1
|
Suleiman M, Al Najjar A, Zakaria ZZ, Ahmed R, Yalcin HC, Korashy HM, Uddin S, Riaz S, Abdulrahman N, Mraiche F. The Role of p90 Ribosomal S6 Kinase (RSK) in Tyrosine Kinase Inhibitor (TKI)-Induced Cardiotoxicity. J Cardiovasc Transl Res 2024; 17:334-344. [PMID: 37725271 DOI: 10.1007/s12265-023-10431-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/22/2023] [Indexed: 09/21/2023]
Abstract
Targeted therapy, such as tyrosine kinase inhibitors (TKIs), has been approved to manage various cancer types. However, TKI-induced cardiotoxicity is a limiting factor for their use. This issue has raised the need for investigating potential cardioprotective techniques to be combined with TKIs. Ribosomal S6-kinases (RSKs) are a downstream effector of the mitogen-activated-protein-kinase (MAPK) pathway; specific RSK isoforms, such as RSK1 and RSK2, have been expressed in cancer cells, in which they increase tumour proliferation. Selective targeting of those isoforms would result in tumour suppression. Moreover, activation of RSKs expressed in the heart has resulted in cardiac hypertrophy and arrhythmia; thus, inhibiting RSKs would result in cardio-protection. This review article presents an overview of the usefulness of RSK inhibitors that can be novel agents to be assessed in future research for their effect in reducing cancer proliferation, as well as protecting the heart from cardiotoxicity induced by TKIs.
Collapse
Affiliation(s)
- Muna Suleiman
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Afnan Al Najjar
- National Center for Cancer Care and Research, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Zain Z Zakaria
- Medical and Health Sciences, Qatar University, PO Box 2713, Doha, Qatar
| | - Rashid Ahmed
- Department of Biotechnology, Faculty of Science, Mirpur University of Science and Technology, Mirpur, 10250, AJK, Pakistan
| | - Huseyin C Yalcin
- Biomedical Research Centre (BRC), Qatar University, PO Box 2713, Doha, Qatar
- College of Health Sciences, QU-Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Hesham M Korashy
- National Center for Cancer Care and Research, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Sadaf Riaz
- Pharmacy Department, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Nabeel Abdulrahman
- College of Health Sciences, QU-Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Fatima Mraiche
- National Center for Cancer Care and Research, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
2
|
Jia G, Zhong X, Im HK, Schoettler N, Pividori M, Hogarth DK, Sperling AI, White SR, Naureckas ET, Lyttle CS, Terao C, Kamatani Y, Akiyama M, Matsuda K, Kubo M, Cox NJ, Ober C, Rzhetsky A, Solway J. Discerning asthma endotypes through comorbidity mapping. Nat Commun 2022; 13:6712. [PMID: 36344522 PMCID: PMC9640644 DOI: 10.1038/s41467-022-33628-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/27/2022] [Indexed: 11/09/2022] Open
Abstract
Asthma is a heterogeneous, complex syndrome, and identifying asthma endotypes has been challenging. We hypothesize that distinct endotypes of asthma arise in disparate genetic variation and life-time environmental exposure backgrounds, and that disease comorbidity patterns serve as a surrogate for such genetic and exposure variations. Here, we computationally discover 22 distinct comorbid disease patterns among individuals with asthma (asthma comorbidity subgroups) using diagnosis records for >151 M US residents, and re-identify 11 of the 22 subgroups in the much smaller UK Biobank. GWASs to discern asthma risk loci for individuals within each subgroup and in all subgroups combined reveal 109 independent risk loci, of which 52 are replicated in multi-ancestry meta-analysis across different ethnicity subsamples in UK Biobank, US BioVU, and BioBank Japan. Fourteen loci confer asthma risk in multiple subgroups and in all subgroups combined. Importantly, another six loci confer asthma risk in only one subgroup. The strength of association between asthma and each of 44 health-related phenotypes also varies dramatically across subgroups. This work reveals subpopulations of asthma patients distinguished by comorbidity patterns, asthma risk loci, gene expression, and health-related phenotypes, and so reveals different asthma endotypes.
