf-1Ea mRNA isoform, was also investigated. TUN-treated and PMM2 knockdown C2C12 cells showed reduced ConA, PHA-L, and AAL lectin binding and increased ER-stress-related gene expression (Chop and Hspa5 mRNAs and s/uXbp1 ratio) compared to controls. Myogenic markers (MyoD, myogenin, and Mrf4 mRNAs and MF20 protein) and myotube formation were reduced in both TUN-treated and PMM2 knockdown C2C12 cells. Body and TA weight of WT and MLC/mIgf-1 mice were not modified by TUN treatment, while lectin binding slightly decreased in the TA muscle of WT (ConA and AAL) and MLC/mIgf-1 (ConA) mice. The ER-stress-related gene expression did not change in the TA muscle of WT and MLC/mIgf-1 mice after TUN treatment. TUN treatment decreased myogenin mRNA and increased atrogen-1 mRNA, particularly in the TA muscle of WT mice. Finally, the IGF-1 production and IGF1R signaling pathways activation were reduced due to N-glycosylation inhibition in TA and EDL muscles. Decreased IGF1R expression was found in TUN-treated C2C12 myoblasts which was associated with lower IGF-1-induced IGF1R, AKT, and ERK1/2 phosphorylation compared to CTR cells. Chronic TUN-challenge models can help to elucidate the molecular mechanisms through which diseases associated with aberrant N-glycosylation, such as Congenital Disorders of Glycosylation (CDG), affect muscle and other tissue functions.
Collapse
Affiliation(s)
- Giosuè Annibalini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Laura Di Patria
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Giacomo Valli
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Matteo Bocconcelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Roberta Saltarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Lorenzo Ferri
- Department of Neuroscience and Medical Genetics, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Laura Barberi
- DAHFMO-Unit of Histology and Medical Embryology, Laboratory Affiliated to Istituto Pasteur Italia, University of Rome La Sapienza, Rome, Italy
| | - Fabiana Fanelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Amelia Morrone
- Department of Neuroscience and Medical Genetics, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Rita Barone
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
| | - Renzo Guerrini
- Department of Neuroscience and Medical Genetics, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Laboratory Affiliated to Istituto Pasteur Italia, University of Rome La Sapienza, Rome, Italy
| | - Vilberto Stocchi
- Department of Human Sciences for the Promotion of Quality of Life, University San Raffaele, Rome, Italy
| | - Elena Barbieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
2
|
Albokhari D, Ng BG, Guberinic A, Daniel EJP, Engelhardt NM, Barone R, Fiumara A, Garavelli L, Trimarchi G, Wolfe L, Raymond KM, Morava E, He M, Freeze HH, Lam C, Edmondson AC. ALG8-CDG: Molecular and phenotypic expansion suggests clinical management guidelines. J Inherit Metab Dis 2022; 45:969-980. [PMID: 35716054 PMCID: PMC9474684 DOI: 10.1002/jimd.12527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/26/2022] [Accepted: 06/15/2022] [Indexed: 11/06/2022]
Abstract
Congenital disorders of glycosylation are a continuously expanding group of monogenic disorders of glycoprotein and glycolipid glycan biosynthesis. These disorders mostly manifest with multisystem involvement. Individuals with ALG8-CDG commonly present with hypotonia, protein-losing enteropathy, and hepatic involvement. Here, we describe seven unreported individuals diagnosed with ALG8-CDG based on biochemical and molecular testing and we identify nine novel variants in ALG8, bringing the total to 26 individuals with ALG8-CDG in the medical literature. In addition to the typical multisystem involvement documented in ALG8-CDG, our cohort includes the two oldest patients reported and further expands the phenotype of ALG8-CDG to include stable intellectual disability, autism spectrum disorder and other neuropsychiatric symptoms. We further expand the clinical features in a variety of organ systems including ocular, musculoskeletal, dermatologic, endocrine, and cardiac abnormalities and suggest a comprehensive evaluation and monitoring strategy to improve clinical management.
Collapse
Affiliation(s)
- Daniah Albokhari
- Department of Pediatrics, Division of Human Genetics, Section of Metabolism, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Taibah University College of Medicine, Medina, Saudi Arabia
| | - Bobby G Ng
- Human Genetics Program, Sanford Burnham Prebys, La Jolla, California, USA
| | - Alis Guberinic
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Earnest James Paul Daniel
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Nicole M Engelhardt
- Department of Pediatrics, Division of Human Genetics, Section of Metabolism, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Rita Barone
- Department of Clinical and Experimental Medicine, Division of Child Neurology and Psychiatry, University of Catania, Catania, Italy
| | - Agata Fiumara
- Department of Clinical and Experimental Medicine, Pediatric Clinic, University of Catania, Catania, Italy
| | - Livia Garavelli
- Medical Genetics Unit, Mother and Child Department, Local Health Authority (AUSL) of Reggio Emilia Research Unit (IRCCS), Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Gabriele Trimarchi
- Medical Genetics Unit, Mother and Child Department, Local Health Authority (AUSL) of Reggio Emilia Research Unit (IRCCS), Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Lynne Wolfe
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland, USA
| | - Kimiyo M Raymond
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Miao He
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Hudson H Freeze
- Human Genetics Program, Sanford Burnham Prebys, La Jolla, California, USA
| | - Christina Lam
- Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
- Center of Integrated Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Andrew C Edmondson
- Department of Pediatrics, Division of Human Genetics, Section of Metabolism, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Di Patria L, Annibalini G, Morrone A, Ferri L, Saltarelli R, Galluzzi L, Diotallevi A, Bocconcelli M, Donati MA, Barone R, Guerrini R, Jaeken J, Stocchi V, Barbieri E. Defective IGF-1 prohormone N-glycosylation and reduced IGF-1 receptor signaling activation in congenital disorders of glycosylation. Cell Mol Life Sci 2022; 79:150. [PMID: 35211808 PMCID: PMC8873121 DOI: 10.1007/s00018-022-04180-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 12/18/2022]
Abstract
The insulin-like growth factor-1 (IGF-1) signaling pathway is crucial for the regulation of growth and development. The correct processing of the IGF-1Ea prohormone (proIGF-1Ea) and the IGF-1 receptor (IGF-1R) peptide precursor requires proper N-glycosylation. Deficiencies of N-linked glycosylation lead to a clinically heterogeneous group of inherited diseases called Congenital Disorders of Glycosylation (CDG). The impact of N-glycosylation defects on IGF-1/IGF-1R signaling components is largely unknown. In this study, using dermal fibroblasts from patients with different CDG [PMM2-CDG (n = 7); ALG3-CDG (n = 2); ALG8-CDG (n = 1); GMPPB-CDG (n = 1)], we analyzed the glycosylation pattern of the proIGF-1Ea, IGF-1 secretion efficiency and IGF-1R signaling activity. ALG3-CDG, ALG8-CDG, GMPPB-CDG and some PMM2-CDG fibroblasts showed hypoglycosylation of the proIGF-1Ea and lower IGF-1 secretion when compared with control (CTR). Lower IGF-1 serum concentration was observed in ALG3-CDG, ALG8-CDG and in some patients with PMM2-CDG, supporting our in vitro data. Furthermore, reduced IGF-1R expression level was observed in ALG3-CDG, ALG8-CDG and in some PMM2-CDG fibroblasts. IGF-1-induced IGF-1R activation was lower in most PMM2-CDG fibroblasts and was associated with decreased ERK1/2 phosphorylation as compared to CTR. In general, CDG fibroblasts showed a slight upregulation of Endoplasmic Reticulum (ER) stress genes compared with CTR, uncovering mild ER stress in CDG cells. ER-stress-related gene expression negatively correlated with fibroblasts IGF-1 secretion. This study provides new evidence of a direct link between N-glycosylation defects found in CDG and the impairment of IGF-1/IGF-1R signaling components. Further studies are warranted to determine the clinical consequences of reduced systemic IGF-1 availability and local activity in patients with CDG.
Collapse
Affiliation(s)
- Laura Di Patria
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via I Maggetti, 26/2, 61029, Urbino, Italy
| | - Giosuè Annibalini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via I Maggetti, 26/2, 61029, Urbino, Italy.
| | - Amelia Morrone
- Laboratory of Molecular Biology of Neurometabolic Diseases, Neuroscience Department, Meyer Children's Hospital, Florence, Italy.,Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Lorenzo Ferri
- Laboratory of Molecular Biology of Neurometabolic Diseases, Neuroscience Department, Meyer Children's Hospital, Florence, Italy
| | - Roberta Saltarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via I Maggetti, 26/2, 61029, Urbino, Italy
| | - Luca Galluzzi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via I Maggetti, 26/2, 61029, Urbino, Italy
| | - Aurora Diotallevi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via I Maggetti, 26/2, 61029, Urbino, Italy
| | - Matteo Bocconcelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via I Maggetti, 26/2, 61029, Urbino, Italy
| | - Maria Alice Donati
- Laboratory of Molecular Biology of Neurometabolic Diseases, Neuroscience Department, Meyer Children's Hospital, Florence, Italy.,Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Rita Barone
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Reseach Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
| | - Renzo Guerrini
- Laboratory of Molecular Biology of Neurometabolic Diseases, Neuroscience Department, Meyer Children's Hospital, Florence, Italy.,Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Jaak Jaeken
- Center for Metabolic Diseases, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Vilberto Stocchi
- Department of Human Sciences for the Promotion of Quality of Life, University San Raffaele, Roma, Italy
| | - Elena Barbieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via I Maggetti, 26/2, 61029, Urbino, Italy.,IIM, Interuniversity Institute of Myology, Perugia, Italy
| |
Collapse
|
4
|
Lipiński P, Różdżyńska-Świątkowska A, Bogdańska A, Tylki-Szymańska A. Anthropometric Phenotype of Patients with PMM2-CDG. CHILDREN 2021; 8:children8100852. [PMID: 34682117 PMCID: PMC8535126 DOI: 10.3390/children8100852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 11/26/2022]
Abstract
Background: Growth failure is commonly reported in children with PMM2-CDG. The aim of the study was to delineate the longitudinal anthropometric phenotype of patients with PMM2-CDG and attempt to find some correlations between the genotype and anthropometric phenotype. Materials and methods: Retrospective chart review of PMM2-CDG patients’ medical records was performed regarding the anthropometric measurements (head circumference, body length/height, body weight, body mass index) and PMM2 variants. Results: A negative tendency of growth evolution was observed. Patients found to be heterozygous for R141H grew slower than other patients. Body weight was correlated with body height. A negative tendency of the growth rate of head circumference was observed. Patients found to be heterozygous for R141H experienced slower growth than other patients. Conclusions: Long-term observational studies are essential to characterize the anthropometric phenotype. The body growth failure, as well as head circumference growth failure, were more severe in patients found to be heterozygous for R141H.
