1
|
Kumar Bharathkar S, Stadtmueller BM. Structural and Biochemical Requirements for Secretory Component Interactions with Dimeric IgA. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:226-234. [PMID: 38809110 PMCID: PMC11233122 DOI: 10.4049/jimmunol.2300717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/06/2024] [Indexed: 05/30/2024]
Abstract
Secretory (S) IgA is the predominant mucosal Ab that protects host epithelial barriers and promotes microbial homeostasis. SIgA production occurs when plasma cells assemble two copies of monomeric IgA and one joining chain (JC) to form dimeric (d) IgA, which is bound by the polymeric Ig receptor (pIgR) on the basolateral surface of epithelial cells and transcytosed to the apical surface. There, pIgR is proteolytically cleaved, releasing SIgA, a complex of the dIgA and the pIgR ectodomain, called the secretory component (SC). The pIgR's five Ig-like domains (D1-D5) undergo a conformational change upon binding dIgA, ultimately contacting four IgA H chains and the JC in SIgA. In this study, we report structure-based mutational analysis combined with surface plasmon resonance binding assays that identify key residues in mouse SC D1 and D3 that mediate SC binding to dIgA. Residues in D1 CDR3 are likely to initiate binding, whereas residues that stabilize the D1-D3 interface are likely to promote the conformational change and stabilize the final SIgA structure. Additionally, we find that the JC's three C-terminal residues play a limited role in dIgA assembly but a significant role in pIgR/SC binding to dIgA. Together, these results inform models for the intricate mechanisms underlying IgA transport across epithelia and functions in the mucosa.
Collapse
Affiliation(s)
- Sonya Kumar Bharathkar
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 USA
| | - Beth M. Stadtmueller
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 USA
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 USA
- Carl R. Woese Institute of Genomic Biology
| |
Collapse
|
2
|
Kumar Bharathkar S, Stadtmueller BM. Structural and biochemical requirements for secretory component interactions with dimeric Immunoglobulin A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.09.566401. [PMID: 38014291 PMCID: PMC10680632 DOI: 10.1101/2023.11.09.566401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Secretory (S) Immunoglobulin (Ig) A is the predominant mucosal antibody that protects host epithelial barriers and promotes microbial homeostasis. SIgA production occurs when plasma cells assemble two copies of monomeric IgA and one joining-chain (JC) to form dimeric (d) IgA, which is bound by the polymeric Ig receptor (pIgR) on the basolateral surface of epithelial cells and transcytosed to the apical surface. There, pIgR is proteolytically cleaved, releasing SIgA, a complex of the dIgA and the pIgR ectodomain, called secretory component (SC). The pIgR's five Ig-like domains (D1-D5) undergo a conformational change upon binding dIgA, ultimately contacting four IgA heavy chains and the JC in SIgA. Here we report structure-based mutational analysis combined with surface plasmon resonance binding assays that identify key residues in mouse SC D1 and D3 that mediate SC binding to dIgA. Residues in D1 CDR3 are likely to initiate binding whereas residues that stabilize the D1-D3 interface are likely to promote the conformation change and stabilize the final SIgA structure. Additionally, we find that the JC's three C-terminal residues play a limited role in dIgA assembly but a significant role in pIgR/SC binding to dIgA. Together results inform new models for the intricate mechanisms underlying IgA transport across epithelia and functions in the mucosa.
Collapse
Affiliation(s)
| | - Beth M. Stadtmueller
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 USA
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 USA
- Carle R. Woese Institute of Genomic Biology
| |
Collapse
|
3
|
He T, Siwy J, Metzger J, Mullen W, Mischak H, Schanstra JP, Zürbig P, Jankowski V. Associations of urinary polymeric immunoglobulin receptor peptides in the context of cardio-renal syndrome. Sci Rep 2020; 10:8291. [PMID: 32427855 PMCID: PMC7237418 DOI: 10.1038/s41598-020-65154-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/24/2020] [Indexed: 11/09/2022] Open
Abstract
The polymeric immunoglobulin receptor (pIgR) transports immunoglobulins from the basolateral to the apical surface of epithelial cells. PIgR was recently shown to be associated with kidney dysfunction. The immune defense is initiated at the apical surface of epithelial cells where the N-terminal domain of pIgR, termed secretory component (SC), is proteolytically cleaved and released either unbound (free SC) or bound to immunoglobulins. The aim of our study was to evaluate the association of pIgR peptides with the cardio-renal syndrome in a large cohort and to obtain information on how the SC is released. We investigated urinary peptides of 2964 individuals available in the Human Urine Proteome Database generated using capillary electrophoresis coupled to mass spectrometry. The mean amplitude of 23 different pIgR peptides correlated negatively with the estimated glomerular filtration rate (eGFR, rho = −0.309, p < 0.0001). Furthermore, pIgR peptides were significantly increased in cardiovascular disease (coronary artery disease and heart failure) after adjustment for eGFR. We further predicted potential proteases involved in urinary peptide generation using the Proteasix algorithm. Peptide cleavage site analysis suggested that several, and not one, proteases are involved in the generation of the SC. In this large cohort, we could demonstrate that pIgR is associated with the cardio-renal syndrome and provided a more detailed insight on how pIgR can be potentially cleaved to release the SC.
