1
|
Abidi SNF, Hsu FTY, Smith-Bolton RK. Regenerative growth is constrained by brain tumor to ensure proper patterning in Drosophila. PLoS Genet 2023; 19:e1011103. [PMID: 38127821 PMCID: PMC10769103 DOI: 10.1371/journal.pgen.1011103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 01/05/2024] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Some animals respond to injury by inducing new growth to regenerate the lost structures. This regenerative growth must be carefully controlled and constrained to prevent aberrant growth and to allow correct organization of the regenerating tissue. However, the factors that restrict regenerative growth have not been identified. Using a genetic ablation system in the Drosophila wing imaginal disc, we have identified one mechanism that constrains regenerative growth, impairment of which also leads to erroneous patterning of the final appendage. Regenerating discs with reduced levels of the RNA-regulator Brain tumor (Brat) exhibit enhanced regeneration, but produce adult wings with disrupted margins that are missing extensive tracts of sensory bristles. In these mutants, aberrantly high expression of the pro-growth factor Myc and its downstream targets likely contributes to this loss of cell-fate specification. Thus, Brat constrains the expression of pro-regeneration genes and ensures that the regenerating tissue forms the proper final structure.
Collapse
Affiliation(s)
- Syeda Nayab Fatima Abidi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Felicity Ting-Yu Hsu
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Rachel K. Smith-Bolton
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Carle R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
2
|
Erdenebaatar P, Gunarta IK, Suzuki R, Odongoo R, Fujii T, Fukunaga R, Kanemaki MT, Yoshioka K. Redundant roles of extra-cellular signal-regulated kinase (ERK) 1 and 2 in the G1-S transition and etoposide-induced G2/M checkpoint in HCT116 cells. Drug Discov Ther 2023; 17:10-17. [PMID: 36642508 DOI: 10.5582/ddt.2022.01120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The extracellular signal-regulated kinase (ERK) 1 and 2 intracellular signaling pathways play key roles in a variety of cellular processes, such as proliferation and differentiation. Dysregulation of ERK1/2 signaling has been implicated in many diseases, including cancer. Although ERK1/2 signaling pathways have been extensively studied, controversy remains as to whether ERK1 and ERK2 have specific or redundant functions. In this study, we examined the functional roles of ERK1 and ERK2 in cell proliferation and cell cycle progression using an auxin-inducible degron system combined with gene knockout technology. We found that ERK1/2 double depletion, but not ERK1 or ERK2 depletion, substantially inhibited the proliferation of HCT116 cells during G1-S transition. We further demonstrated that ERK1/2-double-depleted cells were much more tolerant to etoposide-induced G2/M arrest than ERK1 or ERK2 single-knockout cells. Together, these results strongly suggest the functional redundancy of ERK1 and ERK2 in both the G1-S transition under physiological conditions and the DNA damage-induced G2/M checkpoint. Our findings substantially advance understanding of the ERK1/2 pathways, which could have strong implications for future pharmacological developments.
Collapse
Affiliation(s)
- Purev Erdenebaatar
- Division of Molecular Cell Signaling, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - I Ketut Gunarta
- Division of Molecular Cell Signaling, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Ryusuke Suzuki
- Division of Molecular Cell Signaling, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Ravdandorj Odongoo
- Division of Molecular Cell Signaling, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Toshihiro Fujii
- Department of Biochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Rikiro Fukunaga
- Department of Biochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Japan.,Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
| | - Katsuji Yoshioka
- Division of Molecular Cell Signaling, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
3
|
Fujii T, Inoue N, Nobeyama T, Inoue J, Ogasawara S, Otani Y, Fujii S, Ito C, Fukunaga R. A simple, rapid, and efficient method for generating multigene-knockout culture cells by the CRISPR/Cas9 system. Genes Cells 2023; 28:390-397. [PMID: 36861495 DOI: 10.1111/gtc.13021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023]
Abstract
We evaluated the efficacy of simultaneous multiple-gene knockout in human culture cells. By simple co-transfection of HeLa cells with a mixture of pX330-based targeting plasmids together with a puromycin resistance plasmid, followed by transient selection of puromycin-resistant cells, Cas9/single-guide RNA (sgRNA)-transduced polyclonal cell populations were selected and grown. Western blot analyses revealed co-transfection of up to seven targeting plasmids for p38α, p38β, JNK1, JNK2, Mnk1, ERK1, and mLST8 genes, drastically reduced protein expression of these genes in the polyclonal population. Analyses of a randomly isolated group of 25 clones revealed knockout efficiencies for the seven targeted genes ranging between 68% and 100%, and in six clones (24%), all targeted genes were disrupted. Deep sequencing analyses of the individual target sites revealed that, in most cases, Cas9/sgRNA-induced nonhomologous end joining resulted in deletion or insertion of only a few base pairs at the break points. These results demonstrate that simple co-transfection-based simultaneous targeting offers an easy, rapid, and efficient method to generate multiplex gene-knockout cell lines.
Collapse
Affiliation(s)
- Toshihiro Fujii
- Department of Biochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Naomi Inoue
- Department of Biochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Takanobu Nobeyama
- Department of Biochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Junko Inoue
- Department of Biochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Shin Ogasawara
- Department of Biochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Yuhei Otani
- Department of Biochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Shinobu Fujii
- Department of Biochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Chihiro Ito
- Department of Biochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Rikiro Fukunaga
- Department of Biochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka, Japan
| |
Collapse
|
4
|
Hu J, Xiang X, Guan W, Lou W, He J, Chen J, Fu Y, Lou G. MiR-497-5p down-regulates CDCA4 to restrains lung squamous cell carcinoma progression. J Cardiothorac Surg 2021; 16:330. [PMID: 34772428 PMCID: PMC8588708 DOI: 10.1186/s13019-021-01698-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/26/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND So far, few have concerned miR-497-5p in lung squamous cell carcinoma (LUSC). METHODS MiR-497-5p expression in LUSC was measured by qRT-PCR. Its impacts on tumor-related cell behaviors were investigated by CCK8 assay, scratch healing assay, flow cytometry and Transwell invasion methods. In addition, interaction between miR-497-5p and CDCA4 in LUSC was also elucidated through rescue experiment, western blot, dual-luciferase, and bioinformatics analysis. RESULTS Low level of miR-497-5p was confirmed in LUSC tissue and cells. Overexpressed miR-497-5p markedly inhibited cancer progression. miR-497-5p restrained CDCA4 expression. Rescue assay showed that overexpressing miR-497-5p eliminated effect of overexpressed CDCA4. CONCLUSION By targeting CDCA4, miR-497-5p restrained development of LUSC.
Collapse
Affiliation(s)
- Jiangwei Hu
- Department of Cardiovascular Surgery, Yiwu Central Hospital, No.699 Jiangdong Dong Lu, Yiwu City, 322000, Zhejiang Province, China
| | - Xinqin Xiang
- Department of Cardiovascular Surgery, Yiwu Central Hospital, No.699 Jiangdong Dong Lu, Yiwu City, 322000, Zhejiang Province, China
| | - Wei Guan
- Department of Cardiovascular Surgery, Yiwu Central Hospital, No.699 Jiangdong Dong Lu, Yiwu City, 322000, Zhejiang Province, China
| | - Weihua Lou
- Department of Cardiovascular Surgery, Yiwu Central Hospital, No.699 Jiangdong Dong Lu, Yiwu City, 322000, Zhejiang Province, China
| | - Junming He
- Department of Cardiovascular Surgery, Yiwu Central Hospital, No.699 Jiangdong Dong Lu, Yiwu City, 322000, Zhejiang Province, China
| | - Jian Chen
- Department of Cardiovascular Surgery, Yiwu Central Hospital, No.699 Jiangdong Dong Lu, Yiwu City, 322000, Zhejiang Province, China
| | - Yin Fu
- Department of Cardiovascular Surgery, Yiwu Central Hospital, No.699 Jiangdong Dong Lu, Yiwu City, 322000, Zhejiang Province, China
| | - Guoliang Lou
- Department of Cardiovascular Surgery, Yiwu Central Hospital, No.699 Jiangdong Dong Lu, Yiwu City, 322000, Zhejiang Province, China.
| |
Collapse
|
5
|
Ran J, Li Y, Liu L, Zhu Y, Ni Y, Huang H, Liu Z, Miao Z, Zhang L. Apelin enhances biological functions in lung cancer A549 cells by downregulating exosomal miR-15a-5p. Carcinogenesis 2021; 42:243-253. [PMID: 32808032 DOI: 10.1093/carcin/bgaa089] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/17/2020] [Accepted: 08/13/2020] [Indexed: 02/05/2023] Open
Abstract
Apelin acts as a tumor promoter in multiple malignant tumors; however, its regulatory mechanism remains unclear. Previous studies have indicated that exosomes are pivotal to mediating tumor progression and metastasis. This study examined whether apelin enhances proliferation and invasion ability of lung cancer cells via exosomal microRNA (miRNA). Lung cancer A549 cells overexpressing apelin and control vector were generated by lentiviral transfection. Exosomes were isolated from the culture supernatant of each cell group and characterized. A-exo and V-exo were, respectively, cocultured with A549 cells, and assays of proliferation, apoptosis, colony formation and invasion were conducted. Exosomal miRNA sequencing (miRNA-seq) was performed on A-exo and V-exo to select a candidate miRNA. It was found that A549 cells absorbed more A-exo than V-exo, and A-exo could promote proliferation, colony formation, migration and invasion of A549 cells more than V-exo. Exosomal miRNA-seq data revealed that miR-15a-5p was markedly lower in A-exo compared with V-exo. Low expression of miR-15a-5p was also found in lung cancer tissues and cell lines, suggesting that miR-15a-5p may have an anti-tumor role. Overexpression of miR-15a-5p in A549 cells was associated with less cell proliferation, migration, invasion and suppressed cell cycle, and lower amounts of CDCA4 (cell division cycle-associated protein 4) indicated that it may be a potential target for miR-15a-5p. This study elucidated a novel regulatory mechanism that apelin may promote proliferation and invasion of lung cancer cells by inhibiting miR-15a-5p encapsulated in exosomes.
