1
|
Tran SM, Howell KJ, Walsh MR. Increased eye size is favoured in Trinidadian killifish experimentally transplanted into low light, high competition environments. J Evol Biol 2024; 37:960-966. [PMID: 38766701 DOI: 10.1093/jeb/voae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/25/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Intraspecific variation in vertebrate eye size is well known. Ecological factors such as light availability are often correlated with shifts in relative eye size. However, experimental tests of selection on eye size are lacking. Trinidadian killifish (Anablepsoides hartii) are found in sites that differ in predation intensity. Sites that lack predators are characterized by lower light, high killifish densities, low resource availability, and intense competition for food. We previously found that killifish in sites that lack predators have evolved a larger "relative" eye size (eye size corrected for body size) than fish from sites with predators. Here, we used transplant experiments to test how selection operates on eye size when fish that are adapted to sites with predators are translocated into sites where predators are absent. We observed a significant "population × relative eye size" interaction; the relationship between relative eye size and a proxy for fitness (rates of individual growth) was positive in the transplanted fish. The trend was the opposite for resident fish. Such results provide experimental support that larger eyes enhance fitness and are favoured in environments characterized by low light and high competition.
Collapse
Affiliation(s)
- Stephanie M Tran
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, United States
- Department of Ecology and Evolution, Cornell University, Ithaca, NY 14854, United States
| | - Kaitlyn J Howell
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, United States
| | - Matthew R Walsh
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, United States
| |
Collapse
|
2
|
Ausprey IJ. Eye morphology contributes to the ecology and evolution of the aquatic avifauna. J Anim Ecol 2024. [PMID: 39010275 DOI: 10.1111/1365-2656.14141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/30/2024] [Indexed: 07/17/2024]
Abstract
Aquatic birds are notable among the global avifauna for living in environments exposed to large amounts of light. Despite growing evidence that visual adaptations to light underly the ecology and evolution of the avian tree of life, no comprehensive comparative analysis of visual acuity as approximated by eyes size exists for the global aquatic avifauna. Here, I use Stanley Ritland's unpublished dataset of measurements for axial length collected from museum specimens to explore the ecology and evolution of eye size variation for half of the aquatic avifauna (N = 464 species). After correcting for body mass allometry and incorporating phylogenetic relationships, aquatic species had significantly smaller eyes compared to terrestrial species. Furthermore, species using hyperopic foraging manoeuvres, exhibiting carnivorous and insectivorous diets, and displaying nocturnal behaviour had larger eyes. Plunge-divers (e.g. boobies and tropic birds) and stalkers (e.g. herons) had the largest relative eye sizes, especially species identifying prey at higher altitudes or longer distances. Underwater pursuit-divers foraging at greater depths had larger eyes, likely due to the dramatic attenuation of light in the deep ocean. Overall, residual eye size was phylogenetically conserved (l = 0.94), with phylogeny alone explaining 62% of residual eye size variation. Collectively, these results suggest that the relatively bright environments found in aquatic ecosystems negate the adaptive benefits of costly metabolic investments associated with developing and maintaining larger eyes, while also reducing the potential occurrence of disability glare. Strong correlations between eye size and foraging ecology in different aquatic environments corroborate similar comparative studies of terrestrial birds and underscore the central role that vision has played in driving the ecology and evolution of the global avifauna.
Collapse
Affiliation(s)
- Ian J Ausprey
- Division of Conservation Biology, Institute of Ecology & Evolution, University of Bern, Bern, Switzerland
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
3
|
Secondi J, Scriba MF, Mondy N, Lengagne T. Artificial light at night decreases the pupillary light response of dark-adapted toads to bright light. Integr Zool 2023; 18:867-875. [PMID: 36300756 DOI: 10.1111/1749-4877.12693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Artificial light at night (ALAN) is expanding worldwide. Many physiological effects have been reported in animals, but we still know little about the consequences for the visual system. The pupil contributes to control incoming light onto the retina. Sudden increases in light intensity evokes the pupil light reflex (PLR). Intrinsically photosensitive retinal ganglion cells (ipRGC) affect PLR and melatonin expression, which largely regulate circadian rhythms and PLR itself. IpRCG receive inputs from various photoreptors with different peak sensitivities implying that PLR could be altered by a broad range of light sources. We predicted ALAN to enhance PLR. Contrary to our prediction, dark-adapted cane toads Rhinella marina, exposed to ALAN (5 lx) for 12 days, exhibited a lower PLR than controls and individuals exposed to 0.04 lx, even after 1 h in bright light. We cannot conclude whether ALAN induced a larger pupil size in dark-adapted toads or a slower initial contraction. Nevertheless, the response was triggered by a light source with an emission peak (590 nm) well above the sensitivity peak of melanopsin, the main photoreceptor involved in PLR. Therefore, ALAN alters the capacity of toads to regulate the incoming light in the eye at night, which may reduce the performance of visually guided behaviors, and increase mortality by predators or road kills at night. This first study emphasizes the need to focus on the effect of ALAN on the vision of nocturnal organisms to better understand how this sensory system is altered and anticipate the consequences for organisms.
Collapse
Affiliation(s)
- Jean Secondi
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, Villeurbanne, France
- Faculté des Sciences, Université d'Angers, Angers, France
| | - Madeleine F Scriba
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, Villeurbanne, France
| | - Nathalie Mondy
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, Villeurbanne, France
| | - Thierry Lengagne
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, Villeurbanne, France
| |
Collapse
|
4
|
Liu Y, Jiang Y, Xu J, Liao W. Evolution of Avian Eye Size Is Associated with Habitat Openness, Food Type and Brain Size. Animals (Basel) 2023; 13:ani13101675. [PMID: 37238105 DOI: 10.3390/ani13101675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The eye is the primary sensory organ that obtains information from the ecological environments and specifically bridges the brain with the extra environment. However, the coevolutionary relationships between eye size and ecological factors, behaviours and brain size in birds remain poorly understood. Here, we investigate whether eye size evolution is associated with ecological factors (e.g., habitat openness, food type and foraging habitat), behaviours (e.g., migration and activity pattern) and brain size among 1274 avian species using phylogenetically controlled comparative analyses. Our results indicate that avian eye size is significantly associated with habitat openness, food type and brain size. Species living in dense habitats and consuming animals exhibit larger eye sizes compared to species living in open habitats and consuming plants, respectively. Large-brained birds tend to possess larger eyes. However, migration, foraging habitat and activity pattern were not found to be significantly associated with eye size in birds, except for nocturnal birds having longer axial lengths than diurnal ones. Collectively, our results suggest that avian eye size is primarily influenced by light availability, food need and cognitive ability.
