1
|
Fu C, Zhou KY, Hu Y, Zhang YF, Fu SJ. The effects of the predictability of acclimatory temperature on the growth and thermal tolerance of juvenile Spinibarbus sinensis. Comp Biochem Physiol A Mol Integr Physiol 2024; 295:111652. [PMID: 38703990 DOI: 10.1016/j.cbpa.2024.111652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/01/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Heated effluent injection, cold hypolimnetic water inputs from dams, and extreme weather events can lead to unpredictable temperature fluctuations in natural waters, impacting fish performance and fitness. We hypothesized that fish exposed to such unpredictable fluctuations would exhibit weaker growth and enhanced thermal tolerance compared to predictable conditions. Qingbo (Spinibarbus sinensis) was selected as the experimental subject in this study. The qingbo were divided into a constant temperature group (C, 22 ± 0.5 °C), a predictable temperature fluctuation group (PF, 22 ± 4 °C, first warming, then cooling within a day) and an unpredictable temperature fluctuation group (UF, 22 ± 4 °C, the order of warming or cooling is random). After 40 days of temperature acclimation, the growth, metabolic rate, spontaneous activity, thermal tolerance, plasma cortisol concentration and liver hsp70 level of the fish were measured. Unexpectedly, neither the PF nor the UF group showed decreased growth compared to the C group. This could be attributed to the fact that temperature variation did not lead to a substantial increase in basic energy expenditure. Furthermore, feeding rates increased due to temperature fluctuations, although the difference was not significant. Both the PF and UF groups exhibited increased upper thermal tolerance, but only the UF group exhibited improved lower thermal tolerance and higher liver hsp70 levels compared to the C group. The qingbo that experienced unpredictable temperature fluctuations had the best thermal tolerance among the 3 groups, which might have occurred because they had the highest level of hsp70 expression. This may safeguard fish against the potential lethal consequences of extreme temperatures in the future. These findings suggested that qingbo exhibited excellent adaptability to both predictable and unpredictable temperature fluctuations, which may be associated with frequent temperature fluctuations in its natural habitat.
Collapse
Affiliation(s)
- Cheng Fu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission, Chongqing Normal University, Chongqing 401331, China
| | - Ke-Ying Zhou
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission, Chongqing Normal University, Chongqing 401331, China
| | - Yue Hu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission, Chongqing Normal University, Chongqing 401331, China
| | - Yong-Fei Zhang
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission, Chongqing Normal University, Chongqing 401331, China
| | - Shi-Jian Fu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
2
|
Oborová V, Šugerková M, Gvoždík L. Sensitivity of amphibian embryos to timing and magnitude of present and future thermal extremes. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:377-388. [PMID: 38327237 DOI: 10.1002/jez.2791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/21/2023] [Accepted: 01/16/2024] [Indexed: 02/09/2024]
Abstract
Ongoing climate change is increasing the frequency and intensity of extreme temperature events. Unlike the gradual increase on average environmental temperatures, these short-term and unpredictable temperature extremes impact population dynamics of ectotherms through their effect on individual survival. While previous research has predominantly focused on the survival rate of terrestrial embryos under acute heat stress, less attention has been dedicated to the nonlethal effects of ecologically realistic timing and magnitude of temperature extremes on aquatic embryos. In this study, we investigated the influence of the timing and magnitude of current and projected temperature extremes on embryonic life history traits and hatchling behavior in the alpine newt, Ichthyosaura alpestris. Using a factorial experiment under controlled laboratory conditions, we exposed 3- or 10-day-old embryos to different regimes of extreme temperatures for 3 days. Our results show that exposure to different extreme temperature regimes led to a shortened embryonic development time and an increase in hatchling length, while not significantly affecting embryonic survival. The duration of development was sensitive to the timing of temperature extremes, as early exposure accelerated embryo development. Exposure to temperature extremes during embryonic development heightened the exploratory activity of hatched larvae. We conclude that the timing and magnitude of ecologically realistic temperature extremes during embryogenesis have nonlethal effects on life history and behavioral traits. This suggests that species' vulnerability to climate change might be determined by other ecophysiological traits beyond embryonic thermal tolerance in temperate pond-breeding amphibians.
Collapse
Affiliation(s)
- Valentína Oborová
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Sciences, Masaryk University, Brno, Czech Republic
| | - Monika Šugerková
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
| | - Lumír Gvoždík
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
| |
Collapse
|
3
|
Andrew S, Swart S, McKenna S, Morissette J, Gillis CA, Linnansaari T, Currie S, Morash AJ. The impacts of diel thermal variability on growth, development and performance of wild Atlantic salmon ( Salmo salar) from two thermally distinct rivers. CONSERVATION PHYSIOLOGY 2024; 12:coae007. [PMID: 38487731 PMCID: PMC10939361 DOI: 10.1093/conphys/coae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 03/17/2024]
Abstract
Temperature in many natural aquatic environments follows a diel cycle, but to date, we know little on how diel thermal cycles affect fish biology. The current study investigates the growth, development and physiological performance of wild Atlantic salmon collected from the Miramichi and Restigouche rivers (NB, Canada). Fish were collected as parr and acclimated to either 16-21 or 19-24°C diel thermal cycles throughout the parr and smolt life stages. Both Miramichi and Restigouche Atlantic salmon parr grew at similar rates during 16-21 or 19-24°C acclimations. However, as smolts, the growth rates of the Miramichi (-8% body mass day-1) and Restigouche (-38% body mass day-1) fish were significantly slower at 19-24°C, and were in fact negative, indicating loss of mass in this group. Acclimation to 19-24°C also increased Atlantic salmon CTmax. Our findings suggest that both life stage and river origin impact Atlantic salmon growth and performance in the thermal range used herein. These findings provide evidence for local adaptation of Atlantic salmon, increased vulnerability to warming temperatures, and highlight the differential impacts of these ecologically relevant diel thermal cycles on the juvenile life stages in this species.
