1
|
Mei X, Huang T, Chen A, Liu W, Jiang L, Zhong S, Shen D, Qiao P, Zhao Q. BmC/EBPZ gene is essential for the larval growth and development of silkworm, Bombyx mori. Front Physiol 2024; 15:1298869. [PMID: 38523808 PMCID: PMC10959570 DOI: 10.3389/fphys.2024.1298869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/19/2024] [Indexed: 03/26/2024] Open
Abstract
The genetic male sterile line (GMS) of the silkworm Bombyx mori is a recessive mutant that is naturally mutated from the wild-type 898WB strain. One of the major characteristics of the GMS mutant is its small larvae. Through positional cloning, candidate genes for the GMS mutant were located in a region approximately 800.5 kb long on the 24th linkage group of the silkworm. One of the genes was Bombyx mori CCAAT/enhancer-binding protein zeta (BmC/EBPZ), which is a member of the basic region-leucine zipper transcription factor family. Compared with the wild-type 898WB strain, the GMS mutant features a 9 bp insertion in the 3'end of open reading frame sequence of BmC/EBPZ gene. Moreover, the high expression level of the BmC/EBPZ gene in the testis suggests that the gene is involved in the regulation of reproduction-related genes. Using the CRISPR/Cas9-mediated knockout system, we found that the BmC/EBPZ knockout strains had the same phenotypes as the GMS mutant, that is, the larvae were small. However, the larvae of BmC/EBPZ knockout strains died during the development of the third instar. Therefore, the BmC/EBPZ gene was identified as the major gene responsible for GMS mutation.
Collapse
Affiliation(s)
- Xinglin Mei
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Tianchen Huang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Anli Chen
- Key Sericultural Laboratory of Shaanxi, Ankang University, Ankang, Shaanxi, China
| | - Weibin Liu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Li Jiang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Shanshan Zhong
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Dongxu Shen
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Peitong Qiao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Qiaoling Zhao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| |
Collapse
|
2
|
Ávila-Ramírez ML, Reyes-Reyes AL, Avila-Bonilla RG, Salas-Benito M, Cerecedo D, Ramírez-Moreno ME, Villagrán-Herrera ME, Mercado-Curiel RF, Salas-Benito JS. Differential Gene Expression Pattern of Importin β3 and NS5 in C6/36 Cells Acutely and Persistently Infected with Dengue Virus 2. Pathogens 2023; 12:pathogens12020191. [PMID: 36839463 PMCID: PMC9966734 DOI: 10.3390/pathogens12020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
The establishment of persistent dengue virus infection within the cells of the mosquito vector is an essential requirement for viral transmission to a new human host. The mechanisms involved in the establishment and maintenance of persistent infection are not well understood, but it has been suggested that both viral and cellular factors might play an important role. In the present work, we evaluated differential gene expression in Aedes albopictus cells acutely (C6/36-HT) and persistently infected (C6-L) with Dengue virus 2 by cDNA-AFLP. We observed that importin β3 was upregulated in noninfected cells compared with C6-L cells. Using RT-qPCR and plaque assays, we observed that Dengue virus levels in C6-L cells essentially do not vary over time, and peak viral titers in acutely infected cells are observed at 72 and 120 h postinfection. The expression level of importin β3 was higher in acutely infected cells than in persistently infected cells; this correlates with higher levels of NS5 in the nucleus of the cell. The differential pattern of importin β3 expression between acute and persistent infection with Dengue virus 2 could be a mechanism to maintain viral infection over time, reducing the antiviral response of the cell and the viral replicative rate.
Collapse
Affiliation(s)
- María Leticia Ávila-Ramírez
- Doctorado en Ciencias en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico
| | - Ana Laura Reyes-Reyes
- Campo Experimental Rosario Izapa, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuaria, Tuxtla Chico, Chis 30878, Mexico
| | - Rodolfo Gamaliel Avila-Bonilla
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Mariana Salas-Benito
- Maestría en Ciencias en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico
| | - Doris Cerecedo
- Doctorado en Ciencias en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico
- Maestría en Ciencias en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico
| | - María Esther Ramírez-Moreno
- Doctorado en Ciencias en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico
- Maestría en Ciencias en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico
| | | | - Ricardo Francisco Mercado-Curiel
- Facultad de Medicina, Universidad Autónoma de Querétaro, Santiago de Querétaro 76176, Mexico
- Correspondence: (R.F.M.-C.); (J.S.S.-B.)
