1
|
Ostapowicz J, Ostrowska K, Rawłuszko-Wieczorek AA, Wojtera B, Koczot S, Golusiński W, Suchorska WM. Understanding Hypoxia-Driven Tumorigenesis: The Interplay of HIF1A, DNA Methylation, and Prolyl Hydroxylases in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2024; 25:6495. [PMID: 38928200 PMCID: PMC11203966 DOI: 10.3390/ijms25126495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Hypoxia-inducible factor 1-alpha (HIF1A) is a key transcription factor aiding tumor cells' adaptation to hypoxia, regulated by the prolyl hydroxylase family (EGLN1-3) by directing toward degradation pathways. DNA methylation potentially influences EGLN and HIF1A levels, impacting cellular responses to hypoxia. We examined 96 HNSCC patients and three cell lines, analyzing gene expression of EGLN1-3, HIF1A, CA9, VEGF, and GLUT1 at the mRNA level and EGLN1 protein levels. Methylation levels of EGLNs and HIF1A were assessed through high-resolution melting analysis. Bioinformatics tools were employed to characterize associations between EGLN1-3 and HIF1A expression and methylation. We found significantly higher mRNA levels of EGLN3, HIF1A, GLUT1, VEGF, and CA9 (p = 0.021; p < 0.0001; p < 0.0001; p = 0.004, and p < 0.0001, respectively) genes in tumor tissues compared to normal ones and downregulation of the EGLN1 mRNA level in tumor tissues (p = 0.0013). In HNSCC patients with hypermethylation of HIF1A in normal tissue, we noted a reduction in HIF1A mRNA levels compared to tumor tissue (p = 0.04). In conclusion, the differential expression of EGLN and HIF1A genes in HNSCC tumors compared to normal tissues influences patients' overall survival, highlighting their role in tumor development. Moreover, DNA methylation could be responsible for HIF1A suppression in the normal tissues of HNSCC patients.
Collapse
Affiliation(s)
- Julia Ostapowicz
- Department of Electroradiology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Radiobiology Laboratory, The Greater Poland Cancer Centre, 61-866 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Kamila Ostrowska
- Radiobiology Laboratory, The Greater Poland Cancer Centre, 61-866 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | | | - Bartosz Wojtera
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Sabina Koczot
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Wojciech Golusiński
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Wiktoria M. Suchorska
- Department of Electroradiology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Radiobiology Laboratory, The Greater Poland Cancer Centre, 61-866 Poznan, Poland
| |
Collapse
|
2
|
Weinhouse C. The roles of inducible chromatin and transcriptional memory in cellular defense system responses to redox-active pollutants. Free Radic Biol Med 2021; 170:85-108. [PMID: 33789123 PMCID: PMC8382302 DOI: 10.1016/j.freeradbiomed.2021.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022]
Abstract
People are exposed to wide range of redox-active environmental pollutants. Air pollution, heavy metals, pesticides, and endocrine disrupting chemicals can disrupt cellular redox status. Redox-active pollutants in our environment all trigger their own sets of specific cellular responses, but they also activate a common set of general stress responses that buffer the cell against homeostatic insults. These cellular defense system (CDS) pathways include the heat shock response, the oxidative stress response, the hypoxia response, the unfolded protein response, the DNA damage response, and the general stress response mediated by the stress-activated p38 mitogen-activated protein kinase. Over the past two decades, the field of environmental epigenetics has investigated epigenetic responses to environmental pollutants, including redox-active pollutants. Studies of these responses highlight the role of chromatin modifications in controlling the transcriptional response to pollutants and the role of transcriptional memory, often referred to as "epigenetic reprogramming", in predisposing previously exposed individuals to more potent transcriptional responses on secondary challenge. My central thesis in this review is that high dose or chronic exposure to redox-active pollutants leads to transcriptional memories at CDS target genes that influence the cell's ability to mount protective responses. To support this thesis, I will: (1) summarize the known chromatin features required for inducible gene activation; (2) review the known forms of transcriptional memory; (3) discuss the roles of inducible chromatin and transcriptional memory in CDS responses that are activated by redox-active environmental pollutants; and (4) propose a conceptual framework for CDS pathway responsiveness as a readout of total cellular exposure to redox-active pollutants.