Collapse
Affiliation(s)
- Patryk Lipiński
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland;
- Correspondence:
| | | | - Anna Bogdańska
- Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland;
| | - Anna Tylki-Szymańska
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland;
| |
Collapse
|
5
|
Alsharhan H, Ng BG, Daniel EJP, Friedman J, Pivnick EK, Al-Hashem A, Faqeih EA, Liu P, Engelhardt NM, Keller KN, Chen J, Mazzeo PA, Rosenfeld JA, Bamshad MJ, Nickerson DA, Raymond KM, Freeze HH, He M, Edmondson AC, Lam C. Expanding the phenotype, genotype and biochemical knowledge of ALG3-CDG. J Inherit Metab Dis 2021; 44:987-1000. [PMID: 33583022 PMCID: PMC8282734 DOI: 10.1002/jimd.12367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/15/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022]
Abstract
Congenital disorders of glycosylation (CDGs) are a continuously expanding group of monogenic disorders of glycoprotein and glycolipid biosynthesis that cause multisystem diseases. Individuals with ALG3-CDG frequently exhibit severe neurological involvement (epilepsy, microcephaly, and hypotonia), ocular anomalies, dysmorphic features, skeletal anomalies, and feeding difficulties. We present 10 unreported individuals diagnosed with ALG3-CDG based on molecular and biochemical testing with 11 novel variants in ALG3, bringing the total to 40 reported individuals. In addition to the typical multisystem disease seen in ALG3-CDG, we expand the symptomatology of ALG3-CDG to now include endocrine abnormalities, neural tube defects, mild aortic root dilatation, immunodeficiency, and renal anomalies. N-glycan analyses of these individuals showed combined deficiencies of hybrid glycans and glycan extension beyond Man5 GlcNAc2 consistent with their truncated lipid-linked precursor oligosaccharides. This spectrum of N-glycan changes is unique to ALG3-CDG. These expanded features of ALG3-CDG facilitate diagnosis and suggest that optimal management should include baseline endocrine, renal, cardiac, and immunological evaluation at the time of diagnosis and with ongoing monitoring.
Collapse
Affiliation(s)
- Hind Alsharhan
- Department of Pediatrics, Division of Human Genetics,
Section of Metabolism, The Children’s Hospital of Philadelphia, Philadelphia,
Pennsylvania
- Department of Pathology and Laboratory Medicine,
Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Faculty of Medicine, Kuwait
University, Kuwait City, Kuwait
| | - Bobby G. Ng
- Human Genetics Program, Sanford Burnham Prebys Medical
Discovery Institute, La Jolla, California
| | - Earnest James Paul Daniel
- Department of Pathology and Laboratory Medicine,
Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jennifer Friedman
- Division of Neurosciences and Pediatrics, University of
California San Diego and Rady Children’s Hospital, San Diego,
California
| | - Eniko K. Pivnick
- Department of Pediatrics, Division of Medical Genetics,
University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee
| | - Amal Al-Hashem
- Department of Pediatrics, Prince Sultan Military Medical
City, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi
Arabia
| | - Eissa Ali Faqeih
- Section of Medical Genetics, Children’s Specialist
Hospital King Fahad Medical City, Riyadh, Saudi Arabia
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor
College of Medicine, Houston, Texas
- Baylor Genetics Laboratories, Houston, Texas
| | - Nicole M. Engelhardt
- Department of Pediatrics, Division of Human Genetics,
Section of Metabolism, The Children’s Hospital of Philadelphia, Philadelphia,
Pennsylvania
| | - Kierstin N. Keller
- Department of Pediatrics, Division of Human Genetics,
Section of Metabolism, The Children’s Hospital of Philadelphia, Philadelphia,
Pennsylvania
| | - Jie Chen
- Department of Pathology and Laboratory Medicine,
Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Pamela A. Mazzeo
- Department of Pediatrics, The Children’s Hospital
of Philadelphia, Philadelphia, Pennsylvania
| | | | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor
College of Medicine, Houston, Texas
- Baylor Genetics Laboratories, Houston, Texas
| | - Michael J. Bamshad
- Division of Genetic Medicine, Department of Pediatrics,
University of Washington School of Medicine, Seattle, Washington
- Department of Genome Sciences, University of Washington,
Seattle, Washington
- Brotman-Baty Institute, Seattle, Washington
| | - Deborah A. Nickerson
- Department of Genome Sciences, University of Washington,
Seattle, Washington
- Brotman-Baty Institute, Seattle, Washington
| | - Kimiyo M. Raymond
- Department of Laboratory Medicine and Pathology, Mayo
Clinic, Rochester, Minnesota
| | - Hudson H. Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical
Discovery Institute, La Jolla, California
| | - Miao He
- Department of Pathology and Laboratory Medicine,
Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Andrew C. Edmondson
- Department of Pediatrics, Division of Human Genetics,
Section of Metabolism, The Children’s Hospital of Philadelphia, Philadelphia,
Pennsylvania
| | - Christina Lam
- Division of Genetic Medicine, Department of Pediatrics,
University of Washington School of Medicine, Seattle, Washington
- Center of Integrated Brain Research, Seattle
Children’s Research Institute, Seattle, Washington
| |
Collapse
|
6
|
SLC35A2-CDG: Novel variant and review. Mol Genet Metab Rep 2021; 26:100717. [PMID: 33552911 PMCID: PMC7851840 DOI: 10.1016/j.ymgmr.2021.100717] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 12/11/2022] Open
Abstract
SLC35A2 encodes the X-linked transporter that carries uridine diphosphate (UDP)-galactose from the cytosol to the lumen of the Golgi apparatus and the endoplasmic reticulum. Pathogenic variants have been associated to a congenital disorder of glycosylation (CDG) with epileptic encephalopathy as a predominant feature. Among the sixty five patients described so far, a strong gender bias is observed as only seven patients are males. This work is a review and reports a SLC35A2-CDG in a male without epilepsy and with growth deficiency associated with decreased serum IGF1, minor neurological involvement, minor facial dysmorphism, and camptodactyly of fingers and toes. Sequence analysis revealed a hemizygosity for a novel de novo variant: c.233A > G (p.Lys78Arg) in SLC35A2. Further analysis of SLC35A2 sequence by comparing both orthologous and paralogous positions, revealed that not only the variant found in this study, but also most of the reported mutated positions are conserved in SLC35A2 orthologous, and many even in the paralogous SLC35A1 and SLC35A3. This is strong evidence that replacements at these positions will have a critical pathological effect and may also explain the gender bias observed among SLC35A2-CDG patients.
Collapse
|
7
|
Girard M, Douillard C, Debray D, Lacaille F, Schiff M, Vuillaumier-Barrot S, Dupré T, Fabre M, Damaj L, Kuster A, Torre S, Mention K, McLin V, Dobbelaere D, Borgel D, Bauchard E, Seta N, Bruneel A, De Lonlay P. Long term outcome of MPI-CDG patients on D-mannose therapy. J Inherit Metab Dis 2020; 43:1360-1369. [PMID: 33098580 DOI: 10.1002/jimd.12289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/27/2020] [Accepted: 07/15/2020] [Indexed: 11/10/2022]
Abstract
Mannose phosphate isomerase MPI-CDG (formerly CDG-1b) is a potentially fatal inherited metabolic disease which is readily treatable with oral D-mannose. We retrospectively reviewed long-term outcomes of patients with MPI-CDG, all but one of whom were treated with D-mannose. Clinical, biological, and histological data were reviewed at diagnosis and on D-mannose treatment. Nine patients were diagnosed with MPI-CDG at a median age of 3 months. The presenting symptoms were diarrhea (n = 9), hepatomegaly (n = 9), hypoglycemia (n = 8), and protein loosing enteropathy (n = 7). All patients survived except the untreated one who died at 2 years of age. Oral D-mannose was started in eight patients at a median age of 7 months (mean 38 months), with a median follow-up on treatment of 14 years 9 months (1.5-20 years). On treatment, two patients developed severe portal hypertension, two developed venous thrombosis, and 1 displayed altered kidney function. Poor compliance with D-mannose was correlated with recurrence of diarrhea, thrombosis, and abnormal biological parameters including coagulation factors and transferrin profiles. Liver fibrosis persisted despite treatment, but two patients showed improved liver architecture during follow-up. This study highlights (i) the efficacy and safety of D-mannose treatment with a median follow-up on treatment of almost 15 years (ii) the need for life-long treatment (iii) the risk of relapse with poor compliance, (iii) the importance of portal hypertension screening (iv) the need to be aware of venous and renal complications in adulthood.