Collapse
Affiliation(s)
- Gengjie Jia
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
- Institute of Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518120, China
| | - Xue Zhong
- Department of Medicine and Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Hae Kyung Im
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Nathan Schoettler
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Milton Pividori
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - D Kyle Hogarth
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Anne I Sperling
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Steven R White
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | | | | | - Chikashi Terao
- RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, 420-8527, Japan
- Department of Applied Genetics, The School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Yoichiro Kamatani
- RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Department of Computational Biology and Medical Sciences, Graduate school of Frontier Sciences, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Masato Akiyama
- RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Koichi Matsuda
- Department of Computational Biology and Medical Sciences, Graduate school of Frontier Sciences, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Nancy J Cox
- Department of Medicine and Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.
| | - Andrey Rzhetsky
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA.
- Institute of Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA.
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Genomics, Genetics, and Systems Biology, University of Chicago, Chicago, IL, 60637, USA.
| | - Julian Solway
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
3
|
Wang N, Gao J, Liu Y, Shi R, Chen S. Identification of crucial factors involved in Cynoglossus semilaevis sexual size dimorphism by GWAS and demonstration of zbed1 regulatory network by DAP-seq. Genomics 2022; 114:110376. [PMID: 35513290 DOI: 10.1016/j.ygeno.2022.110376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/07/2022] [Accepted: 04/27/2022] [Indexed: 01/14/2023]
Abstract
Sexual size dimorphism (SSD), whereby females and males exhibit different body sizes, are widely documented in animals. To explore crucial regulators implicated in female-biased SSD of Chinese tongue sole (Cynoglossus semilaevis), GWAS was conducted on 350 females and 59 males. Twenty SNPs and 25 genes including zbed1, nsd3, cdc45, klhl29, and smad4 with -log(p) > 7 were screened, mainly mapping to sex chromosome. The chromosome W-linked gene zbed1 attracted particular attention because it is a master key for cell proliferation. Thus, the regulatory network of zbed1 in C. semilaevis was explored by DAP-seq and 1352 peaks were discovered in the female brain. Moreover, zbed1 potentially regulated hippo signaling pathway, cell cycle, translation, and PI3k-Akt signaling pathway in C. semilaevis. These findings identify crucial SNPs and genes associated with female-biased SSD in C. semilaevis, also provide the first genome-wide survey for the zbed1 regulatory network in fish species.
Collapse
Affiliation(s)
- Na Wang
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China.
| | - Jin Gao
- Hainan Academy of Ocean and Fisheries Sciences, Haikou 570203, China
| | - Yang Liu
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China
| | - Rui Shi
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Songlin Chen
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China.
| |
Collapse
|
4
|
RSK Isoforms in Acute Myeloid Leukemia. Biomedicines 2021; 9:biomedicines9070726. [PMID: 34202904 PMCID: PMC8301392 DOI: 10.3390/biomedicines9070726] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022] Open
Abstract
Ribosomal S6 Kinases (RSKs) are a group of serine/threonine kinases that function downstream of the Ras/Raf/MEK/ERK signaling pathway. Four RSK isoforms are directly activated by ERK1/2 in response to extracellular stimuli including growth factors, hormones, and chemokines. RSKs phosphorylate many cytosolic and nuclear targets resulting in the regulation of diverse cellular processes such as cell proliferation, survival, and motility. In hematological malignancies such as acute myeloid leukemia (AML), RSK isoforms are highly expressed and aberrantly activated resulting in poor outcomes and resistance to chemotherapy. Therefore, understanding RSK function in leukemia could lead to promising therapeutic strategies. This review summarizes the current information on human RSK isoforms and discusses their potential roles in the pathogenesis of AML and mechanism of pharmacological inhibitors.