Collapse
Affiliation(s)
- Sean Andrew
- Department of Biology, Mount Allison University, 62 York St., Sackville, NB E4L 1G7, Canada
| | - Sula Swart
- Department of Biology, Mount Allison University, 62 York St., Sackville, NB E4L 1G7, Canada
| | - Stephanie McKenna
- Department of Biology, Mount Allison University, 62 York St., Sackville, NB E4L 1G7, Canada
| | - Jenna Morissette
- Department of Biology, Mount Allison University, 62 York St., Sackville, NB E4L 1G7, Canada
| | - Carole-Anne Gillis
- Gespe’gewa’gi Institute of Natural Understanding, 1 Marshall Way, Listuguj, QC, G0C 2R0, Canada
| | - Tommi Linnansaari
- Department of Biology, Faculty of Forestry and Environmental Sciences, and Canadian Rivers Institute, University of New Brunswick, 28 Dineen Drive, Fredericton, NB, E3B 5A3, Canada
| | - Suzanne Currie
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, NS, B4P 2R6, Canada
| | - Andrea J Morash
- Department of Biology, Mount Allison University, 62 York St., Sackville, NB E4L 1G7, Canada
| |
Collapse
|
4
|
Wagener C, Kruger N, Measey J. Progeny of Xenopus laevis from altitudinal extremes display adaptive physiological performance. J Exp Biol 2021; 224:jeb.233031. [PMID: 34424980 DOI: 10.1242/jeb.233031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 02/11/2021] [Indexed: 11/20/2022]
Abstract
Environmental temperature variation generates adaptive phenotypic differentiation in widespread populations. We used a common garden experiment to determine whether offspring with varying parental origins display adaptive phenotypic variation related to different thermal conditions experienced in parental environments. We compared burst swimming performance and critical thermal limits of African clawed frog (Xenopus laevis) tadpoles bred from adults captured at high (∼2000 m above sea level) and low (∼ 5 m above sea level) altitudes. Maternal origin significantly affected swimming performance. Optimal swimming performance temperature (Topt) had a >9°C difference between tadpoles with low altitude maternal origins (pure- and cross-bred, 35.0°C) and high-altitude maternal origins (pure-bred, 25.5°C; cross-bred, 25.9°C). Parental origin significantly affected critical thermal (CT) limits. Pure-bred tadpoles with low-altitude parental origins had higher CTmax (37.8±0.8°C) than pure-bred tadpoles with high-altitude parental origins and all cross-bred tadpoles (37.0±0.8 and 37.1±0.8°C). Pure-bred tadpoles with low-altitude parental origins and all cross-bred tadpoles had higher CTmin (4.2±0.7 and 4.2±0.7°C) than pure-bred tadpoles with high-altitude parental origins (2.5±0.6°C). Our study shows that the varying thermal physiological traits of Xenopus laevis tadpoles are the result of adaptive responses to their parental thermal environments. This study is one of few demonstrating potential intraspecific evolution of critical thermal limits in a vertebrate species. Multi-generation common garden experiments and genetic analyses would be required to further tease apart the relative contribution of plastic and genetic effects to the adaptive phenotypic variation observed in these tadpoles.
Collapse
Affiliation(s)
- Carla Wagener
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, 7602 South Africa
| | - Natasha Kruger
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, 7602 South Africa.,Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - John Measey
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, 7602 South Africa
| |
Collapse
|
5
|
Gvoždík L, Boukal DS. Impacts of predator-induced behavioural plasticity on the temperature dependence of predator-prey activity and population dynamics. J Anim Ecol 2020; 90:503-514. [PMID: 33159686 DOI: 10.1111/1365-2656.13383] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 11/04/2020] [Indexed: 11/28/2022]
Abstract
Predation is a key ecological interaction affecting populations and communities. Climate warming can modify this interaction both directly by the kinetic effects of temperature on biological rates and indirectly through integrated behavioural and physiological responses of the predators and prey. Temperature dependence of predation rates can further be altered by predator-induced plasticity of prey locomotor activity, but empirical data about this effect are lacking. We propose a general framework to understand the influence of predator-induced developmental plasticity on behavioural thermal reaction norms in prey and their consequences for predator-prey dynamics. Using a mesocosm experiment with dragonfly larvae (predator) and newt larvae (prey), we tested if the predator-induced plasticity alters the elevation or the slope of the thermal reaction norms for locomotor activity metrics in prey. We also estimated the joint predator-prey thermal response in mean locomotor speed, which determines prey encounter rate, and modelled the effect of both phenomena on predator-prey population dynamics. Thermal reaction norms for locomotor activity in prey were affected by predation risk cues but with minor influence on the joint predator-prey behavioural response. We found that predation risk cues significantly decreased the intercept of thermal reaction norm for total activity rate (i.e. all body movements) but not the other locomotor activity metrics in the prey, and that prey locomotor activity rate and locomotor speed increased with prey density. Temperature had opposite effects on the mean relative speed of predator and prey as individual speed increased with temperature in predators but decreased in prey. This led to a negligible effect of body temperature on predicted prey encounter rates and predator-prey dynamics. The behavioural component of predator-prey interaction varied much more between individuals than with temperature and the presence of predation risk cues in our system. We conclude that within-population variation in locomotor activity can buffer the influence of body temperature and predation risk cues on predator-prey interactions, and further research should focus on the magnitude and sources of behavioural variation in interacting species to predict the impact of climate change on predator-prey interactions and food web dynamics.
Collapse
Affiliation(s)
- Lumír Gvoždík
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
| | - David S Boukal
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.,Czech Academy of Sciences, Biology Centre, Institute of Entomology, České Budějovice, Czech Republic
| |
Collapse
|
6
|
Padilla P, Courant J, Herrel A. Allocation trade-offs impact organ size and muscle architecture in an invasive population of Xenopus laevis in Western France. J Anat 2019; 235:1057-1064. [PMID: 31373390 DOI: 10.1111/joa.13063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2019] [Indexed: 11/28/2022] Open
Abstract
Invasive species are a global scourge and often negatively impact native species. Understanding the expansion and dispersal limits of these species is essential. As previous studies have demonstrated increased locomotor performance for populations at the edge of the range of expanding populations, studies of locomotion including the anatomical and physiological traits underlying dispersal capacity are of interest. We focus here on an invasive population of Xenopus laevis introduced in France nearly forty years ago. Previous studies have demonstrated differences in mobility between populations from the centre and the edge of the invasive range, with individuals from the range edge possessing a higher endurance capacity. We test here whether range-edge frogs show anatomical differences in organs or muscles underlying these observed differences of performance. We dissected 10 males and 10 females from central and range-edge sites (40 animals in total) and measured the mass of their organs and the mass, the length, and the physiological cross-sectional area (PCSA) of 28 hind limb muscles. Our results show anatomical differences with individuals from the range edge possessing heavier, longer and more forceful muscles. Moreover, females from the range edge had a heavier heart but lighter stomach than those of the centre of the range. Future studies comparing the morphology between native and invasive populations in other regions or for other species will be especially insightful to better understand the possible adaptive changes in invasive populations and the limits on dispersal capacity.