Collapse
Affiliation(s)
- Jingjing Ran
- Laboratory of Pathology, Key Laboratory of Transplantation Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.,Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yan Li
- Scientific Research Base, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Lei Liu
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan Province, China
| | - Yihan Zhu
- Laboratory of Pathology, Key Laboratory of Transplantation Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yinyun Ni
- Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hong Huang
- Laboratory of Pathology, Key Laboratory of Transplantation Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhiqiang Liu
- Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhiyong Miao
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Zhang
- Laboratory of Pathology, Key Laboratory of Transplantation Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.,Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
6
|
Hao S, Zhu J, Zhang X, Qiu J, Xuan Q, Ye L. Comprehensive Analysis of Aerobic Exercise-Related Genes Identifies CDCA4 That Promotes the Progression of Osteosarcoma. Front Genet 2021; 12:637755. [PMID: 33613651 PMCID: PMC7886999 DOI: 10.3389/fgene.2021.637755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/08/2021] [Indexed: 12/16/2022] Open
Abstract
Background Exercise has a positive impact on patients with osteosarcoma, improving function, reducing disability, maintaining independence and quality of life. Exercise may also directly affect the effectiveness of cancer treatment. Cell division cycle-associated protein 4 (CDCA4) is reported to function importantly during numerous human cancers development. Nevertheless, the details toward CDCA4 function are still to be investigated. Methods This study comprehensively analyzed the GSE74194 database and obtained aerobic exercise-related genes. Protein-protein interaction network (PPI) and Gene Ontology (GO) analysis were performed on the differentially expressed genes (DEGs). Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and tumor genome atlas (TCGA) data mining were applied to measure aerobic exercise-related gene CDCA4 level in osteosarcoma tissue. We conducted lots of functional experiments to uncover CDCA4 function and its corresponding mechanism in osteosarcoma. Results We screened a total of 547 DEGs related to aerobic exercise, of which 373 were up-regulated and 174 were down-regulated. PPI analysis revealed 90 genes that might play key roles. GO analysis showed that aerobic exercise-related DEGs were significantly enriched during the mitotic cell cycle, cell division, mitotic nuclear division and sister chromatid segregation, nuclear division, microtubule cytoskeleton organization involved protein, microtubule-based process, spindle organization, G2/M transition of mitotic cell cycle. Our results indicated that CDCA4 was increased in osteosarcoma tissues and cell lines, and its level had association with high mortality of osteosarcoma patients. Further studies revealed that absence of CDCA4 largely hindered osteosarcoma cancer cell proliferation, invasion, and migration. Conclusion Comprehensive bioinformatics analysis improves our understanding of the underlying molecular mechanisms of aerobic exercise on osteosarcoma. This provides evidence for the effect of aerobic exercise on CDCA4 expression. Our data suggested that CDCA4 could facilitate osteosarcoma development, and gave a hint that CDCA4 was a candidate target in the treatment of osteosarcoma, aerobic exercise might help the treatment and prognosis of patients with osteosarcoma.
Collapse
Affiliation(s)
- Suyu Hao
- Shuangwu Information Technical Company Ltd., Shanghai, China
| | - Jun Zhu
- Administrative Office, Shanghai Basilica Clinic, Shanghai, China
| | - Xinyue Zhang
- School of Education, Hangzhou Normal University, Hangzhou, China
| | - Jingyue Qiu
- School of Physical Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Qin Xuan
- School of Sports Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Liping Ye
- Department of Clinical Nursing, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Xu C, Cao H, Sui Y, Zhang H, Shi C, Wu J, Ma R, Feng J. CDCA4 suppresses epithelial-mesenchymal transtion (EMT) and metastasis in Non-small cell lung cancer through modulating autophagy. Cancer Cell Int 2021; 21:48. [PMID: 33436008 PMCID: PMC7802205 DOI: 10.1186/s12935-021-01754-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/02/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Cell division cycle associated 4 (CDCA4) has been reported to be engaged into the progression of several cancers. The function of CDCA4 in Non-small cell lung cancer (NSCLC) was unknown. We aimed to explore the critical role of CDCA4 in NSCLC. METHODS CDCA4 stably knocking down and overexpression cell lines were established and Western blotting assay was applied to measure relevant protein expression of Epithelial-Mesenchymal Transtion (EMT) and cell autophagy. Staining of acidic vacuoles, transmission electron microscopy and immunofluorescence staining were employed to detect autophagy. The ability of cells to migrate and invade were detected by Transwell migration and invasion assays. The interaction of CDCA4 with CARM1 was identified by immunoprecipitation and Western blotting analysis. RESULTS In the present study, it was found that inhibition of CDCA4 induced EMT, migration and invasion of NSCLC cells while inhibiting autophagy of NSCLC cells. Meanwhile, overexpression of CDCA4 in NSCLC cells showed the opposite function. More importantly, the inhibition of autophagy could promote the EMT, migration and invasion of NSCLC cells, which should be impaired via the activation of autophagy. In addition, CDCA4-inhibited EMT, migration and invasion could be partially aggravated by autophagy activator, rapamycin, and reversed by autophagy inhibitor, 3-MA. Correspondingly, the application of rapamycin or 3-MA to CDCA4 knockdown cells showed the opposite effects. Further investigation suggested that CDCA4 could interact with coactivator associated arginine methyltransferase 1 (CARM1). Autophagy was induced while cell migration and invasion were inhibited in CARM1 knockdown cells. CDCA4 could suppress the protein expression CARM1 and knocking down of CARM1 could alter cell autophagy, migratory and invasive abilities regulated by CDCA4. CONCLUSION All data indicated that CDCA4 inhibited the EMT, migration and invasion of NSCLC via interacting with CARM1 to modulate autophagy.
Collapse
Affiliation(s)
- Chenxin Xu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, No.42, Baiziting Street, Nanjing, 210009, Jiangsu, China
| | - Haixia Cao
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, Jiangsu, China
| | - Ying Sui
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, No.42, Baiziting Street, Nanjing, 210009, Jiangsu, China
| | - Hui Zhang
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, No.42, Baiziting Street, Nanjing, 210009, Jiangsu, China
| | - Chen Shi
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, No.42, Baiziting Street, Nanjing, 210009, Jiangsu, China
| | - Jianzhong Wu
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, Jiangsu, China
| | - Rong Ma
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, Jiangsu, China
| | - Jifeng Feng
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, No.42, Baiziting Street, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
8
|
Mongre RK, Mishra CB, Jung S, Lee BS, Quynh NTN, Anh NH, Myagmarjav D, Jo T, Lee MS. Exploring the Role of TRIP-Brs in Human Breast Cancer: An Investigation of Expression, Clinicopathological Significance, and Prognosis. MOLECULAR THERAPY-ONCOLYTICS 2020; 19:105-126. [PMID: 33102693 PMCID: PMC7554327 DOI: 10.1016/j.omto.2020.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
Abstract
TRIP-Brs, a group of transcription factors (TFs) that modulate several mechanisms in higher organisms. However, the novel paradigm to target TRIP-Brs in specific cancer remains to be deciphered. In particular, comprehensive analysis of TRIP-Brs in clinicopathological and patients’ prognosis, especially in breast cancer (BRCA), is being greatly ignored. Therefore, we explored the key roles of TRIP-Br expression, modulatory effects, mutations, immune infiltration, and prognosis in BRCA using multidimensional approaches. We found elevated levels of TRIP-Brs in numerous cancer tissues than normal. Higher expression of TRIP-Br-2/4/5 was shown to be positively associated with lower survival, tumor grade, and malignancy of patients with BRCA. Additionally, higher TRIP-Br-3/4 were also significantly linked with worse/short survival of BRCA patients. TRIP-Br-1/4/5 were significantly overexpressed and enhanced tumorigenesis in large-scale BRCA datasets. The mRNA levels of TRIP-Brs have been also correlated with tumor immune infiltrate in BRCA patients. In addition, TRIP-Brs synergistically play a pivotal role in central carbon metabolism, cancer-associated pathways, cell cycle, and thyroid hormone signaling, which evoke that TRIP-Brs may be a potential target for the therapy of BRCA. Thus, this investigation may lay a foundation for further research on TRIP-Br-mediated management of BRCA.