Collapse
Affiliation(s)
- Caren Weinhouse
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97214, USA.
| |
Collapse
|
3
|
Kindrick JD, Mole DR. Hypoxic Regulation of Gene Transcription and Chromatin: Cause and Effect. Int J Mol Sci 2020; 21:E8320. [PMID: 33171917 PMCID: PMC7664190 DOI: 10.3390/ijms21218320] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/11/2022] Open
Abstract
Cellular responses to low oxygen (hypoxia) are fundamental to normal physiology and to the pathology of many common diseases. Hypoxia-inducible factor (HIF) is central to this by enhancing the transcriptional activity of many hundreds of genes. The cellular response to HIF is cell-type-specific and is largely governed by the pre-existing epigenetic landscape. Prior to activation, HIF-binding sites and the promoters of HIF-target genes are already accessible, in contact with each other through chromatin looping and display markers of activity. However, hypoxia also modulates the epigenetic environment, both in parallel to and as a consequence of HIF activation. This occurs through a combination of oxygen-sensitive changes in enzyme activity, transcriptional activation of epigenetic modifiers, and localized recruitment to chromatin by HIF and activated RNApol2. These hypoxic changes in the chromatin environment may both contribute to and occur as a consequence of transcriptional regulation. Nevertheless, they have the capacity to both modulate and extend the transcriptional response to hypoxia.
Collapse
Affiliation(s)
| | - David R. Mole
- NDM Research Building, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7FZ, UK;
| |
Collapse
|
4
|
Zhang R, Lai L, He J, Chen C, You D, Duan W, Dong X, Zhu Y, Lin L, Shen S, Guo Y, Su L, Shafer A, Moran S, Fleischer T, Bjaanæs MM, Karlsson A, Planck M, Staaf J, Helland Å, Esteller M, Wei Y, Chen F, Christiani DC. EGLN2 DNA methylation and expression interact with HIF1A to affect survival of early-stage NSCLC. Epigenetics 2019; 14:118-129. [PMID: 30665327 PMCID: PMC6557590 DOI: 10.1080/15592294.2019.1573066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/10/2019] [Accepted: 01/17/2019] [Indexed: 12/19/2022] Open
Abstract
Hypoxia occurs frequently in human cancers and promotes stabilization and activation of hypoxia inducible factor (HIF). HIF-1α is specific for the hypoxia response, and its degradation mediated by three enzymes EGLN1, EGLN2 and EGLN3. Although EGLNs expression has been found to be related to prognosis of many cancers, few studies examined DNA methylation in EGLNs and its relationship to prognosis of early-stage non-small cell lung cancer (NSCLC). We analyzed EGLNs DNA methylation data from tumor tissue samples of 1,230 early-stage NSCLC patients, as well as gene expression data from The Cancer Genome Atlas. The sliding windows sequential forward feature selection method and weighted random forest were used to screen out the candidate CpG probes in lung adenocarcinomas (LUAD) and lung squamous cell carcinomas patients, respectively, in both discovery and validation phases. Then Cox regression was performed to evaluate the association between DNA methylation and overall survival. Among the 34 CpG probes in EGLNs, DNA methylation at cg25923056EGLN2 was identified to be significantly associated with LUAD survival (HR = 1.02, 95% CI: 1.01-1.03, P = 9.90 × 10-5), and correlated with EGLN2 expression (r = - 0.36, P = 1.52 × 10-11). Meanwhile, EGLN2 expression was negatively correlated with HIF1A expression in tumor tissues (r = - 0.30, P = 4.78 × 10-8) and significantly (P = 0.037) interacted with HIF1A expression on overall survival. Therefore, DNA methylation of EGLN2- HIF1A is a potential marker for LUAD prognosis and these genes are potential treatment targets for further development of HIF-1α inhibitors in lung cancer therapy.