Collapse
|
5
|
Oncogenic KRAS engages an RSK1/NF1 pathway to inhibit wild-type RAS signaling in pancreatic cancer. Proc Natl Acad Sci U S A 2021; 118:2016904118. [PMID: 34021083 PMCID: PMC8166058 DOI: 10.1073/pnas.2016904118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with limited treatment options. Although activating mutations of the KRAS GTPase are the predominant dependency present in >90% of PDAC patients, targeting KRAS mutants directly has been challenging in PDAC. Similarly, strategies targeting known KRAS downstream effectors have had limited clinical success due to feedback mechanisms, alternate pathways, and dose-limiting toxicities in normal tissues. Therefore, identifying additional functionally relevant KRAS interactions in PDAC may allow for a better understanding of feedback mechanisms and unveil potential therapeutic targets. Here, we used proximity labeling to identify protein interactors of active KRAS in PDAC cells. We expressed fusions of wild-type (WT) (BirA-KRAS4B), mutant (BirA-KRAS4BG12D), and nontransforming cytosolic double mutant (BirA-KRAS4BG12D/C185S) KRAS with the BirA biotin ligase in murine PDAC cells. Mass spectrometry analysis revealed that RSK1 selectively interacts with membrane-bound KRASG12D, and we demonstrate that this interaction requires NF1 and SPRED2. We find that membrane RSK1 mediates negative feedback on WT RAS signaling and impedes the proliferation of pancreatic cancer cells upon the ablation of mutant KRAS. Our findings link NF1 to the membrane-localized functions of RSK1 and highlight a role for WT RAS signaling in promoting adaptive resistance to mutant KRAS-specific inhibitors in PDAC.
Collapse
|
6
|
Nakamura S, Masuyama R, Sakai K, Fukuda K, Takeda K, Tanimura S. SH3P2 suppresses osteoclast differentiation through restricting membrane localization of myosin 1E. Genes Cells 2020; 25:707-717. [PMID: 32916757 DOI: 10.1111/gtc.12806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/23/2020] [Accepted: 09/02/2020] [Indexed: 01/21/2023]
Abstract
Osteoclasts are multinucleated cells responsible for bone resorption. Src homology 3 (SH3) domain-containing protein-2 (SH3P2)/osteoclast-stimulating factor-1 regulates osteoclast differentiation, but its exact role remains elusive. Here, we show that SH3P2 suppresses osteoclast differentiation. SH3P2 knockout (KO) mice displayed decreased femoral trabecular bone mass and enhanced localization of osteoclasts on the tibial trabecular bone surface, suggesting that SH3P2 suppresses bone resorption by osteoclasts. Osteoclast differentiation based on cellular multinuclearity induced by macrophage colony-stimulating factor and receptor activator of nuclear factor-κB ligand (RANKL) was enhanced in bone marrow-derived macrophages lacking SH3P2. RANKL induced SH3P2 dephosphorylation, which increased the association of actin-dependent motor protein myosin 1E (Myo1E) with SH3P2 and thereby prevented Myo1E localization to the plasma membrane. Consistent with this, Myo1E in the membrane fraction increased in SH3P2-KO cells. Together with the attenuated osteoclast differentiation in Myo1E knocked down cells, SH3P2 may suppress osteoclast differentiation by preventing their cell-to-cell fusion depending on Myo1E membrane localization.
Collapse
Affiliation(s)
- Shota Nakamura
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Ritsuko Masuyama
- Department of Gastronomy Management, College of Gastronomy Management, Ritsumeikan University, Kusatsu, Japan
| | - Kosuke Sakai
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Karin Fukuda
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kohsuke Takeda
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Susumu Tanimura
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
7
|
Lin L, White SA, Hu K. Role of p90RSK in Kidney and Other Diseases. Int J Mol Sci 2019; 20:ijms20040972. [PMID: 30813401 PMCID: PMC6412535 DOI: 10.3390/ijms20040972] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
The 90 kDa ribosomal s6 kinases (RSKs) are a group of serine/threonine kinases consisting of 4 RSK isoforms (RSK1-4), of which RSK1 is also designated as p90RSK. p90RSK plays an important role in the Ras-mitogen-activated protein kinase (MAPK) signalling cascade and is the direct downstream effector of Ras-extracellular signal-regulated kinase (ERK1/2) signalling. ERK1/2 activation directly phosphorylates and activates p90RSK, which, in turn, activates various signalling events through selection of different phosphorylation substrates. Upregulation of p90RSK has been reported in numerous human diseases. p90RSK plays an important role in the regulation of diverse cellular processes. Thus, aberrant activation of p90RSK plays a critical role in the pathogenesis of organ dysfunction and damage. In this review, we focus on the current understanding of p90RSK functions and roles in the development and progression of kidney diseases. Roles of p90RSK, as well as other RSKs, in cardiovascular disorders and cancers are also discussed.