Collapse
Affiliation(s)
- Yating Liu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Ying Jiang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Jiliang Xu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Wenbo Liao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong 637009, China
| |
Collapse
|
5
|
Liu W, Chen X, Liang T, Mu T, Ding Y, Liu Y, Liu X. Varying abundance of microplastics in tissues associates with different foraging strategies of coastal shorebirds in the Yellow Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161417. [PMID: 36621485 DOI: 10.1016/j.scitotenv.2023.161417] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/02/2023] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
With the wide application of plastic products, microplastics are now ubiquitous in coastal wetlands, representing a serious threat to the health of coastal organisms. In East Asia, millions of migratory shorebirds depend on the tidal flats of Yellow Sea in China, and they have experienced rapid populations declines due at least partially to the environmental pollution. However, our understanding about the specific exposures and hazards of microplastics, and the factors affecting the bioavailability of microplastics to different shorebird species remains limited, which hinders our ability to address the potential detrimental effects of microplastic accumulation to these fast-disappearing birds. Therefore, this study aims to assess the risk of microplastic exposure in shorebirds, determine the enrichment of microplastics in different tissues, and establish the relationship between shorebirds' foraging strategies and microplastic intake. We extracted and identified microplastics in different tissues sample from the carcasses of 13 individuals in four shorebird species, and measure the abundance, color, size, and roughness of all microplastics found. Microplastics were found in all species except one red-necked stint (Calidris ruficollis). Polyethylene, silicone, polypropylene, and polyurethane were the main polymers identified in shorebirds. Microplastics found in shorebirds that use mixed tactile and visual foraging strategy were smaller, less rough, and low in color diversity, compared to those found in shorebirds that forage predominately using visual cues. In addition, ingested microplastics were disproportionately enriched in different tissues; in particular, the abundance and size of microplastics in the digestive tract were significantly higher than those in the pectoral muscles. Understanding the stress of microplastics posed to coastal shorebirds is critical to facilitate more effective and targeted measurements in coastal pollution control.
Collapse
Affiliation(s)
- Wei Liu
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Xiaomei Chen
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Ting Liang
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Tong Mu
- Princeton School of Public and International Affairs, Princeton University, Princeton, NJ 08544, USA
| | - Yanzhe Ding
- Nantong Marine Environmental Monitoring Center, Ministry of Natural Resources of the People's Republic of China, Nantong 226334, China
| | - Yan Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China.
| | - Xiaoshou Liu
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
6
|
Cathemeral Behavior of Piping Plovers (Charadrius melodus) Breeding along Michigan’s Lake Superior Shoreline. BIRDS 2022. [DOI: 10.3390/birds3010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Shorebirds commonly exhibit cathemeral activity and commonly forage throughout a 24 h period. Conservation of endangered shorebirds should then extend to protection at night, yet little data exists on overall time budgets of such species at night. The Great Lakes population of piping plovers (Charadrius melodus) is the smallest and most endangered, making each breeding pair an essential part of recovery. Intense monitoring of breeding individuals occurs during the daytime, yet we have little understanding of the time budgets of plovers at night. To gain better insight into the cathemeral behavior of plovers we recorded behaviors of 12 plovers from along Michigan’s Lake Superior shoreline during both day and night in 2018 with the use of a night-vision-capable camera, and compared time budgets of plovers between daytime and nighttime. Overall, piping plovers spent more time and a greater proportion of their time foraging at night and more time devoted to being alert during the day. These differences were especially evident during the chick rearing phase. Limited observations suggest that copulatory activity may also be more common at night. Likely, the threat of avian predation on this population drives the increase in nighttime foraging, despite decreased efficiency. Recognizing the importance of decreasing potential for disturbance during the night should be considered in future management strategies regarding the recovery of this endangered species.
Collapse
|
7
|
Huang MCW, Liao CP, Chou CC, Lin JW, Huang WS. Size of Snake Eyes Correlates With Habitat Types and Diel Activity Patterns. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.821965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Eye size influences visual acuity, sensitivity, and temporal resolution and is a result of vertebrate adaptation to the environment. The habitats of snake species are diverse, ranging from fossorial, terrestrial, arboreal, to aquatic. They also demonstrate a variety of behavioral and physiological characteristics, such as activity time, feeding patterns, and prey detection. In this study, we comparatively investigated how the relative eye size (i.e., eye diameter vs. head width) associated with the ecological (i.e., habitat), behavioral (i.e., diel activity pattern, foraging strategy), and physiological traits (i.e., the presence of pits), respectively, across six snake families from Taiwan. Among the traits we examined, we found that terrestrial and/or diurnal snakes tended to exhibit the larger relative eye size, indicating the evolutionary responses of eye size to changes in habitat types and activity patterns, respectively, while no evidence of how foraging strategies and the presence of pits affected snake eye size was found. Our findings not only shed light on the adaptive significance of the visual system in diversifying the behaviors and the environments exploited in snakes, but also underline the interactive effects of multidimensional evolutionary attributes (e.g., behavior, ecology, physiology and phylogeny) on the evolution of optimal visual performance.
Collapse
|
8
|
|
9
|
Lameris TK, Dokter AM, van der Jeugd HP, Bouten W, Koster J, Sand SHH, Westerduin C, Nolet BA. Nocturnal foraging lifts time constraints in winter for migratory geese but hardly speeds up fueling. Behav Ecol 2021; 32:539-552. [PMID: 34104110 PMCID: PMC8177807 DOI: 10.1093/beheco/araa152] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/09/2020] [Accepted: 01/07/2021] [Indexed: 11/25/2022] Open
Abstract
Climate warming advances the optimal timing of breeding for many animals. For migrants to start breeding earlier, a concurrent advancement of migration is required, including premigratory fueling of energy reserves. We investigate whether barnacle geese are time constrained during premigratory fueling and whether there is potential to advance or shorten the fueling period to allow an earlier migratory departure. We equipped barnacle geese with GPS trackers and accelerometers to remotely record birds’ behavior, from which we calculated time budgets. We examined how time spent foraging was affected by the available time (during daylight and moonlit nights) and thermoregulation costs. We used an energetic model to assess onset and rates of fueling and whether geese can further advance fueling by extending foraging time. We show that, during winter, when facing higher thermoregulation costs, geese consistently foraged at night, especially during moonlit nights, in order to balance their energy budgets. In spring, birds made use of the increasing day length and gained body stores by foraging longer during the day, but birds stopped foraging extensively during the night. Our model indicates that, by continuing nighttime foraging throughout spring, geese may have some leeway to advance and increase fueling rate, potentially reaching departure body mass 4 days earlier. In light of rapid climatic changes on the breeding grounds, whether this advancement can be realized and whether it will be sufficient to prevent phenological mismatches remains to be determined.