Collapse
Affiliation(s)
- Ruyang Zhang
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Linjing Lai
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jieyu He
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chao Chen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dongfang You
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weiwei Duan
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuesi Dong
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Ying Zhu
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lijuan Lin
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Sipeng Shen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yichen Guo
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Li Su
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Andrea Shafer
- Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sebastian Moran
- Bellvitge Biomedical Research Institute and University of Barcelona and Institucio Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia, Spain
| | - Thomas Fleischer
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Maria Moksnes Bjaanæs
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Anna Karlsson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund and CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund, Skåne, Sweden
| | - Maria Planck
- Division of Oncology and Pathology, Department of Clinical Sciences Lund and CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund, Skåne, Sweden
| | - Johan Staaf
- Division of Oncology and Pathology, Department of Clinical Sciences Lund and CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund, Skåne, Sweden
| | - Åslaug Helland
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Manel Esteller
- Bellvitge Biomedical Research Institute and University of Barcelona and Institucio Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia, Spain
| | - Yongyue Wei
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Chen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - David C. Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Kennel KB, Burmeister J, Schneider M, Taylor CT. The PHD1 oxygen sensor in health and disease. J Physiol 2018; 596:3899-3913. [PMID: 29435987 DOI: 10.1113/jp275327] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/31/2018] [Indexed: 12/13/2022] Open
Abstract
The hypoxia-inducible factor (HIF) co-ordinates the adaptive transcriptional response to hypoxia in metazoan cells. The hypoxic sensitivity of HIF is conferred by a family of oxygen-sensing enzymes termed HIF hydroxylases. This family consists of three prolyl hydroxylases (PHD1-3) and a single asparagine hydroxylase termed factor inhibiting HIF (FIH). It has recently become clear that HIF hydroxylases are functionally non-redundant and have discrete but overlapping physiological roles. Furthermore, altered abundance or activity of these enzymes is associated with a number of pathologies. Pharmacological HIF-hydroxylase inhibitors have recently proven to be both tolerated and therapeutically effective in patients. In this review, we focus on the physiology, pathophysiology and therapeutic potential of the PHD1 isoform, which has recently been implicated in diseases including inflammatory bowel disease, ischaemia and cancer.
Collapse
Affiliation(s)
- Kilian B Kennel
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Julius Burmeister
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Cormac T Taylor
- UCD Conway Institute & School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
6
|
Chen HF, Wu KJ. Epigenetics, TET proteins, and hypoxia in epithelial-mesenchymal transition and tumorigenesis. Biomedicine (Taipei) 2016; 6:1. [PMID: 26869355 PMCID: PMC4751095 DOI: 10.7603/s40681-016-0001-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/11/2016] [Indexed: 12/19/2022] Open
Abstract
Hypoxia in tumors is primarily a pathophysiologic consequence of structurally and functionally disturbed microcirculation with inadequate supply of oxygen. Tumor hypoxia is strongly associated with tumor propagation, malignant progression, and resistance to therapy. Aberrant epigenetic regulation plays a crucial role in the process of hypoxia-driven malignant progression. Convert of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) by ten-eleven translocation (TET) family enzymes plays important biological functions in embryonic stem cells, development, aging and disease. Recent reports showed that level of 5hmC and TET proteins was altered in various types of cancers. There is a strong correlation between loss of 5hmC and cancer development but research to date indicates that loss of TET activity is associated with the cancer phenotype but it is not clear whether TET proteins function as tumor suppressors or oncogenes. While loss of TET1 and TET2 expression is associated with solid cancers, implying a tumor suppressor role, TET1 exhibits a clear oncogenic role in the context of genomic rearrangements such as in MLL-fusion rearranged leukemia. Interestingly, hypoxia increases global 5hmC levels and upregulates TET1 expression in a HIF1α-dependent manner. Recently, hypoxia-induced TET1 has been demonstrated to play another important role for regulating hypoxia-responsive gene expression and epithelial-mesenchymal transition (EMT) by serving as a transcription co-activator. Furthermore, hypoxia-induced TET1 also regulates glucose metabolism and hypoxia-induced EMT through enhancing the expression of insulin induced gene 1 (INSIG1). The roles and mechanisms of action of 5hmC and TET proteins in ES cell biology and during embryonic development, as well as in cancer biology, will be the main focus in this review.