Collapse
Affiliation(s)
- Pablo Padilla
- Département Adaptations du Vivant, UMR 7179 C.N.R.S/M.N.H.N., Paris, France
| | - Julien Courant
- Département Adaptations du Vivant, UMR 7179 C.N.R.S/M.N.H.N., Paris, France
| | - Anthony Herrel
- Département Adaptations du Vivant, UMR 7179 C.N.R.S/M.N.H.N., Paris, France.,Evolutionary Morphology of Vertebrates, Ghent University, Ghent, Belgium
| |
Collapse
|
7
|
Verheyen J, Stoks R. Current and future daily temperature fluctuations make a pesticide more toxic: Contrasting effects on life history and physiology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:209-218. [PMID: 30798022 DOI: 10.1016/j.envpol.2019.02.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/22/2019] [Accepted: 02/07/2019] [Indexed: 05/14/2023]
Abstract
There is increasing concern that climate change may make organisms more sensitive to chemical pollution. Many pesticides are indeed more toxic at higher mean temperatures. Yet, we know next to nothing about the effect of another key component of climate change, the increase of daily temperature fluctuations (DTFs), on pesticide toxicity. Therefore, we tested the effect of the pesticide chlorpyrifos under different levels of DTF (constant = 0 °C, low = 5 °C (current maximum level) and high = 10 °C (predicted maximum level under global warming)) around the same mean temperature on key life history and physiological traits of Ischnura elegans damselfly larvae in a common-garden experiment. At all levels of DTF, chlorpyrifos exposure was stressful: it reduced energy storage (fat content) and the activity of its target enzyme acetylcholinesterase, while it increased the activity of the detoxification enzyme cytochrome P450 monooxygenase. Notably, chlorpyrifos did not cause mortality or reduced growth rate at the constant temperature (0 °C DTF), yet increased mortality 6x and reduced growth rate with ca. 115% in the presence of DTF. This indicates that daily short-term exposures to higher temperatures can increase pesticide toxicity. Our data suggest that when 5 °C DTF will become more common in the studied high-latitude populations, this will increase the toxicity of CPF, and that a further increase from 5° DTF to 10 °C DTF may not result in a further increase of pesticide toxicity. Our results highlight the biological importance of including daily temperature fluctuations in ecological risk assessment of pesticides and as an extra dimension in the climate-induced toxicant sensitivity concept.
Collapse
Affiliation(s)
- Julie Verheyen
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000, Leuven, Belgium.
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000, Leuven, Belgium
| |
Collapse
|
8
|
Winterová B, Gvoždík L. Influence of interspecific competitors on behavioral thermoregulation: developmental or acute plasticity? Behav Ecol Sociobiol 2018. [DOI: 10.1007/s00265-018-2587-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Eme J, Mueller CA, Lee AH, Melendez C, Manzon RG, Somers CM, Boreham DR, Wilson JY. Daily, repeating fluctuations in embryonic incubation temperature alter metabolism and growth of Lake whitefish (Coregonus clupeaformis). Comp Biochem Physiol A Mol Integr Physiol 2018; 226:49-56. [PMID: 30114471 DOI: 10.1016/j.cbpa.2018.07.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/11/2018] [Accepted: 07/29/2018] [Indexed: 01/01/2023]
Abstract
Lake whitefish (Coregonus clupeaformis) utilize overwintering embryonic development (up to 180 days), and such stenothermic, cold-water embryos may be particularly susceptible to thermal shifts. We incubated whitefish embryos in temperature treatments that were constant temperature (2.0 ± 0.1 °C, 5.0 ± 0.1 °C, and 8.0 ± 0.1 °C; mean ± SD) or variable temperature (VT, mean = 5.0 ± 0.3 °C). In the VT, a daily 2 °C temperature change followed a continuous pattern throughout development: 2-4-6-8-6-4-2 °C. Hatchling survival proportion from fertilization to hatch was significantly impacted by incubation temperature (P < 0.001): 2 °C (0.88 ± 0.01) and 5 °C (0.91 ± 0.01) showed higher survival than both the VT (0.83 ± 0.02) and 8 °C groups (0.15 ± 0.06), which were statistically distinct from each other. Time to hatch (dpf) was significantly different across all treatments (P < 0.001): 8 °C (68 ± 2 dpf), VT (111 ± 4 dpf), 5 °C (116 ± 4 dpf), 2 °C (170 ± 3 dpf). Likewise, hatchling yolk-free dry mass (mg) and total body length (mm) were significantly different across all treatments (P < 0.001): 8 °C (0.66 ± 0.08 mg; 11.1 ± 0.08 mm), VT (0.97 ± 0.06 mg; 11.7 ± 0.05 mm), 5 °C (1.07 ± 0.03 mg; 12.0 ± 0.02 mm), 2 °C (1.36 ± 0.04 mg; 12.8 ± 0.05 mm). Oxygen consumption rate (V̇o2) was significantly affected by the interaction between treatment and measurement temperature (P < 0.001). Hatchling VT whitefish showed mean V̇o2 that was higher compared to the 2 °C group measured at 2 °C, and lower compared to the 2 °C and 5 °C group measured at 8 °C. This study demonstrates that the VT incubation treatment produced fewer (increased mortality), smaller embryos that hatched earlier than 2 °C and 5 °C embryos. The plasticity of V̇o2 for this stenothermic-incubating fish species under variable incubation conditions reveals a metabolic cost to cycling thermal incubation conditions.