Collapse
Affiliation(s)
- Thomas K Lameris
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, the Netherlands.,Theoretical and Computational Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, the Netherlands.,NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems, Den Burg, Landsdiep 4, 1797 SZ 't Horntje (Texel), The Netherlands
| | - Adriaan M Dokter
- Theoretical and Computational Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, the Netherlands.,Cornell Lab of Ornithology, Cornell University, Ithaca, NY, USA.,Vogeltrekstation-Dutch Centre for Avian Migration and Demography (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, the Netherlands
| | - Henk P van der Jeugd
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, the Netherlands.,Vogeltrekstation-Dutch Centre for Avian Migration and Demography (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, the Netherlands
| | - Willem Bouten
- Theoretical and Computational Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, the Netherlands
| | - Jasper Koster
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, the Netherlands
| | - Stefan H H Sand
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, the Netherlands
| | - Coen Westerduin
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, the Netherlands
| | - Bart A Nolet
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, the Netherlands.,Theoretical and Computational Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, the Netherlands
| |
Collapse
|
10
|
Ausprey IJ. Adaptations to light contribute to the ecological niches and evolution of the terrestrial avifauna. Proc Biol Sci 2021; 288:20210853. [PMID: 33975477 PMCID: PMC8113912 DOI: 10.1098/rspb.2021.0853] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The role of light in structuring the ecological niche remains a frontier in understanding how vertebrate communities assemble and respond to global change. For birds, eyes represent the primary external anatomical structure specifically evolved to interpret light, yet eye morphology remains understudied compared to movement and dietary traits. Here, I use Stanley Ritland's unpublished measurements of transverse eye diameter from preserved specimens to explore the ecological and phylogenetic drivers of eye morphology for a third of terrestrial avian diversity (N = 2777 species). Species with larger eyes specialized in darker understory and forested habitats, foraging manoeuvres and prey items requiring long-distance optical resolution and were more likely to occur in tropical latitudes. When compared to dietary and movement traits, eye size was a top predictor for habitat, foraging manoeuvre, diet and latitude, adding 8-28% more explanatory power. Eye size was phylogenetically conserved (λ = 0.90), with phylogeny explaining 61% of eye size variation. I suggest that light has contributed to the evolution and assembly of global vertebrate communities and that eye size provides a useful predictor to assess community response to global change.
Collapse
Affiliation(s)
- Ian J Ausprey
- Department of Biology and Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
11
|
Howell KJ, Beston SM, Stearns S, Walsh MR. Coordinated evolution of brain size, structure, and eye size in Trinidadian killifish. Ecol Evol 2021; 11:365-375. [PMID: 33437435 PMCID: PMC7790632 DOI: 10.1002/ece3.7051] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/19/2022] Open
Abstract
Brain size, brain architecture, and eye size vary extensively in vertebrates. However, the extent to which the evolution of these components is intricately connected remains unclear. Trinidadian killifish, Anablepsoides hartii, are found in sites that differ in the presence and absence of large predatory fish. Decreased rates of predation are associated with evolutionary shifts in brain size; males from sites without predators have evolved a relatively larger brain and eye size than males from sites with predators. Here, we evaluated the extent to which the evolution of brain size, brain structure, and eye size covary in male killifish. We utilized wild-caught and common garden-reared specimens to determine whether specific components of the brain have evolved in response to differences in predation and to determine if there is covariation between the evolution of brain size, brain structure, and eye size. We observed consistent shifts in brain architecture in second generation common garden reared, but not wild caught preserved fish. Male killifish from sites that lack predators exhibited a significantly larger telencephalon, optic tectum, cerebellum, and dorsal medulla when compared with fish from sites with predators. We also found positive connections between the evolution of brain structure and eye size but not between overall brain size and eye size. These results provide evidence for evolutionary covariation between the components of the brain and eye size. Such results suggest that selection, directly or indirectly, acts upon specific regions of the brain, rather than overall brain size, to enhance visual capabilities.
Collapse
Affiliation(s)
| | | | - Sara Stearns
- Department of BiologyUniversity of Texas at ArlingtonArlingtonTXUSA
| | - Matthew R. Walsh
- Department of BiologyUniversity of Texas at ArlingtonArlingtonTXUSA
| |
Collapse
|
12
|
Ausprey IJ, Newell FL, Robinson SK. Adaptations to light predict the foraging niche and disassembly of avian communities in tropical countrysides. Ecology 2020; 102:e03213. [PMID: 33002207 DOI: 10.1002/ecy.3213] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/21/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022]
Abstract
The role of light in partitioning ecological niche space remains a frontier in understanding the assembly of terrestrial vertebrate communities and their response to global change. Leveraging recent advances in biologging technology and intensive field surveys of cloud forest bird communities across an agricultural land use gradient in the Peruvian Andes, we demonstrate that eye size predicts (1) the ambient light microenvironment used by free-ranging birds, (2) their foraging niche, and (3) species-specific sensitivity to agricultural land use change. For 15 species carrying light sensors (N = 71 individuals), light intensity levels were best explained by eye size and foraging behavior, with larger-eyed species using darker microenvironments. Across the cloud forest bird community (N = 240 species), hyperopic ("far-sighted") foragers, (e.g., flycatchers), had larger eyes compared to myopic ("near-sighted") species (e.g., gleaners and frugivores); eye size was also larger for myopic insectivores that foraged in the forest understory. Eye size strongly predicted sensitivity to brightly lit habitats across an agricultural land use gradient. Species that increased in abundance in mixed intensity agriculture, including fencerows, silvopasture, and pasture, had smaller eyes, suggesting that light acts as an environmental filter when communities disassemble in a human-disturbed landscape. We suggest that eye size represents a novel functional trait contributing to terrestrial vertebrate community assembly and sensitivity to habitat disturbance.