Collapse
Affiliation(s)
- Ling Lin
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Samantha A White
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Kebin Hu
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| |
Collapse
|
8
|
Lyraki R, Lokaj M, Soares DC, Little A, Vermeren M, Marsh JA, Wittinghofer A, Hurd T. Characterization of a novel RP2-OSTF1 interaction and its implication for actin remodelling. J Cell Sci 2018; 131:jcs.211748. [PMID: 29361551 DOI: 10.1242/jcs.211748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/21/2017] [Indexed: 11/20/2022] Open
Abstract
Retinitis pigmentosa 2 (RP2) is the causative gene for a form of X-linked retinal degeneration. RP2 was previously shown to have GTPase-activating protein (GAP) activity towards the small GTPase ARL3 via its N-terminus, but the function of the C-terminus remains elusive. Here, we report a novel interaction between RP2 and osteoclast-stimulating factor 1 (OSTF1), an intracellular protein that indirectly enhances osteoclast formation and activity and is a negative regulator of cell motility. Moreover, this interaction is abolished by a human pathogenic mutation in RP2. We utilized a structure-based approach to pinpoint the binding interface to a strictly conserved cluster of residues on the surface of RP2 that spans both the C- and N-terminal domains of the protein, and which is structurally distinct from the ARL3-binding site. In addition, we show that RP2 is a positive regulator of cell motility in vitro, recruiting OSTF1 to the cell membrane and preventing its interaction with the migration regulator Myo1E.
Collapse
Affiliation(s)
- Rodanthi Lyraki
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Mandy Lokaj
- Structural Biology Group, Max-Planck Institut für Molekulare Physiologie, Abteilung Strukturelle Biologie, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Dinesh C Soares
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Abigail Little
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Matthieu Vermeren
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK.,MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Alfred Wittinghofer
- Structural Biology Group, Max-Planck Institut für Molekulare Physiologie, Abteilung Strukturelle Biologie, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Toby Hurd
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| |
Collapse
|
9
|
Tanimura S, Takeda K. ERK signalling as a regulator of cell motility. J Biochem 2017; 162:145-154. [PMID: 28903547 DOI: 10.1093/jb/mvx048] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/17/2017] [Indexed: 01/21/2023] Open
Abstract
Cell motility is regulated by multiple processes, including cell protrusion, cell retraction, cell-matrix adhesion, polarized exocytosis and polarized vesicle trafficking, each of which is spatiotemporally controlled by various intracellular signalling pathways. Dysregulation of cell motility leads to pathological conditions, such as tumour invasion and metastasis. Accumulating evidence has revealed that extracellular signal-regulated kinase (ERK) signalling is one of the critical regulators of cell motility, although it is classically known as an important regulator of cell proliferation, differentiation and survival through regulation of gene expression. ERK and its downstream kinase, p90 ribosomal S6 kinase (RSK), dynamically regulate cell motility mainly through direct phosphorylation of various molecules that are not necessarily involved in the regulation of gene transcription and translation. In this review, we summarize how ERK signalling regulates cell motility by focusing on the components of the cell motility machinery that are directly regulated by ERK or RSK.