Collapse
Affiliation(s)
- Tianlin He
- Mosaiques Diagnostics GmbH, Hannover, Germany.,Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
| | | | | | - William Mullen
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Harald Mischak
- Mosaiques Diagnostics GmbH, Hannover, Germany.,Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Joost P Schanstra
- INSERM U1048, Institute of Cardiovascular and Metabolic Diseases, Toulouse, France. .,Université Toulouse III Paul-Sabatier, Toulouse, France.
| | | | - Vera Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
4
|
Atanassov C, Viallemonteil E, Lucas C, Perivier M, Claverol S, Raimond R, Hankard R. Proteomic pattern of breast milk discriminates obese mothers with infants of delayed weight gain from normal-weight mothers with infants of normal weight gain. FEBS Open Bio 2019; 9:736-742. [PMID: 30984547 PMCID: PMC6443869 DOI: 10.1002/2211-5463.12610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/16/2019] [Accepted: 02/08/2019] [Indexed: 12/29/2022] Open
Abstract
We previously reported that exclusively breastfed infants born to mothers with pregestational obesity gain less weight during the first month after birth than those born to mothers of normal pregestational weight. This issue is potentially important since lower weight gain in breastfed infants of obese mothers might increase the risk of developing later obesity. Breast milk quality and quantity, together with breastfeeding practice, possibly influence infants' feeding behavior, appetite control, and regulation of growth later in life. The issue of whether breast milk protein patterns from obese mothers differ in composition from those of non-obese mothers remains largely unexplored. Here, we established a breast milk proteomic pattern that discriminates obese mothers and infants with delayed weight gain at 1 month after birth from normal-weight mothers with infants of the same age and with normal weight gain. Obese mothers were matched to normal-weight mothers (n = 26; body mass index 33.5 ± 3.2 vs 21.5 ± 1.5 kg·m-2). The mean weight gain of infants in the obese group at 1 month after birth was 430.8 g lower than that of the infants in the control group. Analysis of the breast milk delipidized fraction by surface-enhanced laser desorption/ionization on CM10 and Q10 arrays was followed by MS-assisted purification and LC-MS/MS microsequencing of a selected biomarker. We identified 15 candidate protein biomarkers, seven of which were overexpressed in the obese group and eight in the normal-weight group. One of the most significant candidate biomarkers, overexpressed in the obese group, was identified as a fragment of the sixth extracellular domain of the polymeric immunoglobulin receptor. Further structural identification of these candidate biomarkers and their validation in clinical assays may facilitate the development of a predictive immunoassay.
Collapse
Affiliation(s)
- Christo Atanassov
- CHU - La Milétrie Poitiers France.,UMR-CNRS 7267 Université de Potiers France
| | | | - Charlotte Lucas
- Pédiatrie Multidisciplinaire-Nutrition de l'Enfant CHU - La Milétrie Poitiers France.,INSERM CIC 1402 Poitiers France
| | | | | | | | - Régis Hankard
- INSERM U1069 Université François Rabelais Tours France
| |
Collapse
|
5
|
Manconi B, Liori B, Cabras T, Vincenzoni F, Iavarone F, Lorefice L, Cocco E, Castagnola M, Messana I, Olianas A. Top-down proteomic profiling of human saliva in multiple sclerosis patients. J Proteomics 2018; 187:212-222. [PMID: 30086402 DOI: 10.1016/j.jprot.2018.07.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/16/2018] [Accepted: 07/30/2018] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis is a chronic disease of the central nervous system characterized by inflammation, demyelination and neurodegeneration which is of undetermined origin. To date a single diagnostic test of multiple sclerosis does not exists and novel biomarkers are demanded for a more accurate and early diagnosis. In this study, we performed the quantitative analysis of 119 salivary peptides/proteins from 49 multiple sclerosis patients and 54 healthy controls by a mass spectrometry-based top-down proteomic approach. Statistical analysis evidenced different levels on 23 proteins: 8 proteins showed lower levels in multiple sclerosis patients with respect to controls and they were mono- and di-oxidized cystatin SN, mono- and di-oxidized cystatin S1, mono-oxidized cystatin SA and mono-phosphorylated statherin. 15 proteins showed higher levels in multiple sclerosis patients with respect to controls and they were antileukoproteinase, two proteoforms of Prolactin-Inducible Protein, P-C peptide (Fr.1-14, Fr. 26-44, and Fr. 36-44), SV1 fragment of statherin, cystatin SN Des1-4, cystatin SN P11 → L variant, and cystatin A T96 → M variant. The differences observed between the salivary proteomic profile of patients suffering from multiple sclerosis and healthy subjects is consistent with the inflammatory condition and altered immune response typical of the pathology. Data are available via ProteomeXchange with identifier PXD009440. SIGNIFICANCE To date a single diagnostic test of multiple sclerosis does not exist, and diagnosis is based on multiple tests which mainly include the analysis of cerebrospinal fluid. However, the need for lumbar puncture makes the analysis of cerebrospinal fluid impractical for monitoring disease activity and response to treatment. The possible use of saliva as a diagnostic fluid for oral and systemic diseases has been largely investigated, but only marginally in multiple sclerosis compared to other body fluids. Our study demonstrates that the salivary proteome of multiple sclerosis patients differs considerably compared to that of sex and age matched healthy individuals and suggests that some differences might be associated with the different disease-modifying therapy used to treat multiple sclerosis patients.
