1
|
Fernandes MA, Cioffi MDB, Bertollo LAC, da Costa GWWF, da Motta-Neto CC, Borges AT, Soares RX, de Souza AS, Pinthong K, Supiwong W, Tanomtong A, Molina WF. Evolutionary Tracks of Chromosomal Diversification in Surgeonfishes (Acanthuridae: Acanthurus) Along the World's Biogeographic Domains. Front Genet 2021; 12:760244. [PMID: 34777477 PMCID: PMC8586516 DOI: 10.3389/fgene.2021.760244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Fishes of the genus Acanthurus (Acanthuridae) are strongly related to reef environments, in a broad biogeographic context worldwide. Although their biological aspects are well known, cytogenetic information related to this genus remains incipient. In this study, Acanthurus species from populations inhabiting coastal regions of the Southwest Atlantic (SWA), South Atlantic oceanic islands (Fernando de Noronha Archipelago and Trindade Island), Greater Caribbean (GC), and Indo-Pacific Ocean (the center of the origin of the group) were analyzed to investigate their evolutionary differentiation. For this purpose, we employed conventional cytogenetic procedures and fluorescence in situ hybridization of 18S rDNA, 5S rDNA, and H3 and H2B-H2A histone sequences. The Atlantic species (A. coeruleus, A. chirurgus, and A. bahianus) did not show variations among them, despite their vast continental and insular distribution. In contrast, A. coeruleus from SWA and GC diverged from each other in the number of 18S rDNA sites, a condition likely associated with the barrier created by the outflows of the Amazonas/Orinoco rivers. The geminate species A. tractus had a cytogenetic profile similar to that of A. bahianus. However, the chromosomal macrostructures and the distribution of rDNA and hisDNA sequences revealed moderate to higher rates of diversification when Acanthurus species from recently colonized areas (Atlantic Ocean) were compared to A. triostegus, a representative species from the Indian Ocean. Our cytogenetic data covered all Acanthurus species from the Western Atlantic, tracked phylogenetic diversification throughout the dispersive process of the genus, and highlighted the probable diversifying role of ocean barriers in this process.
Collapse
Affiliation(s)
- Maria Aparecida Fernandes
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | | | - Clóvis Coutinho da Motta-Neto
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Amanda Tôrres Borges
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Rodrigo Xavier Soares
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Allyson Santos de Souza
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Krit Pinthong
- Department of Fundamental Science, Faculty of Science and Technology, Surindra Rajabhat University, Muang, Thailand
| | - Weerayuth Supiwong
- Applied Science Program, Faculty of Interdisciplinary Studies, Khon Kaen University, Nong Khai Campus, Nong Khai, Thailand
| | - Alongklod Tanomtong
- Program of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Wagner Franco Molina
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
2
|
Provazníková I, Hejníčková M, Visser S, Dalíková M, Carabajal Paladino LZ, Zrzavá M, Voleníková A, Marec F, Nguyen P. Large-scale comparative analysis of cytogenetic markers across Lepidoptera. Sci Rep 2021; 11:12214. [PMID: 34108567 PMCID: PMC8190105 DOI: 10.1038/s41598-021-91665-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/24/2021] [Indexed: 11/25/2022] Open
Abstract
Fluorescence in situ hybridization (FISH) allows identification of particular chromosomes and their rearrangements. Using FISH with signal enhancement via antibody amplification and enzymatically catalysed reporter deposition, we evaluated applicability of universal cytogenetic markers, namely 18S and 5S rDNA genes, U1 and U2 snRNA genes, and histone H3 genes, in the study of the karyotype evolution in moths and butterflies. Major rDNA underwent rather erratic evolution, which does not always reflect chromosomal changes. In contrast, the hybridization pattern of histone H3 genes was well conserved, reflecting the stable organisation of lepidopteran genomes. Unlike 5S rDNA and U1 and U2 snRNA genes which we failed to detect, except for 5S rDNA in a few representatives of early diverging lepidopteran lineages. To explain the negative FISH results, we used quantitative PCR and Southern hybridization to estimate the copy number and organization of the studied genes in selected species. The results suggested that their detection was hampered by long spacers between the genes and/or their scattered distribution. Our results question homology of 5S rDNA and U1 and U2 snRNA loci in comparative studies. We recommend the use of histone H3 in studies of karyotype evolution.