Collapse
Affiliation(s)
- Raj Kumar Mongre
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Hyochangwon gil-52, Yongsan-Gu, Seoul 140-742, Republic of Korea
| | - Chandra Bhushan Mishra
- College of Pharmacy, Sookmyung Women's University, Hyochangwon gil-52, Yongsan-Gu, Seoul 140-742, Republic of Korea
| | - Samil Jung
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Hyochangwon gil-52, Yongsan-Gu, Seoul 140-742, Republic of Korea
| | - Beom Suk Lee
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Hyochangwon gil-52, Yongsan-Gu, Seoul 140-742, Republic of Korea
| | - Nguyen Thi Ngoc Quynh
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Hyochangwon gil-52, Yongsan-Gu, Seoul 140-742, Republic of Korea
| | - Nguyen Hai Anh
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Hyochangwon gil-52, Yongsan-Gu, Seoul 140-742, Republic of Korea
| | - Davaajragal Myagmarjav
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Hyochangwon gil-52, Yongsan-Gu, Seoul 140-742, Republic of Korea
| | - Taeyeon Jo
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Hyochangwon gil-52, Yongsan-Gu, Seoul 140-742, Republic of Korea
| | - Myeong-Sok Lee
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Hyochangwon gil-52, Yongsan-Gu, Seoul 140-742, Republic of Korea
| |
Collapse
|
9
|
Circ_0010220-mediated miR-503-5p/CDCA4 axis contributes to osteosarcoma progression tumorigenesis. Gene 2020; 763:145068. [PMID: 32827680 DOI: 10.1016/j.gene.2020.145068] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/02/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022]
Abstract
CircRNAs are reported to exert a significant role in modulating genes in cancers, including osteosarcoma progression. Up to now, the function of circ_0010220 in osteosarcoma is still poorly known. The aim of our work was to figure out the potential mechanism of circ_0010220/miR-503-5p/CDCA4 axis in osteosarcoma progression. Firstly, quantitative RT-qPCR was utilized to measure the expression of circ_0010220 in osteosarcoma cells. Then, osteosarcoma cell proliferation, apoptosis, cell cycle, migration and invasion after loss of circ_0010220 were evaluated using CCK-8, flow cytometry, transwell migration, invasion and tumorigenesis experiments respectively. Circ_0010220 expression was markedly increased in osteosarcoma cells. Additionally, knockdown of circ_0010220 significantly depressed tumor growth. CCK-8 analysis indicated that down-regulation of circ_0010220 inhibited osteosarcoma cells proliferation. Flow cytometry assay showed that knockdown of circ_0010220 induced cell apoptosis and blocked cell cycle in the G1 phase. Meanwhile, cell migration an invasion was reduced by circ_0010220. Furthermore, miR-503-5p was predicted as the target for circ_0010220 and miR-503-5p inhibitors reversed cell growth suppressed through silencing circ_0010220. Then, our study demonstrated that Cell Division Cycle-Associated protein 4 (CDCA4) could be a downstream target of miR-503-5p. Additionally, circ_0010220 down-regulation reduced CDCA4 expression level and the inhibitors of miR-503-5p reversed that. In conclusion, we indicated circ_0010220 can be an important biomarker for osteosarcoma via regulating miR-503-5p and CDCA4.
Collapse
|
10
|
Zhang S, Yu J, Sun BF, Hou GZ, Yu ZJ, Luo H. MicroRNA-92a Targets SERTAD3 and Regulates the Growth, Invasion, and Migration of Prostate Cancer Cells via the P53 Pathway. Onco Targets Ther 2020; 13:5495-5514. [PMID: 32606766 PMCID: PMC7298502 DOI: 10.2147/ott.s249168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/04/2020] [Indexed: 12/22/2022] Open
Abstract
Background The miR-17-92 cluster, consisting of six mature miRNAs including miR-17, miR-18a, miR-19a, miR-19b, miR-20a, and miR-92a, plays a key role in the tumorigenesis and development of various cancers. The dysregulation of the cluster correlates with the biological mechanism of tumor growth and metastasis in vivo. However, the relationship between miR-17-92 cluster and malignancy of prostate cancer remains unclear, and its regulatory mechanism is worth investigating for controlling the proliferation and invasion of prostate cancer. Materials and Methods The expressions of miR-17-92 cluster members were measured using real-time quantitative RT-PCR. WB and real-time quantitative RT-PCR were used to detect the expression of SERTAD3, p38, p21, p53 protein levels and transcription levels. Cell proliferation and apoptosis were evaluated using cell proliferation assay, EdU and Hoechst assay, colony formation experiment and flow cytometry analyses. Cell migration and invasion were determined via transwell assays. The TargetScan, miRDB, starBase databases and luciferase reporter assays were used to confirm the target gene of miR-92a. Results The relative expression of miR-92a was threefold higher in the metastatic PC-3 cells compared with the non-metastatic LNCaP cells. Down-regulation of miR-92a in PC-3 cells led to the inhibition of cell proliferation, migration, and invasion, while its overexpression in LNCaP cells resulted in the promotion of cell proliferation, migration, and invasion. The role of SERTAD3 in prostate cancer can be alleviated by miR-92a inhibitor. Conclusion SERTAD3 was the direct target gene of miR-92a in prostate cancer cells; inhibition of SERTAD3-dependent miR-92a alleviated the growth, invasion, and migration of prostate cancer cells by regulating the expression of the key genes of the p53 pathway, including p38, p53 and p21. These results suggested that targeting SERTAD3 by the induction of overexpression of miR-92a may be a treatment option in prostate cancer.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University, Guizhou, People's Republic of China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, People's Republic of China
| | - Jia Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, People's Republic of China.,Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, People's Republic of China
| | - Bao-Fei Sun
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University, Guizhou, People's Republic of China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, People's Republic of China
| | - Gui-Zhong Hou
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University, Guizhou, People's Republic of China
| | - Zi-Jiang Yu
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University, Guizhou, People's Republic of China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, People's Republic of China
| | - Heng Luo
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University, Guizhou, People's Republic of China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, People's Republic of China.,Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, People's Republic of China
| |
Collapse
|
11
|
SERTA Domain Containing Protein 1 (SERTAD1) Interacts with Classical Swine Fever Virus Structural Glycoprotein E2, Which Is Involved in Virus Virulence in Swine. Viruses 2020; 12:v12040421. [PMID: 32283651 PMCID: PMC7232485 DOI: 10.3390/v12040421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
E2 is the major structural glycoprotein of the classical swine fever virus (CSFV). E2 has been shown to be involved in important virus functions such as replication and virulence in swine. Using the yeast two-hybrid system, we previously identified several host proteins specifically interacting with CSFV E2. Here, we analyze the protein interaction of E2 with SERTA domain containing protein 1 (SERTAD1), a factor involved in the stimulation of the transcriptional activities of different host genes. We have confirmed that the interaction between these two proteins occurs in CSFV-infected swine cells by using a proximity ligation assay and confocal microscopy. Amino acid residues in the CSFV E2 protein that are responsible for mediating the interaction with SERTAD1 were mapped by a yeast two-hybrid approach using a randomly mutated E2 library. Using that information, a recombinant CSFV mutant (E2ΔSERTAD1v) that harbors substitutions in those residues mediating the protein-interaction with SERTAD1 was developed and used to study the role of the E2-SERTAD1 interaction in viral replication and virulence in swine. CSFV E2ΔSERTAD1v, when compared to the parental BICv, showed a clearly decreased ability to replicate in the SK6 swine cell line and a more severe replication defect in primary swine macrophage cultures. Importantly, 80% of animals infected with E2ΔSERTAD1v survived infection, remaining clinically normal during the 21-day observational period. This result would indicate that the ability of CSFV E2 to bind host SERTAD1 protein during infection plays a critical role in virus virulence.
Collapse
|
12
|
Chen C, Chen S, Luo M, Yan H, Pang L, Zhu C, Tan W, Zhao Q, Lai J, Li H. The role of the CDCA gene family in ovarian cancer. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:190. [PMID: 32309337 PMCID: PMC7154490 DOI: 10.21037/atm.2020.01.99] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Ovarian cancer is a frequently-occurring reproductive system malignancy in females, which leads to an annual of over 100 thousand deaths worldwide. Methods The electronic databases, including GEPIA, ONCOMINE, Metascape, and Kaplan-Meier Plotter, were used to examine both survival and transcriptional data regarding the cell division cycle associated (CDCA) gene family among ovarian cancer patients. Results All CDCA genes expression levels were up-regulated in ovarian cancer tissues relative to those in non-carcinoma ovarian counterparts. Besides, CDCA5/7 expression levels were related to the late tumor stage. In addition, the Kaplan-Meier Plotter database was employed to carry out survival analysis, which suggested that ovarian cancer patients with increased CDCA2/3/5/7 expression levels had poor overall survival (OS) (P<0.05). Moreover, ovarian cancer patients that had up-regulated mRNA expression levels of CDCA2/5/8 had markedly reduced progression-free survival (PFS) (P<0.05); and up-regulated CDCA4 expression showed remarkable association with reduced post-progression survival (PPS) (P<0.05). Additionally, the following processes were affected by CDCA genes alterations, including R-HAS-2500257: resolution of sister chromatid cohesion; GO:0051301: cell division; CORUM: 1118: Chromosomal passenger complex (CPC, including CDCA8, INCENP, AURKB and BIRC5); CORUM: 127: NDC80 kinetochore complex; M129: PID PLK1 pathway; and GO: 0007080: mitotic metaphase plate congression, all of which were subjected to marked regulation since the alterations affected CDCA genes. Conclusions Up-regulated CDCA gene expression in ovarian cancer tissues probably played a crucial part in the occurrence of ovarian cancer. The up-regulated CDCA2/3/5/7 expression levels were used as the potential prognostic markers to improve the poor ovarian cancer survival and prognostic accuracy. Moreover, CDCA genes probably exerted their functions in tumorigenesis through the PLK1 pathway.
