1
|
Gross N, Peñagaricano F, Khatib H. Integration of whole-genome DNA methylation data with RNA sequencing data to identify markers for bull fertility. Anim Genet 2020; 51:502-510. [PMID: 32323873 DOI: 10.1111/age.12941] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2020] [Indexed: 02/06/2023]
Abstract
Predicting bull fertility prior to breeding is a current challenge for the dairy industry. The use of molecular biomarkers has been previously assessed. However, the integration of this information has not been performed to extract biologically relevant markers. The goal of this study was to integrate DNA methylation data with previously published RNA-sequencing results in order to identify candidate markers for sire fertility. A total of 1765 differentially methylated cytosines were found between high- and low-fertility sires. Ten genes associated with 11 differentially methylated cytosines were found in a previous study of gene expression between high- and low-fertility sires. Additionally, two of these genes code for proteins found exclusively in bull seminal plasma. Collectively, our results reveal 10 genes that could be used in the future as a panel for predicting bull fertility.
Collapse
Affiliation(s)
- Nicole Gross
- Department of Animal Sciences, University of Wisconsin, Madison, WI, 53706, USA
| | | | - Hasan Khatib
- Department of Animal Sciences, University of Wisconsin, Madison, WI, 53706, USA
| |
Collapse
|
2
|
Greaney AM, Adams TS, Brickman Raredon MS, Gubbins E, Schupp JC, Engler AJ, Ghaedi M, Yuan Y, Kaminski N, Niklason LE. Platform Effects on Regeneration by Pulmonary Basal Cells as Evaluated by Single-Cell RNA Sequencing. Cell Rep 2020; 30:4250-4265.e6. [PMID: 32209482 PMCID: PMC7175071 DOI: 10.1016/j.celrep.2020.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/24/2019] [Accepted: 03/02/2020] [Indexed: 12/16/2022] Open
Abstract
Cell-based therapies have shown promise for treating myriad chronic pulmonary diseases through direct application of epithelial progenitors or by way of engineered tissue grafts or whole organs. To elucidate environmental effects on epithelial regenerative outcomes in vitro, here, we isolate and culture a population of pharmacologically expanded basal cells (peBCs) from rat tracheas. At peak basal marker expression, we simultaneously split peBCs into four in vitro platforms: organoid, air-liquid interface (ALI), engineered trachea, and engineered lung. Following differentiation, these samples are evaluated using single-cell RNA sequencing (scRNA-seq) and computational pipelines are developed to compare samples both globally and at the population level. A sample of native rat tracheal epithelium is also evaluated by scRNA-seq as a control for engineered epithelium. Overall, this work identifies platform-specific effects that support the use of engineered models to achieve the most physiologic differential outcomes in pulmonary epithelial regenerative applications.
Collapse
Affiliation(s)
- Allison M Greaney
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA; Vascular Biology and Therapeutics, Yale University, New Haven, CT 06511, USA.
| | - Taylor S Adams
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT 06519, USA
| | - Micha Sam Brickman Raredon
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA; Vascular Biology and Therapeutics, Yale University, New Haven, CT 06511, USA; Medical Scientist Training Program, Yale University, New Haven, CT 06511, USA
| | - Elise Gubbins
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Jonas C Schupp
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT 06519, USA
| | - Alexander J Engler
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA; Vascular Biology and Therapeutics, Yale University, New Haven, CT 06511, USA
| | - Mahboobe Ghaedi
- Vascular Biology and Therapeutics, Yale University, New Haven, CT 06511, USA; Department of Anesthesiology, Yale University, New Haven, CT 06510, USA
| | - Yifan Yuan
- Vascular Biology and Therapeutics, Yale University, New Haven, CT 06511, USA; Department of Anesthesiology, Yale University, New Haven, CT 06510, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT 06519, USA
| | - Laura E Niklason
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA; Vascular Biology and Therapeutics, Yale University, New Haven, CT 06511, USA; Department of Anesthesiology, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
3
|
Xu P, Wang X, Ni L, Zhang W, Lu C, Zhao X, Zhao X, Ren J. Genome-wide genotyping uncovers genetic diversity, phylogeny, signatures of selection, and population structure of Chinese Jiangquhai pigs in a global perspective1. J Anim Sci 2019; 97:1491-1500. [PMID: 30882885 DOI: 10.1093/jas/skz028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/21/2019] [Indexed: 11/12/2022] Open
Abstract
Jiangquhai pigs are one of the 42 representative local breeds listed in the national livestock genetic resources conservation project of China. This breed is known for its prolificacy, desirable meat quality, and excellent adaptability to crude feed and local environments. In this study, we genotyped 105 Jiangquhai pigs from the state conservation farm using GeneSeek GGP Porcine 80K SNP chip, and explored the SNP data to unravel genetic diversity, evolutionary phylogeny, signatures of selection, and population structure of Jiangquhai pigs in a context of 33 global breeds. Five indices of observed heterozygosity, expected heterozygosity, effective population size, runs of homozygosity, and linkage disequilibrium extent indicate that the Jiangquhai breed are still rich in genetic diversity in comparison with other breeds also from East China despite the recent decline of its population size. Phylogenetic, principal component, TreeMix, and admixture analyses show that Jiangquhai pigs represent an authentic genetic resource and have close genetic relationships with East Chinese breeds, their geographical neighbors. A genome scan unravels a list of reproduction-related genes potentially under selection in Jiangquhai pigs. Using the neighbor-joining clustering approach, we reconstructed the family structure of the conservation population of Jiangquhai pigs. This finding allowed us to suggest a rotational mating scheme across the reconstructed families to reduce the risk of inbreeding depression in the population.