Collapse
Affiliation(s)
- Hsiao-Fan Chen
- Research Center for Tumor Medical Science and Graduate Inst. of Cancer Biology, China Medical University, 404, Taichung, Taiwan
| | - Kou-Juey Wu
- Research Center for Tumor Medical Science and Graduate Inst. of Cancer Biology, China Medical University, 404, Taichung, Taiwan.
| |
Collapse
|
7
|
Chen N, Huang CH, Chen BX, Liu H, Wang WM, Gul Y, Wang HL. Alternative splicing transcription of Megalobrama amblycephala HIF prolyl hydroxylase PHD3 and up-regulation of PHD3 by HIF-1α. Biochem Biophys Res Commun 2016; 469:737-42. [DOI: 10.1016/j.bbrc.2015.12.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 12/11/2015] [Indexed: 12/15/2022]
|
8
|
Ramachandran S, Ient J, Göttgens EL, Krieg AJ, Hammond EM. Epigenetic Therapy for Solid Tumors: Highlighting the Impact of Tumor Hypoxia. Genes (Basel) 2015; 6:935-56. [PMID: 26426056 PMCID: PMC4690023 DOI: 10.3390/genes6040935] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/18/2015] [Accepted: 09/22/2015] [Indexed: 12/14/2022] Open
Abstract
In the last few decades, epigenetics has emerged as an exciting new field in development and disease, with a more recent focus towards cancer. Epigenetics has classically referred to heritable patterns of gene expression, primarily mediated through DNA methylation patterns. More recently, it has come to include the reversible chemical modification of histones and DNA that dictate gene expression patterns. Both the epigenetic up-regulation of oncogenes and downregulation of tumor suppressors have been shown to drive tumor development. Current clinical trials for cancer therapy include pharmacological inhibition of DNA methylation and histone deacetylation, with the aim of reversing these cancer-promoting epigenetic changes. However, the DNA methyltransferase and histone deacetylase inhibitors have met with less than promising results in the treatment of solid tumors. Regions of hypoxia are a common occurrence in solid tumors. Tumor hypoxia is associated with increased aggressiveness and therapy resistance, and importantly, hypoxic tumor cells have a distinct epigenetic profile. In this review, we provide a summary of the recent clinical trials using epigenetic drugs in solid tumors, discuss the hypoxia-induced epigenetic changes and highlight the importance of testing the epigenetic drugs for efficacy against the most aggressive hypoxic fraction of the tumor in future preclinical testing.
Collapse
Affiliation(s)
- Shaliny Ramachandran
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford OX3 7DQ, UK.
| | - Jonathan Ient
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford OX3 7DQ, UK.
| | - Eva-Leonne Göttgens
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford OX3 7DQ, UK.
| | - Adam J Krieg
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Ester M Hammond
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
9
|
Zhen L, Shijie N, Shuijun Z. Tumor PHD2 expression is correlated with clinical features and prognosis of patients with HCC receiving liver resection. Medicine (Baltimore) 2014; 93:e179. [PMID: 25546659 PMCID: PMC4602600 DOI: 10.1097/md.0000000000000179] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The role of prolyl hydroxylase domain protein 2 (PHD2) in carcinogenesis has been studied in a variety of cancer types. However, the association between PHD2 and human hepatocellular carcinoma (HCC) has not been documented. A total of 220 patients with primary HCC who underwent a curative liver resection were enrolled in this study. The tumor samples were obtained during the surgical procedure from each patient for PHD2 immunohistological staining. All the patients were followed up and the disease-free survival (DFS) and overall survival (OS) were evaluated. We found that that high PHD2 expression was significantly associated with higher stage (stages III + IV) (odds ratio [OR] = 5.576, P < 0.001), larger tumor size (> 5 cm) (OR = 6.176, P < 0.001), poorer tumor differentiation (OR = 1.424, P = 0.003), and higher serum alpha fetoprotein (AFP) level (OR = 6.861, P < 0.001). Compared to those with high PHD2 expressions, patients with low PHD2 expression had significantly longer DFS and OS periods (both P < 0.001). Cox regression analyses revealed that higher levels of PHD2, tumor size, tumor stage, as well as serum AFP level were predictors for a worse prognosis in patients with HCC. PHD2 expression in the tumors is associated with the clinical features and prognosis of patients with HCC; it may be used as a histological marker for HCC.