Collapse
Affiliation(s)
- Chongxiang Chen
- Guangzhou Institute of Respiratory Diseases, State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.,Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Siliang Chen
- Department of Hematology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Ma Luo
- Department of Interventional Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Honghong Yan
- Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Lanlan Pang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Chaoyang Zhu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Weiyan Tan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Qingyu Zhao
- Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Jielan Lai
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Huan Li
- Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| |
Collapse
|
13
|
Meng J, Gao L, Zhang M, Gao S, Fan S, Liang C. Systematic investigation of the prognostic value of cell division cycle-associated proteins for clear cell renal cell carcinoma patients. Biomark Med 2020; 14:223-238. [PMID: 31955607 DOI: 10.2217/bmm-2019-0498] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Aim: To explore the prognostic value of the cell division cycle-associated proteins (CDCA) family in clear cell renal cell carcinoma. Methods: Gene profiles were collected from the The Cancer Genome Atlas-Kidney Renal Clear Cell Carcinoma (TCGA-KIRC), the GSE29609 and GSE22541 datasets. Genetic alteration and DNA methylation data were downloaded from the cBioPortal and MethSurv. The functional enrichment data were analyzed by Metascape. Results: The mRNA expression of the CDCAs, except CBX2, was significantly increased in clear cell renal cell carcinoma patients. Genetic alterations might affect the expression of CDCAs, but promotor methylation does not affect CDCA gene expression. The overall expression of the CDCAs, according to the The Cancer Genome Atlas-KIRC database (hazard ratio [HR]: 2.18), the GSE29609 (HR: 6.08) and GSE22541 (HR: 6.73), was significantly associated with unfavorable overall survival. In addition, genes co-expressed with CDCAs (R2 ≥0.3) were highly associated with cell division and the FOXM1 pathway. Conclusion: Our study demonstrated that the aberrant expression of CDCA gene family members plays an indispensable role in tumorigenesis.
Collapse
Affiliation(s)
- Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University; Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Lei Gao
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University; Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Shenglin Gao
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, P.R. China
| | - Song Fan
- Department of Urology, The First Affiliated Hospital of Anhui Medical University; Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University; Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, P.R. China
| |
Collapse
|
14
|
Stratton MS, Bagchi RA, Felisbino MB, Hirsch RA, Smith HE, Riching AS, Enyart BY, Koch KA, Cavasin MA, Alexanian M, Song K, Qi J, Lemieux ME, Srivastava D, Lam MPY, Haldar SM, Lin CY, McKinsey TA. Dynamic Chromatin Targeting of BRD4 Stimulates Cardiac Fibroblast Activation. Circ Res 2019; 125:662-677. [PMID: 31409188 DOI: 10.1161/circresaha.119.315125] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
RATIONALE Small molecule inhibitors of the acetyl-histone binding protein BRD4 have been shown to block cardiac fibrosis in preclinical models of heart failure (HF). However, since the inhibitors target BRD4 ubiquitously, it is unclear whether this chromatin reader protein functions in cell type-specific manner to control pathological myocardial fibrosis. Furthermore, the molecular mechanisms by which BRD4 stimulates the transcriptional program for cardiac fibrosis remain unknown. OBJECTIVE We sought to test the hypothesis that BRD4 functions in a cell-autonomous and signal-responsive manner to control activation of cardiac fibroblasts, which are the major extracellular matrix-producing cells of the heart. METHODS AND RESULTS RNA-sequencing, mass spectrometry, and cell-based assays employing primary adult rat ventricular fibroblasts demonstrated that BRD4 functions as an effector of TGF-β (transforming growth factor-β) signaling to stimulate conversion of quiescent cardiac fibroblasts into Periostin (Postn)-positive cells that express high levels of extracellular matrix. These findings were confirmed in vivo through whole-transcriptome analysis of cardiac fibroblasts from mice subjected to transverse aortic constriction and treated with the small molecule BRD4 inhibitor, JQ1. Chromatin immunoprecipitation-sequencing revealed that BRD4 undergoes stimulus-dependent, genome-wide redistribution in cardiac fibroblasts, becoming enriched on a subset of enhancers and super-enhancers, and leading to RNA polymerase II activation and expression of downstream target genes. Employing the Sertad4 (SERTA domain-containing protein 4) locus as a prototype, we demonstrate that dynamic chromatin targeting of BRD4 is controlled, in part, by p38 MAPK (mitogen-activated protein kinase) and provide evidence of a critical function for Sertad4 in TGF-β-mediated cardiac fibroblast activation. CONCLUSIONS These findings define BRD4 as a central regulator of the pro-fibrotic cardiac fibroblast phenotype, establish a p38-dependent signaling circuit for epigenetic reprogramming in heart failure, and uncover a novel role for Sertad4. The work provides a mechanistic foundation for the development of BRD4 inhibitors as targeted anti-fibrotic therapies for the heart.
Collapse
Affiliation(s)
- Matthew S Stratton
- From the Department of Medicine, Division of Cardiology (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora.,Consortium for Fibrosis Research & Translation (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora
| | - Rushita A Bagchi
- From the Department of Medicine, Division of Cardiology (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora.,Consortium for Fibrosis Research & Translation (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora
| | - Marina B Felisbino
- From the Department of Medicine, Division of Cardiology (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora.,Consortium for Fibrosis Research & Translation (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora
| | - Rachel A Hirsch
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX (R.A.H., H.E.S., C.Y.L.)
| | - Harrison E Smith
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX (R.A.H., H.E.S., C.Y.L.)
| | - Andrew S Riching
- From the Department of Medicine, Division of Cardiology (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora.,Consortium for Fibrosis Research & Translation (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora
| | - Blake Y Enyart
- From the Department of Medicine, Division of Cardiology (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora.,Consortium for Fibrosis Research & Translation (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora
| | - Keith A Koch
- From the Department of Medicine, Division of Cardiology (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora.,Consortium for Fibrosis Research & Translation (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora
| | - Maria A Cavasin
- From the Department of Medicine, Division of Cardiology (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora.,Consortium for Fibrosis Research & Translation (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora
| | - Michael Alexanian
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA (M.A., D.S., S.M.H.)
| | - Kunhua Song
- From the Department of Medicine, Division of Cardiology (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora.,Consortium for Fibrosis Research & Translation (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora
| | - Jun Qi
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA (J.Q.)
| | | | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA (M.A., D.S., S.M.H.)
| | - Maggie P Y Lam
- From the Department of Medicine, Division of Cardiology (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora.,Consortium for Fibrosis Research & Translation (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora
| | - Saptarsi M Haldar
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA (M.A., D.S., S.M.H.).,Cardiovascular Research Institute and Department of Medicine, Division of Cardiology UCSF School of Medicine, San Francisco, CA (S.M.H.).,Cardiometabolic Disorders, Amgen, San Francisco, CA (S.M.H.)
| | - Charles Y Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX (R.A.H., H.E.S., C.Y.L.)
| | - Timothy A McKinsey
- From the Department of Medicine, Division of Cardiology (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora.,Consortium for Fibrosis Research & Translation (M.S.S., R.A.B., M.B.F., A.S.R., B.Y.E., K.A.K., M.A.C., K.S., M.P.Y.L., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora
| |
Collapse
|
15
|
Mongre RK, Jung S, Mishra CB, Lee BS, Kumari S, Lee MS. Prognostic and Clinicopathological Significance of SERTAD1 in Various Types of Cancer Risk: A Systematic Review and Retrospective Analysis. Cancers (Basel) 2019; 11:E337. [PMID: 30857225 PMCID: PMC6469047 DOI: 10.3390/cancers11030337] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/23/2019] [Accepted: 03/01/2019] [Indexed: 12/13/2022] Open
Abstract
SERTAD/TRIP-Br genes are considered as a key nuclear transcriptional player in diverse mechanisms of cell including carcinogenesis. The Oncomine™-Online Platform was used for differential expression and biological insights. Kaplan-Meier survival estimated by KM-plotter/cBioPortal/PrognoScan with 95% CI. SERTAD1 was found significantly elevated levels in most of tumor samples. Kaplan-Meier Plotter results distinctly showed the SERTAD1 over-expression significantly reduced median overall-survival (OS) of patients in liver (n = 364/Logrank-test p = 0.0015), ovarian (n = 655/Logrank-test p = 0.00011) and gastric (n = 631/Logrank-test p = 0.1866). Increased level of SERTAD1 has a significantly higher survival rate in the initial time period, but after 100 months slightly reduced OS (n = 26/Logrank-test p = 0.34) and RFS in HER2 positive breast cancer patients. In meta-analysis, cancer patients with higher SERTAD1 mRNA fold resulted worse overall survival than those with lower SERTAD1 levels. Heterogeneity was observed in the fixed effect model analysis DFS [Tau² = 0.0.073, Q (df = 4) = 15.536 (p = 0.004), I² = 74.253], DSS [Tau² = 1.015, Q (df = 2) = 33.214, (p = 0.000), I² = 93.973], RFS [Tau² = 0.492, Q (df = 7) = 71.133 (p = 0.000), I² = 90.159] (Figure 5). OS [Tau² = 0.480, Q (df = 17) = 222.344 (p = 0.000), I² = 92.354]. Lastly, SERTAD1 involved in several signaling cascades through interaction and correlation with many candidate factors as well as miRNAs. This meta-analysis demonstrates a robust evidence of an association between higher or lower SERTAD1, alteration and without alteration of SERTAD1 in cancers in terms of survival and cancer invasiveness.