Collapse
Affiliation(s)
- John Eme
- Department of Biological Sciences, California State University San Marcos, 333 Twin Oaks Valley Road, San Marcos, CA 92096, United States; Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada.
| | - Casey A Mueller
- Department of Biological Sciences, California State University San Marcos, 333 Twin Oaks Valley Road, San Marcos, CA 92096, United States; Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada.
| | - Abigail H Lee
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada.
| | - Christopher Melendez
- Department of Biological Sciences, California State University San Marcos, 333 Twin Oaks Valley Road, San Marcos, CA 92096, United States.
| | - Richard G Manzon
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada.
| | - Christopher M Somers
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada.
| | - Douglas R Boreham
- Medical Sciences, Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada; Bruce Power, Tiverton, Ontario, Canada; Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada.
| | - Joanna Y Wilson
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
10
|
Rodgers EM, Cocherell DE, Nguyen TX, Todgham AE, Fangue NA. Plastic responses to diel thermal variation in juvenile green sturgeon, Acipenser medirostris. J Therm Biol 2018; 76:147-155. [DOI: 10.1016/j.jtherbio.2018.07.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/16/2018] [Accepted: 07/22/2018] [Indexed: 11/24/2022]
|
11
|
Li T, Cao P, Bei YJ, Du WG. Latitudinal and Temperature-Dependent Variation in Embryonic Development Rate and Offspring Performance in a Freshwater Turtle. Physiol Biochem Zool 2018; 91:673-681. [DOI: 10.1086/694856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
12
|
Salachan PV, Sørensen JG. Critical thermal limits affected differently by developmental and adult thermal fluctuations. J Exp Biol 2017; 220:4471-4478. [DOI: 10.1242/jeb.165308] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/30/2017] [Indexed: 01/01/2023]
Abstract
Means and variances of the environmental thermal regime play an important role in determining the fitness of terrestrial ectotherms. Adaptive phenotypic responses induced by heterogeneous temperatures have been shown to be mediated by molecular pathways independent of the classic heat shock responses, however, an in-depth understanding of plasticity induced by fluctuating temperatures is still lacking. We investigated high and low temperature acclimation induced by fluctuating thermal regimes at two different mean temperatures, at two different amplitudes of fluctuation and across the developmental and adult life stages. For developmental acclimation, we found mildly detrimental effects of high amplitude fluctuations for critical thermal minima, while the critical thermal maxima showed a beneficial response to higher amplitude fluctuations. For adult acclimation involving shifts between fluctuating and constant regimes, cold tolerance was shown to be dictated by developmental temperature conditions irrespective of the adult treatments, while the acquired heat tolerance was readily lost when flies developed at fluctuating temperature were shifted to a constant regime as adults. Interestingly, we also found that effect of fluctuations at any life stage was gradually lost with prolonged adult maintenance suggesting a more prominent effect of fluctuations during developmental compared to adult acclimation in Drosophila melanogaster.
Collapse
Affiliation(s)
- Paul Vinu Salachan
- Department of Bioscience, Section for Genetics, Ecology and Evolution, Aarhus University, Ny Munkegade 116, Bldg. 1540, 8000 Aarhus C, Denmark
| | - Jesper Givskov Sørensen
- Department of Bioscience, Section for Genetics, Ecology and Evolution, Aarhus University, Ny Munkegade 116, Bldg. 1540, 8000 Aarhus C, Denmark
| |
Collapse
|
13
|
Roberts L, Pérez-Domínguez R, Elliott M. Use of baited remote underwater video (BRUV) and motion analysis for studying the impacts of underwater noise upon free ranging fish and implications for marine energy management. MARINE POLLUTION BULLETIN 2016; 112:75-85. [PMID: 27622927 DOI: 10.1016/j.marpolbul.2016.08.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 06/06/2023]
Abstract
Free-ranging individual fish were observed using a baited remote underwater video (BRUV) system during sound playback experiments. This paper reports on test trials exploring BRUV design parameters, image analysis and practical experimental designs. Three marine species were exposed to playback noise, provided as examples of behavioural responses to impulsive sound at 163-171dB re 1μPa (peak-to-peak SPL) and continuous sound of 142.7dB re 1μPa (RMS, SPL), exhibiting directional changes and accelerations. The methods described here indicate the efficacy of BRUV to examine behaviour of free-ranging species to noise playback, rather than using confinement. Given the increasing concern about the effects of water-borne noise, for example its inclusion within the EU Marine Strategy Framework Directive, and the lack of empirical evidence in setting thresholds, this paper discusses the use of BRUV, and short term behavioural changes, in supporting population level marine noise management.
Collapse
Affiliation(s)
- Louise Roberts
- Institute of Estuarine and Coastal Studies (IECS), University of Hull, Hull HU6 7RX, United Kingdom.
| | - Rafael Pérez-Domínguez
- Institute of Estuarine and Coastal Studies (IECS), University of Hull, Hull HU6 7RX, United Kingdom
| | - Michael Elliott
- Institute of Estuarine and Coastal Studies (IECS), University of Hull, Hull HU6 7RX, United Kingdom
| |
Collapse
|
14
|
Park D, Freel KL, Daniels KD, Propper CR. Interactions between a small chronic increase in diel water temperature and exposure to a common environmental contaminant on development of Arizona tiger salamander larvae. Gen Comp Endocrinol 2016; 238:69-77. [PMID: 27318278 DOI: 10.1016/j.ygcen.2016.06.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 06/08/2016] [Accepted: 06/11/2016] [Indexed: 11/26/2022]
Abstract
Global climate change leading to increased temperatures may affect shifts in physiological processes especially in ectothermic organisms. Temperature-dependent shifts in developmental rate in particular, may lead to life-long changes in adult morphology and physiology. Combined with anthropogenic changes in the chemical environment, changes in developmental outcomes may affect adult functionality. The purpose of this study is to determine 1) if small increases in diel water temperature affect the development of Arizona tiger salamander (Ambystoma tigrinum nebulosum) larvae, and 2) if this change interacts with exposure to the common environmental thyroid disrupting compound, perchlorate. Larvae between Watson and Russell developmental stages 8-13 were exposed to ammonium perchlorate (AP) at doses of 0, 20 or 200ppb and then raised at either ambient or a 0.9°C elevated above ambient temperature for 81days in outdoor enclosures. During the first 5 treatment weeks, AP treatment induced slower development and smaller snout-vent length (SVL) of exposed larvae, but only in the elevated temperature group. During the later stages of development, the small increase in temperature, regardless of AP treatment, tended to decrease the time to metamorphosis and resulted in a significantly smaller body mass and worse body condition. Our results suggest that even small diel water temperature increases can affect the developmental process of salamanders and this shift in the water temperature may interact with a common environmental contaminant.