| | - Juan Santiago Salas-Benito
- Doctorado en Ciencias en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico
- Maestría en Ciencias en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico
- Correspondence: (R.F.M.-C.); (J.S.S.-B.)
| |
Collapse
|
3
|
Li Z, Ma R, Wang L, Wang Y, Qin Q, Chen L, Dang X, Zhou Z. Starvation stress affects iron metabolism in honeybee Apis mellifera. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01098-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Wu S, Yin S, Zhou B. Molecular physiology of iron trafficking in Drosophila melanogaster. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100888. [PMID: 35158107 DOI: 10.1016/j.cois.2022.100888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/05/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Iron homeostasis in insects is less-well understood comparatively to mammals. The classic model organism Drosophila melanogaster has been recently employed to explore how iron is trafficked between and within cells. An outline for iron absorption, systemic delivery, and efflux is thus beginning to emerge. The proteins Malvolio, ZIP13, mitoferrin, ferritin, transferrin, and IRP-1A are key players in these processes. While many features are shared with those in mammals, some physiological differences may also exist. Notable remaining questions include the existence and identification of functional transferrin and ferritin receptors, and of an iron exporter like ferroportin, how systemic iron homeostasis is controlled, and the roles of different tissues in regulating iron physiology. By focusing on aspects of iron trafficking, this review updates on presently known complexities of iron homeostasis in Drosophila.
Collapse
Affiliation(s)
- Shitao Wu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Sai Yin
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Bing Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China; Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
5
|
Cao X, Li Y, Li S, Tang T, Liu F. Two ferritin genes (MdFerH and MdFerL) are involved in iron homeostasis, antioxidation and immune defense in housefly Musca domestica. JOURNAL OF INSECT PHYSIOLOGY 2020; 124:104073. [PMID: 32526234 DOI: 10.1016/j.jinsphys.2020.104073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Ferritin is a ubiquitous multi-subunit iron storage protein, made up of heavy chain and light chain subunits. In recent years, invertebrate ferritins have emerged as an important, yet largely underappreciated, component of host defense and antioxidant system. Here, two alternatively spliced transcripts encoding for a unique ferritin heavy chain homolog (MdFerH), and a transcript encoding for a light chain homolog (MdFerL) are cloned and characterized from Musca domestica. Comparing with MdFerH1, a fragment is absent at the 5' untranslated region of MdFerH2, where a putative iron response element is present. Amino acid sequence analysis shows that MdFerH possesses a strictly conserved ferroxidase site, while MdFerL has a putative atypical active center. Tissue distribution analysis indicates that MdFers are enriched expressed in gut. When the larvae receive diverse stimulations, including challenge by bacteria, exposure to excess Fe2+, doxorubicin or ultraviolet, the expression of MdFers is positively up-regulated in different degrees and different temporal patterns, indicating their potential roles in oxidative stress. The two mRNA isoforms of MdFerH appear to be differentially expressed in different tissues, but seem to show the similar expression patterns under diverse stress conditions. Further investigation reveals that silencing MdFers can alter the redox homeostasis, leading elevated mortalities of larvae following bacterial infection. Inspiringly, recombinant MdFerL produced in Pichia pastoris shows significant iron-chelating activity in vitro. These results suggest a pivotal role of ferritins from housefly in iron homeostasis, antibacterial immunity and redox balance.
Collapse
Affiliation(s)
- Xinru Cao
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Yongbao Li
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Shuangshuang Li
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Ting Tang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China.
| | - Fengsong Liu
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China.