Collapse
Affiliation(s)
- Raj Kumar Mongre
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Hyochangwon gil-52, Yongsan-Gu, Seoul 140-742, Korea.
| | - Samil Jung
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Hyochangwon gil-52, Yongsan-Gu, Seoul 140-742, Korea.
| | - Chandra Bhushan Mishra
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India.
| | - Beom Suk Lee
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Hyochangwon gil-52, Yongsan-Gu, Seoul 140-742, Korea.
| | - Shikha Kumari
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India.
| | - Myeong-Sok Lee
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Hyochangwon gil-52, Yongsan-Gu, Seoul 140-742, Korea.
| |
Collapse
|
16
|
Pang S, Xu Y, Chen J, Li G, Huang J, Wu X. Knockdown of cell division cycle-associated protein 4 expression inhibits proliferation of triple negative breast cancer MDA-MB-231 cells in vitro and in vivo. Oncol Lett 2019; 17:4393-4400. [PMID: 30944632 PMCID: PMC6444385 DOI: 10.3892/ol.2019.10077] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 02/08/2019] [Indexed: 12/25/2022] Open
Abstract
Cell division cycle-associated protein 4 (CDCA4), also known as SEI-3/hematopoietic progenitor protein, is a target gene of transcription factor E2F and represses E2F-dependent transcriptional activation and cell proliferation. The present study investigated the effects of CDCA4 knockdown on the regulation of triple negative breast cancer (TNBC) cell proliferation in vitro and in vivo. Human TNBC MDA-MB-231 cells were subjected to CDCA4 expression knockdown using a lentiviral vector carrying CDCA4 or a negative control short hairpin RNA, and reverse transcription-quantitative polymerase chain reaction, MTT cell viability, cell growth, flow cytometric apoptosis, cell cycle and nude mouse tumorigenesis assays were conducted. The knockdown of CDCA4 expression effectively inhibited the growth of MDA-MB-231 cells by promoting apoptosis in vitro. Additionally, CDCA4 expression knockdown suppressed nude mouse tumor cell xenograft formation and growth in vivo. In conclusion, the data from the present study supported the hypothesis that CDCA4 may be involved in regulating human TNBC progression, and that targeting CDCA4 expression could be useful as a novel strategy in future TNBC treatment.
Collapse
Affiliation(s)
- Sen Pang
- Department of Gastrointestinal and Gland Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yuju Xu
- Department of Gastrointestinal and Gland Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jun Chen
- Department of Gastrointestinal and Gland Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Guibin Li
- Department of Gastrointestinal and Gland Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jingle Huang
- Department of Gastrointestinal and Gland Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xianghua Wu
- Department of Gastrointestinal and Gland Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
17
|
Sei-1 promotes double minute chromosomes formation through activation of the PI3K/Akt/BRCA1-Abraxas pathway and induces double-strand breaks in NIH-3T3 fibroblasts. Cell Death Dis 2018; 9:341. [PMID: 29497033 PMCID: PMC5832785 DOI: 10.1038/s41419-018-0362-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 12/29/2022]
Abstract
Sei-1 is a potential oncogene that plays an important role in promoting genomic instability. Double minute chromosomes (DMs) are hallmarks of gene amplification and contribute to tumorigenesis. Defects in the DNA double-strand break (DSB) repairing pathways can lead to gene amplification. To date, the mechanisms governing the formation of DMs induced by Sei-1 are not fully understood. We established DMs induced by Sei-1 in the NIH-3T3 cell line. RNA-sequencing was used to identify key characteristics of differentially expressed genes. Metaphase spreads were used to calculate DM numbers. Immunofluorescence was employed to detect γH2AX foci. Western blot and Akt pathway inhibition experiments were performed to reveal the role of the PI3K/Akt/BRCA1-Abraxas pathway in Sei-1-induced DMs. Luciferase reporter assay was employed to explore the regulatory mechanisms between Sei-1 and BRCA1. DM formation was associated with a deficiency in DSB repair. Based on this finding, activation of the PI3K/Akt/BRCA1-Abraxas pathway was found to increase the DM population with passage in vivo, and inhibition resulted in a reduction of DMs. Apart from this, it was shown for the first time that Sei-1 could directly regulate the expression of BRCA1. Our results suggest that the PI3K/Akt/BRCA1-Abraxas pathway is responsible for the formation of DMs induced by Sei-1.
Collapse
|
18
|
Xu Y, Wu X, Li F, Huang D, Zhu W. CDCA4, a downstream gene of the Nrf2 signaling pathway, regulates cell proliferation and apoptosis in the MCF‑7/ADM human breast cancer cell line. Mol Med Rep 2017; 17:1507-1512. [PMID: 29257222 PMCID: PMC5780089 DOI: 10.3892/mmr.2017.8095] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 08/31/2017] [Indexed: 12/12/2022] Open
Abstract
The present study aimed to examine the effect of RNA interference targeting cell division cycle-associated protein 4 (CDCA4) on the proliferation and apoptosis of the MCF-7/ADR' human breast cancer cell line. CDCA4 has been shown to have a unique role in regulating cell cycle. In the present study, the expression of CDCA4 was suppressed by CDCA4-specific short hairpin (sh)RNA transfection of the human breast cancer cells, following which changes in the proliferation and apoptosis of the CDCA4-knockdown cells were compared with those of control shRNA-transfected cells. The results confirmed that CDCA4 RNA interference reduced the percentage of human breast cancer cells to <50%. In addition, RNA interference of CDCA4 resulted in a significant increase in the apoptotic rate of cells. Taken together, these results suggested that CDCA4 enhanced proliferation and reduced apoptosis in the MCF-7/ADM human breast cancer cells in vitro.
Collapse
Affiliation(s)
- Yuju Xu
- Department of Gastrointestinal Gland Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xianghua Wu
- Department of Gastrointestinal Gland Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Fengxi Li
- Department of Gastrointestinal Gland Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Daolai Huang
- Department of Gastrointestinal Gland Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wenxiang Zhu
- Department of Gastrointestinal Gland Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
19
|
SEI1 induces genomic instability by inhibiting DNA damage response in ovarian cancer. Cancer Lett 2016; 385:271-279. [PMID: 27697611 DOI: 10.1016/j.canlet.2016.09.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 09/15/2016] [Accepted: 09/25/2016] [Indexed: 12/12/2022]
Abstract
Previous studies have shown that the oncogene SEI1 is highly expressed in ovarian carcinomas, and promoting genomic instability. However, the molecular mechanism of SEI1 in promoting genomic instability remains unclear. We observed SEI1 overexpression in 30 of 46 cases of ovarian cancer compared to non-tumor tissues and the overexpression of SEI1 was positively associated with the tumor FIGO stage. Our functional studies revealed that overexpression of SEI1 could induce genomic instability and increased DNA strand breaks. In contrast, SEI1 co-localized with γH2AX and phosphorylated ATM and DNAPKcs in the nucleus. Furthermore, we found that overexpression of SEI1 induced translocation of the SEI1 protein from the cytoplasm to the nucleus; ATM and DNAPKcs were associated with the cytoplasm-to-nucleus translocation of SEI1. To further prove the correlation between the DNA damage response (DDR) and SEI1, we knocked down SEI1 expression in SEI1-transfected ovarian cancer cell lines. The expression of DDR proteins was significantly downregulated, and the number of micronuclei was significantly decreased. Together, these results define a new mechanism of SEI1 in the regulation of genomic stability and in the malignant progression of ovarian cancer.