Collapse
Affiliation(s)
- Susumu Tanimura
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Kohsuke Takeda
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
10
|
Vermeren M, Lyraki R, Wani S, Airik R, Albagha O, Mort R, Hildebrandt F, Hurd T. Osteoclast stimulation factor 1 (Ostf1) KNOCKOUT increases trabecular bone mass in mice. Mamm Genome 2017; 28:498-514. [PMID: 28936620 PMCID: PMC5680368 DOI: 10.1007/s00335-017-9718-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/14/2017] [Indexed: 01/10/2023]
Abstract
Osteoclast stimulation factor 1 (OSTF1) is an SH3-domain containing protein that was initially identified as a factor involved in the indirect activation of osteoclasts. It has been linked to spinal muscular atrophy in humans through its interaction with SMN1, and is one of six genes deleted in a human developmental microdeletion syndrome. To investigate the function of OSTF1, we generated an Ostf1 knockout mouse model, with exons 3 and 4 of Ostf1 replaced by a LacZ orf. Extensive X-Gal staining was performed to examine the developmental and adult expression pattern, followed by phenotyping. We show widespread expression of the gene in the vasculature of most organs and in a number of cell types in adult and embryonic mouse tissues. Furthermore, whilst SHIRPA testing revealed no behavioural defects, we demonstrate increased trabecular mass in the long bones, confirming a role for OSTF1 in bone development.
Collapse
Affiliation(s)
- Matthieu Vermeren
- Institute for Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh, EH4 2XU, UK.,MRC Centre for Inflammation Research, Queen Medical Research Institute, University of Edinburgh, 47 Little France, Edinburgh, EH16 4TJ, UK
| | - Rodanthi Lyraki
- Institute for Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Sachin Wani
- Institute for Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Rannar Airik
- Rangos Research Center, Children's Hospital of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - Omar Albagha
- Institute for Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Richard Mort
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK
| | - Friedhelm Hildebrandt
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Enders 561, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Toby Hurd
- Institute for Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh, EH4 2XU, UK. .,MRC Human Genetics Unit, Institute for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
11
|
Houles T, Roux PP. Defining the role of the RSK isoforms in cancer. Semin Cancer Biol 2017; 48:53-61. [PMID: 28476656 DOI: 10.1016/j.semcancer.2017.04.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/10/2017] [Accepted: 04/28/2017] [Indexed: 02/03/2023]
Abstract
The 90kDa ribosomal S6 kinase (RSK) family is a group of Ser/Thr protein kinases (RSK1-4) that function downstream of the Ras/mitogen-activated protein kinase (MAPK) signalling pathway. RSK regulates many substrates involved in cell survival, growth, and proliferation, and as such, deregulated RSK activity has been associated with multiple cancer types. RSK expression and activity are dysregulated in several malignancies, including breast, prostate, and lung cancer, and available evidence suggests that RSK may be a promising cancer therapeutic target. Current limitations include the lack of RSK inhibitors with suitable pharmacokinetics and selectivity toward particular isoforms. This review briefly describes the current knowledge on RSK activation and function, with a particular emphasis on RSK-dependent mechanisms associated with tumorigenesis and pharmacological inhibition.
Collapse
Affiliation(s)
- Thibault Houles
- Institute for Research in Immunology and Cancer (IRIC), Canada
| | - Philippe P Roux
- Institute for Research in Immunology and Cancer (IRIC), Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
12
|
Short B. Cells set sail after lifting anchor from Myo1E. J Biophys Biochem Cytol 2016. [DOI: 10.1083/jcb.2144if] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Study reveals that ERK signaling promotes cell migration by regulating motor protein’s localization.
Collapse
|
13
|
Tanimura S, Hashizume J, Arichika N, Watanabe K, Ohyama K, Takeda K, Kohno M. ERK signaling promotes cell motility by inducing the localization of myosin 1E to lamellipodial tips. J Cell Biol 2016; 214:475-89. [PMID: 27502487 PMCID: PMC4987290 DOI: 10.1083/jcb.201503123] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/14/2016] [Indexed: 12/31/2022] Open
Abstract
Tanimura et al. demonstrate that SH3P2 binds to and functions as a cytosolic anchor for myosin 1E (Myo1E). ERK signaling–dependent phosphorylation of SH3P2 induces the dissociation of bound Myo1E and its consequent localization to the tips of lamellipodia, where it promotes cell motility. Signaling by extracellular signal–regulated kinase (ERK) plays an essential role in the induction of cell motility, but the precise mechanism underlying such regulation has remained elusive. We recently identified SH3P2 as a negative regulator of cell motility whose function is inhibited by p90 ribosomal S6 kinase (RSK)–mediated phosphorylation downstream of ERK. We here show that myosin 1E (Myo1E) is a binding partner of SH3P2 and that the interaction of the two proteins in the cytosol prevents the localization of Myo1E to the plasma membrane. Serum-induced phosphorylation of SH3P2 at Ser202 by RSK results in dissociation of Myo1E from SH3P2 in the cytosol and the subsequent localization of Myo1E to the tips of lamellipodia mediated by binding of its TH2 domain to F-actin. This translocation of Myo1E is essential for lamellipodium extension and consequent cell migration. The ERK signaling pathway thus promotes cell motility through regulation of the subcellular localization of Myo1E.