Collapse
Affiliation(s)
- Ian J Ausprey
- Florida Museum of Natural History and Department of Biology, University of Florida, Gainesville, Florida, 32611, USA
| | - Felicity L Newell
- Florida Museum of Natural History and Department of Biology, University of Florida, Gainesville, Florida, 32611, USA
| | - Scott K Robinson
- Florida Museum of Natural History and Department of Biology, University of Florida, Gainesville, Florida, 32611, USA
| |
Collapse
|
13
|
Thomas KN, Gower DJ, Bell RC, Fujita MK, Schott RK, Streicher JW. Eye size and investment in frogs and toads correlate with adult habitat, activity pattern and breeding ecology. Proc Biol Sci 2020; 287:20201393. [PMID: 32962540 PMCID: PMC7542830 DOI: 10.1098/rspb.2020.1393] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Frogs and toads (Amphibia: Anura) display diverse ecologies and behaviours, which are often correlated with visual capacity in other vertebrates. Additionally, anurans exhibit a broad range of relative eye sizes, which have not previously been linked to ecological factors in this group. We measured relative investment in eye size and corneal size for 220 species of anurans representing all 55 currently recognized families and tested whether they were correlated with six natural history traits hypothesized to be associated with the evolution of eye size. Anuran eye size was significantly correlated with habitat, with notable decreases in eye investment among fossorial, subfossorial and aquatic species. Relative eye size was also associated with mating habitat and activity pattern. Compared to other vertebrates, anurans have relatively large eyes for their body size, indicating that vision is probably of high importance. Our study reveals the role that ecology and behaviour may have played in the evolution of anuran visual systems and highlights the usefulness of museum specimens, and importance of broad taxonomic sampling, for interpreting macroecological patterns.
Collapse
Affiliation(s)
- Kate N Thomas
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK
| | - David J Gower
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK
| | - Rayna C Bell
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560-0162, USA.,Department of Herpetology, California Academy of Sciences, San Francisco, CA 94118, USA
| | - Matthew K Fujita
- Department of Biology, Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Ryan K Schott
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560-0162, USA
| | | |
Collapse
|
14
|
Katti C, Stacey-Solis M, Coronel-Rojas NA, Davies WIL. The Diversity and Adaptive Evolution of Visual Photopigments in Reptiles. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00352] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
15
|
Beston SM, Walsh MR. Natural selection favours a larger eye in response to increased competition in natural populations of a vertebrate. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shannon M. Beston
- Department of Biology University of Texas at Arlington Arlington Texas
| | - Matthew R. Walsh
- Department of Biology University of Texas at Arlington Arlington Texas
| |
Collapse
|
16
|
Beston SM, Dudycha JL, Post DM, Walsh MR. The evolution of eye size in response to increased fish predation in Daphnia. Evolution 2019; 73:792-802. [PMID: 30843603 DOI: 10.1111/evo.13717] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/05/2019] [Accepted: 02/13/2019] [Indexed: 01/27/2023]
Abstract
Variation in eye size is ubiquitous across taxa. Increased eye size is correlated with improved vision and increased fitness via shifts in behavior. Tests of the drivers of eye size evolution have focused on macroevolutionary studies evaluating the importance of light availability. Predator-induced mortality has recently been identified as a potential driver of eye size variation. Here, we tested the influence of increased predation by the fish predator, the alewife (Alosa pseudoharengus) on eye size evolution in waterfleas (Daphnia ambigua) from lakes in Connecticut. We quantified the relative eye size of Daphnia from lakes with and without alewife using wild-caught and third-generation laboratory reared specimens. This includes comparisons between lakes where alewife are present seasonally (anadromous) or permanently (landlocked). Wild-caught specimens did not differ in eye size across all lakes. However, third-generation lab reared Daphnia from lakes with alewife, irrespective of the form of alewife predation, exhibited significantly larger eyes than Daphnia from lakes without alewife. This genetically based increase in eye size may enhance the ability of Daphnia to detect predators. Alternatively, such shifts in eye size may be an indirect response to Daphnia aggregating at the bottom of lakes. To test these mechanisms, we collected Daphnia as a function of depth and found that eye size differed in Daphnia found at the surface versus the bottom of the water column between anadromous alewife and no alewife lakes. However, we found no evidence of Daphnia aggregating at the bottom of lakes. Such results indicate that the evolution of a larger eye may be explained by a connection between eyes and enhanced survival. We discuss the cause of the lack of concordance in eye size variation between our phenotypic and genetic specimens and the ultimate drivers of eye size.