Collapse
Affiliation(s)
- Muriel Girard
- Paediatic Liver Unit, National Reference Center for Biliary Atresia and Genetic Cholestasis and French Network for Rare Liver Disease (Filfoie) Necker-Enfants-Malades University Hospital, APHP, Paris, France
- Inserm U1151, Institut Necker Enfants-Malades, Paris, France
- Université de Paris, Paris, France
| | - Claire Douillard
- Endocrinology and Metabolism department, Reference Metabolism Center of inborn metabolic diseases, Lille University Hospital, Paris, France
| | - Dominique Debray
- Paediatic Liver Unit, National Reference Center for Biliary Atresia and Genetic Cholestasis and French Network for Rare Liver Disease (Filfoie) Necker-Enfants-Malades University Hospital, APHP, Paris, France
- Université de Paris, Paris, France
| | - Florence Lacaille
- Department of Gastroenterology-Hepatology-Nutrition, Necker-Enfants-Malades University Hospital, APHP, Paris, France
| | - Manuel Schiff
- Université de Paris, Paris, France
- Reference Center of inherited Metabolic Diseases, Necker-Enfants-Malades University hospital, APHP, Paris, France
- Inserm U1163, Institut Imagine, Paris, France
| | - Sandrine Vuillaumier-Barrot
- Université de Paris, Paris, France
- Biochemistry and Genetic Department, AP-HP, Bichat Hospital, Paris, France
- Centre de recherche sur l'inflammation, Inserm U1149, Paris, France
| | - Thierry Dupré
- Université de Paris, Paris, France
- Biochemistry and Genetic Department, AP-HP, Bichat Hospital, Paris, France
- Centre de recherche sur l'inflammation, Inserm U1149, Paris, France
| | - Monique Fabre
- Department of Pathology, Necker-Enfants-Malades University hospital, APHP, Université de Paris, Paris, France
| | - Lena Damaj
- Department of Pediatrics, Competence Center of Inherited Metabolic Disorders, Rennes Hospital, Rennes, France
| | - Alice Kuster
- Department of Pediatric Intensive care, Competence Center of Inherited Metabolic Disorders, Nantes Hospital, Nantes, France
| | - Stéphanie Torre
- Department of Neonatal Pediatrics and Intensive Care, Rouen University Hospital, Rouen, France
| | - Karine Mention
- Department of Pediatric Metabolism, Reference Center of Inherited Metabolic Disorders, Jeanne de Flandre Hospital, Lille, France
| | - Valérie McLin
- Swiss Pediatric Liver Center, Department of Pediatrics, Gynecology, and Obstetrics, University Geneva Hospitals, Geneva, Switzerland
| | - Dries Dobbelaere
- Department of Pediatric Metabolism, Reference Center of Inherited Metabolic Disorders, Jeanne de Flandre Hospital, Lille, France
| | - Delphine Borgel
- Hematology Department, Necker-Enfants-Malades University Hospital, APHP, Paris, France
- INSERM-URM-S1176, Université Paris Saclay, Le Kremlin-Bicêtre, France
| | - Eric Bauchard
- Reference Center of inherited Metabolic Diseases, Necker-Enfants-Malades University hospital, APHP, Paris, France
| | - Nathalie Seta
- Université de Paris, Paris, France
- Biochemistry, Bichat Hospital, AP-HP, Paris, France
| | - Arnaud Bruneel
- Biochemistry, Bichat Hospital, AP-HP, Paris, France
- INSERM UMR1193, Mécanismes cellulaires et moléculaires de l'adaptation au stress et cancérogenèse, Paris-Saclay University, Châtenay-Malabry, France
| | - Pascale De Lonlay
- Inserm U1151, Institut Necker Enfants-Malades, Paris, France
- Université de Paris, Paris, France
- Reference Center of inherited Metabolic Diseases, Necker-Enfants-Malades University hospital, APHP, Paris, France
| |
Collapse
|
8
|
Ondruskova N, Cechova A, Hansikova H, Honzik T, Jaeken J. Congenital disorders of glycosylation: Still "hot" in 2020. Biochim Biophys Acta Gen Subj 2020; 1865:129751. [PMID: 32991969 DOI: 10.1016/j.bbagen.2020.129751] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/12/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Congenital disorders of glycosylation (CDG) are inherited metabolic diseases caused by defects in the genes important for the process of protein and lipid glycosylation. With the ever growing number of the known subtypes and discoveries regarding the disease mechanisms and therapy development, it remains a very active field of study. SCOPE OF REVIEW This review brings an update on the CDG-related research since 2017, describing the novel gene defects, pathobiomechanisms, biomarkers and the patients' phenotypes. We also summarize the clinical guidelines for the most prevalent disorders and the current therapeutical options for the treatable CDG. MAJOR CONCLUSIONS In the majority of the 23 new CDG, neurological involvement is associated with other organ disease. Increasingly, different aspects of cellular metabolism (e.g., autophagy) are found to be perturbed in multiple CDG. GENERAL SIGNIFICANCE This work highlights the recent trends in the CDG field and comprehensively overviews the up-to-date clinical recommendations.
Collapse
Affiliation(s)
- Nina Ondruskova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Anna Cechova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Hana Hansikova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tomas Honzik
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| | - Jaak Jaeken
- Department of Paediatrics and Centre for Metabolic Diseases, KU Leuven and University Hospital Leuven, Leuven, Belgium.
| |
Collapse
|
9
|
Čechová A, Altassan R, Borgel D, Bruneel A, Correia J, Girard M, Harroche A, Kiec-Wilk B, Mohnike K, Pascreau T, Pawliński Ł, Radenkovic S, Vuillaumier-Barrot S, Aldamiz-Echevarria L, Couce ML, Martins EG, Quelhas D, Morava E, de Lonlay P, Witters P, Honzík T. Consensus guideline for the diagnosis and management of mannose phosphate isomerase-congenital disorder of glycosylation. J Inherit Metab Dis 2020; 43:671-693. [PMID: 32266963 PMCID: PMC7574589 DOI: 10.1002/jimd.12241] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/17/2020] [Accepted: 04/03/2020] [Indexed: 12/19/2022]
Abstract
Mannose phosphate isomerase-congenital disorder of glycosylation (MPI-CDG) deficiency is a rare subtype of congenital disorders of protein N-glycosylation. It is characterised by deficiency of MPI caused by pathogenic variants in MPI gene. The manifestation of MPI-CDG is different from other CDGs as the patients suffer dominantly from gastrointestinal and hepatic involvement whereas they usually do not present intellectual disability or neurological impairment. It is also one of the few treatable subtypes of CDGs with proven effect of oral mannose. This article covers a complex review of the literature and recommendations for the management of MPI-CDG with an emphasis on the clinical aspect of the disease. A team of international experts elaborated summaries and recommendations for diagnostics, differential diagnosis, management, and treatment of each system/organ involvement based on evidence-based data and experts' opinions. Those guidelines also reveal more questions about MPI-CDG which need to be further studied.