Collapse
Affiliation(s)
- Li Zhen
- From the Department of Colorectal and Anal Surgery (LZ); Department of Vascular Surgery (NS); and Department of Hepatobiliary Surgery (ZS), The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | | |
Collapse
|
10
|
Henze AT, Garvalov BK, Seidel S, Cuesta AM, Ritter M, Filatova A, Foss F, Dopeso H, Essmann CL, Maxwell PH, Reifenberger G, Carmeliet P, Acker-Palmer A, Acker T. Loss of PHD3 allows tumours to overcome hypoxic growth inhibition and sustain proliferation through EGFR. Nat Commun 2014; 5:5582. [PMID: 25420773 PMCID: PMC4263145 DOI: 10.1038/ncomms6582] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/15/2014] [Indexed: 02/07/2023] Open
Abstract
Solid tumours are exposed to microenvironmental factors such as hypoxia that normally inhibit cell growth. However, tumour cells are capable of counteracting these signals through mechanisms that are largely unknown. Here we show that the prolyl hydroxylase PHD3 restrains tumour growth in response to microenvironmental cues through the control of EGFR. PHD3 silencing in human gliomas or genetic deletion in a murine high-grade astrocytoma model markedly promotes tumour growth and the ability of tumours to continue growing under unfavourable conditions. The growth-suppressive function of PHD3 is independent of the established PHD3 targets HIF and NF-κB and its hydroxylase activity. Instead, loss of PHD3 results in hyperphosphorylation of epidermal growth factor receptor (EGFR). Importantly, epigenetic/genetic silencing of PHD3 preferentially occurs in gliomas without EGFR amplification. Our findings reveal that PHD3 inactivation provides an alternative route of EGFR activation through which tumour cells sustain proliferative signalling even under conditions of limited oxygen availability. Little is known on how solid tumours overcome growth inhibitory signals within its hypoxic microenvironment. Here Henze et al. show that oxygen sensor PHD3 is frequently lost in gliomas, and that this loss hyperactivates EGFR signaling to sustain tumour cell proliferation and survival in hypoxia.
Collapse
Affiliation(s)
- Anne-Theres Henze
- Institute of Neuropathology, University of Giessen, 35392 Giessen, Germany
| | - Boyan K Garvalov
- Institute of Neuropathology, University of Giessen, 35392 Giessen, Germany
| | - Sascha Seidel
- Institute of Neuropathology, University of Giessen, 35392 Giessen, Germany
| | - Angel M Cuesta
- 1] Institute of Cell Biology and Neuroscience, Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, 60438 Frankfurt, Germany [2] Focus Program Translational Neurosciences (FTN), University of Mainz, 55131 Mainz, Germany
| | - Mathias Ritter
- 1] Institute of Cell Biology and Neuroscience, Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, 60438 Frankfurt, Germany [2] Focus Program Translational Neurosciences (FTN), University of Mainz, 55131 Mainz, Germany
| | - Alina Filatova
- Institute of Neuropathology, University of Giessen, 35392 Giessen, Germany
| | - Franziska Foss
- 1] Institute of Cell Biology and Neuroscience, Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, 60438 Frankfurt, Germany [2] Focus Program Translational Neurosciences (FTN), University of Mainz, 55131 Mainz, Germany
| | - Higinio Dopeso
- Institute of Neuropathology, University of Giessen, 35392 Giessen, Germany
| | - Clara L Essmann
- Institute of Cell Biology and Neuroscience, Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, 60438 Frankfurt, Germany
| | - Patrick H Maxwell
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Guido Reifenberger
- Institute of Neuropathology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Peter Carmeliet
- Vesalius Research Center (VRC), Angiogenesis and Neurovascular Link Laboratory, University of Leuven, Leuven B-3000, Belgium
| | - Amparo Acker-Palmer
- 1] Institute of Cell Biology and Neuroscience, Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, 60438 Frankfurt, Germany [2] Focus Program Translational Neurosciences (FTN), University of Mainz, 55131 Mainz, Germany
| | - Till Acker
- Institute of Neuropathology, University of Giessen, 35392 Giessen, Germany
| |
Collapse
|
11
|
Abstract
We have previously reported on the inhibition of HIF-1α (hypoxia-inducible factor α)-regulated pathways by HEXIM1 [HMBA (hexamethylene-bis-acetamide)-inducible protein 1]. Disruption of HEXIM1 activity in a knock-in mouse model expressing a mutant HEXIM1 protein resulted in increased susceptibility to the development of mammary tumours, partly by up-regulation of VEGF (vascular endothelial growth factor) expression, HIF-1α expression and aberrant vascularization. We now report on the mechanistic basis for HEXIM1 regulation of HIF-1α. We observed direct interaction between HIF-1α and HEXIM1, and HEXIM1 up-regulated hydroxylation of HIF-1α, resulting in the induction of the interaction of HIF-1α with pVHL (von Hippel-Lindau protein) and ubiquitination of HIF-1α. The up-regulation of hydroxylation involves HEXIM1-mediated induction of PHD3 (prolyl hydroxylase 3) expression and interaction of PHD3 with HIF-1α. Acetylation of HIF-1α has been proposed to result in increased interaction of HIF-1α with pVHL and induced pVHL-mediated ubiquitination, which leads to the proteasomal degradation of HIF-1α. HEXIM1 also attenuated the interaction of HIF-1α with HDAC1 (histone deacetylase 1), resulting in acetylation of HIF-1α. The consequence of HEXIM1 down-regulation of HIF-1α protein expression is attenuated expression of HIF-1α target genes in addition to VEGF and inhibition of HIF-1α-regulated cell invasion.