Collapse
Affiliation(s)
- Shannon M Beston
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| | - Jeffry L Dudycha
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, 29208
| | - David M Post
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, 06520
| | - Matthew R Walsh
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| |
Collapse
|
17
|
Demmel Ferreira MM, Tambussi CP, Degrange FJ, Pestoni S, Tirao GA. The cranio-mandibular complex of the nightjar Systellura longirostris (Aves, Caprimulgiformes): functional relationship between osteology, myology and feeding. ZOOLOGY 2019; 132:6-16. [DOI: 10.1016/j.zool.2018.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/05/2018] [Accepted: 11/10/2018] [Indexed: 10/27/2022]
|
18
|
Haram LE, Kinney KA, Sotka EE, Byers JE. Mixed effects of an introduced ecosystem engineer on the foraging behavior and habitat selection of predators. Ecology 2018; 99:2751-2762. [DOI: 10.1002/ecy.2495] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 05/15/2018] [Accepted: 05/24/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Linsey E. Haram
- Odum School of Ecology University of Georgia 140 E Green Street Athens Georgia 30602 USA
- Smithsonian Environmental Research Center 647 Contees Wharf Road Edgewater Maryland 21037 USA
| | - Kaitlin A. Kinney
- Odum School of Ecology University of Georgia 140 E Green Street Athens Georgia 30602 USA
- School of Environment and Natural Resources The Ohio State University 2021 Coffey Road Columbus Ohio 43210 USA
| | - Erik E. Sotka
- Grice Marine Laboratory College of Charleston 205 Fort Johnson Road Charleston South Carolina 29412 USA
| | - James E. Byers
- Odum School of Ecology University of Georgia 140 E Green Street Athens Georgia 30602 USA
| |
Collapse
|
19
|
Smith SM, Angielczyk KD, Schmitz L, Wang SC. Do Bony Orbit Dimensions Predict Diel Activity Pattern in Sciurid Rodents? Anat Rec (Hoboken) 2018; 301:1774-1787. [DOI: 10.1002/ar.23900] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 03/09/2018] [Accepted: 03/17/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Stephanie M. Smith
- Department of Biology and Burke Museum of Natural History and Culture University of Washington Seattle Washington
| | | | - Lars Schmitz
- W.M. Keck Science Department Claremont McKenna, Pfizer, and Scripps Colleges Claremont California
| | - Steve C. Wang
- Department of Mathematics and Statistics Swarthmore College Swarthmore Pennsylvania
| |
Collapse
|
20
|
Beston SM, Wostl E, Walsh MR. The evolution of vertebrate eye size across an environmental gradient: phenotype does not predict genotype in a Trinidadian killifish. Evolution 2017; 71:2037-2049. [PMID: 28574174 DOI: 10.1111/evo.13283] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 11/28/2022]
Abstract
Vertebrates exhibit substantial variation in eye size. Eye size correlates positively with visual capacity and behaviors that enhance fitness, such as predator avoidance. This foreshadows a connection between predation and eye size evolution. Yet, the conditions that favor evolutionary shifts in eye size, besides the well-known role for light availability, are unclear. We tested the influence of predation on the evolution of eye size in Trinidadian killifish, Rivulus hartii. Rivulus are located across a series of communities where they coexist with visually oriented piscivores ("high predation" sites), and no predators ("Rivulus-only" sites). Wild-caught Rivulus from high predation sites generally exhibited a smaller relative eye size than communities that lack predators. Yet, such differences were inconsistent across rivers. Second-generation common garden reared fish revealed repeatable decreases in eye size in Rivulus from high predation sites. We performed additional experiments that tested the importance of light and resources on eye size evolution. Sites that differ in light or resource availability did not differ in eye size. Our results argue that differences in predator-induced mortality underlie genetically-based shifts in vertebrate eye size. We discuss the drivers of eye size evolution in light of the nonparallel trends between the phenotypic and common garden results.
Collapse
Affiliation(s)
- Shannon M Beston
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| | - Elijah Wostl
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| | - Matthew R Walsh
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| |
Collapse
|
21
|
Liu Y, Chen Q, Papenfuss TJ, Lu F, Tang Y. Eye and pit size are inversely correlated in crotalinae: Implications for selection pressure relaxation. J Morphol 2015; 277:107-17. [PMID: 26442780 DOI: 10.1002/jmor.20483] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 08/14/2015] [Accepted: 09/02/2015] [Indexed: 02/05/2023]
Abstract
Mate, prey, and predator recognition often depend on the integration of information from multiple sensory modalities including visual, auditory, and/or olfactory inputs. In Crotalinae, the eyes sense visible light while the pit organs detect infrared (IR) radiation. Previous studies indicate that there is significant overlap between the eye and pit sensory fields and that both senses are involved in recognition processes. This study investigated the relationships between eye and pit sizes in this taxonomic group as a function of phylogeny and habitat. In view of the fact that pit orientation depends largely on snout shape, pit vipers were grouped as follows: 1) arboreal, 2) terrestrial with rounded snout, and 3) terrestrial with pointed snout. The pit orientations and habitant patterns were fully independent of the Crotalinae phylogenetic tree. The phylogenetic generalized least squares model showed that both eye and pit areas were not of significantly phylogenetic relatedness, implying alternatively a strong effect of adaptation on eye and pit sizes. Negative correlations between relative eye and pit areas in terrestrial (both pointed and rounded snouts) and arboreal species were statistically significant. Our results suggest that the eyes and pits function in a complementary fashion such that selection for IR-perception relaxes selection pressures on the visual system and selection for visual discrimination relaxes selection pressures acting on the IR-system.
Collapse
Affiliation(s)
- Yang Liu
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Qin Chen
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Theodore J Papenfuss
- Department of Amphibians and Reptiles, Museum of Vertebrate Zoology, University of California, Berkeley, California
| | - Fang Lu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Yezhong Tang
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
22
|
Brandon CS, James T, Dudycha JL. Selection on incremental variation of eye size in a wild population of Daphnia. J Evol Biol 2015; 28:2112-8. [PMID: 26238473 DOI: 10.1111/jeb.12711] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 07/09/2015] [Accepted: 07/29/2015] [Indexed: 11/28/2022]
Abstract
Several studies of eye morphology have analysed macroevolutionary patterns in the diversity of eyes, and although these studies are often linked to environment or behaviour, they provide only indirect evidence of selection. Specific data to show the microevolutionary potential for adaptation by natural selection in eye morphology have been lacking. We document directional selection on eye size, an important determinant of visual capabilities, in a wild population of the freshwater microcrustacean Daphnia. We show that even slight changes in eye size may have major consequences for fitness. An increase in eye diameter of 19.9 μm - slightly more than one standard deviation - is associated with an increase in clutch size of one egg, or an increase of nearly 20% of the mean clutch size. Furthermore, relative eye size is genetically variable and thus could evolve in response to the observed selective pressure. We conclude that selection on incremental variation in eye size may have led to differences observed on broader taxonomic scales.