Collapse
Affiliation(s)
- Anna Čechová
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Ruqaiah Altassan
- Medical Genetic Department, King Faisal Specialist Hospital and Research Center, Alfaisal University, Riyadh, Saudi Arabia
| | - Delphine Borgel
- Service d’Hématologie Biologique, Hôpital Necker, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Paris, France
| | - Arnaud Bruneel
- Department of Biochemistry, Assistance Publique-Hôpitaux de Paris, Bichat Hospital, Paris, France
- INSERM UMR1193, Mécanismes Cellulaires et Moléculaires de l’Adaptation au Stress et Cancérogenèse, Université Paris-Saclay, Châtenay-Malabry, France
| | - Joana Correia
- Centro de Referência Doenças Hereditárias do Metabolismo - Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal
| | - Muriel Girard
- Reference Center of Liver Diseases, Necker Hospital, Assistance Publique-Hôpitaux de Paris, University Paris Descartes, Paris, France
| | - Annie Harroche
- Hemophilia Care Centre, Hematology Unit, Hôpital Necker, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Beata Kiec-Wilk
- Department of Metabolic Diseases JUMC, Krakow and NSSU University Hospital, Krakow, Poland
| | - Klaus Mohnike
- Department of Paediatrics, Otto-von-Guericke University, Magdeburg, Germany
| | - Tiffany Pascreau
- Service d’Hématologie Biologique, Hôpital Necker, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Paris, France
| | - Łukasz Pawliński
- Department of Metabolic Diseases JUMC, Krakow and NSSU University Hospital, Krakow, Poland
| | - Silvia Radenkovic
- Metabolomics Expertise Center, CCB-VIB, Leuven, Belgium
- Department of Clinical Genomics and Laboratory of Medical Pathology, Mayo Clinic, Rochester, Minnesota
| | - Sandrine Vuillaumier-Barrot
- Department of Biochemistry, Assistance Publique-Hôpitaux de Paris, Bichat Hospital, Paris, France
- INSERM U1149, Centre de Recherche sur l’Inflammation (CRI) and Universitá Paris 7 Denis Diderot, Paris, France
| | - Luis Aldamiz-Echevarria
- Group of Metabolism, Biocruces Bizkaia Health Research Institute, Linked Clinical Group of Rare Diseases CIBER (CIBERER), Barakaldo, Spain
| | - Maria Luz Couce
- Department of Pediatrics, Congenital Metabolic Unit, University Clinical Hospital of Santiago, University of Santiago de Compostela, IDIS, CIBERER, MetabERN, Santiago de Compostela, Spain
| | - Esmeralda G. Martins
- Centro de Referência Doenças Hereditárias do Metabolismo - Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal
| | - Dulce Quelhas
- Centro de Genética Médica Jacinto de Magalhães, Centro de Referência Doenças Hereditárias do Metabolismo - Centro Hospitalar Universitário do Porto (CHUP), Unit for Multidisciplinary Research in Biomedicine, ICBAS, UP, Porto, Portugal
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota
| | - Pascale de Lonlay
- Reference Center of Inherited Metabolic Diseases, Necker Hospital, APHP, University Paris Descartes, Filière G2M, MetabERN, Paris, France
| | - Peter Witters
- Department of Paediatrics and Metabolic Center, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Tomáš Honzík
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
10
|
Zhang X, Zhang Z, Yu Z, Li J, Chen S, Sun R, Jia C, Zhu F, Meng Q, Xu S. Molecular cloning and expression pattern of IGFBP-2a in black porgy (Acanthopagrus schlegelii) and evolutionary analysis of IGFBP-2s in the species of Perciformes. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1731-1745. [PMID: 31418102 DOI: 10.1007/s10695-019-00665-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/24/2019] [Indexed: 06/10/2023]
Abstract
Insulin-like growth factor-binding protein-2 (IGFBP-2) plays a key role in regulating growth and development by its affinity with insulin-like growth factors (IGFs). In this study, we cloned the coding sequence (CDS) of IGFBP-2a from the black porgy (Acanthopagrus schlegelii) muscle and identified that the full-length CDS of IGFBP-2a was 882 bp. Real-time quantitative PCR revealed that IGFBP-2a was most abundant in the liver of the black porgy and backcross breed (F1♀×black porgy♂) but remained lower in each tested tissue in self-cross breed (F1♀×F1♂). In addition, the IGFBP-2a expression in the liver of three breeds showed a negative correlation with their growth rates, indicating that the IGFBP-2a played a growth-inhibiting role in the three breeds. We further identified 810 bp IGFBP-2b gene from the draft genome of black porgy. Finally, we examined the IGFBP-2a and IGFBP-2b genes by scanning the genomes of the species of Perciformes and found the IGFBP-2 gene duplication took place earlier than the divergence of perciform species. Interestingly, six positively selected sites were detected in both Perciformes IGFBP-2 genes, although both genes were identified to be under purifying selection. Specially, these positively selected sites were located in the functional domains, suggesting these sites played key roles in the growth of Perciformes. Our study partially explains the molecular basis for the prepotency in black porgy hybrids, which will provide guidance for their cultivation in the future.
Collapse
Affiliation(s)
- Xinyi Zhang
- Marine Fisheries Research Institute of Jiangsu Province, Nantong, 226007, China
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Zhiyong Zhang
- Marine Fisheries Research Institute of Jiangsu Province, Nantong, 226007, China
| | - Zhenpeng Yu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Jiayi Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Shuyin Chen
- Marine Fisheries Research Institute of Jiangsu Province, Nantong, 226007, China.
| | - Ruijian Sun
- Marine Fisheries Research Institute of Jiangsu Province, Nantong, 226007, China
| | - Chaofeng Jia
- Marine Fisheries Research Institute of Jiangsu Province, Nantong, 226007, China
| | - Fei Zhu
- Marine Fisheries Research Institute of Jiangsu Province, Nantong, 226007, China
| | - Qian Meng
- Marine Fisheries Research Institute of Jiangsu Province, Nantong, 226007, China
| | - Shixia Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
11
|
Fernlund E, Andersson O, Ellegård R, Årstrand HK, Green H, Olsson H, Gunnarsson C. The congenital disorder of glycosylation in PGM1 (PGM1-CDG) can cause severe cardiomyopathy and unexpected sudden cardiac death in childhood. Forensic Sci Int Genet 2019; 43:102111. [PMID: 31563034 DOI: 10.1016/j.fsigen.2019.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/20/2019] [Accepted: 06/14/2019] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Sudden cardiac death (SCD) in the young is rare and should always lead to suspicion of a genetic cardiac disorder. We describe a family, in which the proband was a girl deceased by sudden cardiac death in the playground at thirteen years of age. The index-patient had short stature, cleft palate but no previous cardiac symptoms. We found an uncommon cause of cardiomyopathy, due to a congenital disorder of glycosylation (CDG), previously described to cause a variable range of usually mild symptoms, and not previously found to cause SCD as the first symptom of the condition. METHODS The index patient underwent postmortem genetic testing/molecular autopsy for genes known to cause SCD, without a detection of causative agent, why two siblings of similar phenotype as the deceased sister underwent clinical-exome genetic sequencing (next generation sequencing). All first-degree relatives underwent clinical examination including cardiac ultrasound, Holter-ECG, exercise stress test and biochemistry panel. RESULTS A genetic variant in the gene for phosphoglucomutase 1 (PGM1) was identified in the index patient and her two brothers, all were found to be homozygous for the genetic variant (G230E) NM_002633.2:c.689 G > A in PGM1. This variant has been linked to a congenital disorder of glycosylation (PGM1-CDG), explaining the clinical picture of short stature, cleft palate, liver engagement and cardiomyopathy. During follow-up one of the brothers died unexpectedly after physical exertion during daily life at the age of twelve years. The other brother fainted during similar circumstances at the age of thirteen years. Both parents and three other siblings were found to be heterozygous gene carriers without risk for the disease. CONCLUSION Our findings suggest that there is a need of multidisciplinary discussion and genetic testing after unexpected cardiac death in the young. We have to be more flexible in our evaluation of diseases and to consider even uncommon diseases including rare recessive inherited disorders. Our findings also suggest that the autosomal recessive PGM1-CDG might be highly associated with life-threatening cardiomyopathy with arrhythmia or sudden cardiac death as the first symptom presenting from childhood and adolescence.
Collapse
Affiliation(s)
- Eva Fernlund
- Department of Clinical and Experimental Medicine, Division of Pediatrics, Linköping University, Crown Princess Victoria Children´s Hospital, Linköping University Hospital, Linköping, Sweden; Department of Clinical Sciences Lund, Lund University, Skane University Hospital, Pediatric Cardiology, Lund, Sweden.
| | - Oskar Andersson
- Department of Pediatrics, Vrinnevi Hospital, Norrköping, Sweden
| | - Rada Ellegård
- Department of Clinical Genetics, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Hanna Klang Årstrand
- Department of Clinical Genetics, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Henrik Green
- Division of Drug Research, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden; Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | - Hans Olsson
- Department of Clinical Pathology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Cecilia Gunnarsson
- Department of Clinical Genetics, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden; Centre for rare diseases in South East Region of Sweden, Linköping University Hospital, Linköping, Sweden
| |
Collapse
|
12
|
Altassan R, Péanne R, Jaeken J, Barone R, Bidet M, Borgel D, Brasil S, Cassiman D, Cechova A, Coman D, Corral J, Correia J, de la Morena-Barrio ME, de Lonlay P, Dos Reis V, Ferreira CR, Fiumara A, Francisco R, Freeze H, Funke S, Gardeitchik T, Gert M, Girad M, Giros M, Grünewald S, Hernández-Caselles T, Honzik T, Hutter M, Krasnewich D, Lam C, Lee J, Lefeber D, Marques-de-Silva D, Martinez AF, Moravej H, Õunap K, Pascoal C, Pascreau T, Patterson M, Quelhas D, Raymond K, Sarkhail P, Schiff M, Seroczyńska M, Serrano M, Seta N, Sykut-Cegielska J, Thiel C, Tort F, Vals MA, Videira P, Witters P, Zeevaert R, Morava E. International clinical guidelines for the management of phosphomannomutase 2-congenital disorders of glycosylation: Diagnosis, treatment and follow up. J Inherit Metab Dis 2019; 42:5-28. [PMID: 30740725 DOI: 10.1002/jimd.12024] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Phosphomannomutase 2 (PMM2-CDG) is the most common congenital disorder of N-glycosylation and is caused by a deficient PMM2 activity. The clinical presentation and the onset of PMM2-CDG vary among affected individuals ranging from a severe antenatal presentation with multisystem involvement to mild adulthood presentation limited to minor neurological involvement. Management of affected patients requires a multidisciplinary approach. In this article, a systematic review of the literature on PMM2-CDG was conducted by a group of international experts in different aspects of CDG. Our managment guidelines were initiated based on the available evidence-based data and experts' opinions. This guideline mainly addresses the clinical evaluation of each system/organ involved in PMM2-CDG, and the recommended management approach. It is the first systematic review of current practices in PMM2-CDG and the first guidelines aiming at establishing a practical approach to the recognition, diagnosis and management of PMM2-CDG patients.