Collapse
|
20
|
MAO MINZHI, WANG WANCHUN. SerpinE2 promotes multiple cell proliferation and drug resistance in osteosarcoma. Mol Med Rep 2016; 14:881-7. [DOI: 10.3892/mmr.2016.5316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 04/15/2016] [Indexed: 11/06/2022] Open
|
21
|
Li C, Jung S, Lee S, Jeong D, Yang Y, Kim KI, Lim JS, Cheon CI, Kim C, Kang YS, Lee MS. Nutrient/serum starvation derived TRIP-Br3 down-regulation accelerates apoptosis by destabilizing XIAP. Oncotarget 2016; 6:7522-35. [PMID: 25691055 PMCID: PMC4480697 DOI: 10.18632/oncotarget.3112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/08/2015] [Indexed: 12/19/2022] Open
Abstract
TRIP-Br3 and TRIP-Br1 have shown to have important biological functions. However, the function of TRIP-Br3 in tumorigenesis is not well characterized compared to oncogenic TRIP-Br1. Here, we investigated the function of TRIP-Br3 in tumorigenesis by comparing with that of TRIP-Br1. Under nutrient/serum starvation, TRIP-Br3 expression was down-regulated slightly in cancer cells and significantly in normal cells. Unexpectedly, TRIP-Br1 expression was greatly up-regulated in cancer cells but not in normal cells. Moreover, TRIP-Br3 activated autophagy while TRIP-Br1 inactivated it under serum starvation. In spite of different expression and roles of TRIP-Br3 and TRIP-Br1, both of them alleviate cell death by directly binding to and stabilizing XIAP, a potent apoptosis inhibitor, through blocking its ubiquitination. Taken together, we propose that TRIP-Br3 primarily activates the autophagy and suppresses apoptosis in nutrient sufficient condition. However, the prolonged extreme stressful condition of nutrient starvation causes a dramatic decrease of TRIP-Br3, which in turn induces apoptosis by destabilizing XIAP. Up-regulated TRIP-Br1 in cancer cells compensates this effect and delays apoptosis. This can be explained by the competitive alternative binding of TRIP-Br3 and TRIP-Br1 to the BIR2 domain of XIAP. In an extended study, our immunohistochemical analysis revealed a markedly lower level of TRIP-Br3 protein in human carcinoma tissues compared to normal epithelial tissues, implying the role of TRIP-Br3 as a tumor suppressor rather than onco-protein.
Collapse
Affiliation(s)
- Chengping Li
- Department of Life Systems, Sookmyung Women's University, Seoul, 140-742, South Korea
| | - Samil Jung
- Department of Life Systems, Sookmyung Women's University, Seoul, 140-742, South Korea
| | - Soonduck Lee
- Department of Life Systems, Sookmyung Women's University, Seoul, 140-742, South Korea
| | - Dongjun Jeong
- Department of Pathology, College of Medicine, Soonchunhyang University, Chonan, 330-090, South Korea
| | - Young Yang
- Department of Life Systems, Sookmyung Women's University, Seoul, 140-742, South Korea
| | - Keun-Il Kim
- Department of Life Systems, Sookmyung Women's University, Seoul, 140-742, South Korea
| | - Jong-Seok Lim
- Department of Life Systems, Sookmyung Women's University, Seoul, 140-742, South Korea
| | - Chung-Il Cheon
- Department of Life Systems, Sookmyung Women's University, Seoul, 140-742, South Korea
| | - Changjin Kim
- Department of Pathology, College of Medicine, Soonchunhyang University, Chonan, 330-090, South Korea
| | - Young-Sook Kang
- College of Pharmacy, Sookmyung Women's University, Seoul, 140-742, South Korea
| | - Myeong-Sok Lee
- Department of Life Systems, Sookmyung Women's University, Seoul, 140-742, South Korea
| |
Collapse
|
22
|
Taranis Protects Regenerating Tissue from Fate Changes Induced by the Wound Response in Drosophila. Dev Cell 2015; 34:119-28. [DOI: 10.1016/j.devcel.2015.04.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/25/2015] [Accepted: 04/23/2015] [Indexed: 12/15/2022]
|
23
|
KLF10 affects pancreatic function via the SEI-1/p21Cip1 pathway. Int J Biochem Cell Biol 2015; 60:53-9. [DOI: 10.1016/j.biocel.2014.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 12/03/2014] [Accepted: 12/28/2014] [Indexed: 11/16/2022]
|
24
|
Sertad1 encodes a novel transcriptional co-activator of SMAD1 in mouse embryonic hearts. Biochem Biophys Res Commun 2013; 441:751-6. [PMID: 24211589 DOI: 10.1016/j.bbrc.2013.10.127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 02/06/2023]
Abstract
Despite considerable advances in surgical repairing procedures, congenital heart diseases (CHDs) remain the leading noninfectious cause of infant morbidity and mortality. Understanding the molecular/genetic mechanisms underlying normal cardiogenesis will provide essential information for the development of novel diagnostic and therapeutic strategies against CHDs. BMP signaling plays complex roles in multiple cardiogenic processes in mammals. SMAD1 is a canonical nuclear mediator of BMP signaling, the activity of which is critically regulated through its interaction partners. We screened a mouse embryonic heart yeast two-hybrid library using Smad1 as bait and identified SERTAD1 as a novel interaction partner of SMAD1. SERTAD1 contains multiple potential functional domains, including two partially overlapping transactivation domains at the C terminus. The SERTAD1-SMAD1 interaction in vitro and in mammalian cells was further confirmed through biochemical assays. The expression of Sertad1 in developing hearts was demonstrated using RT-PCR, western blotting and in situ hybridization analyses. We also showed that SERTAD1 was localized in both the cytoplasm and nucleus of immortalized cardiomyocytes and primary embryonic cardiomyocyte cultures. The overexpression of SERTAD1 in cardiomyocytes not only enhanced the activity of two BMP reporters in a dose-dependent manner but also increased the expression of several known BMP/SMAD regulatory targets. Therefore, these data suggest that SERTAD1 acts as a SMAD1 transcriptional co-activator to promote the expression of BMP target genes during mouse cardiogenesis.
Collapse
|
25
|
Norikura T, Fujiwara K, Yanai T, Sano Y, Sato T, Tsunoda T, Kushibe K, Todate A, Morinaga Y, Iwai K, Matsue H. p-terphenyl derivatives from the mushroom Thelephora aurantiotincta suppress the proliferation of human hepatocellular carcinoma cells via iron chelation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:1258-1264. [PMID: 23339435 DOI: 10.1021/jf3041098] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A novel 2',3'-dihydroxy-p-terphenyl derivative, thelephantin O (TO), which has cancer-selective cytotoxicity, was isolated. This study investigated the underlying basis of the cytotoxicity of 2',3'-dihydroxy-p-terphenyl compounds in view of their ability to chelate metal ions. FeCl(2) significantly reduced TO-induced cytotoxicity, whereas several other salts of transition metals and alkaline-earth metals did not. A structure-activity relationship study using newly synthesized p-terphenyl derivatives revealed that o-dihydroxy substitution of the central benzene ring was necessary for both the cytotoxicity and Fe(2+) chelation of the compounds. Real-time PCR array and cell cycle analysis revealed that the TO-induced cytotoxicity was attributed to cell cycle arrest at the G1 phase via well-known cell cycle-mediated genes. The TO-induced changes in the cell cycle and gene expression were completely reversed by the addition of FeCl(2). Thus, it was concluded that Fe(2+) chelation occurs upstream in the pivotal pathway of 2',3'-dihydroxy-p-terphenyl-induced inhibition of cancer cell proliferation.
Collapse
Affiliation(s)
- Toshio Norikura
- Department of Nutrition, Faculty of Health Science, Aomori University of Health and Welfare, Mase 58-1, Hamadate, Aomori 030-8505, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kusano S, Shiimura Y, Eizuru Y. I-mfa domain proteins specifically interact with SERTA domain proteins and repress their transactivating functions. Biochimie 2011; 93:1555-64. [PMID: 21664411 DOI: 10.1016/j.biochi.2011.05.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 05/20/2011] [Indexed: 11/28/2022]
Abstract
The I-mfa domain proteins I-mfa and HIC are considered to be candidate tumor suppressor genes and have been shown to be involved in transcriptional regulation. We show here that I-mfa and HIC specifically interact with SEI-1 through their C-terminal I-mfa domains in vivo. This interaction affects the intracellular localization of I-mfa and requires the region of SEI-1 between 30 and 90 amino acids, which includes its SERTA domain, and results in repression of its intrinsic transcriptional activity. I-mfa also decreases the levels of the SEI-1·DP-1 complex and endogenous Fbxw7 mRNA, the expression of which is coregulated by E2F·DP-1 and SEI-1 in an interaction-dependent manner in vitro. In addition, I-mfa also specifically interacts with other SERTA domain-containing proteins, including SEI-2, SEI-3, SERTAD3 and SERTAD4, through its I-mfa domain in vivo. This interaction also affects the intracellular localization of I-mfa and represses the intrinsic transcriptional activities of SEI-2 and SERTAD3, which are also involved in the E2F-dependent transcription. These data reveal for the first time that I-mfa domain proteins interact with SERTA domain proteins and negatively regulate their transcriptional activity. Because SEI-1, SEI-2 and SERTAD3, whose intrinsic transcriptional activities are repressed by I-mfa, are suggested to be oncogenes, I-mfa domain proteins may be involved in their oncogenic functions by negatively regulating their transcriptional activities.
