1
|
Lv P, Liu J, Liu X. The role of ubiquitin-conjugating enzyme in the process of spermatogenesis. Reprod Biol Endocrinol 2024; 22:110. [PMID: 39198846 PMCID: PMC11351103 DOI: 10.1186/s12958-024-01282-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
The ubiquitination is crucial for controlling cellular homeostasis and protein modification, in which ubiquitin-conjugating enzyme (E2) acts as the central player in the ubiquitination system. Ubiquitin-conjugating enzymes, which have special domains that catalyse substrates, have sequence discrepancies and modulate various pathophysiological processes in different cells of multiple organisms. E2s take part in the mitosis of primordial germ cells, meiosis of spermatocytes and the formation of mature haploid spermatids to maintain normal male fertility. In this review, we summarize the various types of E2s and their functions during distinct stages of spermatogenesis.
Collapse
Affiliation(s)
- Peng Lv
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Xiaming Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Jeanne F, Bernay B, Sourdaine P. Comparative Proteome Analysis of Four Stages of Spermatogenesis in the Small-Spotted Catshark ( Scyliorhinus canicula), Using High-Resolution NanoLC-ESI-MS/MS. J Proteome Res 2023. [PMID: 37290099 DOI: 10.1021/acs.jproteome.3c00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Spermatogenesis is a highly specialized process of cell proliferation and differentiation leading to the production of spermatozoa from spermatogonial stem cells. Due to its testicular anatomy, Scyliorhinus canicula is an interesting model to explore stage-based changes in proteins during spermatogenesis. The proteomes of four testicular zones corresponding to the germinative niche and to spermatocysts (cysts) with spermatogonia (zone A), cysts with spermatocytes (zone B), cysts with young spermatids (zone C), and cysts with late spermatids (zone D) have been analyzed by nanoLC-ESI-MS/MS. Gene ontology and KEGG annotations were also performed. A total of 3346 multiple protein groups were identified. Zone-specific protein analyses highlighted RNA-processing, chromosome-related processes, cilium organization, and cilium activity in zones A, D, C, and D, respectively. Analyses of proteins with zone-dependent abundance revealed processes related to cellular stress, ubiquitin-dependent degradation by the proteasome, post-transcriptional regulation, and regulation of cellular homeostasis. Our results also suggest that the roles of some proteins, such as ceruloplasmin, optineurin, the pregnancy zone protein, PA28β or the Culling-RING ligase 5 complex, as well as some uncharacterized proteins, during spermatogenesis could be further explored. Finally, the study of this shark species allows one to integrate these data in an evolutionary context of the regulation of spermatogenesis. Mass spectrometry data are freely accessible via iProX-integrated Proteome resources (https://www.iprox.cn/) for reuse purposes.
Collapse
Affiliation(s)
- Fabian Jeanne
- Université de Caen Normandie, MNHN, SU, UA, CNRS, IRD, Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR 8067, 14032 Caen cedex 5, France
| | - Benoît Bernay
- Université de Caen Normandie - Plateforme PROTEOGEN, US EMerode, 14032 Caen cedex 5, France
| | - Pascal Sourdaine
- Université de Caen Normandie, MNHN, SU, UA, CNRS, IRD, Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR 8067, 14032 Caen cedex 5, France
| |
Collapse
|
3
|
Tan H, Wang W, Zhou C, Wang Y, Zhang S, Yang P, Guo R, Chen W, Zhang J, Ye L, Cui Y, Ni T, Zheng K. Single-cell RNA-seq uncovers dynamic processes orchestrated by RNA-binding protein DDX43 in chromatin remodeling during spermiogenesis. Nat Commun 2023; 14:2499. [PMID: 37120627 DOI: 10.1038/s41467-023-38199-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 04/20/2023] [Indexed: 05/01/2023] Open
Abstract
Mammalian spermatogenesis shows prominent chromatin and transcriptomic switches in germ cells, but it is unclear how such dynamics are controlled. Here we identify RNA helicase DDX43 as an essential regulator of the chromatin remodeling process during spermiogenesis. Testis-specific Ddx43 knockout mice show male infertility with defective histone-to-protamine replacement and post-meiotic chromatin condensation defects. The loss of its ATP hydrolysis activity by a missense mutation replicates the infertility phenotype in global Ddx43 knockout mice. Single-cell RNA sequencing analyses of germ cells depleted of Ddx43 or expressing the Ddx43 ATPase-dead mutant reveals that DDX43 regulates dynamic RNA regulatory processes that underlie spermatid chromatin remodeling and differentiation. Transcriptomic profiling focusing on early-stage spermatids combined with enhanced crosslinking immunoprecipitation and sequencing further identifies Elfn2 as DDX43-targeted hub gene. These findings illustrate an essential role for DDX43 in spermiogenesis and highlight the single-cell-based strategy to dissect cell-state-specific regulation of male germline development.