Collapse
Affiliation(s)
- Daesik Park
- Division of Science Education, Kangwon National University, Chuncheon, Kangwon 24341, South Korea; Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011 USA
| | - Kathleen L Freel
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011 USA
| | - Kevin D Daniels
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011 USA
| | - Catherine R Propper
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011 USA.
| |
Collapse
|
15
|
Dillon ME, Woods HA, Wang G, Fey SB, Vasseur DA, Telemeco RS, Marshall K, Pincebourde S. Life in the Frequency Domain: the Biological Impacts of Changes in Climate Variability at Multiple Time Scales. Integr Comp Biol 2016; 56:14-30. [PMID: 27252201 DOI: 10.1093/icb/icw024] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Over the last few decades, biologists have made substantial progress in understanding relationships between changing climates and organism performance. Much of this work has focused on temperature because it is the best kept of climatic records, in many locations it is predicted to keep rising into the future, and it has profound effects on the physiology, performance, and ecology of organisms, especially ectothermic organisms which make up the vast majority of life on Earth. Nevertheless, much of the existing literature on temperature-organism interactions relies on mean temperatures. In reality, most organisms do not directly experience mean temperatures; rather, they experience variation in temperature over many time scales, from seconds to years. We propose to shift the focus more directly on patterns of temperature variation, rather than on means per se, and present a framework both for analyzing temporal patterns of temperature variation and for incorporating those patterns into predictions about organismal biology. In particular, we advocate using the Fourier transform to decompose temperature time series into their component sinusoids, thus allowing transformations between the time and frequency domains. This approach provides (1) standardized ways of visualizing the contributions that different frequencies make to total temporal variation; (2) the ability to assess how patterns of temperature variation have changed over the past half century and may change into the future; and (3) clear approaches to manipulating temporal time series to ask "what if" questions about the potential effects of future climates. We first summarize global patterns of change in temperature variation over the past 40 years; we find meaningful changes in variation at the half day to yearly times scales. We then demonstrate the utility of the Fourier framework by exploring how power added to different frequencies alters the overall incidence of long-term waves of high and low temperatures, and find that power added to the lowest frequencies greatly increases the probability of long-term heat and cold waves. Finally, we review what is known about the time scales over which organismal thermal performance curves change in response to variation in the thermal environment. We conclude that integrating information characterizing both the frequency spectra of temperature time series and the time scales of resulting physiological change offers a powerful new avenue for relating climate, and climate change, to the future performance of ectothermic organisms.
Collapse
Affiliation(s)
- Michael E Dillon
- *Department of Zoology and Physiology and Program in Ecology, University of Wyoming, Laramie, WY 82071, USA
| | - H Arthur Woods
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - George Wang
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Samuel B Fey
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - David A Vasseur
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - Rory S Telemeco
- Department of Biology, V6T 1Z4 University of Washington, Seattle, WA, USA
| | - Katie Marshall
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Sylvain Pincebourde
- Institut de Recherche sur la Biologie de l'Insecte (IRBI, CNRS UMR 7261), Université François Rabelais, Faculté des Sciences et Techniques, Tours 37200, France
| |
Collapse
|
16
|
Do female newts modify thermoregulatory behavior to manipulate egg size? J Therm Biol 2016; 57:72-7. [PMID: 27033041 DOI: 10.1016/j.jtherbio.2016.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/15/2016] [Accepted: 02/19/2016] [Indexed: 01/02/2023]
Abstract
Reproductive females manipulate offspring phenotypes by modifying conditions during embryogenesis. In ectotherms, the environmental control over embryogenesis is often realized by changes in maternal thermoregulation during gravidity. To determine if reproduction influences thermoregulatory behavior in species where females lay eggs shortly after fertilization (strict oviparity), we compared preferred body temperatures (Tp) between reproductive (egg-laying) and non-reproductive female newts, Ichthyosaura alpestris. Next, we exposed reproductive females to temperatures mimicking Tp ranges of reproductive and non-reproductive individuals to find out whether the maternally modified thermal regime influences ovum and jelly coat volume, and early cleavage rates at the time of oviposition. In the thermal gradient, reproductive females maintained their body temperatures within a narrower range than non-reproductive individuals. The exposure of ovipositing females to temperatures preferred during their reproductive and non-reproductive period had a negligible influence on egg size and early cleavage rates. We conclude that the modification of maternal thermoregulatory behavior provides a limited opportunity to manipulate egg traits in newts.
Collapse
|
17
|
Gvoždík L, Smolinský R. Body size, swimming speed, or thermal sensitivity? Predator-imposed selection on amphibian larvae. BMC Evol Biol 2015; 15:238. [PMID: 26525734 PMCID: PMC4630873 DOI: 10.1186/s12862-015-0522-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/28/2015] [Indexed: 11/10/2022] Open
Abstract
Background Many animals rely on their escape performance during predator encounters. Because of its dependence on body size and temperature, escape velocity is fully characterized by three measures, absolute value, size-corrected value, and its response to temperature (thermal sensitivity). The primary target of the selection imposed by predators is poorly understood. We examined predator (dragonfly larva)-imposed selection on prey (newt larvae) body size and characteristics of escape velocity using replicated and controlled predation experiments under seminatural conditions. Specifically, because these species experience a wide range of temperatures throughout their larval phases, we predict that larvae achieving high swimming velocities across temperatures will have a selective advantage over more thermally sensitive individuals. Results Nonzero selection differentials indicated that predators selected for prey body size and both absolute and size-corrected maximum swimming velocity. Comparison of selection differentials with control confirmed selection only on body size, i.e., dragonfly larvae preferably preyed on small newt larvae. Maximum swimming velocity and its thermal sensitivity showed low group repeatability, which contributed to non-detectable selection on both characteristics of escape performance. Conclusions In the newt-dragonfly larvae interaction, body size plays a more important role than maximum values and thermal sensitivity of swimming velocity during predator escape. This corroborates the general importance of body size in predator–prey interactions. The absence of an appropriate control in predation experiments may lead to potentially misleading conclusions about the primary target of predator-imposed selection. Insights from predation experiments contribute to our understanding of the link between performance and fitness, and further improve mechanistic models of predator–prey interactions and food web dynamics. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0522-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lumír Gvoždík
- Institute of Vertebrate Biology AS CR, Květná 8, CZ 60365, Brno, Czech Republic.