Collapse
Affiliation(s)
- Irena Provazníková
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre CAS, České Budějovice, Czech Republic
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Martina Hejníčková
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre CAS, České Budějovice, Czech Republic
| | - Sander Visser
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre CAS, České Budějovice, Czech Republic
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Martina Dalíková
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre CAS, České Budějovice, Czech Republic
| | | | - Magda Zrzavá
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre CAS, České Budějovice, Czech Republic
| | - Anna Voleníková
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre CAS, České Budějovice, Czech Republic
| | - František Marec
- Institute of Entomology, Biology Centre CAS, České Budějovice, Czech Republic
| | - Petr Nguyen
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
- Institute of Entomology, Biology Centre CAS, České Budějovice, Czech Republic.
| |
Collapse
|
3
|
Amabis JM, Gorab E. Dramatic nucleolar dispersion in the salivary gland of Schwenkfeldina sp. (Diptera: Sciaridae). Sci Rep 2021; 11:8347. [PMID: 33863925 PMCID: PMC8052372 DOI: 10.1038/s41598-021-87012-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/24/2021] [Indexed: 11/16/2022] Open
Abstract
Micronucleoli are among the structures composing the peculiar scenario of the nucleolus in salivary gland nuclei of dipterans representative of Sciaridae. Micronucleolar bodies contain ribosomal DNA and RNA, are transcriptionally active and may appear free in the nucleoplasm or associated with specific chromosome regions in salivary gland nuclei. This report deals with an extreme case of nucleolar fragmentation/dispersion detected in the salivary gland of Schwenkfeldina sp. Such a phenomenon in this species was found to be restricted to cell types undergoing polyteny and seems to be differentially controlled according to the cell type. Furthermore, transcriptional activity was detected in virtually all the micronucleolar bodies generated in the salivary gland. The relative proportion of the rDNA in polytene and diploid tissues showed that rDNA under-replication did not occur in polytene nuclei suggesting that the nucleolar and concomitant rDNA dispersion in Schwenkfeldina sp. may reflect a previously hypothesised process in order to counterbalance the rDNA loss due to the under-replication. The chromosomal distribution of epigenetic markers for the heterochromatin agreed with early cytological observations in this species suggesting that heterochromatin is spread throughout the chromosome length of Schwenkfeldina sp. A comparison made with results from another sciarid species argues for a role played by the heterochromatin in the establishment of the rDNA topology in polytene nuclei of Sciaridae.
Collapse
Affiliation(s)
- José Mariano Amabis
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, Cidade Universitária, São Paulo, SP, 05508-090, Brazil
| | - Eduardo Gorab
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, Cidade Universitária, São Paulo, SP, 05508-090, Brazil.
| |
Collapse
|
4
|
Comparative Analysis of Intra- and Inter-Specific Genomic Variability in the Peach Potato Aphid, Myzus persicae. INSECTS 2019; 10:insects10100368. [PMID: 31652640 PMCID: PMC6835256 DOI: 10.3390/insects10100368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/09/2019] [Accepted: 10/17/2019] [Indexed: 12/20/2022]
Abstract
The availability of genomic data in the last decade relating to different aphid species has allowed the analysis of the genomic variability occurring among such species, whereas intra-specific variability has hitherto very largely been neglected. In order to analyse the intra-genomic variability in the peach potato aphid, Myzus persicae, comparative analyses were performed revealing several clone-specific gene duplications, together with numerous deletions/rearrangements. Our comparative approach also allowed us to evaluate the synteny existing between the two M. persicae clones tested and between the peach potato aphid and the pea aphid, Acyrthosiphon pisum. Even if part of the observed rearrangements are related to a low quality of some assembled contigs and/or to the high number of contigs present in these aphid genomes, our evidence reveals that aphid clones are genetically more different than expected. These results suggest that the choice of performing genomes sequencing combining different biotypes/populations, as revealed in the case of the soybean aphid, Aphis glycines, is unlikely to be very informative in aphids. Interestingly, it is possible that the holocentric nature of aphid chromosomes favours genome rearrangements that can be successively inherited transgenerationally via the aphid's apomictic (parthenogenetic) mode of reproduction. Lastly, we evaluated the structure of the cluster of genes coding for the five histones (H1, H2A, H2B, H3 and H4) in order to better understand the quality of the two M. persicae genomes and thereby to improve our knowledge of this functionally important gene family.