Collapse
Affiliation(s)
- Pan Xu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, P.R. China
| | - Xiaopeng Wang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Ligang Ni
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, P.R. China
| | - Wei Zhang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, P.R. China
| | - Changlin Lu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, P.R. China
| | - Xiang Zhao
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, P.R. China
| | - Xuting Zhao
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, P.R. China
| | - Jun Ren
- College of Animal Science, South China Agricultural University, Guangzhou, P.R. China
| |
Collapse
|
4
|
Bagheri-Fam S, Ono M, Li L, Zhao L, Ryan J, Lai R, Katsura Y, Rossello FJ, Koopman P, Scherer G, Bartsch O, Eswarakumar JVP, Harley VR. FGFR2 mutation in 46,XY sex reversal with craniosynostosis. Hum Mol Genet 2015; 24:6699-710. [PMID: 26362256 DOI: 10.1093/hmg/ddv374] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/08/2015] [Indexed: 12/29/2022] Open
Abstract
Patients with 46,XY gonadal dysgenesis (GD) exhibit genital anomalies, which range from hypospadias to complete male-to-female sex reversal. However, a molecular diagnosis is made in only 30% of cases. Heterozygous mutations in the human FGFR2 gene cause various craniosynostosis syndromes including Crouzon and Pfeiffer, but testicular defects were not reported. Here, we describe a patient whose features we would suggest represent a new FGFR2-related syndrome, craniosynostosis with XY male-to-female sex reversal or CSR. The craniosynostosis patient was chromosomally XY, but presented as a phenotypic female due to complete GD. DNA sequencing identified the FGFR2c heterozygous missense mutation, c.1025G>C (p.Cys342Ser). Substitution of Cys342 by Ser or other amino acids (Arg/Phe/Try/Tyr) has been previously reported in Crouzon and Pfeiffer syndrome. We show that the 'knock-in' Crouzon mouse model Fgfr2c(C342Y/C342Y) carrying a Cys342Tyr substitution displays XY gonadal sex reversal with variable expressivity. We also show that despite FGFR2c-Cys342Tyr being widely considered a gain-of-function mutation, Cys342Tyr substitution in the gonad leads to loss of function, as demonstrated by sex reversal in Fgfr2c(C342Y/-) mice carrying the knock-in allele on a null background. The rarity of our patient suggests the influence of modifier genes which exacerbated the testicular phenotype. Indeed, patient whole exome analysis revealed several potential modifiers expressed in Sertoli cells at the time of testis determination in mice. In summary, this study identifies the first FGFR2 mutation in a 46,XY GD patient. We conclude that, in certain rare genetic contexts, maintaining normal levels of FGFR2 signaling is important for human testis determination.