Collapse
Affiliation(s)
- Susumu Tanimura
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan Nagasaki University Research Centre for Genomic Instability and Carcinogenesis, Nagasaki 852-8523, Japan
| | - Junya Hashizume
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Naoya Arichika
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Kazushi Watanabe
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Kaname Ohyama
- Department of Pharmacy Practice, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan Nagasaki University Research Centre for Genomic Instability and Carcinogenesis, Nagasaki 852-8523, Japan
| | - Kohsuke Takeda
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Michiaki Kohno
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| |
Collapse
|
14
|
Höfling S, Scharnert J, Cromme C, Bertrand J, Pap T, Schmidt MA, Rüter C. Manipulation of pro-inflammatory cytokine production by the bacterial cell-penetrating effector protein YopM is independent of its interaction with host cell kinases RSK1 and PRK2. Virulence 2015; 5:761-71. [PMID: 25513777 DOI: 10.4161/viru.29062] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The effector protein Yersinia outer protein M (YopM) of Yersinia enterocolitica has previously been identified and characterized as the first bacterial cell-penetrating protein (CPP). We found that recombinant YopM (rYopM) enters different eukaryotic cell types and downregulates the expression of several pro-inflammatory cytokines (e.g., tumor necrosis factor-α [TNF-α]) after autonomous translocation. After infection with Y. enterocolitica or transfection of host cells, YopM interacts with isoforms of the two kinases ribosomal S6 protein kinase (RSK) and protein kinase C-related kinase (PRK). This interaction caused sustained RSK activation due to interference with dephosphorylation. Here we demonstrate by co-immunoprecipitation that rYopM interacts with RSK and PRK following cell-penetration. We show that autonomously translocated rYopM forms a trimeric complex with different RSK and PRK isoforms. Furthermore, we constructed a series of truncated versions of rYopM to map the domain required for the formation of the complex. The C-terminus of rYopM was identified to be essential for the interaction with RSK1, whereas any deletion in rYopM's leucin-rich repeat domains abrogated PRK2 binding. Moreover, we found that the interaction of cell-penetrating rYopM with RSK led to enhanced autophosphorylation of this kinase at serine 380. Finally, we investigated whether downstream signaling of the trimeric rYopM-RSK/PRK complex modulates the expression of pro-inflammatory TNF-α. Here, we could exclude that interaction with RSK1 and PRK2 is essential for the anti-inflammatory effects of rYopM.
Collapse
Affiliation(s)
- Sabrina Höfling
- a Institute of Infectiology; Center for Molecular Biology of Inflammation (ZMBE); University of Münster; Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Höfling S, Grabowski B, Norkowski S, Schmidt MA, Rüter C. Current activities of the Yersinia effector protein YopM. Int J Med Microbiol 2015; 305:424-32. [PMID: 25865799 DOI: 10.1016/j.ijmm.2015.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/25/2015] [Accepted: 03/25/2015] [Indexed: 12/13/2022] Open
Abstract
Yersinia outer protein M (YopM) belongs to the group of Yop effector proteins, which are highly conserved among pathogenic Yersinia species. During infection, the effectors are delivered into the host cell cytoplasm via the type 3 secretion system to subvert the host immune response and support the survival of Yersinia. In contrast to the other Yop effectors, YopM does not possess a known enzymatic activity and its molecular mechanism(s) of action remain(s) poorly understood. However, YopM was shown to promote colonization and dissemination of Yersinia, thus being crucial for the pathogen's virulence in vivo. Moreover, YopM interacts with several host cell proteins and might utilize them to execute its anti-inflammatory activities. The results obtained so far indicate that YopM is a multifunctional protein that counteracts the host immune defense by multiple activities, which are at least partially independent of each other. Finally, its functions seem to be also influenced by differences between the specific YopM isoforms expressed by Yersinia subspecies. In this review, we focus on the global as well as more specific contribution of YopM to virulence of Yersinia during infection and point out the various extra- and intracellular molecular functions of YopM. In addition, the novel cell-penetrating ability of recombinant YopM and its potential applications as a self-delivering immunomodulatory therapeutic will be discussed.