Collapse
|
5
|
Traldi JB, Ziemniczak K, de Fátima Martinez J, Blanco DR, Lui RL, Schemberger MO, Nogaroto V, Moreira-Filho O, Vicari MR. Chromosome Mapping of H1 and H4 Histones in Parodontidae (Actinopterygii: Characiformes): Dispersed and/or Co-Opted Transposable Elements? Cytogenet Genome Res 2019; 158:106-113. [PMID: 31203273 DOI: 10.1159/000500987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2019] [Indexed: 01/22/2023] Open
Abstract
The karyotypes of the family Parodontidae consist of 2n = 54 chromosomes. The main chromosomal evolutionary changes of its species are attributed to chromosome rearrangements in repetitive DNA regions in their genomes. Physical mapping of the H1 and H4 histones was performed in 7 Parodontidae species to analyze the chromosome rearrangements involved in karyotype diversification in the group. In parallel, the observation of a partial sequence of an endogenous retrovirus (ERV) retrotransposon in the H1 histone sequence was evaluated to verify molecular co-option of the transposable elements (TEs) and to assess paralogous sequence dispersion in the karyotypes. Six of the studied species had an interstitial histone gene cluster in the short arm of the autosomal pair 13. Besides this interstitial cluster, in Apareiodon davisi, a probable further site was detected in the terminal region of the long arm in the same chromosome pair. The H1/H4 clusters in Parodon cf. pongoensis were located in the smallest chromosomes (pair 20). In addition, scattered H1 signals were observed on the chromosomes in all species. The H1 sequence showed an ERV in the open reading frame (ORF), and the scattered H1 signals on the chromosomes were attributed to the ERV's location. The H4 sequence had no similarity to the TEs and displayed no dispersed signals. Furthermore, the degeneration of the inner ERV in the H1 sequence (which overlapped a stretch of the H1 ORF) was discussed regarding the likelihood of molecular co-option of this retroelement in histone gene function in Parodontidae.
Collapse
|
6
|
Insights into the karyotype evolution and speciation of the beetle Euchroma gigantea (Coleoptera: Buprestidae). Chromosome Res 2018. [PMID: 29524007 DOI: 10.1007/s10577-018-9576-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Euchroma Dejean, 1833 (Buprestidae: Coleoptera) is a monotypic genus comprising the species Euchroma gigantea, with populations presenting a degree of karyotypic variation/polymorphism rarely found within a single taxonomic (specific) unit, as well as drastically incompatible meiotic configurations in populations from extremes of the species range. To better understand the complex karyotypic evolution of E. gigantea, the karyotypes of specimens from five populations in Brazil were investigated using molecular cytogenetics and phylogenetic approaches. Herein, we used FISH with histone genes as well as sequencing of the COI to determine differential distribution of markers and relationships among populations. The analyses revealed new karyotypes, with variability for chromosome number and morphology of multiple sex chromosome mechanisms, occurrence of B chromosome variants (punctiform and large ones), and high dispersion of histone genes in different karyotypes. These data indicate that chromosomal polymorphism in E. gigantea is greater than previously reported, and that the species can be a valuable model for cytogenetic studies. The COI phylogenetic and haplotype analyses highlighted the formation of three groups with chromosomally polymorphic individuals. Finally, we compared the different karyotypes and proposed a model for the chromosomal evolution of this species. The species E. gigantea includes at least three cytogenetically polymorphic lineages. Moreover, in each of these lineages, different chromosomal rearrangements have been fixed. Dispersion of repetitive sequences may have favored the high frequency of these rearrangements, which could be related to both adaptation of the species to different habitats and the speciation process.