Collapse
Affiliation(s)
- C S Brandon
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - T James
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - J L Dudycha
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
23
|
Scales JA, Butler MA. The relationship between microhabitat use, allometry and functional variation in the eyes of Hawaiian
Megalagrion
damselflies. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12479] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jeffrey A. Scales
- Department of Integrative Biology Univeristy of South Florida Tampa FL33620 USA
- Department of Biology University of Hawaii at Manoa Honolulu HI96822 USA
| | | |
Collapse
|
24
|
Martínez-Ortega C, Santos ES, Gil D. Species-specific differences in relative eye size are related to patterns of edge avoidance in an Amazonian rainforest bird community. Ecol Evol 2014; 4:3736-45. [PMID: 25614788 PMCID: PMC4301040 DOI: 10.1002/ece3.1194] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 07/08/2014] [Accepted: 07/15/2014] [Indexed: 11/16/2022] Open
Abstract
Eye size shows a large degree of variation among species, even after correcting for body size. In birds, relatively larger eyes have been linked to predation risk, capture of mobile prey, and nocturnal habits. Relatively larger eyes enhance visual acuity and also allow birds to forage and communicate in low-light situations. Complex habitats such as tropical rain forests provide a mosaic of diverse lighting conditions, including differences among forest strata and at different distances from the forest edge. We examined in an Amazonian forest bird community whether microhabitat occupancy (defined by edge avoidance and forest stratum) was a predictor of relative eye size. We found that relative eye size increased with edge avoidance, but did not differ according to forest stratum. Nevertheless, the relationship between edge avoidance and relative eye size showed a nonsignificant positive trend for species that inhabit lower forest strata. Our analysis shows that birds that avoid forest edges have larger eyes than those living in lighter parts. We expect that this adaptation may allow birds to increase their active daily period in dim areas of the forest. The pattern that we found raises the question of what factors may limit the evolution of large eyes.
Collapse
Affiliation(s)
- Cristina Martínez-Ortega
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC) José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Eduardo Sa Santos
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo Rua do Matão, trav. 14, no 321, Cidade Universitária, 05508-090, São Paulo, SP, Brazil
| | - Diego Gil
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC) José Gutiérrez Abascal 2, 28006, Madrid, Spain
| |
Collapse
|
25
|
Kawabe S, Shimokawa T, Miki H, Matsuda S, Endo H. Variation in avian brain shape: relationship with size and orbital shape. J Anat 2013; 223:495-508. [PMID: 24020351 DOI: 10.1111/joa.12109] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2013] [Indexed: 11/29/2022] Open
Abstract
There is wide variation in brain shape among birds. Differences in brain dimensions reflect species-specific sensory capacities and behavioral repertoires that are shaped by environmental and biological factors during evolution. Most previous studies aimed at defining factors impacting brain shape have used volumetric or linear measurements. However, few have explored the quantitative indices of three-dimensional (3D) brain geometry that are absolutely imperative to understanding avian evolutionary history. This study aimed: (i) to explore the relationship between brain shape and overall brain size; and (ii) to assess the relationship between brain shape and orbital shape. Avian brain endocasts were reconstructed from computed tomography images and analyzed using 3D geometric morphometrics. Principal component analysis revealed dominant regional variations in avian brain shape and shape correlations between the telencephalon and cerebellum, between the cerebellum and myelencephalon, and between the diencephalon and optic tectum. Brain shape changes relative to total brain size were determined by multivariate regression analysis. Larger brain size was associated with a relatively slender telencephalon and differences in brain orientation. The correlation between brain shape and orbital shape was assessed by two-block partial least-squares analysis. Relatively round brains with a ventrally flexed brain base were associated with rounder orbits, while narrower brains with a flat brain base were associated with more elongated orbits. The shapes of functionally associated avian brain regions are correlated, and orbital size and shape are dominant factors influencing the overall shape of the avian brain.
Collapse
Affiliation(s)
- Soichiro Kawabe
- The University Museum, The University of Tokyo, Tokyo, Japan; Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan; Gifu Prefectural Museum, Gifu, Japan
| | | | | | | | | |
Collapse
|
26
|
Sokos CK, Birtsas PK, Connelly JW, Papaspyropoulos KG. Hunting of migratory birds: disturbance intolerant or harvest tolerant? WILDLIFE BIOLOGY 2013. [DOI: 10.2981/12-032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
27
|
Schmitz L, Motani R, Oufiero CE, Martin CH, McGee MD, Gamarra AR, Lee JJ, Wainwright PC. Allometry indicates giant eyes of giant squid are not exceptional. BMC Evol Biol 2013; 13:45. [PMID: 23418818 PMCID: PMC3661360 DOI: 10.1186/1471-2148-13-45] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 02/11/2013] [Indexed: 11/30/2022] Open
Abstract
Background The eyes of giant and colossal squid are among the largest eyes in the history of life. It was recently proposed that sperm whale predation is the main driver of eye size evolution in giant squid, on the basis of an optical model that suggested optimal performance in detecting large luminous visual targets such as whales in the deep sea. However, it is poorly understood how the eye size of giant and colossal squid compares to that of other aquatic organisms when scaling effects are considered. Results We performed a large-scale comparative study that included 87 squid species and 237 species of acanthomorph fish. While squid have larger eyes than most acanthomorphs, a comparison of relative eye size among squid suggests that giant and colossal squid do not have unusually large eyes. After revising constants used in a previous model we found that large eyes perform equally well in detecting point targets and large luminous targets in the deep sea. Conclusions The eyes of giant and colossal squid do not appear exceptionally large when allometric effects are considered. It is probable that the giant eyes of giant squid result from a phylogenetically conserved developmental pattern manifested in very large animals. Whatever the cause of large eyes, they appear to have several advantages for vision in the reduced light of the deep mesopelagic zone.
Collapse
Affiliation(s)
- Lars Schmitz
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Liu Y, Ding L, Lei J, Zhao E, Tang Y. Eye size variation reflects habitat and daily activity patterns in colubrid snakes. J Morphol 2012; 273:883-93. [PMID: 22549850 DOI: 10.1002/jmor.20028] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 02/21/2012] [Accepted: 02/29/2012] [Indexed: 12/26/2022]
Abstract
The functioning of the vertebrate eye depends on its absolute size, which is presumably adapted to specific needs. Eye size variation in lidless and spectacled colubrid snakes was investigated, including 839 specimens belonging to 49 genera, 66 species and subspecies. Variations of adult eye diameters (EDs) in both absolute and relative terms between species were correlated with parameters reflecting behavioral ecology. In absolute terms, eye of arboreal species was larger than in terrestrial and semiaquatic species. For diurnal species, EDs of terrestrial species do not differ from semiaquatic species; for nocturnal species the ED of terrestrial species is larger than fossorial species but not different from semiaquatic species. In relative terms, ED did not differ significantly by habitat for diurnal species. Although the ED of terrestrial species is larger than fossorial species there were no differences for nocturnal species between semiaquatic and fossorial snakes. In contrast to other vertebrates studied to date, colubrid EDs in absolute and relative terms are larger in diurnal than in nocturnal species. These observations suggest that among colubrid snakes, eye size variation reflects adaptation to specific habitats, foraging strategies and daily activities, independently of phylogeny.