Collapse
Affiliation(s)
- Huanhuan Tan
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166, Nanjing, China
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, 400016, Chongqing, Yuzhong District, China
| | - Weixu Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences and Huashan Hospital, Fudan University, 200438, Shanghai, China
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
| | - Congjin Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166, Nanjing, China
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166, Nanjing, China
| | - Shu Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166, Nanjing, China
| | - Pinglan Yang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166, Nanjing, China
| | - Rui Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166, Nanjing, China
| | - Wei Chen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences and Huashan Hospital, Fudan University, 200438, Shanghai, China
| | - Jinwen Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166, Nanjing, China
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166, Nanjing, China
| | - Yiqiang Cui
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166, Nanjing, China.
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences and Huashan Hospital, Fudan University, 200438, Shanghai, China.
| | - Ke Zheng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166, Nanjing, China.
| |
Collapse
|
4
|
Hao L, Zhang J, Liu Z, Lin X, Guo J. Epitranscriptomics in the development, functions, and disorders of cancer stem cells. Front Oncol 2023; 13:1145766. [PMID: 37007137 PMCID: PMC10063963 DOI: 10.3389/fonc.2023.1145766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/10/2023] [Indexed: 03/19/2023] Open
Abstract
Biomolecular modifications play an important role in the development of life, and previous studies have investigated the role of DNA and proteins. In the last decade, with the development of sequencing technology, the veil of epitranscriptomics has been gradually lifted. Transcriptomics focuses on RNA modifications that affect gene expression at the transcriptional level. With further research, scientists have found that changes in RNA modification proteins are closely linked to cancer tumorigenesis, progression, metastasis, and drug resistance. Cancer stem cells (CSCs) are considered powerful drivers of tumorigenesis and key factors for therapeutic resistance. In this article, we focus on describing RNA modifications associated with CSCs and summarize the associated research progress. The aim of this review is to identify new directions for cancer diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Linlin Hao
- Department of Tumor Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Jian Zhang
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Zhongshan Liu
- Department of Tumor Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Xia Lin
- Department of Tumor Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Jie Guo
- Department of Tumor Radiotherapy, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Jie Guo,
| |
Collapse
|
5
|
Peart NJ, Johnson TA, Lee S, Sears MJ, Yang F, Quesnel-Vallières M, Feng H, Recinos Y, Barash Y, Zhang C, Hermann BP, Wang PJ, Geyer CB, Carstens RP. The germ cell-specific RNA binding protein RBM46 is essential for spermatogonial differentiation in mice. PLoS Genet 2022; 18:e1010416. [PMID: 36129965 PMCID: PMC9529142 DOI: 10.1371/journal.pgen.1010416] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/03/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022] Open
Abstract
Control over gene expression is exerted, in multiple stages of spermatogenesis, at the post-transcriptional level by RNA binding proteins (RBPs). We identify here an essential role in mammalian spermatogenesis and male fertility for 'RNA binding protein 46' (RBM46). A highly evolutionarily conserved gene, Rbm46 is also essential for fertility in both flies and fish. We found Rbm46 expression was restricted to the mouse germline, detectable in males in the cytoplasm of premeiotic spermatogonia and meiotic spermatocytes. To define its requirement for spermatogenesis, we generated Rbm46 knockout (KO, Rbm46-/-) mice; although male Rbm46-/- mice were viable and appeared grossly normal, they were infertile. Testes from adult Rbm46-/- mice were small, with seminiferous tubules containing only Sertoli cells and few undifferentiated spermatogonia. Using genome-wide unbiased high throughput assays RNA-seq and 'enhanced crosslinking immunoprecipitation' coupled with RNA-seq (eCLIP-seq), we discovered RBM46 could bind, via a U-rich conserved consensus sequence, to a cohort of mRNAs encoding proteins required for completion of differentiation and subsequent meiotic initiation. In summary, our studies support an essential role for RBM46 in regulating target mRNAs during spermatogonia differentiation prior to the commitment to meiosis in mice.