Collapse
Affiliation(s)
- Ruqaiah Altassan
- Department of Medical Genetic, Montréal Children's Hospital, Montréal, Québec, Canada
- Department of Medical Genetic, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Romain Péanne
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- LIA GLYCOLAB4CDG (International Associated Laboratory "Laboratory for the Research on Congenital Disorders of Glycosylation-from Cellular Mechanisms to Cure", France/ Belgium
| | - Jaak Jaeken
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Rita Barone
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Muad Bidet
- Department of Paediatric Endocrinology, Gynaecology, and Diabetology, AP-HP, Necker-Enfants Malades Hospital, IMAGINE Institute affiliate, Paris, France
| | - Delphine Borgel
- INSERM U1176, Université Paris-Sud, CHU de Bicêtre, Le Kremlin Bicêtre, France
| | - Sandra Brasil
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departament o Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - David Cassiman
- Department of Gastroenterology-Hepatology and Metabolic Center, University Hospitals Leuven, Leuven, Belgium
| | - Anna Cechova
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - David Coman
- Department of Metabolic Medicine, The Lady Cilento Children's Hospital, Brisbane, Queensland, Australia
- Schools of Medicine, University of Queensland Brisbane, Griffith University Gold Coast, Southport, Queensland, Australia
| | - Javier Corral
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CIBERER, Murcia, Spain
| | - Joana Correia
- Centro de Referência Doenças Hereditárias do Metabolismo - Centro Hospitalar do Porto, Porto, Portugal
| | - María Eugenia de la Morena-Barrio
- Servicio de Hematologíay Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CIBERER, Murcia, Spain
| | - Pascale de Lonlay
- Reference Center of Inherited Metabolic Diseases, University Paris Descartes, Hospital Necker Enfants Malades, Paris, France
| | - Vanessa Dos Reis
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
- Division of Genetics and Metabolism, Children's National Health System, Washington, District of Columbia
| | - Agata Fiumara
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rita Francisco
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departament o Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa Caparica, Caparica, Portugal
| | - Hudson Freeze
- Sanford Children's Health Research Center, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California
| | - Simone Funke
- Department of Obstetrics and Gynecology, Division of Neonatology, University of Pécs, Pecs, Hungary
| | - Thatjana Gardeitchik
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Matthijs Gert
- LIA GLYCOLAB4CDG (International Associated Laboratory "Laboratory for the Research on Congenital Disorders of Glycosylation-from Cellular Mechanisms to Cure", France/ Belgium
- Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Muriel Girad
- AP-HP, Necker University Hospital, Hepatology and Gastroenterology Unit, French National Reference Centre for Biliary Atresia and Genetic Cholestasis, Paris, France
- Hepatologie prdiatrique department, Paris Descartes University, Paris, France
| | - Marisa Giros
- Secció d'Errors Congènits del Metabolisme -IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | - Stephanie Grünewald
- Metabolic Unit, Great Ormond Street Hospital and Institute of Child Health, University College London, NHS Trust, London, UK
| | - Trinidad Hernández-Caselles
- Departamento de Bioquímica, Biología Molecular B e Inmunología, Faculty of Medicine, IMIB-University of Murcia, Murcia, Spain
| | - Tomas Honzik
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Marlen Hutter
- Center for Child and Adolescent Medicine, Department, University of Heidelberg, Heidelberg, Germany
| | - Donna Krasnewich
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Christina Lam
- Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Joy Lee
- Department of Metabolic Medicine, The Royal Children's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Dirk Lefeber
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dorinda Marques-de-Silva
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departament o Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa Caparica, Caparica, Portugal
| | - Antonio F Martinez
- Genetics and Molecular Medicine and Rare Disease Paediatric Unit, Sant Joan de Déu Hospital, Barcelona, Spain
| | - Hossein Moravej
- Neonatal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Katrin Õunap
- Department of Pediatrics, University of Tartu, Tartu, Estonia
- Department of Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Carlota Pascoal
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departament o Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Tiffany Pascreau
- AP-HP, Service d'Hématologie Biologique, Hôpital R. Debré, Paris, France
| | - Marc Patterson
- Division of Child and Adolescent Neurology, Department of Neurology, Mayo Clinic Children's Center, Rochester, New York
- Division of Child and Adolescent Neurology, Department of Pediatrics, Mayo Clinic Children's Center, Rochester, New York
- Division of Child and Adolescent Neurology, Department of Medical Genetics, Mayo Clinic Children's Center, Rochester, New York
| | - Dulce Quelhas
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CIBERER, Murcia, Spain
- Centro de Genética Médica Doutor Jacinto Magalhães, Unidade de Bioquímica Genética, Porto, Portugal
| | - Kimiyo Raymond
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Peymaneh Sarkhail
- Metabolic and Genetic department, Sarem Woman's Hospital, Tehrān, Iran
| | - Manuel Schiff
- Neurologie pédiatrique et maladies métaboliques, (C. Farnoux) - Pôle de pédiatrie médicale CHU, Hôpital Robert Debré, Paris, France
| | - Małgorzata Seroczyńska
- Departamento de Bioquímica, Biología Molecular B e Inmunología, Faculty of Medicine, IMIB-University of Murcia, Murcia, Spain
| | - Mercedes Serrano
- Neurology Department, Hospital Sant Joan de Déu, U-703 Centre for Biomedical Research on Rare Diseases (CIBER-ER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Nathalie Seta
- AP-HP, Bichat Hospital, Université Paris Descartes, Paris, France
| | - Jolanta Sykut-Cegielska
- Department of Inborn Errors of Metabolism and Paediatrics, the Institute of Mother and Child, Warsaw, Poland
| | - Christian Thiel
- Center for Child and Adolescent Medicine, Department, University of Heidelberg, Heidelberg, Germany
| | - Federic Tort
- Secció d'Errors Congènits del Metabolisme -IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | - Mari-Anne Vals
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Paula Videira
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa Caparica, Caparica, Portugal
| | - Peter Witters
- Department of Paediatrics and Metabolic Center, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Renate Zeevaert
- Department of Paediatric Endocrinology and Diabetology, Jessa Hospital, Hasselt, Belgium
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, New York
- Department of Pediatrics, Tulane University, New Orleans, Louisiana
| |
Collapse
|
13
|
Gupta N, Verma G, Kabra M, Bijarnia-Mahay S, Ganapathy A. Identification of a case of SRD5A3-congenital disorder of glycosylation (CDG1Q) by exome sequencing. Indian J Med Res 2018; 147:422-426. [PMID: 29998879 PMCID: PMC6057243 DOI: 10.4103/ijmr.ijmr_820_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Neerja Gupta
- Department of Pediatrics, Division of Genetics, All India Institute of Medical Sciences, New Delhi, India
| | - Gaurav Verma
- Department of Pediatrics, Division of Genetics, All India Institute of Medical Sciences, New Delhi, India
| | - Madhulika Kabra
- Department of Pediatrics, Division of Genetics, All India Institute of Medical Sciences, New Delhi, India
| | | | | |
Collapse
|
14
|
Chang IJ, He M, Lam CT. Congenital disorders of glycosylation. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:477. [PMID: 30740408 DOI: 10.21037/atm.2018.10.45] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Congenital disorders of glycosylation are a genetically and clinically heterogeneous group of >130 diseases caused by defects in various steps along glycan modification pathways. The vast majority of these monogenic diseases are autosomal recessive and have multi-systemic manifestations, mainly growth failure, developmental delay, facial dysmorphisms, and variable coagulation and endocrine abnormalities. Carbohydrate deficient transferrin (CDT) and protein-linked glycan analysis with mass spectrometry can diagnose some subtypes of congenital disorders of glycosylation (CDG), while many currently rely on massively parallel genomic sequencing for diagnosis. Early detection is important, as a few of these disorders are treatable. Molecular and biochemical techniques continue to further our understanding of this rapidly expanding group of clinically and genetically diverse disorders.
Collapse
Affiliation(s)
- Irene J Chang
- Division of Biochemical Genetics, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Miao He
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Christina T Lam
- Division of Biochemical Genetics, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
15
|
Westenfield K, Sarafoglou K, Speltz LC, Pierpont EI, Steyermark J, Nascene D, Bower M, Pierpont ME. Mosaicism of the UDP-Galactose transporter SLC35A2 in a female causing a congenital disorder of glycosylation: a case report. BMC MEDICAL GENETICS 2018; 19:100. [PMID: 29907092 PMCID: PMC6003163 DOI: 10.1186/s12881-018-0617-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/24/2018] [Indexed: 01/10/2023]
Abstract
BACKGROUND Congenital disorders of glycosylation are rare conditions caused by genetic defects in glycan synthesis, processing or transport. Most congenital disorders of glycosylation involve defects in the formation or transfer of the lipid-linked oligosaccharide precursor of N-linked glycans. SLC35A2-CDG (previously CDG-IIm) is caused by hemizygous or heterozygous mutations in the X-linked gene SLC35A2 that encodes a UDP-galactose transporter. To date there have only been 10 reported patients with SLC35A2 mutations. Importantly, the patient presented here was not identified in infancy by transferrin isoform analysis, the most common testing to identify patients with a congenital disorder of glycosylation. CASE PRESENTATION A 27 month old girl with developmental delay, central hypotonia, cerebral atrophy, and failure to thrive with growth retardation was identified by whole exome sequencing to have a mosaic missense variant in SLC35A2 (c.991G > A). This particular variant has been previously reported in a male as a mutation. Comparison of all clinical findings and new information on growth pattern, growth hormone testing and neurodevelopmental evaluation are detailed on the patient presented. CONCLUSION This patient report increases the clinical and scientific knowledge of SLC35A2-CDG, a rare condition. New information on reduced growth, growth hormone sufficiency, lack of seizures, and neurodevelopmental status are presented. This new information will be helpful to clinicians caring for individuals with SLC35A2-CDG. This report also alerts clinicians that transferrin isoform measurements do not identify all patients with congenital disorders of glycosylation.