Collapse
Affiliation(s)
- Stefan Bagheri-Fam
- Centre for Reproductive Health, Hudson Institute of Medical Research, Melbourne, Australia, Department of Anatomy and Developmental Biology,
| | - Makoto Ono
- Centre for Reproductive Health, Hudson Institute of Medical Research, Melbourne, Australia
| | - Li Li
- Department of Orthopedics and Rehabilitation, Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Liang Zhao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Janelle Ryan
- Centre for Reproductive Health, Hudson Institute of Medical Research, Melbourne, Australia
| | - Raymond Lai
- Centre for Reproductive Health, Hudson Institute of Medical Research, Melbourne, Australia
| | - Yukako Katsura
- Department of Integrative Biology, University of California Berkeley, Berkeley, USA
| | - Fernando J Rossello
- Department of Anatomy and Developmental Biology, Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Gerd Scherer
- Institute of Human Genetics, University of Freiburg, Freiburg, Germany and
| | - Oliver Bartsch
- Institute of Human Genetics, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Jacob V P Eswarakumar
- Department of Orthopedics and Rehabilitation, Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Vincent R Harley
- Centre for Reproductive Health, Hudson Institute of Medical Research, Melbourne, Australia, Department of Anatomy and Developmental Biology,
| |
Collapse
|
5
|
WIP remodeling actin behind the scenes: how WIP reshapes immune and other functions. Int J Mol Sci 2012; 13:7629-7647. [PMID: 22837718 PMCID: PMC3397550 DOI: 10.3390/ijms13067629] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/07/2012] [Accepted: 06/14/2012] [Indexed: 01/09/2023] Open
Abstract
Actin polymerization is a fundamental cellular process regulating immune cell functions and the immune response. The Wiskott-Aldrich syndrome protein (WASp) is an actin nucleation promoting factor, which is exclusively expressed in hematopoietic cells, where it plays a key regulatory role in cytoskeletal dynamics. WASp interacting protein (WIP) was first discovered as the binding partner of WASp, through the use of the yeast two hybrid system. WIP was later identified as a chaperone of WASp, necessary for its stability. Mutations occurring at the WASp homology 1 domain (WH1), which serves as the WIP binding site, were found to cause the Wiskott-Aldrich syndrome (WAS) and X-linked thrombocytopenia (XLT). WAS manifests as an immune deficiency characterized by eczema, thrombocytopenia, recurrent infections, and hematopoietic malignancies, demonstrating the importance of WIP for WASp complex formation and for a proper immune response. WIP deficiency was found to lead to different abnormalities in the activity of various lymphocytes, suggesting differential cell-dependent roles for WIP. Additionally, WIP deficiency causes cellular abnormalities not found in WASp-deficient cells, indicating that WIP fulfills roles beyond stabilizing WASp. Indeed, WIP was shown to interact with various binding partners, including the signaling proteins Nck, CrkL and cortactin. Recent studies have demonstrated that WIP also takes part in non immune cellular processes such as cancer invasion and metastasis, in addition to cell subversion by intracellular pathogens. Understanding of numerous functions of WIP can enhance our current understanding of activation and function of immune and other cell types.
Collapse
|
6
|
Upadhyay RD, Kumar AV, Ganeshan M, Balasinor NH. Tubulobulbar complex: cytoskeletal remodeling to release spermatozoa. Reprod Biol Endocrinol 2012; 10:27. [PMID: 22510523 PMCID: PMC3442992 DOI: 10.1186/1477-7827-10-27] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 03/30/2012] [Indexed: 11/15/2022] Open
Abstract
Tubulobulbar complexes (TBCs) are actin-based structures that help establish close contact between Sertoli-Sertoli cells or Sertoli-mature germ cells (spermatids) in the seminiferous tubules of the testes. They are actin-rich push-through devices that eliminate excess spermatid cytoplasm and prepare mature spermatids for release into the tubular lumen. Just prior to spermiation, the elongated spermatid interacts with the Sertoli cell via an extensive structure comprising various adhesion molecules called the apical ectoplasmic specialization which is partially replaced by the apical TBC, on the concave surface of the spermatid head. The sperm release process involves extensive restructuring, namely the disassembly and reassembly of junctions at the Sertoli-spermatid interface in the seminiferous epithelium. Based on the presence of different classes of molecules in the TBCs or the defects observed in the absence of TBCs, the main functions attributed to TBCs are elimination of excess spermatid cytoplasm, endocytosis and recycling of junctional molecules, shaping of the spermatid acrosome, and forming transient anchoring devices for mature spermatids before they are released. This review summarizes the recent findings that focus on the role of TBCs in cell cytoskeleton restructuring during sperm release in the testes and the molecular mechanism involved.