| |
Collapse
|
6
|
Lyu H, Xu G, Chen P, Song Q, Feng Q, Yi Y, Zheng S. 20-Hydroxyecdysone receptor-activated Bombyx mori CCAAT/enhancer-binding protein gamma regulates the expression of BmCBP and subsequent histone H3 lysine 27 acetylation in Bo. mori. INSECT MOLECULAR BIOLOGY 2020; 29:256-270. [PMID: 31840914 DOI: 10.1111/imb.12630] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/09/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Cyclic adenosine monophosphate (cAMP) response element binding protein (CREB)-binding protein (CBP or CREBBP) plays important roles in regulating gene transcription and animal development. However, the process by which CBP is up-regulated to impact insect development is unknown. In this study, the regulatory mechanism of Bombyx mori CBP (BmCBP) expression induced by 20-hydroxyecdysone (20E) was investigated. In the Bo. mori cell line, DZNU-Bm-12, 20E enhanced BmCBP transcription and histone H3K27 acetylation. BmCBP RNA interference (RNAi) resulted in decreased histone H3K27 acetylation. Additionally, the luciferase activity analysis revealed that the transcription factor, Bo. mori CCAAT/enhancer-binding protein gamma (BmC/EBPg), activated BmCBP transcription, which was suppressed by BmC/EBPg RNAi and promoted by BmC/EBPg overexpression. Electrophoretic mobility shift assay and chromatin immunoprecipitation results demonstrated that BmC/EBPg could bind to the C/EBP cis-regulatory elements in two positions of the BmCBP promoter. Moreover, BmC/EBPg transcription was enhanced by the 20E receptor (BmEcR), which bound to the BmC/EBPg promoter. BmEcR RNAi significantly inhibited the transcriptional levels of BmC/EBPg and BmCBP in the presence of 20E. Furthermore, the BmEcR-BmC/EBPg pathway regulated the acetylation levels of histone H3K27. Altogether, these results indicate that BmEcR enhances the expression of BmC/EBPg, which binds to the BmCBP promoter, activates BmCBP expression and leads to histone H3K27 acetylation.
Collapse
Affiliation(s)
- H Lyu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - G Xu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - P Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Q Song
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, USA
| | - Q Feng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Y Yi
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - S Zheng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
7
|
Lu ZJ, Xie YX, Yu HZ, Toufeeq S, Wang J, Huang YL, Li NY, Ouyang ZG. Identification and functional analysis of an iron-binding protein, ferritin heavy chain subunit, from the swallowtail butterfly, Papilio xuthus. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 102:e21592. [PMID: 31276235 DOI: 10.1002/arch.21592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ferritin, which is ubiquitous among all living organisms, plays a crucial role in maintaining iron homeostasis, immune response, and detoxification. In the present research, we identified an iron-binding protein, ferritin heavy chain subunit, from Papilio xuthus and named PxFerHCH. The complete complementary DNA of PxFerHCH was 1,252 bp encoding a sequence of 211 amino acids, which includes an iron-responsive element. Phylogenetic analysis showed that PxFerHCH is clustered with Manduca sexta and Galleria mellonella ferritin heavy chain subunits. Expression levels of PxFerHCH in various tissues were analyzed by reverse transcription quantitative polymerase chain reaction, and the results exhibited that PxFerHCH was expressed in all tissues with the highest expression in the fat body. The relative expression level of PxFerHCH in response to bacterial (Escherichia coli and Staphylococcus aureus) challenges sharply increased by about 12 hr postinfection (hpi) and then decreased at 24 hpi. In addition, the iron-binding capacity and antioxidation activity of recombinant PxFerHCH protein were also investigated. These results reveal that PxFerHCH might play an important role in defense against bacterial infection.
Collapse
Affiliation(s)
- Zhan-Jun Lu
- College of Life Sciences, Gannan Normal University, Ganzhou, People's Republic of China
| | - Yan-Xin Xie
- College of Life Sciences, Gannan Normal University, Ganzhou, People's Republic of China
| | - Hai-Zhong Yu
- College of Life Sciences, Gannan Normal University, Ganzhou, People's Republic of China
| | - Shahzad Toufeeq
- College of Life Science, Anhui Agricultural University, Hefei, People's Republic of China
| | - Jie Wang
- College of Life Science, Anhui Agricultural University, Hefei, People's Republic of China
| | - Yu-Ling Huang
- College of Life Sciences, Gannan Normal University, Ganzhou, People's Republic of China