Collapse
Affiliation(s)
- Sabrina Höfling
- Institute of Infectiology - Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Germany
| | - Benjamin Grabowski
- Institute of Infectiology - Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Germany
| | - Stefanie Norkowski
- Institute of Infectiology - Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Germany
| | - M Alexander Schmidt
- Institute of Infectiology - Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Germany.
| | - Christian Rüter
- Institute of Infectiology - Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Germany.
| |
Collapse
|
16
|
Parker R, Clifton-Bligh R, Molloy MP. Phosphoproteomics of MAPK Inhibition in BRAF-Mutated Cells and a Role for the Lethal Synergism of Dual BRAF and CK2 Inhibition. Mol Cancer Ther 2014; 13:1894-906. [DOI: 10.1158/1535-7163.mct-13-0938] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Chiu CF, Bai LY, Kapuriya N, Peng SY, Wu CY, Sargeant AM, Chen MY, Weng JR. Antitumor effects of BI-D1870 on human oral squamous cell carcinoma. Cancer Chemother Pharmacol 2013; 73:237-47. [DOI: 10.1007/s00280-013-2349-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 11/01/2013] [Indexed: 12/15/2022]
|
18
|
Abstract
Metastasis, the spreading of cancer cells from a primary tumor to secondary sites throughout the body, is the primary cause of death for patients with cancer. New therapies that prevent invasion and metastasis in combination with current treatments could therefore significantly reduce cancer recurrence and morbidity. Metastasis is driven by altered signaling pathways that induce changes in cell-cell adhesion, the cytoskeleton, integrin function, protease expression, epithelial-to-mesenchymal transition and cell survival. The ribosomal S6 kinase (RSK) family of kinases is a group of extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) effectors that can regulate these steps of metastasis by phosphorylating both nuclear and cytoplasmic targets. However, our understanding of RSK function in metastasis remains incomplete and is complicated by the fact that the four RSK isoforms perform nonredundant, sometimes opposing functions. Although some isoforms promote cell motility and invasion by altering transcription and integrin activity, others impair cell motility and invasion through effects on the actin cytoskeleton. The mechanism of RSK action depends both on the isoform and the cancer type. However, despite the variance in RSK-mediated outcomes, chemical inhibition of this group of kinases has proven effective in blocking invasion and metastasis of several solid tumors in preclinical models. RSKs are therefore a promising drug target for antimetastatic cancer treatments that could supplement and improve current therapeutic approaches. This review highlights contradiction and agreement in the current data on the function of RSK isoforms in metastasis and suggests ways forward in developing RSK inhibitors as new antimetastasis drugs.