| | - Radovan Smolinský
- Institute of Vertebrate Biology AS CR, Květná 8, CZ 60365, Brno, Czech Republic.
| |
Collapse
|
18
|
Kern P, Cramp RL, Franklin CE. Physiological responses of ectotherms to daily temperature variation. ACTA ACUST UNITED AC 2015; 218:3068-76. [PMID: 26254318 DOI: 10.1242/jeb.123166] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/28/2015] [Indexed: 11/20/2022]
Abstract
Daily thermal fluctuations (DTFs) impact the capacity of ectotherms to maintain performance and energetic demands because of thermodynamic effects on physiological processes. Mechanisms that reduce the thermal sensitivity of physiological traits may buffer ectotherms from the consequences of DTFs. Species that experience varying degrees of DTFs in their environments may differ in their responses to thermally variable conditions, if thermal performance curves reflect environmental conditions. We tested the hypothesis that in response to DTFs, tadpoles from habitats characterised by small DTFs would show greater plasticity in the thermal sensitivity of physiological processes than tadpoles from environments characterised by large DTFs. We tested the thermal sensitivity of physiological traits in tadpoles of three species that differ naturally in their exposure to DTFs, raised in control (24°C) and DTF treatments (20-30°C and 18-38°C). DTFs reduced growth in all species. Development of tadpoles experiencing DTFs was increased for tadpoles from highly thermally variable habitats (∼15%), and slower in tadpoles from less thermally variable habitats (∼30%). In general, tadpoles were unable to alter the thermal sensitivity of physiological processes, although DTFs induced plasticity in metabolic enzyme activity in all species, although to a greater extent in species from less thermally variable environments. DTFs increased upper thermal limits in all species (between 0.89 and 1.6°C). Our results suggest that the impact of increased thermal variability may favour some species while others are negatively impacted. Species that cannot compensate for increased variability by buffering growth and development will probably be most affected.
Collapse
Affiliation(s)
- Pippa Kern
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rebecca L Cramp
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Craig E Franklin
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
19
|
Xu C, Dang W, Luo L, Lu H. Aquatic and terrestrial locomotor performance of juvenile three-keeled pond turtles acclimated to different temperatures. ANIM BIOL 2015. [DOI: 10.1163/15707563-00002475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Locomotion is important for behaviors such as foraging and predator avoidance, and is influenced by temperature in ectotherms. To investigate this in turtles, we acclimated juvenile Chinese three-keeled pond turtles, Chinemys reevesii, under three thermal conditions for four weeks. Subsequently, we measured three locomotor performances (swimming, running, and righting) at different test temperatures. Overall, swimming and running speeds of turtles increased with increasing test temperature in the range of 13-33°C and decreased at higher test temperatures, whereas righting time decreased with increasing test temperature in the range of 13-33°C and slightly increased at higher test temperatures. Acclimation temperature affected both swimming and running speeds, with the high temperature-acclimated turtles swimming and running faster than low temperature-acclimated turtles, but it did not affect righting performance. From the constructed thermal performance curves, between-group differences were found in the estimated maximal speed (swimming and running) and optimal temperature, but not in the performance breadth. Juvenile turtles acclimated to relatively warm temperatures had better performances than those acclimated to cool temperatures, supporting the “hotter is better” hypothesis. A similar acclimatory change was found during aquatic and terrestrial locomotion in juvenile C. reevesii. Our findings are consistent with the hypothesis that animals from less thermally variable environments should have a greater acclimatory ability than those from more variable environments, because turtles were acclimated under aquatic environments with no thermal variability.
Collapse
Affiliation(s)
- Chunxia Xu
- 1Hangzhou Key Laboratory for Animal Adaptation and Evolution, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Wei Dang
- 1Hangzhou Key Laboratory for Animal Adaptation and Evolution, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Laigao Luo
- 2School of Biology and Food Engineering, Chuzhou University, Chuzhou Anhui, 239000, China
| | - Hongliang Lu
- 1Hangzhou Key Laboratory for Animal Adaptation and Evolution, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| |
Collapse
|
20
|
Kern P, Cramp RL, Franklin CE. Temperature and UV-B-insensitive performance in tadpoles of the ornate burrowing frog: an ephemeral pond specialist. ACTA ACUST UNITED AC 2013; 217:1246-52. [PMID: 24363412 DOI: 10.1242/jeb.097006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Animals may overcome the challenges of temperature instability through behavioural and physiological mechanisms in response to short- and long-term temperature changes. When ectotherms face the challenge of large diel temperature fluctuations, one strategy may be to reduce the thermal sensitivity of key traits in order to maintain performance across the range of temperatures experienced. Additional stressors may limit the ability of animals to respond to these thermally challenging environments through changes to energy partitioning or interactive effects. Ornate burrowing frog (Platyplectrum ornatum) tadpoles develop in shallow ephemeral pools that experience high diel thermal variability (>20°C) and can be exposed to high levels of UV-B radiation. Here, we investigated how development in fluctuating versus stable temperature conditions in the presence of high or low UV-B radiation influences thermal tolerance and thermal sensitivity of performance traits of P. ornatum tadpoles. Tadpoles developed in either stable (24°C) or fluctuating temperatures (18-32°C) under high or low UV-B conditions. Tadpoles were tested for upper critical thermal limits, thermal dependence of resting metabolic rate and maximum burst swimming performance. We hypothesised that developmental responses to thermal fluctuations would increase thermal tolerance and reduce thermal dependence of physiological traits, and that trade-offs in the allocation of metabolic resources towards repairing UV-B-induced damage may limit the ability to maintain performance over the full range of temperatures experienced. We found that P. ornatum tadpoles were thermally insensitive for both burst swimming performance, across the range of temperatures tested, and resting metabolic rate at high temperatures independent of developmental conditions. Maintenance of performance led to a trade-off for growth under fluctuating temperatures and UV-B exposure. Temperature treatment and UV-B exposure had an interactive effect on upper critical thermal limits possibly due to the upregulation of the cellular stress response. Thermal independence of key traits may allow P. ornatum tadpoles to maintain performance in the thermal variability inherent in their environment.