Collapse
Affiliation(s)
- Kristen Westenfield
- Department of Pediatrics, University of Minnesota, 2450 Riverside Avenue, Minneapolis, MN, 55454, USA
| | - Kyriakie Sarafoglou
- Divisions of Endocrinology, Genetics & Metabolism, University of Minnesota, 2450 Riverside Avenue, Minneapolis, MN, 55454, USA
| | - Laura C Speltz
- Department of Neurology, Gillette Children's Hospital, 200 University Avenue East, St. Paul, MN, 55101, USA
| | - Elizabeth I Pierpont
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN, 55455-0392, USA
| | - Joan Steyermark
- University of Minnesota Masonic Children's Hospital, 2450 Riverside Avenue, Minneapolis, MN, 55454, USA
| | - David Nascene
- Department of Radiology, University of Minnesota, 420 Delaware St. SE, Minneapolis, MN, 55455, USA
| | - Matthew Bower
- Molecular Diagnostics Laboratory, University of Minnesota Medical Center, 420 Delaware St SE, Minneapolis, MN, 55455, USA
| | - Mary Ella Pierpont
- Division of Genetics & Metabolism, Department of Pediatrics and Ophthalmology, 2450 Riverside Avenue, Minneapolis, MN, 55454, USA.
| |
Collapse
|
16
|
Brasil S, Pascoal C, Francisco R, Marques-da-Silva D, Andreotti G, Videira PA, Morava E, Jaeken J, Dos Reis Ferreira V. CDG Therapies: From Bench to Bedside. Int J Mol Sci 2018; 19:ijms19051304. [PMID: 29702557 PMCID: PMC5983582 DOI: 10.3390/ijms19051304] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/14/2018] [Accepted: 04/21/2018] [Indexed: 12/20/2022] Open
Abstract
Congenital disorders of glycosylation (CDG) are a group of genetic disorders that affect protein and lipid glycosylation and glycosylphosphatidylinositol synthesis. More than 100 different disorders have been reported and the number is rapidly increasing. Since glycosylation is an essential post-translational process, patients present a large range of symptoms and variable phenotypes, from very mild to extremely severe. Only for few CDG, potentially curative therapies are being used, including dietary supplementation (e.g., galactose for PGM1-CDG, fucose for SLC35C1-CDG, Mn2+ for TMEM165-CDG or mannose for MPI-CDG) and organ transplantation (e.g., liver for MPI-CDG and heart for DOLK-CDG). However, for the majority of patients, only symptomatic and preventive treatments are in use. This constitutes a burden for patients, care-givers and ultimately the healthcare system. Innovative diagnostic approaches, in vitro and in vivo models and novel biomarkers have been developed that can lead to novel therapeutic avenues aiming to ameliorate the patients’ symptoms and lives. This review summarizes the advances in therapeutic approaches for CDG.
Collapse
Affiliation(s)
- Sandra Brasil
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
| | - Carlota Pascoal
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Research Unit on Applied Molecular Biosciences (UCIBIO), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Lisboa, Portugal.
| | - Rita Francisco
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Research Unit on Applied Molecular Biosciences (UCIBIO), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Lisboa, Portugal.
| | - Dorinda Marques-da-Silva
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Research Unit on Applied Molecular Biosciences (UCIBIO), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Lisboa, Portugal.
| | - Giuseppina Andreotti
- Istituto di Chimica Biomolecolare-Consiglio Nazionale delle Ricerche (CNR), 80078 Pozzuoli, Italy.
| | - Paula A Videira
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Research Unit on Applied Molecular Biosciences (UCIBIO), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Lisboa, Portugal.
| | - Eva Morava
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA.
| | - Jaak Jaeken
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Center for Metabolic Diseases, Universitaire Ziekenhuizen (UZ) and Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium.
| | - Vanessa Dos Reis Ferreira
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
| |
Collapse
|
17
|
Limitations of galactose therapy in phosphoglucomutase 1 deficiency. Mol Genet Metab Rep 2017; 13:33-40. [PMID: 28794993 PMCID: PMC5540825 DOI: 10.1016/j.ymgmr.2017.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/24/2017] [Indexed: 01/22/2023] Open
Abstract
Introduction Phosphoglucomutase 1 deficiency (PGM1 deficiency) has been identified as both, glycogenosis and congenital disorder of glycosylation (CDG). The phenotype includes hepatopathy, myopathy, oropharyngeal malformations, heart disease and growth retardation. Oral galactose supplementation at a dosage of 1 g per kg body weight per day is regarded as the therapy of choice. Results We report on a patient with a novel disease causing mutation, who was treated for 1.5 years with oral galactose supplementation. Initially, elevated transaminases were reduced and protein glycosylation of serum transferrin improved rapidly. Long-term surveillance however indicated limitations of galactose supplementation at the standard dose: 1 g per kg body weight per day did not achieve permanent correction of protein glycosylation. Even increased doses of up to 2.5 g per kg body weight did not result in complete normalization. Furthermore, we described for the first time heart rhythm abnormalities, i.e. long QT Syndrome associated with a glycosylation disorder. Mass spectrometry of IGFBP3, which was assumed to play a major role in growth retardation associated with PGM1 deficiency, revealed no glycosylation abnormalities. Growth rate did not improve under galactose supplementation. Conclusions The results of our study indicate that the current standard dose of galactose might be too low to achieve normal glycosylation in all patients. In addition, growth retardation in PGM1 deficiency is complex and multifactorial. Furthermore, heart rhythm abnormalities must be considered when treating patients with PGM1 deficiency.
Collapse
|
18
|
Chan B, Clasquin M, Smolen GA, Histen G, Powe J, Chen Y, Lin Z, Lu C, Liu Y, Cang Y, Yan Z, Xia Y, Thompson R, Singleton C, Dorsch M, Silverman L, Su SSM, Freeze HH, Jin S. A mouse model of a human congenital disorder of glycosylation caused by loss of PMM2. Hum Mol Genet 2016; 25:2182-2193. [PMID: 27053713 PMCID: PMC5081049 DOI: 10.1093/hmg/ddw085] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/11/2016] [Indexed: 11/13/2022] Open
Abstract
The most common congenital disorder of glycosylation (CDG), phosphomannomutase 2 (PMM2)-CDG, is caused by mutations in PMM2 that limit availability of mannose precursors required for protein N-glycosylation. The disorder has no therapy and there are no models to test new treatments. We generated compound heterozygous mice with the R137H and F115L mutations in Pmm2 that correspond to the most prevalent alleles found in patients with PMM2-CDG. Many Pmm2R137H/F115L mice died prenatally, while survivors had significantly stunted growth. These animals and cells derived from them showed protein glycosylation deficiencies similar to those found in patients with PMM2-CDG. Growth-related glycoproteins insulin-like growth factor (IGF) 1, IGF binding protein-3 and acid-labile subunit, along with antithrombin III, were all deficient in Pmm2R137H/F115L mice, but their levels in heterozygous mice were comparable to wild-type (WT) littermates. These imbalances, resulting from defective glycosylation, are likely the cause of the stunted growth seen both in our model and in PMM2-CDG patients. Both Pmm2R137H/F115L mouse and PMM2-CDG patient-derived fibroblasts displayed reductions in PMM activity, guanosine diphosphate mannose, lipid-linked oligosaccharide precursor and total cellular protein glycosylation, along with hypoglycosylation of a new endogenous biomarker, glycoprotein 130 (gp130). Over-expression of WT-PMM2 in patient-derived fibroblasts rescued all these defects, showing that restoration of mutant PMM2 activity is a viable therapeutic strategy. This functional mouse model of PMM2-CDG, in vitro assays and identification of the novel gp130 biomarker all shed light on the human disease, and moreover, provide the essential tools to test potential therapeutics for this untreatable disease.
Collapse
Affiliation(s)
- Barden Chan
- Agios Pharmaceuticals, Inc., Cambridge, MA 02139-4169, USA
| | | | | | - Gavin Histen
- Agios Pharmaceuticals, Inc., Cambridge, MA 02139-4169, USA
| | - Josh Powe
- Agios Pharmaceuticals, Inc., Cambridge, MA 02139-4169, USA
| | - Yue Chen
- Agios Pharmaceuticals, Inc., Cambridge, MA 02139-4169, USA
| | - Zhizhong Lin
- Cancer Research Center, Medical College, Xiamen University, Xiamen 361102, China
| | - Chenming Lu
- WuXi AppTec Co., Ltd, Shanghai 200131, China
| | - Yan Liu
- WuXi AppTec Co., Ltd, Shanghai 200131, China
| | - Yong Cang
- WuXi AppTec Co., Ltd, Shanghai 200131, China Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | | | | | | | | | - Marion Dorsch
- Agios Pharmaceuticals, Inc., Cambridge, MA 02139-4169, USA
| | - Lee Silverman
- Agios Pharmaceuticals, Inc., Cambridge, MA 02139-4169, USA
| | | | - Hudson H Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Shengfang Jin
- Agios Pharmaceuticals, Inc., Cambridge, MA 02139-4169, USA
| |
Collapse
|
19
|
Chen W, Li W, Zhang Z, Jiang X, Li M. Cloning, molecular characterization and expression analysis of insulin-like growth factor binding protein-2 (IGFBP-2) cDNA in goldfish, Carassius auratus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1669-1681. [PMID: 24992902 DOI: 10.1007/s10695-014-9958-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/24/2014] [Indexed: 06/03/2023]
Abstract
In the present study, a full-length cDNA encoding the insulin-like growth factor binding protein-2 (IGFBP-2) was cloned from the liver of goldfish (Carassius auratus) by rapid amplification of cDNA ends technique. The goldfish IGFBP-2 cDNA sequence was 1,513 bp long and had an open reading frame of 825 bp encoding a predicted polypeptide of 274 amino acid residues. Semi-quantitative RT-PCR results revealed that goldfish IGFBP-2 mRNA was expressed in all detected tissues. In liver, central nervous system and pituitary gland, goldfish IGFBP-2 expressed at high levels, followed by anterior intestine, middle intestine and kidney. In posterior intestine, ovary, skin, fat, spleen, muscle and gill, the goldfish IGFBP-2 expression levels were very low. Fasting and refeeding experiment showed that the mRNA expression of goldfish IGFBP-2 was up-regulated significantly in liver compared to the fed group and restored rapidly to normal level after refed. However, the mRNA expressions of IGFBP-2 in hypothalamus and pituitary of goldfish were insensitive to fasting. Furthermore, the mRNA expressions of IGFBP-2 in hypothalamus, pituitary and liver were varied in periprandial changes and significantly down-regulated at 2 and 4 h after meal. These results imply that the IGFBP-2 mRNA expression may be associated with anabolic and catabolic metabolism and regulated by metabolic factors in goldfish.