| | - Ning-Yan Li
- College of Life Sciences, Gannan Normal University, Ganzhou, People's Republic of China
| | - Zhi-Gang Ouyang
- College of Life Sciences, Gannan Normal University, Ganzhou, People's Republic of China
| |
Collapse
|
8
|
Geiser DL, Patel N, Patel P, Bhakta J, Velasquez LS, Winzerling JJ. Description of a Second Ferritin Light Chain Homologue From the Yellow Fever Mosquito (Diptera: Culicidae). JOURNAL OF INSECT SCIENCE 2017. [PMCID: PMC5751084 DOI: 10.1093/jisesa/iex096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Ferritin is required for iron storage in vertebrates and for iron transport and storage in invertebrates, specifically insects. Classical ferritins consist of 24 subunits configured as a polyhedron wherein iron is held. The 24 subunits include light and heavy chains, each with specific functions. Several homologues of the light and heavy chains have been sequenced and studied in insects. In addition to iron transport and storage, ferritin has a role in dietary iron absorption, and functions as a protective agent preventing iron overload, decreasing oxidative stress, and reducing infection in these animals. The expression profile and regulation of a second ferritin light chain homologue (LCH2) in Aedes aegypti [Linnaeus (Diptera: Culicidae), yellow fever mosquito] was characterized in cells, animal developmental stages, and tissues post bloodmeal (PBM) by real-time PCR and immunoblot. Two previously studied ferritin subunits from Ae. aegypti, HCH and LCH1, along with LCH2 were immunoprecipitated and analyzed by mass spectrometry. The three Ae. aegypti ferritin subunits, HCH, LCH1, and LCH2, have different expression profiles and regulation with iron exposure, developmental stage, and tissue response PBM. Ae. aegypti expresses multiple and unique ferritin light chain subunits. Ae. aegypti, the vector for Zika, Dengue, and yellow fever, requires iron for oogenesis that is transported and stored in ferritin; this vector expresses a second light chain ferritin subunit homologue unlike any other species in which ferritin has been studied to date.
Collapse
Affiliation(s)
- Dawn L Geiser
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, the University of Arizona, Tucson, Arizona
- Corresponding author, e-mail:
| | - Naren Patel
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, the University of Arizona, Tucson, Arizona
| | - Pritesh Patel
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, the University of Arizona, Tucson, Arizona
| | - Janki Bhakta
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, the University of Arizona, Tucson, Arizona
| | - Lissette S Velasquez
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, the University of Arizona, Tucson, Arizona
| | - Joy J Winzerling
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, the University of Arizona, Tucson, Arizona
| |
Collapse
|
9
|
Yu HZ, Zhang SZ, Ma Y, Fei DQ, Li B, Yang LA, Wang J, Li Z, Muhammad A, Xu JP. Molecular Characterization and Functional Analysis of a Ferritin Heavy Chain Subunit from the Eri-Silkworm, Samia cynthia ricini. Int J Mol Sci 2017; 18:ijms18102126. [PMID: 29036914 PMCID: PMC5666808 DOI: 10.3390/ijms18102126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 01/16/2023] Open
Abstract
Ferritins are conserved iron-binding proteins that are primarily involved in iron storage, detoxification and the immune response. Despite the importance of ferritin in organisms, little is known about their roles in the eri-silkworm (Samia cynthia ricini). We previously identified a ferritin heavy chain subunit named ScFerHCH in the S. c. ricini transcriptome database. The full-length S. c. ricini ferritin heavy chain subunit (ScFerHCH) was 1863 bp and encoded a protein of 231 amino acids with a deduced molecular weight of 25.89 kDa. Phylogenetic analysis revealed that ScFerHCH shared a high amino acid identity with the Bombyx mori and Danaus plexippus heavy chain subunits. Higher ScFerHCH expression levels were found in the silk gland, fat body and midgut of S. c. ricini by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blotting. Injection of Staphylococcus aureus and Pseudomonas aeruginosa was associated with an upregulation of ScFerHCH in the midgut, fat body and hemolymph, indicating that ScFerHCH may contribute to the host’s defense against invading pathogens. In addition, the anti-oxidation activity and iron-binding capacity of recombinant ScFerHCH protein were examined. Taken together, our results suggest that the ferritin heavy chain subunit from eri-silkworm may play critical roles not only in innate immune defense, but also in organismic iron homeostasis.