Collapse
Affiliation(s)
- Barbara Manconi
- Department of Life and Environmental Sciences, Biomedical Section, University of Cagliari, Monserrato Campus, 09042 Monserrato, Cagliari, Italy.
| | - Barbara Liori
- Department of Life and Environmental Sciences, Biomedical Section, University of Cagliari, Monserrato Campus, 09042 Monserrato, Cagliari, Italy
| | - Tiziana Cabras
- Department of Life and Environmental Sciences, Biomedical Section, University of Cagliari, Monserrato Campus, 09042 Monserrato, Cagliari, Italy
| | - Federica Vincenzoni
- Biochemistry and Clinical Biochemistry Institute, Medicine Faculty, Catholic University of Rome, L.go F. Vito 1, 00168 Rome, Italy
| | - Federica Iavarone
- Biochemistry and Clinical Biochemistry Institute, Medicine Faculty, Catholic University of Rome, L.go F. Vito 1, 00168 Rome, Italy
| | - Lorena Lorefice
- Department of Medical Sciences and Public Health, Multiple Sclerosis Center, Binaghi Hospital, ATS Sardegna, University of Cagliari, via Is Guadazzonis 2, 09126 Cagliari, Italy
| | - Eleonora Cocco
- Department of Medical Sciences and Public Health, Multiple Sclerosis Center, Binaghi Hospital, ATS Sardegna, University of Cagliari, via Is Guadazzonis 2, 09126 Cagliari, Italy
| | - Massimo Castagnola
- Biochemistry and Clinical Biochemistry Institute, Medicine Faculty, Catholic University of Rome, L.go F. Vito 1, 00168 Rome, Italy; Institute of Chemistry of the Molecular Recognition CNR, L.go F. Vito 1, 00168 Rome, Italy
| | - Irene Messana
- Biochemistry and Clinical Biochemistry Institute, Medicine Faculty, Catholic University of Rome, L.go F. Vito 1, 00168 Rome, Italy; Institute of Chemistry of the Molecular Recognition CNR, L.go F. Vito 1, 00168 Rome, Italy
| | - Alessandra Olianas
- Department of Life and Environmental Sciences, Biomedical Section, University of Cagliari, Monserrato Campus, 09042 Monserrato, Cagliari, Italy
| |
Collapse
|
6
|
Peterson RA, Gueniche A, Adam de Beaumais S, Breton L, Dalko-Csiba M, Packer NH. Sweating the small stuff: Glycoproteins in human sweat and their unexplored potential for microbial adhesion. Glycobiology 2015; 26:218-29. [DOI: 10.1093/glycob/cwv102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/02/2015] [Indexed: 12/19/2022] Open
|
7
|
Sunagawa K, Omagari D, Nishiyama M, Asano M, Okudera M, Sugitani M, Nemoto N, Komiyama K. Distinct Functional Regions of the Human Polymeric Immunoglobulin Receptor. Scand J Immunol 2013; 78:339-44. [DOI: 10.1111/sji.12093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/22/2013] [Indexed: 11/26/2022]
Affiliation(s)
- K. Sunagawa
- Department of Pathology Nihon University School of Medicine Tokyo Japan
| | - D. Omagari
- Department of Pathology Nihon University School of Dentistry Tokyo Japan
- Division of Immunology and Pathobiology Nihon University School of Dentistry Tokyo Japan
| | - M. Nishiyama
- Division of Oral Health Sciences Nihon University Graduate School of Dentistry Tokyo Japan
| | - M. Asano
- Department of Pathology Nihon University School of Dentistry Tokyo Japan
- Division of Immunology and Pathobiology Nihon University School of Dentistry Tokyo Japan
| | - M. Okudera
- Department of Pathology Nihon University School of Dentistry Tokyo Japan
- Division of Oral Health Sciences Nihon University Graduate School of Dentistry Tokyo Japan
| | - M. Sugitani
- Department of Pathology Nihon University School of Medicine Tokyo Japan
| | - N. Nemoto
- Department of Pathology Nihon University School of Medicine Tokyo Japan
| | - K. Komiyama
- Department of Pathology Nihon University School of Dentistry Tokyo Japan
- Division of Immunology and Pathobiology Nihon University School of Dentistry Tokyo Japan
| |
Collapse
|
8
|
Tadiso TM, Sharma A, Hordvik I. Analysis of polymeric immunoglobulin receptor- and CD300-like molecules from Atlantic salmon. Mol Immunol 2011; 49:462-73. [DOI: 10.1016/j.molimm.2011.09.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 09/19/2011] [Accepted: 09/20/2011] [Indexed: 12/25/2022]
|
9
|
Abstract