Collapse
Affiliation(s)
- Shuichi Kusano
- Division of Persistent and Oncogenic Viruses, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan.
| | | | | |
Collapse
|
27
|
Yamaguchi H, Fujimoto T, Nakamura S, Ohmura K, Mimori T, Matsuda F, Nagata S. Aberrant splicing of the milk fat globule-EGF factor 8 (MFG-E8) gene in human systemic lupus erythematosus. Eur J Immunol 2010; 40:1778-85. [PMID: 20213738 DOI: 10.1002/eji.200940096] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Milk fat globule-EGF factor 8 (MFG-E8) promotes the phagocytosis of apoptotic cells by serving as a bridging molecule between apoptotic cells and phagocytes. Many apoptotic cells are left unengulfed in the germinal centers of the spleen of MFG-E8(-/-) mice, which develop a human systemic lupus erythematosus (SLE)-like autoimmune disease. Here, we analyzed the MFG-E8 gene in human SLE patients, and found in two out of 322 female patients a heterozygous intronic mutation, which caused a cryptic exon from intron 6 to be included in the transcript. The cryptic exon contained a premature termination codon, generating a C-terminally truncated MFG-E8 protein. The mutant MFG-E8 was aberrantly glycosylated and sialylated, but bound to phosphatidylserine and enhanced the phagocytosis of apoptotic cells. When intravenously injected into mice, the mutant MFG-E8 was sustained longer in the blood circulation than wild-type MFG-E8. Repeated administrations of the mutant MFG-E8 protein induced the production of autoantibodies, such as anti-cardiolipin and anti-nuclear antibodies, at a lower dose than that required for the wild-type protein. These results suggested that the intronic mutation in the human MFG-E8 gene can lead to the development of SLE.
Collapse
Affiliation(s)
- Hiroshi Yamaguchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Developmental and pathological death of neurons requires activation of a defined pathway of cell cycle proteins. However, it is unclear how this pathway is regulated and whether it is relevant in vivo. A screen for transcripts robustly induced in cultured neurons by DNA damage identified Sertad1, a Cdk4 (cyclin-dependent kinase 4) activator. Sertad1 is also induced in neurons by nerve growth factor (NGF) deprivation and Abeta (beta-amyloid). RNA interference-mediated downregulation of Sertad1 protects neurons in all three death models. Studies of NGF withdrawal indicate that Sertad1 is required to initiate the apoptotic cell cycle pathway since its knockdown blocks subsequent pathway events. Finally, we find that Sertad1 expression is required for developmental neuronal death in the cerebral cortex. Sertad1 thus appears to be essential for neuron death in trophic support deprivation in vitro and in vivo and in models of DNA damage and Alzheimer's disease. It may therefore be a suitable target for therapeutic intervention.
Collapse
|
29
|
Higgins S, Wong SHX, Richner M, Rowe CL, Newgreen DF, Werther GA, Russo VC. Fibroblast growth factor 2 reactivates G1 checkpoint in SK-N-MC cells via regulation of p21, inhibitor of differentiation genes (Id1-3), and epithelium-mesenchyme transition-like events. Endocrinology 2009; 150:4044-55. [PMID: 19477940 DOI: 10.1210/en.2008-1797] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have recently demonstrated that fibroblast growth factor (FGF)-2 promotes neuroblastoma cell differentiation and overrides their mitogenic response to IGF-I. However, the mechanisms involved are unknown. SK-N-MC cells were cultured with FGF-2 (50 ng/ml) and/or IGF-I (100 ng/ml) up to 48 h. Fluorescence-activated cell sorting analysis indicated that FGF-2 promotes G1/G0 cell cycle phase arrest. Gene expression by RT2-PCR and cellular localization showed up-regulation of p21. We then investigated whether FGF-2-induced differentiation of SK-N-MC cells (by GAP43 and NeuroD-6 expression) involves epithelium-mesenchyme transition interconversion. Real-time PCR (RT2-PCR) showed modulation of genes involved in maintenance of the epithelial phenotype and cell-matrix interactions (E-cadherin, Snail-1, MMPs). Zymography confirmed FGF-2 up-regulated MMP2 and induced MMP9, known to contribute to neuronal differentiation and neurite extension. Id1-3 expression was determined by RT2-PCR. FGF-2 induced Id2, while down-regulating Id1 and Id3. FGF-2 induced nuclear accumulation of ID2 protein, while ID1 and ID3 remained cytoplasmic. RNA interference demonstrated that Id3 regulates differentiation and cell cycle (increased Neuro-D6 and p21 mRNA), while d Id2 modulates epithelium-mesenchyme transition-like events (increased E-cadherin mRNA). In conclusion, we have shown for the first time that FGF-2 induces differentiation of neuroblastoma cells via activation of a complex gene expression program enabling modulation of cell cycle, transcription factors, and suppression of the cancer phenotype. The use of RNA interference indicated that Id-3 is a key regulator of these events, thus pointing to a novel therapeutic target for this devastating childhood cancer.
Collapse
Affiliation(s)
- S Higgins
- Centre for Hormone Research, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville 3052, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
30
|
Cheong JK, Gunaratnam L, Zang ZJ, Yang CM, Sun X, Nasr SL, Sim KG, Peh BK, Rashid SBA, Bonventre JV, Salto-Tellez M, Hsu SI. TRIP-Br2 promotes oncogenesis in nude mice and is frequently overexpressed in multiple human tumors. J Transl Med 2009; 7:8. [PMID: 19152710 PMCID: PMC2671481 DOI: 10.1186/1479-5876-7-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 01/20/2009] [Indexed: 01/09/2023] Open
Abstract
Background Members of the TRIP-Br/SERTAD family of mammalian transcriptional coregulators have recently been implicated in E2F-mediated cell cycle progression and tumorigenesis. We, herein, focus on the detailed functional characterization of the least understood member of the TRIP-Br/SERTAD protein family, TRIP-Br2 (SERTAD2). Methods Oncogenic potential of TRIP-Br2 was demonstrated by (1) inoculation of NIH3T3 fibroblasts, which were engineered to stably overexpress ectopic TRIP-Br2, into athymic nude mice for tumor induction and (2) comprehensive immunohistochemical high-throughput screening of TRIP-Br2 protein expression in multiple human tumor cell lines and human tumor tissue microarrays (TMAs). Clinicopathologic analysis was conducted to assess the potential of TRIP-Br2 as a novel prognostic marker of human cancer. RNA interference of TRIP-Br2 expression in HCT-116 colorectal carcinoma cells was performed to determine the potential of TRIP-Br2 as a novel chemotherapeutic drug target. Results Overexpression of TRIP-Br2 is sufficient to transform murine fibroblasts and promotes tumorigenesis in nude mice. The transformed phenotype is characterized by deregulation of the E2F/DP-transcriptional pathway through upregulation of the key E2F-responsive genes CYCLIN E, CYCLIN A2, CDC6 and DHFR. TRIP-Br2 is frequently overexpressed in both cancer cell lines and multiple human tumors. Clinicopathologic correlation indicates that overexpression of TRIP-Br2 in hepatocellular carcinoma is associated with a worse clinical outcome by Kaplan-Meier survival analysis. Small interfering RNA-mediated (siRNA) knockdown of TRIP-Br2 was sufficient to inhibit cell-autonomous growth of HCT-116 cells in vitro. Conclusion This study identifies TRIP-Br2 as a bona-fide protooncogene and supports the potential for TRIP-Br2 as a novel prognostic marker and a chemotherapeutic drug target in human cancer.
Collapse
Affiliation(s)
- Jit Kong Cheong
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Tategu M, Nakagawa H, Hayashi R, Yoshida K. Transcriptional co-factor CDCA4 participates in the regulation of JUN oncogene expression. Biochimie 2008; 90:1515-22. [DOI: 10.1016/j.biochi.2008.05.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 05/23/2008] [Indexed: 10/22/2022]
|
32
|
Wang L, Zhu G, Yang D, Li Q, Li Y, Xu X, He D, Zeng C. The spindle function of CDCA4. ACTA ACUST UNITED AC 2008; 65:581-93. [PMID: 18498124 DOI: 10.1002/cm.20286] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In an attempt to discover novel proteins functioning in both interphase nucleus and mitotic spindle as NuMA does, we carried out cDNA library screening with pooled autoimmune antibodies. Among positive clones we found a recently identified transcription regulatory protein (CDCA4) with the distinctive nuclear-mitotic apparatus distribution. CDCA4 localizes at metaphase spindle poles and the midzone in later stages. Additionally, an intensive CDCA4 accumulation parallel to spindle was observed in half of metaphase cells but not in later stages, implying a transient form of CDCA4 binding to midzone from anaphase. Mitotic arrest dissolved CDCA4 from centrosomes but during the spindle recovery, CDCA4 invariably colocalized with the microtubule nucleation foci as a component of microtubule organization center. RNA interference of CDCA4 resulted in significant increase of multinuclei and multipolar spindles, suggesting impaired function in chromosome segregation or cytokinesis. However, the spindle checkpoint and the centrosome cycle appeared not to be affected by such interference. Furthermore, CDCA4 depletion resulted in accelerated cell proliferation, perhaps due to the disruption of CDCA4 nuclear function as a transcription suppressor. Interphase CDCA4 is localized in nucleoli by immunofluorescence, although GFP-CDCA4 expressed in the nucleoplasm. An N-terminal KRKC domain appears to be the nuclear localization signal as identified by sequence alignment and the expression of truncated mutants. Taken together, our results suggested that as a novel nuclearmitotic apparatus protein, CDCA4 is involved in spindle organization from prometaphase. When anaphase begins, CDCA4 may play a different role as a midzone factor involved in chromosome segregation or cytokinesis.