Collapse
Affiliation(s)
- Pippa Kern
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | |
Collapse
|
21
|
Foray V, Desouhant E, Gibert P. The impact of thermal fluctuations on reaction norms in specialist and generalist parasitic wasps. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12171] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vincent Foray
- Université de Lyon, F-69000, Lyon; Université Lyon 1; CNRS; UMR5558; Laboratoire de Biométrie et Biologie Evolutive; F-69622 Villeurbanne France
| | - Emmanuel Desouhant
- Université de Lyon, F-69000, Lyon; Université Lyon 1; CNRS; UMR5558; Laboratoire de Biométrie et Biologie Evolutive; F-69622 Villeurbanne France
| | - Patricia Gibert
- Université de Lyon, F-69000, Lyon; Université Lyon 1; CNRS; UMR5558; Laboratoire de Biométrie et Biologie Evolutive; F-69622 Villeurbanne France
| |
Collapse
|
22
|
Kjærsgaard A, Pertoldi C, Loeschcke V, Blanckenhorn WU. The effect of fluctuating temperatures during development on fitness-related traits of Scatophaga stercoraria (Diptera: Scathophagidae). ENVIRONMENTAL ENTOMOLOGY 2013; 42:1069-1078. [PMID: 24331617 DOI: 10.1603/en13074] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Development of ectotherms is highly temperature dependent. Studies using variable thermal environments can improve ecological relevance of data because organisms naturally face day-to-day stochastic temperature fluctuations as well as seasonal changes in the amplitude of such daily fluctuations. The objective of this study was to investigate if, and to what extent, the use of constant temperatures is justified in studies of the model species, yellow dung fly, Scatophaga stercoraria (L.). We examined the effect of temperature fluctuation on the expression of several life history traits and the effect on subsequent adult longevity. We used two fluctuating temperature treatments with the same mean but different amplitudes (15/21°C, 12/24°C; 12/12 h), and three constant temperature treatments spanning the wide temperature range faced in the wild (12, 18, and 24°C). Large temperature fluctuation was mostly detrimental (lower juvenile survival, slower growth, smaller body size, and longer development), whereas moderate temperature fluctuation usually gave responses similar to the constant regime. When developing in fluctuating temperatures, adult longevity (no effect), body size (lower), and wing shape (narrower wings) deviated from the expectations based on the constant temperature reaction norms, presumably because of acclimation responses. Contrary to some studies no obvious beneficial effects of moderate temperature fluctuation were observed. Instead, yellow dung flies seem to canalize development in the face of temperature fluctuation up to a point when detrimental effects become unavoidable. The relatively greater effects of extreme constant developmental temperatures question their biological relevance in experiments.
Collapse
Affiliation(s)
- Anders Kjærsgaard
- Department of Bioscience, Integrative Ecology and Evolution, Aarhus University, Ny Munkegade 114-116, DK-8000, Denmark
| | | | | | | |
Collapse
|
23
|
Gvoždík L, Černická E, Van Damme R. Predator-prey interactions shape thermal patch use in a newt larvae-dragonfly nymph model. PLoS One 2013; 8:e65079. [PMID: 23755175 PMCID: PMC3670910 DOI: 10.1371/journal.pone.0065079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 04/22/2013] [Indexed: 11/18/2022] Open
Abstract
Thermal quality and predation risk are considered important factors influencing habitat patch use in ectothermic prey. However, how the predator's food requirement and the prey's necessity to avoid predation interact with their respective thermoregulatory strategies remains poorly understood. The recently developed 'thermal game model' predicts that in the face of imminent predation, prey should divide their time equally among a range of thermal patches. In contrast, predators should concentrate their hunting activities towards warmer patches. In this study, we test these predictions in a laboratory setup and an artificial environment that mimics more natural conditions. In both cases, we scored thermal patch use of newt larvae (prey) and free-ranging dragonfly nymphs (predators). Similar effects were seen in both settings. The newt larvae spent less time in the warm patch if dragonfly nymphs were present. The patch use of the dragonfly nymphs did not change as a function of prey availability, even when the nymphs were starved prior to the experiment. Our behavioral observations partially corroborate predictions of the thermal game model. In line with asymmetric fitness pay-offs in predator-prey interactions (the 'life-dinner' principle), the prey's thermal strategy is more sensitive to the presence of predators than vice versa.
Collapse
Affiliation(s)
- Lumír Gvoždík
- Institute of Vertebrate Biology AS CR, Brno, Czech Republic.
| | | | | |
Collapse
|
24
|
Arrighi JM, Lencer ES, Jukar A, Park D, Phillips PC, Kaplan RH. Daily temperature fluctuations unpredictably influence developmental rate and morphology at a critical early larval stage in a frog. BMC Ecol 2013; 13:18. [PMID: 23641898 PMCID: PMC3653820 DOI: 10.1186/1472-6785-13-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/22/2013] [Indexed: 11/10/2022] Open
Abstract
Background Environmental temperature has profound consequences for early amphibian development and many field and laboratory studies have examined this. Most laboratory studies that have characterized the influence of temperature on development in amphibians have failed to incorporate the realities of diel temperature fluctuations (DTF), which can be considerable for pond-breeding amphibians. Results We evaluated the effects of different ecologically relevant ranges of DTF compared with effects of constant temperatures on development of embryos and larvae of the Korean fire-bellied toad (Bombina orientalis). We constructed thermal reaction norms for developmental stage, snout- vent length, and tail length by fitting a Gompertz-Gaussian function to measurements taken from embryos after 66 hours of development in 12 different constant temperature environments between 14°C and 36°C. We used these reaction norms as null models to test the hypothesis that developmental effects of DTF are more than the sum of average constant temperature effects over the distribution of temperatures experienced. We predicted from these models that growth and differentiation would be positively correlated with average temperature at low levels of DTF but not at higher levels of DTF. We tested our prediction in the laboratory by rearing B. orientalis embryos at three average temperatures (20°C, 24°C, and 28°C) and four levels of thermal variation (0°C, 6°C, 13°C, and 20°C). Several of the observed responses to DTF were significantly different from both predictions of the model and from responses in constant temperature treatments at the same average temperatures. At an average temperature of 24°C, only the highest level of DTF affected differentiation and growth rates, but at both cooler and warmer average temperatures, moderate DTF was enough to slow developmental and tail growth rates. Conclusions These results demonstrate that both the magnitude of DTF range and thermal averages need to be considered simultaneously when parsing the effects of changing thermal environments on complex developmental responses, particularly when they have potential functional and adaptive significance.