Collapse
|
7
|
Costa GWWFD, Cioffi MDB, Bertollo LAC, Molina WF. The Evolutionary Dynamics of Ribosomal Genes, Histone H3, and Transposable Rex Elements in the Genome of Atlantic Snappers. J Hered 2016; 107:173-80. [PMID: 26792596 DOI: 10.1093/jhered/esv136] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/17/2015] [Indexed: 11/12/2022] Open
Abstract
Lutjanidae is a family of primarily marine and carnivorous fishes distributed in the Atlantic, Indian, and Pacific oceans, with enormous economic and ecological importance. In order to better clarify the conservative chromosomal evolution of Lutjanidae, we analyzed the evolutionary dynamics of 5 repetitive DNA classes in 5 Lutjanus and in 1 Ocyurus species from the Western Atlantic. The ribosomal 18S sites were generally located in a single chromosome pair, except for L. jocu and L. alexandrei where they are found in 2 pairs. In turn, the 5S rDNA sites are unique, terminal and nonsyntenic with the 18S rDNA sites. In 3 species analyzed, H3 hisDNA genes were found in 1 chromosomal pair. However, while L. jocu presented 2 H3 sites, O. chrysurus showed a noteworthy dispersion of this gene in almost all chromosomes of the karyotype. Retrotransposons Rex1 and Rex3 do not exhibit any association with the explosive distribution of H3 sequences in O. chrysurus. The low compartmentalization of Rex elements, in addition to the general nondynamic distribution of ribosomal and H3 genes, corroborate the karyotype conservatism in Lutjanidae species, also at the microstructural level. However, some "disturbing evolutionary waves" can break down this conservative scenario, as evidenced by the massive random dispersion of H3 hisDNA in the genome of O. chrysurus. The implication of the genomic expansion of H3 histone genes and their functionality remain unknown, although suggesting that they have higher evolutionary dynamics than previously thought.
Collapse
Affiliation(s)
- Gideão Wagner Werneck Félix da Costa
- From the Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, 59.078-970 Natal, RN, Brasil (Costa and Molina); Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rodovia Washington Luis, Km 235 13.565-905 São Carlos, SP, Brasil (Cioffi and Bertollo)
| | - Marcelo de Bello Cioffi
- From the Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, 59.078-970 Natal, RN, Brasil (Costa and Molina); Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rodovia Washington Luis, Km 235 13.565-905 São Carlos, SP, Brasil (Cioffi and Bertollo)
| | - Luiz Antonio Carlos Bertollo
- From the Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, 59.078-970 Natal, RN, Brasil (Costa and Molina); Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rodovia Washington Luis, Km 235 13.565-905 São Carlos, SP, Brasil (Cioffi and Bertollo)
| | - Wagner Franco Molina
- From the Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, 59.078-970 Natal, RN, Brasil (Costa and Molina); Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rodovia Washington Luis, Km 235 13.565-905 São Carlos, SP, Brasil (Cioffi and Bertollo).
| |
Collapse
|
8
|
Gusso Goll L, Matiello RR, Artoni RF, Vicari MR, Nogaroto V, de Barros AV, Almeida MC. High-Resolution Physical Chromosome Mapping of Multigene Families in Lagria villosa (Tenebrionidae): Occurrence of Interspersed Ribosomal Genes in Coleoptera. Cytogenet Genome Res 2015; 146:64-70. [PMID: 25997861 DOI: 10.1159/000382047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2015] [Indexed: 11/19/2022] Open
Abstract
The organization and mapping of multigene families can produce useful genetic markers, and its use may elucidate the mechanisms of karyotype variation and genomic organization in different groups of eukaryotes. To date, few species of Coleoptera have been analyzed using FISH for the location of multigene families. The purpose of this study was to use high-resolution chromosome mapping to establish the genomic organization of the 18S rDNA, 5S rDNA and histone H3 gene families in Lagria villosa. FISH was performed using 18S rDNA, 5S rDNA and histone H3 probes prepared via PCR labeling. Fiber-FISH for 18S and 5S rDNA indicated that both ribosomal elements are colocalized in the short arm of chromosome 4. Additionally, FISH, using the histone H3 probe, revealed that this sequence is found in only one autosomal pair and did not colocalize with rDNA. Fiber-FISH with 5S and 18S probes, used to improve the mapping resolution of these regions, showed that both genes are closely interspersed with varying amounts of both DNA classes.