Collapse
Affiliation(s)
- Limin Wang
- Key Laboratory for Cell Proliferation and Regulation of the Ministry of Education, Beijing Normal University, Beijing China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Cheong JK, Gunaratnam L, Hsu SIH. CRM1-mediated nuclear export is required for 26 S proteasome-dependent degradation of the TRIP-Br2 proto-oncoprotein. J Biol Chem 2008; 283:11661-76. [PMID: 18316374 DOI: 10.1074/jbc.m708365200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Overexpression of the proto-oncogene TRIP-Br2 (SERTAD2) has been shown to induce E2F activity and promote tumorigenesis, whereas ablation of TRIP-Br2 arrests cell proliferation. Timely degradation of many cell cycle regulators is fundamental to the maintenance of proper cell cycle progression. Here we report novel mechanism(s) that govern the tight regulation of TRIP-Br2 levels during cell cycle progression. TRIP-Br2 was observed to be a short-lived protein in which the expression level peaks at the G(1)/S boundary. TRIP-Br2 accumulated in cells treated with 26 S proteasome inhibitors. Co-immunoprecipitation studies revealed that TRIP-Br2 forms ubiquitin conjugates. In silico analysis identified a putative leucine-rich nuclear export signal (NES) motif that overlaps with the PHD-Bromo interaction domain in the acidic C-terminal transactivation domain (TAD) of TRIP-Br2. This NES motif is highly conserved in widely divergent species and in all TRIP-Br family members. TRIP-Br2 was shown to be stabilized in G(2)/M phase cells through nuclear entrapment, either by deletion of the acidic C-terminal TAD, which includes the NES motif, or by leptomycin B-mediated inhibition of the CRM1-dependent nuclear export machinery. Mutation of leucine residue 238 of this NES motif abolished the interaction between CRM1 and TRIP-Br2, as well as the nuclear export of TRIP-Br2 and its subsequent 26 S proteasome-dependent degradation. These data suggest that CRM1-mediated nuclear export may be required for the proper execution of ubiquitin-proteasome-dependent degradation of TRIP-Br2.
Collapse
Affiliation(s)
- Jit Kong Cheong
- Renal Division and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
34
|
Characterization of the human herpesvirus 6 U69 gene product and identification of its nuclear localization signal. J Virol 2007; 82:710-8. [PMID: 18003734 DOI: 10.1128/jvi.00736-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To elucidate the function of the U69 protein kinase of human herpesvirus 6 (HHV-6) in vivo, we first analyzed its subcellular localization in HHV-6-infected Molt 3 cells by using polyclonal antibodies against the U69 protein. Immunofluorescence studies showed that the U69 signal localized to the nucleus in a mesh-like pattern in both HHV-6-infected and HHV6-transfected cells. A computer program predicted two overlapping classic nuclear localization signals (NLSs) in the N-terminal region of the protein; this NLS motif is highly conserved in the N-terminal region of most of the herpesvirus protein kinases examined to date. An N-terminal deletion mutant form of the protein failed to enter the nucleus, whereas a fusion protein of green fluorescent protein (GFP) and/or glutathione S-transferase (GST) and the U69 N-terminal region was transported into the nucleus, demonstrating that the predicted N-terminal NLSs of the protein actually function as NLSs. The nuclear transport of the GST-GFP fusion protein containing the N-terminal NLS of U69 was inhibited by wheat germ agglutinin and by the Q69L Ran-GTP mutant, indicating that the U69 protein is transported into the nucleus from the cytoplasm via classic nuclear transport machinery. A cell-free import assay showed that the nuclear transport of the U69 protein was mediated by importin alpha/beta in conjunction with the small GTPase Ran. When the import assay was performed with a low concentration of each importin-alpha subtype, NPI2/importin-alpha7 elicited more efficient transport activity than did Rch1/importin-alpha1 or Qip1/importin-alpha3. These results suggest a relationship between the localization of NPI2/importin-alpha7 and the cell tropism of HHV-6.
Collapse
|
35
|
Lai IL, Wang SY, Yao YL, Yang WM. Transcriptional and subcellular regulation of the TRIP-Br family. Gene 2006; 388:102-9. [PMID: 17141982 DOI: 10.1016/j.gene.2006.10.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 09/22/2006] [Accepted: 10/12/2006] [Indexed: 10/24/2022]
Abstract
TRIP-Brs are a recently discovered set of proteins whose functions remain poorly characterized. Here we report the identification of TRIP-Br3 as a member of the TRIP-Br family along with evidence showing that TRIP-Brs interact with bromodomain-containing transcriptional cofactors PCAF, STAF65gamma, and KAP1. PCAF, a histone acetyltransferase; STAF65gamma, a protein associated with histone acetylation activity; and KAP1, a corepressor, influence the transcriptional activity of TRIP-Brs differentially. Finally, while all three TRIP-Brs are localized to the nucleus, TRIP-Br2 and TRIP-Br3 are also present in the cytoplasm through interaction with CRM1. Our results suggest that different TRIP-Brs function by interacting with a wide variety of bromodomain-containing transcriptional regulators in different subcellular locales.
Collapse
Affiliation(s)
- I-Lu Lai
- Institute of Molecular Biology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan
| | | | | | | |
Collapse
|
36
|
Hayashi R, Goto Y, Ikeda R, Yokoyama KK, Yoshida K. CDCA4 is an E2F transcription factor family-induced nuclear factor that regulates E2F-dependent transcriptional activation and cell proliferation. J Biol Chem 2006; 281:35633-48. [PMID: 16984923 DOI: 10.1074/jbc.m603800200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The TRIP-Br1/p34(SEI-1) family proteins participate in cell cycle progression by coactivating E2F1- or p53-dependent transcriptional activation. Here, we report the identification of human CDCA4 (also know as SEI-3/Hepp) as a novel target gene of transcription factor E2F and as a repressor of E2F-dependent transcriptional activation. Analysis of CDCA4 promoter constructs showed that an E2F-responsive sequence in the vicinity of the transcription initiation site is necessary for the E2F1-4-induced activation of CDCA4 gene transcription. Chromatin immunoprecipitation analysis demonstrated that E2F1 and E2F4 bound to an E2F-responsive sequence of the human CDCA4 gene. Like TRIP-Br1/p34(SEI-1) and TRIP-Br2 (SEI-2), the transactivation domain of CDCA4 was mapped within C-terminal acidic region 175-241. The transactivation function of the CDCA4 protein was inhibited by E2F1-4 and DP2, but not by E2F5-8. Inhibition of CDCA4 transactivation activity by E2F1 partially interfered with retinoblastoma protein overexpression. Conversely, CDCA4 suppressed E2F1-3-induced reporter activity. CDCA4 (but not acidic region-deleted CDCA4) suppressed E2F1-regulated gene promoter activity. These findings suggest that the CDCA4 protein functions as a suppressor at the E2F-responsive promoter. Small interfering RNA-mediated knockdown of CDCA4 expression in cancer cells resulted in up-regulation of cell growth rates and DNA synthesis. The CDCA4 protein was detected in several human cells and was induced as cells entered the G1/S phase of the cell cycle. Taken together, our results suggest that CDCA4 participates in the regulation of cell proliferation, mainly through the E2F/retinoblastoma protein pathway.
Collapse
Affiliation(s)
- Reiko Hayashi
- Laboratory of Molecular and Cellular Biology, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Kawasaki, Kanagawa 214-8571, Japan
| | | | | | | | | |
Collapse
|
37
|
Bennetts JS, Fowles LF, Berkman JL, van Bueren KL, Richman JM, Simpson F, Wicking C. Evolutionary conservation and murine embryonic expression of the gene encoding the SERTA domain-containing protein CDCA4 (HEPP). Gene 2006; 374:153-65. [PMID: 16546331 DOI: 10.1016/j.gene.2006.01.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 01/27/2006] [Accepted: 01/27/2006] [Indexed: 10/24/2022]
Abstract
Cdca4 (Hepp) was originally identified as a gene expressed specifically in hematopoietic progenitor cells as opposed to hematopoietic stem cells. More recently, it has been shown to stimulate p53 activity and also lead to p53-independent growth inhibition when overexpressed. We independently isolated the murine Cdca4 gene in a genomic expression-based screen for genes involved in mammalian craniofacial development, and show that Cdca4 is expressed in a spatio-temporally restricted pattern during mouse embryogenesis. In addition to expression in the facial primordia including the pharyngeal arches, Cdca4 is expressed in the developing limb buds, brain, spinal cord, dorsal root ganglia, teeth, eye and hair follicles. Along with a small number of proteins from a range of species, the predicted CDCA4 protein contains a novel SERTA motif in addition to cyclin A-binding and PHD bromodomain-binding regions of homology. While the function of the SERTA domain is unknown, proteins containing this domain have previously been linked to cell cycle progression and chromatin remodelling. Using in silico database mining we have extended the number of evolutionarily conserved orthologues of known SERTA domain proteins and identified an uncharacterised member of the SERTA domain family, SERTAD4, with orthologues to date in human, mouse, rat, dog, cow, Tetraodon and chicken. Immunolocalisation of transiently and stably transfected epitope-tagged CDCA4 protein in mammalian cells suggests that it resides predominantly in the nucleus throughout all stages of the cell cycle.
Collapse
Affiliation(s)
- Jennifer S Bennetts
- Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, QLD 4072, Australia
| | | | | | | | | | | | | |
Collapse
|