Collapse
Affiliation(s)
- Natoya J. Peart
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Taylor A. Johnson
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Sungkyoung Lee
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Matthew J. Sears
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Fang Yang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Mathieu Quesnel-Vallières
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Huijuan Feng
- Department of Systems Biology and Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
| | - Yocelyn Recinos
- Department of Systems Biology and Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
| | - Yoseph Barash
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Chaolin Zhang
- Department of Systems Biology and Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
| | - Brian P. Hermann
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - P. Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Christopher B. Geyer
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
- East Carolina Diabetes and Obesity Institute at East Carolina University, Greenville, North Carolina, United States of America
| | - Russ P. Carstens
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
6
|
lncRNA 1700101O22Rik and NONMMUG030480.1 Are Not Essential for Spermatogenesis in Mice. Int J Mol Sci 2022; 23:ijms23158627. [PMID: 35955762 PMCID: PMC9369125 DOI: 10.3390/ijms23158627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 02/01/2023] Open
Abstract
Many testis-specific lncRNAs are highly expressed in late spermatogenesis, especially in spermiogenesis. However, their functions and the underlying mechanisms in male fertility are largely unknown. Here, we screened two highly expressed lncRNAs, 1700101O22Rik (O22Rik) and NONMMUG030480.1 (NM480) in testes, to investigate the roles in spermatogenesis using lncRNA knockout (KO) mouse generated by CRISPER/Cas9 technology. Both testis-specific lncRNAs were mainly expressed from secondary spermatocytes to round spermatids, suggesting that they might be involved in spermiogenesis. Phenotypic analysis showed that the deletion of O22Rik or NM480 did not affect the development of testis and epididymis or spermatogenesis. These results were confirmed in both young and middle-aged male mice. In addition, there was no significant difference in sperm morphology and other parameters including concentration and motility between wild type (WT) and KO mice. Fertility tests showed that litter size was significantly lower in O22Rik KO mice compared with WT controls. Although O22Rik did not exert dramatic roles in spermatogenesis, on molecular levels, its surrounding gene expression was disturbed significantly. Gm32773 was decreased; however, Gm32828 was increased in KO mice. In conclusion, lncRNA O22Rik and NM480 are not individually essential for spermatogenesis in mice.
Collapse
|
7
|
Dou Q, Turanov AA, Mariotti M, Hwang JY, Wang H, Lee SG, Paulo JA, Yim SH, Gygi SP, Chung JJ, Gladyshev VN. Selenoprotein TXNRD3 supports male fertility via the redox regulation of spermatogenesis. J Biol Chem 2022; 298:102183. [PMID: 35753352 PMCID: PMC9352919 DOI: 10.1016/j.jbc.2022.102183] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 12/20/2022] Open
Abstract
Thioredoxin/glutathione reductase (TXNRD3) is a selenoprotein composed of thioredoxin reductase and glutaredoxin domains. This NADPH-dependent thiol oxidoreductase evolved through gene duplication within the Txnrd family, is expressed in the testes, and can reduce both thioredoxin and glutathione in vitro; however, the function of this enzyme remains unknown. To characterize the function of TXNRD3 in vivo, we generated a strain of mice bearing deletion of Txnrd3 gene. We show that these Txnrd3 knockout mice are viable and without discernable gross phenotypes, and also that TXNRD3 deficiency leads to fertility impairment in male mice. We found that Txnrd3 knockout animals exhibited a lower fertilization rate in vitro, a sperm movement phenotype, and an altered thiol redox status in sperm cells. Proteomic analyses further revealed a broad range of substrates reduced by TXNRD3 during sperm maturation, presumably as a part of sperm quality control. Taken together, these results show that TXNRD3 plays a critical role in male reproduction via the thiol redox control of spermatogenesis.