Collapse
Affiliation(s)
- Yang Liu
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
| | | | | | | | | |
Collapse
|
29
|
Heard-Booth AN, Kirk EC. The influence of maximum running speed on eye size: a test of Leuckart's Law in mammals. Anat Rec (Hoboken) 2012; 295:1053-62. [PMID: 22539450 DOI: 10.1002/ar.22480] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 01/28/2012] [Accepted: 03/20/2012] [Indexed: 12/28/2022]
Abstract
Vertebrate eye size is influenced by many factors, including body or head size, diet, and activity pattern. Locomotor speed has also been suggested to influence eye size in a relationship known as Leuckart's Law. Leuckart's Law proposes that animals capable of achieving fast locomotor speeds require large eyes to enhance visual acuity and avoid collisions with environmental obstacles. The selective influence of rapid flight has been invoked to explain the relatively large eyes of birds, but Leuckart's Law remains untested in nonavian vertebrates. This study investigates the relationship between eye size and maximum running speed in a diverse sample of mammals. Measures of axial eye diameter, maximum running speed, and body mass were collected from the published literature for 50 species from 10 mammalian orders. This analysis reveals that absolute eye size is significantly positively correlated with maximum running speed in mammals. Moreover, the relationship between eye size and running speed remains significant when the potentially confounding effects of body mass and phylogeny are statistically controlled. The results of this analysis are therefore consistent with the expectations of Leuckart's Law and demonstrate that faster-moving mammals have larger eyes than their slower-moving close relatives. Accordingly, we conclude that maximum running speed is one of several key selective factors that have influenced the evolution of eye size in mammals.
Collapse
|
30
|
Pearce E, Dunbar R. Latitudinal variation in light levels drives human visual system size. Biol Lett 2011; 8:90-3. [PMID: 21795263 DOI: 10.1098/rsbl.2011.0570] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ambient light levels influence visual system size in birds and primates. Here, we argue that the same is true for humans. Light levels, in terms of both the amount of light hitting the Earth's surface and day length, decrease with increasing latitude. We demonstrate a significant positive relationship between absolute latitude and human orbital volume, an index of eyeball size. Owing to tight scaling between visual system components, this will translate into enlarged visual cortices at higher latitudes. We also show that visual acuity measured under full-daylight conditions is constant across latitudes, indicating that selection for larger visual systems has mitigated the effect of reduced ambient light levels. This provides, to our knowledge, the first support that light levels drive intraspecific variation in visual system size in the human population.
Collapse
Affiliation(s)
- Eiluned Pearce
- Institute of Cognitive and Evolutionary Anthropology, University of Oxford, Oxford, UK.
| | | |
Collapse
|
31
|
Veilleux CC, Lewis RJ. Effects of Habitat Light Intensity on Mammalian Eye Shape. Anat Rec (Hoboken) 2011; 294:905-14. [DOI: 10.1002/ar.21368] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 01/14/2011] [Indexed: 11/11/2022]
|
32
|
Willacker JJ, von Hippel FA, Wilton PR, Walton KM. Classification of threespine stickleback along the benthic-limnetic axis. Biol J Linn Soc Lond 2010; 101:595-608. [PMID: 21221422 DOI: 10.1111/j.1095-8312.2010.01531.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many species of fish display morphological divergence between individuals feeding on macroinvertebrates associated with littoral habitats (benthic morphotypes) and individuals feeding on zooplankton in the limnetic zone (limnetic morphotypes). Threespine stickleback (Gasterosteus aculeatus L.) have diverged along the benthic-limnetic axis into allopatric morphotypes in thousands of populations and into sympatric species pairs in several lakes. However, only a few well known populations have been studied because identifying additional populations as either benthic or limnetic requires detailed dietary or observational studies. Here we develop a Fisher's linear discriminant function based on the skull morphology of known benthic and limnetic stickleback populations from the Cook Inlet Basin of Alaska and test the feasibility of using this function to identify other morphologically divergent populations. Benthic and limnetic morphotypes were separable using this technique and of 45 populations classified, three were identified as morphologically extreme (two benthic and one limnetic), nine as moderately divergent (three benthic and six limnetic) and the remaining 33 populations as morphologically intermediate. Classification scores were found to correlate with eye size, the depth profile of lakes, and the presence of invasive northern pike (Esox lucius). This type of classification function provides a means of integrating the complex morphological differences between morphotypes into a single score that reflects the position of a population along the benthic-limnetic axis and can be used to relate that position to other aspects of stickleback biology.
Collapse
Affiliation(s)
- James J Willacker
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Dr., Anchorage AK 99508, USA
| | | | | | | |
Collapse
|
33
|
Iwaniuk AN, Heesy CP, Hall MI. Morphometrics of the eyes and orbits of the nocturnal Swallow-tailed Gull (Creagrus furcatus). CAN J ZOOL 2010. [DOI: 10.1139/z10-051] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Swallow-tailed Gull ( Creagrus furcatus (Neboux, 1846)) is known for its nocturnal feeding habits and apparently large eyes. Despite frequent observations of its large eyes, detailed measurements of its eyes and orbits are wanting. Here, we provide a detailed analysis of the size and shape of the eye and orbits of this unique species in relation to a range of other gull species. Although the C. furcatus does have a slightly enlarged cornea and optical axis, neither the transverse orbit diameter nor the shape of its eye differs significantly from other larids. In addition, we found no significant difference between C. furcatus and other gulls in terms of its orbit dimensions and orbit orientation. We therefore conclude that C. furcatus does not possess a transversely enlarged eye, but rather a slightly larger cornea and longer eye. Our results do not, however, preclude the presence of other changes in the visual system, such as retinal morphology or neurophysiology, that could be adaptive for nocturnal feeding.