Collapse
Affiliation(s)
- Hai-Zhong Yu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Shang-Zhi Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Yan Ma
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Dong-Qiong Fei
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Bing Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Li-Ang Yang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Jie Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Zhen Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Azharuddin Muhammad
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Jia-Ping Xu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
10
|
Dashti ZJS, Gamieldien J, Christoffels A. Computational characterization of Iron metabolism in the Tsetse disease vector, Glossina morsitans: IRE stem-loops. BMC Genomics 2016; 17:561. [PMID: 27503259 PMCID: PMC4977773 DOI: 10.1186/s12864-016-2932-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/12/2016] [Indexed: 11/29/2022] Open
Abstract
Background Iron metabolism and regulation is an indispensable part of species survival, most importantly for blood feeding insects. Iron regulatory proteins are central regulators of iron homeostasis, whose binding to iron response element (IRE) stem-loop structures within the UTRs of genes regulate expression at the post-transcriptional level. Despite the extensive literature on the mechanism of iron regulation in human, less attention has been given to insect and more specifically the blood feeding insects, where research has mainly focused on the characterization of ferritin and transferrin. We thus, examined the mechanism of iron homeostasis through a genome-wide computational identification of IREs and other enriched motifs in the UTRs of Glossina morsitans with the view to identify new IRE-regulated genes. Results We identified 150 genes, of which two are known to contain IREs, namely the ferritin heavy chain and the MRCK-alpha. The remainder of the identified genes is considered novel including 20 hypothetical proteins, for which an iron-regulatory mechanism of action was inferred. Forty-three genes were found with IRE-signatures of regulation in two or more insects, while 46 were only found to be IRE-regulated in two species. Notably 39 % of the identified genes exclusively shared IRE-signatures in other Glossina species, which are potentially Glossina-specific adaptive measures in addressing its unique reproductive biology and blood meal-induced iron overload. In line with previous findings, we found no evidence pertaining to an IRE regulation of Transferrin, which highlight the importance of ferritin heavy chain and the other proposed transporters in the tsetse fly. In the context of iron-sequestration, key players of tsetse immune defence against trypanosomes have been introduced namely 14 stress and immune response genes, while 28 cell-envelop, transport, and binding genes were assigned a putative role in iron trafficking. Additionally, we identified and annotated enriched motifs in the UTRs of the putative IRE-regulated genes to derive at a co-regulatory network that maintains iron homeostasis in tsetse flies. Three putative microRNA-binding sites namely Gy-box, Brd-box and K-box motifs were identified among the regulatory motifs, enriched in the UTRs of the putative IRE-regulated genes. Conclusion Beyond our current view of iron metabolism in insects, with ferritin and transferrin as its key players, this study provides a comprehensive catalogue of genes with possible roles in the acquisition; transport and storage of iron hence iron homeostasis in the tsetse fly. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2932-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zahra Jalali Sefid Dashti
- South African Medical Research Council Bioinformatics Unit, The South African National Bioinformatics Institute (SANBI), University of the Western Cape, Robert Sobukwe Street, Bellville, South Africa
| | - Junaid Gamieldien
- South African Medical Research Council Bioinformatics Unit, The South African National Bioinformatics Institute (SANBI), University of the Western Cape, Robert Sobukwe Street, Bellville, South Africa
| | - Alan Christoffels
- South African Medical Research Council Bioinformatics Unit, The South African National Bioinformatics Institute (SANBI), University of the Western Cape, Robert Sobukwe Street, Bellville, South Africa.
| |
Collapse
|
11
|
Tang X, Zhou B. Iron homeostasis in insects: Insights fromDrosophilastudies. IUBMB Life 2013; 65:863-72. [DOI: 10.1002/iub.1211] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 08/22/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaona Tang
- State Key Laboratory of Biomembrane and Membrane Biotechnology; School of Life Sciences; Tsinghua University; Beijing 100084 China
| | - Bing Zhou
- State Key Laboratory of Biomembrane and Membrane Biotechnology; School of Life Sciences; Tsinghua University; Beijing 100084 China
| |
Collapse
|
12
|
Andrews ES, Crain PR, Fu Y, Howe DK, Dobson SL. Reactive oxygen species production and Brugia pahangi survivorship in Aedes polynesiensis with artificial Wolbachia infection types. PLoS Pathog 2012; 8:e1003075. [PMID: 23236284 PMCID: PMC3516568 DOI: 10.1371/journal.ppat.1003075] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 10/22/2012] [Indexed: 12/31/2022] Open
Abstract
Heterologous transinfection with the endosymbiotic bacterium Wolbachia has been shown previously to induce pathogen interference phenotypes in mosquito hosts. Here we examine an artificially infected strain of Aedes polynesiensis, the primary vector of Wuchereria bancrofti, which is the causative agent of Lymphatic filariasis (LF) throughout much of the South Pacific. Embryonic microinjection was used to transfer the wAlbB infection from Aedes albopictus into an aposymbiotic strain of Ae. polynesiensis. The resulting strain (designated "MTB") experiences a stable artificial infection with high maternal inheritance. Reciprocal crosses of MTB with naturally infected wild-type Ae. polynesiensis demonstrate strong bidirectional incompatibility. Levels of reactive oxygen species (ROS) in the MTB strain differ significantly relative to that of the wild-type, indicating an impaired ability to regulate oxidative stress. Following a challenge with Brugia pahangi, the number of filarial worms achieving the infective stage is significantly reduced in MTB as compared to the naturally infected and aposymbiotic strains. Survivorship of MTB differed significantly from that of the wild-type, with an interactive effect between survivorship and blood feeding. The results demonstrate a direct correlation between decreased ROS levels and decreased survival of adult female Aedes polynesiensis. The results are discussed in relation to the interaction of Wolbachia with ROS production and antioxidant expression, iron homeostasis and the insect immune system. We discuss the potential applied use of the MTB strain for impacting Ae. polynesiensis populations and strategies for reducing LF incidence in the South Pacific.