Collapse
Affiliation(s)
- Wenbo Chen
- Department of Biology, Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, Henan, People's Republic of China,
| | | | | | | | | |
Collapse
|
20
|
Tegtmeyer LC, Rust S, van Scherpenzeel M, Ng BG, Losfeld ME, Timal S, Raymond K, He P, Ichikawa M, Veltman J, Huijben K, Shin YS, Sharma V, Adamowicz M, Lammens M, Reunert J, Witten A, Schrapers E, Matthijs G, Jaeken J, Rymen D, Stojkovic T, Laforêt P, Petit F, Aumaître O, Czarnowska E, Piraud M, Podskarbi T, Stanley CA, Matalon R, Burda P, Seyyedi S, Debus V, Socha P, Sykut-Cegielska J, van Spronsen F, de Meirleir L, Vajro P, DeClue T, Ficicioglu C, Wada Y, Wevers RA, Vanderschaeghe D, Callewaert N, Fingerhut R, van Schaftingen E, Freeze HH, Morava E, Lefeber DJ, Marquardt T. Multiple phenotypes in phosphoglucomutase 1 deficiency. N Engl J Med 2014; 370:533-42. [PMID: 24499211 PMCID: PMC4373661 DOI: 10.1056/nejmoa1206605] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Congenital disorders of glycosylation are genetic syndromes that result in impaired glycoprotein production. We evaluated patients who had a novel recessive disorder of glycosylation, with a range of clinical manifestations that included hepatopathy, bifid uvula, malignant hyperthermia, hypogonadotropic hypogonadism, growth retardation, hypoglycemia, myopathy, dilated cardiomyopathy, and cardiac arrest. METHODS Homozygosity mapping followed by whole-exome sequencing was used to identify a mutation in the gene for phosphoglucomutase 1 (PGM1) in two siblings. Sequencing identified additional mutations in 15 other families. Phosphoglucomutase 1 enzyme activity was assayed on cell extracts. Analyses of glycosylation efficiency and quantitative studies of sugar metabolites were performed. Galactose supplementation in fibroblast cultures and dietary supplementation in the patients were studied to determine the effect on glycosylation. RESULTS Phosphoglucomutase 1 enzyme activity was markedly diminished in all patients. Mass spectrometry of transferrin showed a loss of complete N-glycans and the presence of truncated glycans lacking galactose. Fibroblasts supplemented with galactose showed restoration of protein glycosylation and no evidence of glycogen accumulation. Dietary supplementation with galactose in six patients resulted in changes suggestive of clinical improvement. A new screening test showed good discrimination between patients and controls. CONCLUSIONS Phosphoglucomutase 1 deficiency, previously identified as a glycogenosis, is also a congenital disorder of glycosylation. Supplementation with galactose leads to biochemical improvement in indexes of glycosylation in cells and patients, and supplementation with complex carbohydrates stabilizes blood glucose. A new screening test has been developed but has not yet been validated. (Funded by the Netherlands Organization for Scientific Research and others.).
Collapse
|
21
|
Wolthuis DFGJ, van Asbeck EV, Kozicz T, Morava E. Abnormal fat distribution in PMM2-CDG. Mol Genet Metab 2013; 110:411-3. [PMID: 24063868 DOI: 10.1016/j.ymgme.2013.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/29/2013] [Accepted: 08/30/2013] [Indexed: 11/16/2022]
Abstract
We hypothesize that abnormal fat distribution, a common feature of PMM2-CDG, is associated with abnormal perinatal hormone regulation. We assessed 32 cases with PMM2-CDG, for the comorbidity of hypoglycemia/hyperinsulinism and fat pads. Ninety percent of patients with hypoketotic hypoglycemia and/or hyperinsulinism had abnormal fat distribution, while normoglycemic patients showed this feature in 50% of the cases. This statistically significant difference suggests an etiological role of the insulin receptor in developing abnormal fat distribution in PMM2-CDG.
Collapse
Affiliation(s)
- D F G J Wolthuis
- Hayward Genetics Center, Tulane University Medical School, 1430 Tulane Ave, New Orleans LA 70112, USA
| | | | | | | |
Collapse
|
22
|
Miller BS, Duffy MM, Addo OY, Sarafoglou K. rhIGF-1 Therapy for Growth Failure and IGF-1 Deficiency in Congenital Disorder of Glycosylation Ia (PMM2 Deficiency). J Investig Med High Impact Case Rep 2013; 1:2324709613503316. [PMID: 26425584 PMCID: PMC4586814 DOI: 10.1177/2324709613503316] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background. Congenital disorders of glycosylation (CDG) are a group of rare disorders in which glycosylation required for proper protein-protein interactions and protein stability is disrupted, manifesting clinically with multiple system involvement and growth failure. The insulin-like growth factor (IGF) system plays an important role in childhood growth and has been shown to be dysfunctional with low IGF-1 levels in children with CDG type Ia (PMM2 deficiency). Case report. A 3-year-old Caucasian male with failure to thrive was diagnosed with PMM2-CDG at 5 months of age. Initially, his length and weight were less than −2 standard deviation score, IGF-1 <25 ng/mL (normal 55-327 ng/mL), IGFBP-3 1.0 µg/mL (normal 0.7-3.6 ng/mL), and acid-labile subunit 1.3 mg/L (normal 0.7-7.9 mg/L). Despite aggressive feeding, he continued to show poor linear growth and weight gain. At 17 months, he underwent an IGF-1 generation test with growth hormone (0.1 mg/kg/d) for 7 days; baseline IGF-1of 27 ng/mL (normal 55-327 ng/mL) stimulated to only 33 ng/mL. Recombinant human IGF-1 (rhIGF-1) therapy (up to 130 µg/kg/dose twice daily) was initiated at 21 months of age resulting in an excellent linear growth response with height increasing from −2.73 to −1.39 standard deviation score over 22 months. IGF-1 and IGFBP-3 levels also increased. Conclusion. This is the first case report of rhIGF-1 therapy in a patient with PMM2-CDG. The child had an excellent linear growth response. These results provide additional in vivo evidence for IGF dysfunction in PMM2-CDG and suggest that rhIGF-1 may be a novel treatment for growth failure in PMM2-CDG.
Collapse
Affiliation(s)
- Bradley S Miller
- University of Minnesota Amplatz Children's Hospital, Minneapolis, MN, USA
| | - Meghann M Duffy
- University of Minnesota Amplatz Children's Hospital, Minneapolis, MN, USA
| | - O Yaw Addo
- University of Minnesota Amplatz Children's Hospital, Minneapolis, MN, USA
| | | |
Collapse
|
23
|
Chu J, Mir A, Gao N, Rosa S, Monson C, Sharma V, Steet R, Freeze HH, Lehrman MA, Sadler KC. A zebrafish model of congenital disorders of glycosylation with phosphomannose isomerase deficiency reveals an early opportunity for corrective mannose supplementation. Dis Model Mech 2012; 6:95-105. [PMID: 22899857 PMCID: PMC3529342 DOI: 10.1242/dmm.010116] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Individuals with congenital disorders of glycosylation (CDG) have recessive mutations in genes required for protein N-glycosylation, resulting in multi-systemic disease. Despite the well-characterized biochemical consequences in these individuals, the underlying cellular defects that contribute to CDG are not well understood. Synthesis of the lipid-linked oligosaccharide (LLO), which serves as the sugar donor for the N-glycosylation of secretory proteins, requires conversion of fructose-6-phosphate to mannose-6-phosphate via the phosphomannose isomerase (MPI) enzyme. Individuals who are deficient in MPI present with bleeding, diarrhea, edema, gastrointestinal bleeding and liver fibrosis. MPI-CDG patients can be treated with oral mannose supplements, which is converted to mannose-6-phosphate through a minor complementary metabolic pathway, restoring protein glycosylation and ameliorating most symptoms, although liver disease continues to progress. Because Mpi deletion in mice causes early embryonic lethality and thus is difficult to study, we used zebrafish to establish a model of MPI-CDG. We used a morpholino to block mpi mRNA translation and established a concentration that consistently yielded 13% residual Mpi enzyme activity at 4 days post-fertilization (dpf), which is within the range of MPI activity detected in fibroblasts from MPI-CDG patients. Fluorophore-assisted carbohydrate electrophoresis detected decreased LLO and N-glycans in mpi morphants. These deficiencies resulted in 50% embryonic lethality by 4 dpf. Multi-systemic abnormalities, including small eyes, dysmorphic jaws, pericardial edema, a small liver and curled tails, occurred in 82% of the surviving larvae. Importantly, these phenotypes could be rescued with mannose supplementation. Thus, parallel processes in fish and humans contribute to the phenotypes caused by Mpi depletion. Interestingly, mannose was only effective if provided prior to 24 hpf. These data provide insight into treatment efficacy and the broader molecular and developmental abnormalities that contribute to disorders associated with defective protein glycosylation.