Collapse
Affiliation(s)
- Florian J Sulzmaier
- Authors' Affiliation: Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii
| | | |
Collapse
|
19
|
Ruffini F, D'Atri S, Lacal PM. Neuropilin-1 expression promotes invasiveness of melanoma cells through vascular endothelial growth factor receptor-2-dependent and -independent mechanisms. Int J Oncol 2013; 43:297-306. [PMID: 23685409 DOI: 10.3892/ijo.2013.1948] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 01/28/2013] [Indexed: 11/06/2022] Open
Abstract
The majority of human melanoma cell lines secretes vascular endothelial growth factor-A (VEGF-A) and expresses its receptors VEGFR-1, VEGFR-2 and neuropilin-1 (NRP‑1), a co-receptor for VEGF-A that amplifies the signalling through VEGFR-2. Since it is known that the VEGF-A/VEGFR-2 autocrine loop promotes melanoma cell invasiveness, the aim of the present study was to investigate the involvement of NPR-1 in melanoma progression. Syngeneic human melanoma cell lines expressing either VEGFR-2 or NRP-1, both or none of them, were analyzed for their in vitro ability to migrate, invade the extracellular matrix (ECM) and secrete active metalloproteinase-2 (MMP-2). The results indicate that NRP-1 cooperates with VEGFR-2 in melanoma cell migration induced by VEGF-A. Moreover, NRP-1 expression is sufficient to promote MMP-2 secretion and melanoma cell invasiveness, as demonstrated by the ability of cells expressing solely NRP-1 to spontaneously invade the ECM. This ability is specifically downregulated by anti-NRP-1 antibodies or by interfering with NRP-1 expression using an shRNA construct. Investigation of the signal transduction pathways triggered by NRP-1 in melanoma cells, indicated that NRP-1-dependent promotion of cell invasiveness involves Akt activation through its phosphorylation on T308. Overall, the results demonstrate that NRP-1 is involved in melanoma progression through VEGFR-2-dependent and -independent mechanisms and suggest NRP-1 as a target for the treatment of the metastatic disease.
Collapse
Affiliation(s)
- Federica Ruffini
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata-IRCCS, I-00167 Rome, Italy
| | | | | |
Collapse
|
20
|
Kohno M, Tanimura S, Ozaki KI. Targeting the extracellular signal-regulated kinase pathway in cancer therapy. Biol Pharm Bull 2012; 34:1781-4. [PMID: 22130230 DOI: 10.1248/bpb.34.1781] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The extracellular signal-regulated kinase (ERK) pathway is a major determinant in the control of diverse cellular processes such as proliferation, survival, and motility. This pathway is often upregulated in human cancers and as such represents an attractive target for mechanism-based approaches to cancer treatment. However, specific blockade of the ERK pathway alone induces mostly cytostatic rather than proapoptotic effects, resulting in limited therapeutic efficacy. Blockade of the constitutively activated ERK pathway by an ERK kinase (MEK) inhibitor sensitizes tumor cells to apoptotic cell death induced by several cytotoxic anticancer agents including microtubule-destabilizing agents and histone deacetylase inhibitors, not only in vitro but also in tumor zenografts in vivo. Thus, low concentrations of these anticancer drugs that by themselves show little cytotoxicity effectively kill tumor cells in which the ERK pathway is constitutively activated when co-administrated with a MEK inhibitor. The combination of a cytostatic signaling pathway inhibitor (MEK inhibitors) and conventional anticancer drugs (microtubule-destabilizing agents or histone deacetylase inhibitors) provides an excellent basis for the development of safer anticancer chemotherapies with enhanced efficacy through lowering the required dose of the latter cytotoxic drugs.
Collapse
Affiliation(s)
- Michiaki Kohno
- Laboratory of Cell Regulation, Department of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Japan.
| | | | | |
Collapse
|
21
|
Abstract
The RSK (90 kDa ribosomal S6 kinase) family comprises a group of highly related serine/threonine kinases that regulate diverse cellular processes, including cell growth, proliferation, survival and motility. This family includes four vertebrate isoforms (RSK1, RSK2, RSK3 and RSK4), and single family member orthologues are also present in Drosophila and Caenorhabditis elegans. The RSK isoforms are downstream effectors of the Ras/ERK (extracellular-signal-regulated kinase) signalling pathway. Significant advances in the field of RSK signalling have occurred in the past few years, including several new functions ascribed to the RSK isoforms, the discovery of novel protein substrates and the implication of different RSK isoforms in cancer. Collectively, these new findings increase the diversity of biological functions regulated by RSK, and highlight potential new directions of research. In the present paper, we review the structure, expression and activation mechanisms of the RSK isoforms, and discuss their physiological roles on the basis of established substrates and recent discoveries.
Collapse
|