Collapse
Affiliation(s)
- Elizabeth S. Andrews
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, Kentucky, United States of America
| | - Philip R. Crain
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, Kentucky, United States of America
| | - Yuqing Fu
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, Kentucky, United States of America
- Tropical Research and Education Center, University of Florida, Homestead, Florida, United States of America
| | - Daniel K. Howe
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, United States of America
| | - Stephen L. Dobson
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
13
|
Lecanidou R, Papantonis A. Silkmoth chorion gene regulation revisited: promoter architecture as a key player. INSECT MOLECULAR BIOLOGY 2010; 19:141-151. [PMID: 20002795 DOI: 10.1111/j.1365-2583.2009.00969.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Regulation of silkmoth chorion genes has long been used as a model system for studying differential gene expression. The large numbers of genes, their overlapping expression patterns and the overall complexity of the system hinted towards an elaborate mechanism for transcriptional control. Recent studies, however, offer evidence of a molecular pathway governed by the interplay between two general transcription factors, CCAAT enhancer binding proteins (C/EBP) and GATA, an architectural protein, high mobility group A and a chromatin remodeller, chromo-helicase/ATPase-DNA binding protein 1. In this review we present a parsimonious model that adequately describes regulation of transcription across all temporally regulated chorion genes, and propose a role for promoter architecture.
Collapse
Affiliation(s)
- R Lecanidou
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece.
| | | |
Collapse
|
14
|
Geiser DL, Shen MC, Mayo JJ, Winzerling JJ. Iron loaded ferritin secretion and inhibition by CI-976 in Aedes aegypti larval cells. Comp Biochem Physiol B Biochem Mol Biol 2009; 152:352-63. [PMID: 19168145 PMCID: PMC2649984 DOI: 10.1016/j.cbpb.2009.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 01/01/2009] [Accepted: 01/03/2009] [Indexed: 12/26/2022]
Abstract
Ferritin is a multimer of 24 subunits of heavy and light chains. In mammals, iron taken into cells is stored in ferritin or incorporated into iron-containing proteins. Very little ferritin is found circulating in mammalian serum; most is retained in the cytoplasm. Female mosquitoes, such as Aedes aegypti (yellow fever mosquito, Diptera), require a blood meal for oogenesis. Mosquitoes receive a potentially toxic level of iron in the blood meal which must be processed and stored. We demonstrate by (59)Fe pulse-chase experiments that cultured A. aegypti larval CCL-125 cells take up iron from culture media and store it in ferritin found mainly in the membrane fraction and secrete iron-loaded ferritin. We observe that in these larval cells ferritin co-localizes with ceramide-containing membranes in the absence of iron. With iron treatment, ferritin is found associated with ceramide-containing membranes as well as in cytoplasmic non-ceramide vesicles. Treatment of CCL-125 cells with iron and CI-976, an inhibitor of lysophospholipid acyl transferases, disrupts ferritin secretion with a concomitant decrease in cell viability. Interfering with ferritin secretion may limit the ability of mosquitoes to adjust to the high iron load of the blood meal and decrease iron delivery to the ovaries reducing egg numbers.