Collapse
Affiliation(s)
- Leonardo Gusso Goll
- Departamento de Biologia Estrutural, Molecular e Genx00E9;tica, Px00F3;s-Graduax00E7;x00E3;o em Cix00EA;ncias Biolx00F3;gicas, Biologia Evolutiva, Setor de Cix00EA;ncias Biolx00F3;gicas e da Sax00FA;de, Ponta Grossa, Brazil
| | | | | | | | | | | | | |
Collapse
|
9
|
Linard B, Crampton-Platt A, Gillett CPDT, Timmermans MJTN, Vogler AP. Metagenome Skimming of Insect Specimen Pools: Potential for Comparative Genomics. Genome Biol Evol 2015; 7:1474-89. [PMID: 25979752 PMCID: PMC4494052 DOI: 10.1093/gbe/evv086] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2015] [Indexed: 01/08/2023] Open
Abstract
Metagenomic analyses are challenging in metazoans, but high-copy number and repeat regions can be assembled from low-coverage sequencing by "genome skimming," which is applied here as a new way of characterizing metagenomes obtained in an ecological or taxonomic context. Illumina shotgun sequencing on two pools of Coleoptera (beetles) of approximately 200 species each were assembled into tens of thousands of scaffolds. Repeated low-coverage sequencing recovered similar scaffold sets consistently, although approximately 70% of scaffolds could not be identified against existing genome databases. Identifiable scaffolds included mitochondrial DNA, conserved sequences with hits to expressed sequence tag and protein databases, and known repeat elements of high and low complexity, including numerous copies of rRNA and histone genes. Assemblies of histones captured a diversity of gene order and primary sequence in Coleoptera. Scaffolds with similarity to multiple sites in available coleopteran genome sequences for Dendroctonus and Tribolium revealed high specificity of scaffolds to either of these genomes, in particular for high-copy number repeats. Numerous "clusters" of scaffolds mapped to the same genomic site revealed intra- and/or intergenomic variation within a metagenome pool. In addition to effect of taxonomic composition of the metagenomes, the number of mapped scaffolds also revealed structural differences between the two reference genomes, although the significance of this striking finding remains unclear. Finally, apparently exogenous sequences were recovered, including potential food plants, fungal pathogens, and bacterial symbionts. The "metagenome skimming" approach is useful for capturing the genomic diversity of poorly studied, species-rich lineages and opens new prospects in environmental genomics.
Collapse
Affiliation(s)
- Benjamin Linard
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Alex Crampton-Platt
- Department of Life Sciences, Natural History Museum, London, United Kingdom Department of Genetics, Evolution and Environment, University College London, United Kingdom
| | | | - Martijn J T N Timmermans
- Department of Life Sciences, Natural History Museum, London, United Kingdom Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, United Kingdom
| | - Alfried P Vogler
- Department of Life Sciences, Natural History Museum, London, United Kingdom Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, United Kingdom
| |
Collapse
|
10
|
Costa GW, Cioffi MB, Bertollo LA, Molina WF. Unusual Dispersion of Histone Repeats on the Whole Chromosomal Complement and Their Colocalization with Ribosomal Genes in Rachycentron canadum (Rachycentridae, Perciformes). Cytogenet Genome Res 2014; 144:62-7. [DOI: 10.1159/000366301] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2014] [Indexed: 11/19/2022] Open
|
11
|
Evolutionary dynamics of rRNA gene clusters in cichlid fish. BMC Evol Biol 2012; 12:198. [PMID: 23035959 PMCID: PMC3503869 DOI: 10.1186/1471-2148-12-198] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 09/25/2012] [Indexed: 11/30/2022] Open
Abstract