Collapse
Affiliation(s)
- Qianhui Dou
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anton A Turanov
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marco Mariotti
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Jae Yeon Hwang
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Huafeng Wang
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Sang-Goo Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Sun Hee Yim
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Stephen P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jean-Ju Chung
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Obstetrics and Gynecology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.
| |
Collapse
|
8
|
Wu D, Khan FA, Huo L, Sun F, Huang C. Alternative splicing and MicroRNA: epigenetic mystique in male reproduction. RNA Biol 2022; 19:162-175. [PMID: 35067179 PMCID: PMC8786336 DOI: 10.1080/15476286.2021.2024033] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Infertility is rarely life threatening, however, it poses a serious global health issue posing far-reaching socio-economic impacts affecting 12–15% of couples worldwide where male factor accounts for 70%. Functional spermatogenesis which is the result of several concerted coordinated events to produce sperms is at the core of male fertility, Alternative splicing and microRNA (miRNA) mediated RNA silencing (RNAi) constitute two conserved post-transcriptional gene (re)programming machinery across species. The former by diversifying transcriptome signature and the latter by repressing target mRNA activity orchestrate a spectrum of testicular events, and their dysfunctions has several implications in male infertility. This review recapitulates the knowledge of these mechanistic events in regulation of spermatogenesis and testicular homoeostasis. In addition, miRNA payload in sperm, vulnerable to paternal inputs, including unhealthy diet, infection and trauma, creates epigenetic memory to initiate intergenerational phenotype. Naive zygote injection of sperm miRNAs from stressed father recapitulates phenotypes of offspring of stressed father. The epigenetic inheritance of paternal pathologies through miRNA could be a tantalizing avenue to better appreciate ‘Paternal Origins of Health and Disease’ and the power of tiny sperm.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, China
| | - Faheem Ahmed Khan
- Laboratory of Molecular Biology and Genomics, Department of Zoology, Faculty of Science, University of Central Punjab, Lahore, Pakistan
| | - Lijun Huo
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, China
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
9
|
Aluru N, Engelhardt J. OUP accepted manuscript. Toxicol Sci 2022; 188:75-87. [PMID: 35477799 PMCID: PMC9237993 DOI: 10.1093/toxsci/kfac044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Exposure to environmental toxicants during preconception has been shown to affect offspring health and epigenetic mechanisms such as DNA methylation are hypothesized to be involved in adverse outcomes. However, studies addressing the effects of exposure to environmental toxicants during preconception on epigenetic changes in gametes are limited. The objective of this study is to determine the effect of preconceptional exposure to a dioxin-like polychlorinated biphenyl (3,3',4,4',5-pentachlorobiphenyl [PCB126]) on DNA methylation and gene expression in testis. Adult zebrafish were exposed to 3 and 10 nM PCB126 for 24 h and testis tissue was sampled at 7 days postexposure for histology, DNA methylation, and gene expression profiling. Reduced representation bisulfite sequencing revealed 37 and 92 differentially methylated regions (DMRs) in response to 3 and 10 nM PCB126 exposures, respectively. Among them, 19 DMRs were found to be common between both PCB126 treatment groups. Gene ontology (GO) analysis of DMRs revealed that enrichment of terms such as RNA processing, iron-sulfur cluster assembly, and gluconeogenesis. Gene expression profiling showed differential expression of 40 and 1621 genes in response to 3 and 10 nM PCB126 exposures, respectively. GO analysis of differentially expressed genes revealed enrichment of terms related to xenobiotic metabolism, oxidative stress, and immune function. There is no overlap in the GO terms or individual genes between DNA methylation and RNA sequencing results, but functionally many of the altered pathways have been shown to cause spermatogenic defects.