Collapse
Affiliation(s)
- Dawn L Geiser
- Department of Nutritional Sciences, The University of Arizona, Tucson, 85721, USA.
| | | | | | | |
Collapse
|
15
|
Comparative genomics allows the discovery of cis-regulatory elements in mosquitoes. Proc Natl Acad Sci U S A 2009; 106:3053-8. [PMID: 19211788 DOI: 10.1073/pnas.0813264106] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The discovery and mapping of cis-regulatory elements is important for understanding regulation of gene transcription in mosquito vectors of human diseases. Genome sequence data are available for 3 species, Aedes aegypti, Anopheles gambiae, and Culex quinquefasciatus (Diptera: Culicidae), representing 2 subfamilies (Culicinae and Anophelinae) that are estimated to have diverged 145 to 200 million years ago. Comparative genomics tools were used to screen genomic DNA fragments located in the 5'-end flanking regions of orthologous genes. These analyses resulted in the identification of 137 sequences, designated "mosquito motifs," 7 to 9 nucleotides in length, representing 18 families of putative cis-regulatory elements conserved significantly among the 3 species when compared to the fruit fly, Drosophila melanogaster. Forty-one of the motifs were implicated previously in experiments as sites for binding transcription factors or functioning in the regulation of mosquito gene expression. Further analyses revealed associations between specific motifs and expression profiles, particularly in those genes that show increased or decreased mRNA abundance in females following a blood meal, and those accumulating transcription products exclusively or preferentially in the midgut, fat bodies, or ovaries. These results validate the methodology and support a relationship between the discovered motifs and the conservation of hematophagy in mosquitoes.
Collapse
|
16
|
Zhou G, Kohlhepp P, Geiser D, Frasquillo MDC, Vazquez-Moreno L, Winzerling JJ. Fate of blood meal iron in mosquitoes. JOURNAL OF INSECT PHYSIOLOGY 2007; 53:1169-78. [PMID: 17689557 PMCID: PMC2329577 DOI: 10.1016/j.jinsphys.2007.06.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 06/13/2007] [Accepted: 06/14/2007] [Indexed: 05/13/2023]
Abstract
Iron is an essential element of living cells and organisms as a component of numerous metabolic pathways. Hemoglobin and ferric-transferrin in vertebrate host blood are the two major iron sources for female mosquitoes. We used inductively coupled plasma mass spectrometry (ICP-MS) and radioisotope labeling to quantify the fate of iron supplied from hemoglobin or as transferrin in Aedes aegypti. At the end of the first gonotrophic cycle, approximately 87% of the ingested total meal heme iron was excreted, while 7% was distributed into the eggs and 6% was stored in different tissues. In contrast, approximately 8% of the iron provided as transferrin was excreted and of that absorbed, 77% was allocated to the eggs and 15% distributed in the tissues. Further analyses indicate that of the iron supplied in a blood meal, approximately 7% appears in the eggs and of this iron 98% is from hemoglobin and 2% from ferric-transferrin. Whereas, of iron from a blood meal retained in body of the female, approximately 97% is from heme and <1% is from transferrin. Evaluation of iron-binding proteins in hemolymph and egg following intake of (59)Fe-transferrin revealed that ferritin is iron loaded in these animals, and indicate that this protein plays a critical role in meal iron transport and iron storage in eggs in A. aegypti.
Collapse
Affiliation(s)
- Guoli Zhou
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85721, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Sourmeli S, Papantonis A, Lecanidou R. A novel role for the Bombyx Slbo homologue, BmC/EBP, in insect choriogenesis. Biochem Biophys Res Commun 2005; 337:713-9. [PMID: 16202393 DOI: 10.1016/j.bbrc.2005.09.103] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 09/16/2005] [Indexed: 11/27/2022]
Abstract
One previously unidentified cDNA clone coding for a C/EBP factor, BmC/EBP, was isolated from Bombyx mori follicular cells. This is the first time that a C/EBP factor has been isolated and characterized in Lepidoptera. We provide information concerning structural features and developmental specificity, as well as in vitro interaction properties with chorion gene promoter modules. BmC/EBP was capable of effectively recognizing homologous binding sites from chorion gene promoters derived from flies and other moths, despite significant diversity of chorion structure, gene organization, and gene expression profiles. We propose that the relative concentration of BmC/EBP, in relation to its differential binding affinity for promoter cis-elements, results in activation or repression of silkmoth chorion gene expression.
Collapse
Affiliation(s)
- S Sourmeli
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Athens, Panepistimiopolis, Greece
| | | | | |
Collapse
|