Collapse
Affiliation(s)
- Rahul D Upadhyay
- Department of Neuroendocrinology, National Institute for Research in Reproductive Health, J.M.Street, Parel, Mumbai, 400012, India
| | - Anita V Kumar
- Department of Neuroendocrinology, National Institute for Research in Reproductive Health, J.M.Street, Parel, Mumbai, 400012, India
| | - Malti Ganeshan
- Department of Neuroendocrinology, National Institute for Research in Reproductive Health, J.M.Street, Parel, Mumbai, 400012, India
| | - Nafisa H Balasinor
- Department of Neuroendocrinology, National Institute for Research in Reproductive Health, J.M.Street, Parel, Mumbai, 400012, India
| |
Collapse
|
7
|
O'Donnell L, Nicholls PK, O'Bryan MK, McLachlan RI, Stanton PG. Spermiation: The process of sperm release. SPERMATOGENESIS 2011; 1:14-35. [PMID: 21866274 DOI: 10.4161/spmg.1.1.14525] [Citation(s) in RCA: 251] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 12/16/2010] [Accepted: 12/17/2010] [Indexed: 02/06/2023]
Abstract
Spermiation is the process by which mature spermatids are released from Sertoli cells into the seminiferous tubule lumen prior to their passage to the epididymis. It takes place over several days at the apical edge of the seminiferous epithelium, and involves several discrete steps including remodelling of the spermatid head and cytoplasm, removal of specialized adhesion structures and the final disengagement of the spermatid from the Sertoli cell. Spermiation is accomplished by the co-ordinated interactions of various structures, cellular processes and adhesion complexes which make up the "spermiation machinery". This review addresses the morphological, ultrastructural and functional aspects of mammalian spermiation. The molecular composition of the spermiation machinery, its dynamic changes and regulatory factors are examined. The causes of spermiation failure and their impact on sperm morphology and function are assessed in an effort to understand how this process may contribute to sperm count suppression during contraception and to phenotypes of male infertility.
Collapse
Affiliation(s)
- Liza O'Donnell
- Prince Henry's Institute of Medical Research; Clayton, VIC Australia
| | | | | | | | | |
Collapse
|
8
|
Abstract
WASP, the product of the gene mutated in Wiskott-Aldrich syndrome, is expressed only in hematopoietic cells and is the archetype of a family of proteins that include N-WASP and Scar/WAVE. WASP plays a critical role in T cell activation and actin reorganization. WASP has multiple protein-interacting domains. Through its N-terminal EVH1 domain WASP binds to its partner WASP interacting protein (WIP) and through its C-terminal end it interacts with and activates the Arp2/3 complex. In lymphocytes, most of WASP is sequestered with WIP and binding to WIP is essential for the stability of WASP. The central proline-rich region of WASP serves as docking site to several adaptor proteins. Through these multiple interactions WASP integrates many cellular signals to actin cytoskeleton remodeling. In this review, we have summarized recent developments in the biology of WASP and the role of WIP in regulating WASP function. We also discuss WASP-independent functions of WIP.
Collapse
Affiliation(s)
- Narayanaswamy Ramesh
- Division of Immunology, Department of Pediatrics, Childrens Hospital, Harvard Medical School, Karp 10 One Blackfan Circle, Boston, MA, 02115, USA
| | | |
Collapse
|
9
|
Abstract
A review of the cytoskeleton-organizing WASP and WAVE family proteins. All eukaryotic cells need to reorganize their actin cytoskeleton to change shape, divide, move, and take up nutrients for survival. The Wiskott-Aldrich syndrome protein (WASP) and WASP-family verprolin-homologous protein (WAVE) family proteins are fundamental actin-cytoskeleton reorganizers found throughout the eukaryotes. The conserved function across species is to receive upstream signals from Rho-family small GTPases and send them to activate the Arp2/3 complex, leading to rapid actin polymerization, which is critical for cellular processes such as endocytosis and cell motility. Molecular and cell biological studies have identified a wide array of regulatory molecules that bind to the WASP and WAVE proteins and give them diversified roles in distinct cellular locations. Genetic studies using model organisms have also improved our understanding of how the WASP- and WAVE-family proteins act to shape complex tissue architectures. Current efforts are focusing on integrating these pieces of molecular information to draw a unified picture of how the actin cytoskeleton in a single cell works dynamically to build multicellular organization.
Collapse
Affiliation(s)
- Shusaku Kurisu
- Division of Lipid Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | | |
Collapse
|