Collapse
Affiliation(s)
- Jaime Chu
- Division of Pediatric Hepatology/Department of Pediatrics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mohamed M, Guillard M, Wortmann S, Cirak S, Marklova E, Michelakakis H, Korsch E, Adamowicz M, Koletzko B, van Spronsen F, Niezen-Koning K, Matthijs G, Gardeitchik T, Kouwenberg D, Lim BC, Zeevaert R, Wevers R, Lefeber D, Morava E. Clinical and diagnostic approach in unsolved CDG patients with a type 2 transferrin pattern. Biochim Biophys Acta Mol Basis Dis 2011; 1812:691-8. [DOI: 10.1016/j.bbadis.2011.02.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/18/2011] [Accepted: 02/22/2011] [Indexed: 11/29/2022]
|
25
|
Shimizu M, Suzuki S, Horikoshi M, Hara A, Dickhoff WW. Circulating salmon 41-kDa insulin-like growth factor binding protein (IGFBP) is not IGFBP-3 but an IGFBP-2 subtype. Gen Comp Endocrinol 2011; 171:326-31. [PMID: 21354155 DOI: 10.1016/j.ygcen.2011.02.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Revised: 01/23/2011] [Accepted: 02/20/2011] [Indexed: 11/17/2022]
Abstract
In vertebrates, most circulating insulin-like growth factor (IGF) is bound to multiple forms of IGF-binding proteins (IGFBPs) that differ both structurally and functionally. In mammals, the largest reservoir of IGF in the circulation comes from a large (150kDa) ternary complex comprised of IGF bound to IGFBP-3, which is bound to an acid label subunit (ALS), and this variant of IGFBP is regulated by growth hormone (GH) and feed intake. Although multiple variants of IGFBPs ranging from 20 to 50kDa have been found in fishes, no ternary complex is present and it has been assumed that the majority of circulating IGF is bound to fish IGFBP-3. Consistent with this assumption is previous work in salmon showing the presence of a 41-kDa IGFBP that is stimulated by GH, decreases with fasting and increases with feeding. However, the hypothesis that the salmon 41-kDa IGFBP is structurally homologous to mammalian IGFBP-3 has not been directly tested. To address this issue, we cloned cDNAs for several Chinook salmon IGFBPs, and found that the cDNA sequence of the 41-kDa IGFBP is most similar to that of mammalian IGFBP-2 and dissimilar to IGFBP-3. We found an additional IGFBP (termed IGFBP-2a) with high homology to mammalian IGFBP-2. These results demonstrate that salmon 41-kDa IGFBP is not IGFBP-3, but a paralog of IGFBP-2 (termed IGFBP-2b). Salmon IGFBP-2s are also unique in terms of having potential N-glycosylation sites and splice variants. Additional research on non-mammalian IGFBPs is needed to fully understand the molecular/functional evolution of the IGFBP family and the significance of the ternary complex in vertebrates.
Collapse
Affiliation(s)
- Munetaka Shimizu
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan.
| | | | | | | | | |
Collapse
|
26
|
Miller BS, Freeze HH, Hoffmann GF, Sarafoglou K. Pubertal development in ALG6 deficiency (congenital disorder of glycosylation type Ic). Mol Genet Metab 2011; 103:101-3. [PMID: 21334936 PMCID: PMC3869397 DOI: 10.1016/j.ymgme.2011.01.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 01/29/2011] [Accepted: 01/29/2011] [Indexed: 11/22/2022]
Abstract
Information on the hypothalamic pituitary ovarian axis in congenital disorders of glycosylation (CDG) females is scarce. Varying hormonal profiles and degrees of virilization in CDG females suggest a spectrum of yet unidentified mechanisms affected by impaired N-glycosylation. We describe an ALG6D woman who completed puberty with normal gonadotropins and testosterone levels, no virilization, and regular menses. Hormonal follow-up of CDG females is necessary to improve our understanding of the role of glycosylation in pubertal development.
Collapse
Affiliation(s)
- Bradley S Miller
- The Division of Endocrinology, Department of Pediatrics, University of Minnesota Amplatz Children's Hospital, Minneapolis, MN 55455, USA.
| | | | | | | |
Collapse
|
27
|
Firth SM, Yan X, Baxter RC. D440N mutation in the acid-labile subunit of insulin-like growth factor complexes inhibits secretion and complex formation. Mol Endocrinol 2010; 25:307-14. [PMID: 21177759 DOI: 10.1210/me.2010-0295] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The acid-labile subunit (ALS) regulates IGF bioavailability by forming heterotrimeric complexes with IGFs and IGF-binding protein-3 (IGFBP-3). A homozygous missense mutation (D440N) resulting in undetectable circulating levels of ALS with a concomitant reduction in IGF-I and IGFBP-3 has been reported to cause mild growth retardation. To understand how this particular mutation affects ALS circulating levels and IGF-transport function, we expressed recombinant ALS and its variants, D440N-ALS, T442A-ALS, and D440N/T442A-ALS, using adenovirus vectors. Compared with wild-type ALS, the secretion of D440N-ALS was 80% lower. The D440N mutation was proposed to generate an N-glycosylation site additional to the seven existing motifs in ALS. D440N-ALS appeared larger than ALS, attributable to N-linked glycans because deglycosylation with N-glycosidase F reduced both proteins to the same molecular mass. When ALS was incubated with IGF-I and IGFBP-3, 70-80% of IGF-I was detected by gel-filtration chromatography in forms corresponding to the 150-kDa ternary complex. In contrast, when D440N-ALS was tested, less than 30% of IGF-I was found in high molecular mass complexes. Two other ALS variants mutated in the same putative glycosylation site, D440N/T442A-ALS and T442A-ALS, showed similar chromatographic profiles to wild-type ALS. The D440N mutation in ALS generates a hyperglycosylated form with impaired secretion and complex formation, potentially leading to dysregulation of endocrine IGF, thus contributing to the growth retardation observed in the affected patient. This is the first study to explain how a natural mutation, D440N, in ALS impairs its function.
Collapse
Affiliation(s)
- Sue M Firth
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales 2065, Australia.
| | | | | |
Collapse
|
28
|
Freeze HH, Sharma V. Metabolic manipulation of glycosylation disorders in humans and animal models. Semin Cell Dev Biol 2010; 21:655-62. [PMID: 20363348 DOI: 10.1016/j.semcdb.2010.03.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 03/24/2010] [Accepted: 03/26/2010] [Indexed: 12/11/2022]
Abstract
In the last decade, over 40 inherited human glycosylation disorders were identified. Most patients have hypomorphic, rather than null alleles. The phenotypic spectrum is broad and most of the disorders affect embryonic and early post-natal development; a few appear in adult life. Some deficiencies can be treated with simple dietary sugar (monosaccharide) supplements. Here we focus on four glycosylation disorders that have been treated with supplements in patients or in model systems, primarily the mouse. Surprisingly, small differences in the amount of exogenous sugar have a major impact on the diseases in specific cells or organs while others are unaffected. The underlying mechanisms are mostly unknown, but changes in the contributions of the de novo, salvage and dietary pathways may contribute to the beneficial outcome. Clearly, the metabolic chart is not flat; all arrows are not equally robust at all points of time and space. This metabolic perspective may help explain some of these observations and guide the development of other vertebrate models of glycosylation disorders that can respond to dietary manipulation.
Collapse
Affiliation(s)
- Hudson H Freeze
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
29
|
Yamada PM, Lee KW. Perspectives in mammalian IGFBP-3 biology: local vs. systemic action. Am J Physiol Cell Physiol 2009; 296:C954-76. [PMID: 19279229 DOI: 10.1152/ajpcell.00598.2008] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Insulin-like growth factor (IGF) binding protein (IGFBP)-3 has traditionally been defined by its role as a binding protein and its association with IGF delivery and availability. Development of non-IGF binding IGFBP-3 analogs and the use of cell lines devoid of type 1 IGF receptors (IGF-R) have led to critical advances in the field of IGFBP-3 biology. These studies show that IGFBP-3 has IGF-independent roles in inhibiting cell proliferation in cancer cell lines. Nuclear transcription factor, retinoid X receptor (RXR)-alpha, and IGFBP-3 functionally interact to reduce prostate tumor growth and prostate-specific antigen in vivo. Moreover, IGFBP-3 inhibits insulin-stimulated glucose uptake into adipocytes independent of IGF. The purpose of this review is to highlight IGFBP-3 as a novel effector molecule and not just another "binding protein" by discussing its IGF-independent actions on metabolism and cell growth. Although this review presents studies that assume the role of IGFBP-3 as either an endocrine or autocrine/paracrine molecule, these systems may not exist as distinct entities, justifying the examination of IGFBP-3 in an integrated model. Also, we provide an overview of factors that regulate IGFBP-3 availability, including its production, methylation, and ubiquitination. We conclude with the role of IGFBP-3 in whole body systems and possible future applications of IGFBP-3 in physiology.
Collapse
Affiliation(s)
- Paulette M Yamada
- Dept. of Pediatrics, Mattel Children's Hospital, Los Angeles, CA 90095-1752, USA
| | | |
Collapse
|