Collapse
Affiliation(s)
- Andrew N. Iwaniuk
- Division of Birds, National Museum of Natural History, Washington, DC 20718, USA
- Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- Department of Anatomy, Midwestern University, 19555 North 59th Avenue, Glendale, AZ 85308, USA
- Department of Physiology, Midwestern University, 19555 North 59th Avenue, Glendale, AZ 85308, USA
| | - Christopher P. Heesy
- Division of Birds, National Museum of Natural History, Washington, DC 20718, USA
- Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- Department of Anatomy, Midwestern University, 19555 North 59th Avenue, Glendale, AZ 85308, USA
- Department of Physiology, Midwestern University, 19555 North 59th Avenue, Glendale, AZ 85308, USA
| | - Margaret I. Hall
- Division of Birds, National Museum of Natural History, Washington, DC 20718, USA
- Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- Department of Anatomy, Midwestern University, 19555 North 59th Avenue, Glendale, AZ 85308, USA
- Department of Physiology, Midwestern University, 19555 North 59th Avenue, Glendale, AZ 85308, USA
| |
Collapse
|
34
|
Morphological differences between the eyeballs of nocturnal and diurnal amniotes revisited from optical perspectives of visual environments. Vision Res 2010; 50:936-46. [DOI: 10.1016/j.visres.2010.03.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 01/06/2010] [Accepted: 03/16/2010] [Indexed: 11/21/2022]
|
35
|
Wcislo WT, Tierney SM. Behavioural environments and niche construction: the evolution of dim-light foraging in bees. Biol Rev Camb Philos Soc 2008; 84:19-37. [PMID: 19046401 DOI: 10.1111/j.1469-185x.2008.00059.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Most bees forage for floral resources during the day, but temporal patterns of foraging activity vary extensively, and foraging in dim-light environments has evolved repeatedly. Facultative dim-light foraging behaviour is known in five of nine families of bees, while obligate behaviour is known in four families and evolved independently at least 19 times. The light intensity under which bees forage varies by a factor of 10(8), and therefore the evolution of dim-light foraging represents the invasion of a new, extreme niche. The repeated evolution of dim-light foraging behaviour in bees allows tests of the hypothesis that behaviour acts as an evolutionary pacemaker. With the exception of one species of Apis, facultative dim-light foragers show no external structural traits that are thought to enable visually mediated flight behaviour in low-light environments. By contrast, most obligate dim-light foragers show a suite of convergent optical traits such as enlarged ocelli and compound eyes. In one intensively studied species (Megalopta genalis) these optical changes are associated with neurobiological changes to enhance photon capture. The available ecological evidence suggests that an escape from competition for pollen and nectar resources and avoidance of natural enemies are driving factors in the evolution of obligate dim-light foraging.
Collapse
Affiliation(s)
- William T Wcislo
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panamá.
| | | |
Collapse
|
36
|
The scaling of eye size in adult birds: Relationship to brain, head and body sizes. Vision Res 2008; 48:2345-51. [DOI: 10.1016/j.visres.2008.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 08/05/2008] [Accepted: 08/06/2008] [Indexed: 11/21/2022]
|
37
|
Frederiksen R, Warrant EJ. Visual sensitivity in the crepuscular owl butterfly Caligo memnon and the diurnal blue morpho Morpho peleides: a clue to explain the evolution of nocturnal apposition eyes? J Exp Biol 2008; 211:844-51. [DOI: 10.1242/jeb.012179] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Insects active in dim light, such as moths and many beetles, normally have superposition compound eyes to increase photon capture. But there are nocturnal and crepuscular insects – such as some species of bees, wasps and butterflies – that have apposition compound eyes. These are likely to have adaptations – including large eye and facet size and coarsened spatial and temporal resolution – that improve their sensitivity and thus their visual reliability. Is this also true for crepuscular insects that are active at intermediate intensities? To test this hypothesis, the visual performance of two closely related butterflies, the diurnal blue morpho Morpho peleides and the crepuscular owl butterfly Caligo memnon, were compared. Compared to the diurnal M. peleides, the crepuscular C. memnon does not appear to be adapted to a nocturnal lifestyle in terms of spatial resolution: the interommatidial angleΔϕ is similar in both species, and acceptance angles, Δρ,are only marginally larger in C. memnon. Moreover, temporal resolution is only a little coarser in C. memnon compared to M. peleides. Using a model for sensitivity, we found that the eyes of C. memnon are about four times as light-sensitive as those of M. peleides in the frontal visual field, much of this difference being due to the larger facet diameters found in C. memnon. In summary, greater visual sensitivity has evolved in C. memnon than in M. peleides, showing that adaptations that improve sensitivity can be found not only in nocturnal apposition eyes, but also on a smaller scale in crepuscular apposition eyes.
Collapse
Affiliation(s)
- Rikard Frederiksen
- Lund University, Department of Cell and Organism Biology,Helgonavägen 3, S-22362 Lund, Sweden
| | - Eric J. Warrant
- Lund University, Department of Cell and Organism Biology,Helgonavägen 3, S-22362 Lund, Sweden
| |
Collapse
|
38
|
Hulsey CD, Mims MC, Streelman JT. Do constructional constraints influence cichlid craniofacial diversification? Proc Biol Sci 2007; 274:1867-75. [PMID: 17519189 PMCID: PMC2270932 DOI: 10.1098/rspb.2007.0444] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 05/01/2007] [Accepted: 04/02/2007] [Indexed: 11/12/2022] Open
Abstract
Constraints on form should determine how organisms diversify. Owing to competition for the limited space within the body, investment in adjacent structures may frequently represent an evolutionary compromise. For example, evolutionary trade-offs between eye size and jaw muscles in cichlid fish of the African great lakes are thought to represent a constructional constraint that influenced the diversification of these assemblages. To test the evolutionary independence of these structures in Lake Malawi cichlid fish, we measured the mass of the three major adductor mandibulae (AM) muscles and determined the eye volume in 41 species. Using both traditional and novel methodologies to control for resolved and unresolved phylogenetic relationships, we tested the evolutionary independence of these four structures. We found that evolutionary change in the AM muscles was positively correlated, suggesting that competition for space in the head has not influenced diversification among these jaw muscles. Furthermore, there was no negative relationship between change in total AM muscle mass and eye volume, indicating that there has been little effect of the evolution of eye size on AM evolution in Lake Malawi cichlids. The comparative approach used here should provide a robust method to test whether constructional constraints frequently limit phenotypic change in adaptive radiations.
Collapse
Affiliation(s)
- C D Hulsey
- School of Biology and Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | | | | |
Collapse
|