Collapse
|
12
|
Expression and DNA methylation levels of prolyl hydroxylases PHD1, PHD2, PHD3 and asparaginyl hydroxylase FIH in colorectal cancer. BMC Cancer 2013; 13:526. [PMID: 24195777 PMCID: PMC3828400 DOI: 10.1186/1471-2407-13-526] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 10/21/2013] [Indexed: 11/10/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common and comprehensively studied malignancies. Hypoxic conditions during formation of CRC may support the development of more aggressive cancers. Hypoxia inducible factor (HIF), a major player in cancerous tissue adaptation to hypoxia, is negatively regulated by the family of prolyl hydroxylase enzymes (PHD1, PHD2, PHD3) and asparaginyl hydroxylase, called factor inhibiting HIF (FIH). Methods PHD1, PHD2, PHD3 and FIH gene expression was evaluated using quantitative RT-PCR and western blotting in primary colonic adenocarcinoma and adjacent histopathologically unchanged colonic mucosa from patients who underwent radical surgical resection of the colon (n = 90), and the same methods were used for assessment of PHD3 gene expression in HCT116 and DLD-1 CRC cell lines. DNA methylation levels of the CpG island in the promoter regulatory region of PHD1, PHD2, PHD3 and FIH were assessed using bisulfite DNA sequencing and high resolution melting analysis (HRM) for patients and HRM analysis for CRC cell lines. Results We found significantly lower levels of PHD1, PHD2 and PHD3 transcripts (p = 0.00026; p < 0.00001; p < 0.00001) and proteins (p = 0.004164; p = 0.0071; p < 0.00001) in primary cancerous than in histopathologically unchanged tissues. Despite this, we did not observe statistically significant differences in FIH transcript levels between cancerous and histopathologically unchanged colorectal tissue, but we found a significantly increased level of FIH protein in CRC (p = 0.0169). The reduced PHD3 expression was correlated with significantly increased DNA methylation in the CpG island of the PHD3 promoter regulatory region (p < 0.0001). We did not observe DNA methylation in the CpG island of the PHD1, PHD2 or FIH promoter in cancerous and histopathologically unchanged colorectal tissue. We also showed that 5-Aza-2’-deoxycytidine induced DNA demethylation leading to increased PHD3 transcript and protein level in HCT116 cells. Conclusion We demonstrated that reduced PHD3 expression in cancerous tissue was accompanied by methylation of the CpG rich region located within the first exon and intron of the PHD3 gene. The diminished expression of PHD1 and PHD2 and elevated level of FIH protein in cancerous tissue compared to histopathologically unchanged colonic mucosa was not associated with DNA methylation within the CpG islands of the PHD1, PHD2 and FIH genes.