Collapse
Affiliation(s)
| | - Jan Engelhardt
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig D-04107, Germany
- Department of Evolutionary Biology, University of Vienna, Vienna A-1030, Austria
| |
Collapse
|
10
|
Liu SH, Ma XY, Yue TT, Wang ZC, Qi KL, Li JC, Lin F, Rushdi HE, Gao YY, Fu T, Li M, Gao TY, Yang LG, Han XL, Deng TX. Transcriptome-Wide m6A Analysis Provides Novel Insights Into Testicular Development and Spermatogenesis in Xia-Nan Cattle. Front Cell Dev Biol 2021; 9:791221. [PMID: 35004687 PMCID: PMC8728086 DOI: 10.3389/fcell.2021.791221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
Testis is the primary organ of the male reproductive tract in mammals that plays a substantial role in spermatogenesis. Improvement of our knowledge regarding the molecular mechanisms in testicular development and spermatogenesis will be reflected in producing spermatozoa of superior fertility. Evidence showed that N6-Methyladenosine (m6A) plays a dynamic role in post-transcription gene expression regulation and is strongly associated with production traits. However, the role of m6A in bovine testis has not been investigated yet. In this study, we conducted MeRIP-Seq analysis to explore the expression profiles of the m6A and its potential mechanism underlying spermatogenesis in nine bovine testes at three developmental stages (prepuberty, puberty and postpuberty). The experimental animals with triplicate in each stage were chosen based on their semen volume and sperm motility except for the prepuberty bulls and used for testes collection. By applying MeRIP-Seq analysis, a total of 8,774 m6A peaks and 6,206 m6A genes among the studied groups were identified. All the detected peaks were found to be mainly enriched in the coding region and 3'- untranslated regions. The cross-analysis of m6A and mRNA expression exhibited 502 genes with concomitant changes in the mRNA expression and m6A modification. Notably, 30 candidate genes were located in the largest network of protein-protein interactions. Interestingly, four key node genes (PLK4, PTEN, EGR1, and PSME4) were associated with the regulation of mammal testis development and spermatogenesis. This study is the first to present a map of RNA m6A modification in bovine testes at distinct ages, and provides new insights into m6A topology and related molecular mechanisms underlying bovine spermatogenesis, and establishes a basis for further studies on spermatogenesis in mammals.
Collapse
Affiliation(s)
- Shen-He Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xiao-Ya Ma
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Ting-Ting Yue
- Henan Dairy Herd Improvement Co., Ltd, Zhengzhou, China
| | - Zi-Chen Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Kun-Long Qi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Ji-Chao Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Feng Lin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Hossam E Rushdi
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Yu-Yang Gao
- Henan Dingyuan Cattle Breeding Co., Ltd., Wuhan, China
| | - Tong Fu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Teng-Yun Gao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Li-Guo Yang
- China Ministry of Education, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xue-Lei Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Ting-Xian Deng
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
11
|
Talebi-Yazdabadi Z, Jahanbakhsh N, Dormiani K, Forouzanfar M, Lachinani L, Zohrabi D, Tavalaee M, Nasr-Esfahani MH. Assessment of MUSASHI 1 and MUSASHI 2 expression in spermatozoa and testicular tissue. Andrologia 2021; 53:e14187. [PMID: 34309875 DOI: 10.1111/and.14187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/25/2021] [Accepted: 06/24/2021] [Indexed: 01/13/2023] Open
Abstract
MUSASHI (MSI) family plays the main role in the spermatogenesis process. The purpose of this study was the assessment of sperm MSI1 and MSI2, and sperm functional tests in infertile men (n = 30) with varicocele and fertile men (n = 30). Furthermore, MSI1 and MSI2 proteins were assessed in testicular tissue of azoospermic men (n = 9) as well as epididymal spermatozoa and testis of mice. Expression of MSI1 and MSI2 was assessed at RNA and protein levels in human spermatozoa. Sperm concentration and motility were significantly lower, while abnormal sperm morphology, lipid peroxidation, DNA fragmentation and protamine deficiency were significantly higher in men with varicocele compared to fertile individuals. Any significant difference was not observed in the expression of MSI1 and MSI2 mRNA between the two groups. Unlike MSI1 protein that was not detectable in humans, the relative expression of MSI2 protein was similar in varicocele and fertile individuals. The expression level of both Msi1 and Msi2 proteins was also observable in mouse spermatozoa. No significant relationship was observed between sperm functional parameters with expression of these genes. The data of this study demonstrated that although MSI1 and MSI2 play important roles during spermatogenesis, their relative expression in spermatozoa was not affected by varicocele.