Background Among multigene families, ribosomal RNA (rRNA) genes are the most frequently studied and have been explored as cytogenetic markers to study the evolutionary history of karyotypes among animals and plants. In this report, we applied cytogenetic and genomic methods to investigate the organization of rRNA genes among cichlid fishes. Cichlids are a group of fishes that are of increasing scientific interest due to their rapid and convergent adaptive radiation, which has led to extensive ecological diversity. Results The present paper reports the cytogenetic mapping of the 5S rRNA genes from 18 South American, 22 African and one Asian species and the 18S rRNA genes from 3 African species. The data obtained were comparatively analyzed with previously published information related to the mapping of rRNA genes in cichlids. The number of 5S rRNA clusters per diploid genome ranged from 2 to 15, with the most common pattern being the presence of 2 chromosomes bearing a 5S rDNA cluster. Regarding 18S rDNA mapping, the number of sites ranged from 2 to 6, with the most common pattern being the presence of 2 sites per diploid genome. Furthermore, searching the Oreochromis niloticus genome database led to the identification of a total of 59 copies of 5S rRNA and 38 copies of 18S rRNA genes that were distributed in several genomic scaffolds. The rRNA genes were frequently flanked by transposable elements (TEs) and spread throughout the genome, complementing the FISH analysis that detect only clustered copies of rRNA genes. Conclusions The organization of rRNA gene clusters seems to reflect their intense and particular evolutionary pathway and not the evolutionary history of the associated taxa. The possible role of TEs as one source of rRNA gene movement, that could generates the spreading of ribosomal clusters/copies, is discussed. The present paper reinforces the notion that the integration of cytogenetic data and genomic analysis provides a more complete picture for understanding the organization of repeated sequences in the genome.
Collapse
|
12
|
Cabral-de-Mello DC, Oliveira SG, de Moura RC, Martins C. Chromosomal organization of the 18S and 5S rRNAs and histone H3 genes in Scarabaeinae coleopterans: insights into the evolutionary dynamics of multigene families and heterochromatin. BMC Genet 2011; 12:88. [PMID: 21999519 PMCID: PMC3209441 DOI: 10.1186/1471-2156-12-88] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 10/15/2011] [Indexed: 11/22/2022] Open
Abstract
Background Scarabaeinae beetles show a high level of macro-chromosomal variability, although the karyotypic organization of heterochromatin and multigene families (rDNAs and histone genes) is poorly understood in this group. To better understand the chromosomal organization and evolution in this group, we analyzed the karyotypes, heterochromatin distribution and chromosomal locations of the rRNAs and histone H3 genes in beetles belonging to eight tribes from the Scarabaeinae subfamily (Coleoptera, Scarabaeidae). Results The number of 18S rRNA gene (a member of the 45S rDNA unit) sites varied from one to 16 and were located on the autosomes, sex chromosomes or both, although two clusters were most common. Comparison of the 45S rDNA cluster number and the diploid numbers revealed a low correlation value. However, a comparison between the number of 45S rDNA sites per genome and the quantity of heterochromatin revealed (i) species presenting heterochromatin restricted to the centromeric/pericentromeric region that contained few rDNA sites and (ii) species with a high quantity of heterochromatin and a higher number of rDNA sites. In contrast to the high variability for heterochromatin and 45S rDNA cluster, the presence of two clusters (one bivalent cluster) co-located on autosomal chromosomes with the 5S rRNA and histone H3 genes was highly conserved. Conclusions Our results indicate that the variability of the 45S rDNA chromosomal clusters is not associated with macro-chromosomal rearrangements but are instead related to the spread of heterochromatin. The data obtained also indicate that both heterochromatin and the 45S rDNA loci could be constrained by similar evolutionary forces regulating spreading in the distinct Scarabaeinae subfamily lineages. For the 5S rRNA and the histone H3 genes, a similar chromosomal organization could be attributed to their association/co-localization in the Scarabaeinae karyotypes. These data provide evidence that different evolutionary forces act at the heterochromatin and the 45S rDNA loci compared to the 5S rRNA and histone H3 genes during the evolution of the Scarabainae karyotypes.
Collapse
Affiliation(s)
- Diogo C Cabral-de-Mello
- UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Departamento de Biologia, Rio Claro, São Paulo, Brazil.
| | | | | | | |
Collapse
|