Collapse
|
13
|
Melvin A, Rocha S. Chromatin as an oxygen sensor and active player in the hypoxia response. Cell Signal 2012; 24:35-43. [PMID: 21924352 PMCID: PMC3476533 DOI: 10.1016/j.cellsig.2011.08.019] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 08/29/2011] [Indexed: 12/28/2022]
Abstract
Changes in the availability or demand for oxygen induce dramatic changes at the cellular level. Primarily, activation of a family of oxygen labile transcription factors, Hypoxia Inducible Factor (HIF), initiates a variety of cellular processes required to re-instate oxygen homeostasis. Oxygen is sensed by molecular dioxygenases in cells, such as the prolyl-hydroxylases (PHDs), enzymes which are responsible for the oxygen-dependent regulation of HIF. As HIF is a transcription factor it must bind DNA sequences of its target genes possibly in the context of a complex chromatin structure. How chromatin structure changes in response to hypoxia is currently unknown. However, the identification of a novel class of histone demethylases as true dioxygenases suggests that chromatin can act as an oxygen sensor and plays an active role in the coordination of the cellular response to hypoxia. This review will discuss the current knowledge on how hypoxia engages with different proteins involved in chromatin organisation and dynamics.
Collapse
Key Words
- hif, hypoxia inducible factor
- arnt, aryl hydrocarbon nuclear translocator
- vhl, von hippel lindau
- phd, prolyl-hydroxylase
- fih, factor inhibiting hif
- chip, chromatin immunoprecipitation
- swi/snf, switch/sucrose nonfermentable
- iswi, imitation switch
- chd, chromodomain helicase dna-binding
- nurf, nucleosome remodelling factor
- chrac, chromatin remodelling and assembly complex
- acf, atp-utilising chromatin remodelling and assembly factor
- norc, nucleolar remodelling complex
- rsf, remodelling and spacing factor
- wich, wstf–iswi chromatin remodelling complex
- nurd, nucleosome remodelling and histone deacetylase
- srcap, snf2-related cbp activator protein
- trrap, transformation/transcription domain-associated protein/tip60
- hat, histone acetyl transferase
- hdac, histone deacetylase
- lsd1, lysine-specific demethylase-1
- jmjc, jumonji c domain
- hypoxia
- chromatin
- hif
- transcription
- chromatin remodellers
- jmjc demethylases
Collapse
Affiliation(s)
| | - Sonia Rocha
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, MSI/WTB/JBC Complex, Dow Street, University of Dundee, Dundee, DD1 5EH, Scotland, United Kingdom
| |
Collapse
|
14
|
Aberrant DNA methylation but not mutation of CITED4 is associated with alteration of HIF-regulated genes in breast cancer. Breast Cancer Res Treat 2011; 130:319-29. [DOI: 10.1007/s10549-011-1657-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 06/23/2011] [Indexed: 11/30/2022]
|
15
|
Aberrant promoter CpG methylation is a mechanism for impaired PHD3 expression in a diverse set of malignant cells. PLoS One 2011; 6:e14617. [PMID: 21297970 PMCID: PMC3030558 DOI: 10.1371/journal.pone.0014617] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 01/03/2011] [Indexed: 12/21/2022] Open
Abstract
Background The prolyl-hydroxylase domain family of enzymes (PHD1-3) plays an important role in the cellular response to hypoxia by negatively regulating HIF-α proteins. Disruption of this process can lead to up-regulation of factors that promote tumorigenesis. We observed decreased basal expression of PHD3 in prostate cancer tissue and tumor cell lines representing diverse tissues of origin. Furthermore, some cancer lines displayed a failure of PHD3 mRNA induction when introduced to a hypoxic environment. This study explores the mechanism by which malignancies neither basally express PHD3 nor induce PHD3 under hypoxic conditions. Methodology/Principal Findings Using bisulfite sequencing and methylated DNA enrichment procedures, we identified human PHD3 promoter hypermethylation in prostate, breast, melanoma and renal carcinoma cell lines. In contrast, non-transformed human prostate and breast epithelial cell lines contained PHD3 CpG islands that were unmethylated and responded normally to hypoxia by upregulating PHD3 mRNA. Only treatment of cells lines containing PHD3 promoter hypermethylation with the demethylating drug 5-aza-2′-deoxycytidine significantly increased the expression of PHD3. Conclusions/Significance We conclude that expression of PHD3 is silenced by aberrant CpG methylation of the PHD3 promoter in a subset of human carcinoma cell lines of diverse origin and that this aberrant cytosine methylation status is the mechanism by which these cancer cell lines fail to upregulate PHD3 mRNA. We further show that a loss of PHD3 expression does not correlate with an increase in HIF-1α protein levels or an increase in the transcriptional activity of HIF, suggesting that loss of PHD3 may convey a selective advantage in some cancers by affecting pathway(s) other than HIF.
Collapse
|