Collapse
|
25
|
Limited capacity for acclimation of thermal physiology in a salamander, Desmognathus brimleyorum. J Comp Physiol B 2012; 183:409-18. [DOI: 10.1007/s00360-012-0717-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 09/26/2012] [Accepted: 10/06/2012] [Indexed: 11/27/2022]
|
26
|
Smolinský R, Gvoždík L. Does developmental acclimatization reduce the susceptibility to predation in newt larvae? Biol J Linn Soc Lond 2012. [DOI: 10.1111/j.1095-8312.2012.02004.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Radovan Smolinský
- Department of Population Biology; Institute of Vertebrate Biology AS CR; Studenec 122; 67502; Koněšín; Czech Republic
| | - Lumír Gvoždík
- Department of Population Biology; Institute of Vertebrate Biology AS CR; Studenec 122; 67502; Koněšín; Czech Republic
| |
Collapse
|
27
|
Pincebourde S, Sanford E, Casas J, Helmuth B. Temporal coincidence of environmental stress events modulates predation rates. Ecol Lett 2012; 15:680-8. [DOI: 10.1111/j.1461-0248.2012.01785.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Smolinský R, Gvoždík L. Interactive influence of biotic and abiotic cues on the plasticity of preferred body temperatures in a predator-prey system. Oecologia 2012; 170:47-55. [PMID: 22358997 DOI: 10.1007/s00442-012-2283-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 02/06/2012] [Indexed: 11/30/2022]
Abstract
The ability to modify phenotypes in response to heterogeneity of the thermal environment represents an important component of an ectotherm's non-genetic adaptive capacity. Despite considerable attention being dedicated to the study of thermally-induced developmental plasticity, whether or not interspecific interactions shape the plastic response in both a predator and its prey remains unknown. We tested several predictions about the joint influence of predator/prey scents and thermal conditions on the plasticity of preferred body temperatures (T (p)) in both actors of this interaction, using a dragonfly nymphs-newt larvae system. Dragonfly nymphs (Aeshna cyanea) and newt eggs (Ichthyosaura alpestris) were subjected to fluctuating cold and warm thermal regimes (7-12 and 12-22°C, respectively) and the presence/absence of a predator or prey chemical cues. Preferred body temperatures were measured in an aquatic thermal gradient (5-33°C) over a 24-h period. Newt T (p) increased with developmental temperature irrespective of the presence/absence of predator cues. In dragonflies, thermal reaction norms for T (p) were affected by the interaction between temperature and prey cues. Specifically, the presence of newt scents in cold regime lowered dragonfly T (p). We concluded that predator-prey interactions influenced thermally-induced plasticity of T (p) but not in a reciprocal fashion. The occurrence of frequency-dependent thermal plasticity may have broad implications for predator-prey population dynamics, the evolution of thermal biology traits, and the consequences of sustaining climate change within ecological communities.
Collapse
Affiliation(s)
- Radovan Smolinský
- Department of Population Biology, Institute of Vertebrate Biology AS CR, Studenec 122, 67502, Koněšín, Czech Republic
| | | |
Collapse
|
29
|
Kurdíková V, Smolinský R, Gvoždík L. Mothers matter too: benefits of temperature oviposition preferences in newts. PLoS One 2011; 6:e23842. [PMID: 21887330 PMCID: PMC3161085 DOI: 10.1371/journal.pone.0023842] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 07/27/2011] [Indexed: 11/18/2022] Open
Abstract
The maternal manipulation hypothesis states that ectothermic females modify thermal conditions during embryonic development to benefit their offspring (anticipatory maternal effect). However, the recent theory suggests that the ultimate currency of an adaptive maternal effect is female fitness that can be maximized also by decreasing mean fitness of individual offspring. We evaluated benefits of temperature oviposition preferences in Alpine newts (Ichthyosaura [formerly Triturus] alpestris) by comparing the thermal sensitivity of maternal and offspring traits across a range of preferred oviposition temperatures (12, 17, and 22°C) and by manipulating the egg-predation risk during oviposition in a laboratory thermal gradient (12–22°C). All traits showed varying responses to oviposition temperatures. Embryonic developmental rates increased with oviposition temperature, whereas hatchling size and swimming capacity showed the opposite pattern. Maternal oviposition and egg-predation rates were highest at the intermediate temperature. In the thermal gradient, females oviposited at the same temperature despite the presence of caged egg-predators, water beetles (Agabus bipustulatus). We conclude that female newts prefer a particular temperature for egg-deposition to maximize their oviposition performance rather than offspring fitness. The evolution of advanced reproductive modes, such as prolonged egg-retention and viviparity, may require, among others, the transition from selfish temperature preferences for ovipositon to the anticipatory maternal effect.
Collapse
Affiliation(s)
- Vendula Kurdíková
- Department of Population Biology, Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Radovan Smolinský
- Department of Population Biology, Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Lumír Gvoždík
- Department of Population Biology, Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
30
|
Hadamová M, Gvoždík L. Seasonal Acclimation of Preferred Body Temperatures Improves the Opportunity for Thermoregulation in Newts. Physiol Biochem Zool 2011; 84:166-74. [DOI: 10.1086/658202] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Šamajová P, Gvoždík L. Inaccurate or disparate temperature cues? Seasonal acclimation of terrestrial and aquatic locomotor capacity in newts. Funct Ecol 2010. [DOI: 10.1111/j.1365-2435.2010.01720.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
|
33
|
|