The surface of mucosal sites, such as the intestinal tract, are covered by epithelial cells. To protect the intestinal environment from invading pathogens and maintain homeostasis, the human body developed an exquisite acquired immune system, referred to as the mucosal immune system, in which epithelial cells and lymphocytes function cooperatively. The main player in this immune system is the polymeric immunoglobulins (pIgs), in particular dimeric IgA (dIgA). To exert its protective effect, dIgA produced in the lamina propria must be transported to the intestinal lumen across epithelial cells. This process is called transcytosis and is mediated by polymeric immunoglobulin receptor (pIgR), which is exclusively produced by intestinal epithelial cells (IECs). DIgA is captured by pIgR on the basolateral surface of IECs and transcytosed to the opposite side of IECs. The dIgA-pIgR complex is expressed on the apical surface of IECs and proteolytically cleaved to generate secretory IgA (SIgA). This review describes the current understanding and recent progress in this research field.
Collapse
Affiliation(s)
- Masatake Asano
- Department of Pathology, Nihon University School of Dentistry, Tokyo, Japan.
| | | |
Collapse
|
10
|
Hamburger AE, Bjorkman PJ, Herr AB. Structural insights into antibody-mediated mucosal immunity. Curr Top Microbiol Immunol 2006; 308:173-204. [PMID: 16922091 DOI: 10.1007/3-540-30657-9_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The mucosal regions of the body are responsible for defense against environmental pathogens. Particularly in the lumen of the gut, antibody-mediated immune responses are critical for preventing invasion by pathogens. In this chapter, we review structural studies that have illuminated various aspects of mucosal immunity. Crystal structures of IgA1-Fc and IgA-binding fragments of the polymeric immunoglobulin receptor and Fc alphaRI, combined with models of intact IgA and IgM from solution scattering studies, reveal potential mechanisms for immune exclusion and induction of inflammatory responses. Other recent structures yield insights into bacterial mechanisms for evasion of the host immune response.
Collapse
Affiliation(s)
- A E Hamburger
- Division of Biology, California Institute of Technology, 114-96, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
11
|
Kaetzel CS. The polymeric immunoglobulin receptor: bridging innate and adaptive immune responses at mucosal surfaces. Immunol Rev 2005; 206:83-99. [PMID: 16048543 DOI: 10.1111/j.0105-2896.2005.00278.x] [Citation(s) in RCA: 421] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Secretory antibodies of the immunoglobulin A (IgA) class form the first line of antigen-specific immune protection against inhaled, ingested, and sexually transmitted pathogens and antigens at mucosal surfaces. Epithelial transcytosis of polymeric IgA (pIgA) is mediated by the polymeric immunoglobulin receptor (pIgR). At the apical surface, the extracellular ligand-binding region of pIgR, known as secretory component (SC), is cleaved and released in free form or as a component of secretory IgA (SIgA). SC has innate anti-microbial properties, and it protects SIgA from proteolytic degradation. Expression of pIgR is regulated by microbial products through Toll-like receptor signaling and by host factors such as cytokines and hormones. Recent studies of the structure of the extracellular ligand-binding domain of pIgR have revealed mechanisms by which it binds pIgA and other ligands. During transcytosis, pIgA has been shown to neutralize pathogens and antigens within intracellular vesicular compartments. The recent identification of disease-associated polymorphisms in human pIgR near the cleavage site may help to unravel the mystery of how pIgR is cleaved to SC. The identification of novel functions for SC and SIgA has expanded our view of the immunobiology of pIgR, a key component of the mucosal immune system that bridges innate and adaptive immune defense.
Collapse
Affiliation(s)
- Charlotte S Kaetzel
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|