Collapse
Affiliation(s)
- Zohreh Talebi-Yazdabadi
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.,ACECR Institute of Higher Education, Isfahan, Iran
| | - Neda Jahanbakhsh
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.,Department of Biology, Faculty of Science, NourDanesh Institute of Higher Education, Isfahan, Iran
| | - Kianoush Dormiani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mahboobeh Forouzanfar
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Liana Lachinani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Dina Zohrabi
- ACECR Institute of Higher Education, Isfahan, Iran
| | - Marziyeh Tavalaee
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.,Isfahan Fertility and Infertility Center, Isfahan, Iran
| |
Collapse
|
12
|
Tian H, Petkov PM. Mouse EWSR1 is crucial for spermatid post-meiotic transcription and spermiogenesis. Development 2021; 148:269056. [PMID: 34100066 DOI: 10.1242/dev.199414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022]
Abstract
Spermatogenesis is precisely controlled by complex gene-expression programs. During mammalian male germ-cell development, a crucial feature is the repression of transcription before spermatid elongation. Previously, we discovered that the RNA-binding protein EWSR1 plays an important role in meiotic recombination in mouse, and showed that EWSR1 is highly expressed in late meiotic cells and post-meiotic cells. Here, we used an Ewsr1 pachytene stage-specific knockout mouse model to study the roles of Ewsr1 in late meiotic prophase I and in spermatozoa maturation. We show that loss of EWSR1 in late meiotic prophase I does not affect proper meiosis completion, but does result in defective spermatid elongation and chromocenter formation in the developing germ cells. As a result, male mice lacking EWSR1 after pachynema are sterile. We found that, in Ewsr1 CKO round spermatids, transition from a meiotic gene-expression program to a post-meiotic and spermatid gene expression program related to DNA condensation is impaired, suggesting that EWSR1 plays an important role in regulation of spermiogenesis-related mRNA synthesis necessary for spermatid differentiation into mature sperm.
Collapse
Affiliation(s)
- Hui Tian
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | |
Collapse
|
13
|
Naro C, Cesari E, Sette C. Splicing regulation in brain and testis: common themes for highly specialized organs. Cell Cycle 2021; 20:480-489. [PMID: 33632061 PMCID: PMC8018374 DOI: 10.1080/15384101.2021.1889187] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/17/2021] [Accepted: 02/07/2021] [Indexed: 12/26/2022] Open
Abstract
Expansion of the coding and regulatory capabilities of eukaryotic transcriptomes by alternative splicing represents one of the evolutionary forces underlying the increased structural complexity of metazoans. Brain and testes stand out as the organs that mostly exploit the potential of alternative splicing, thereby expressing the largest repertoire of splice variants. Herein, we will review organ-specific as well as common mechanisms underlying the high transcriptome complexity of these organs and discuss the impact exerted by this widespread alternative splicing regulation on the functionality and differentiation of brain and testicular cells.
Collapse
Affiliation(s)
- Chiara Naro
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy
- Organoids Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Eleonora Cesari
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy
- Organoids Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy
- Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
14
|
Zheng M, Chen X, Cui Y, Li W, Dai H, Yue Q, Zhang H, Zheng Y, Guo X, Zhu H. TULP2, a New RNA-Binding Protein, Is Required for Mouse Spermatid Differentiation and Male Fertility. Front Cell Dev Biol 2021; 9:623738. [PMID: 33763418 PMCID: PMC7982829 DOI: 10.3389/fcell.2021.623738] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/27/2021] [Indexed: 11/13/2022] Open
Abstract
Spermatogenesis requires a large number of proteins to be properly expressed at certain stages, during which post-transcriptional regulation plays an important role. RNA-binding proteins (RBPs) are key players in post-transcriptional regulation, but only a few RBPs have been recognized and preliminary explored their function in spermatogenesis at present. Here we identified a new RBP tubby-like protein 2 (TULP2) and found three potential deleterious missense mutations of Tulp2 gene in dyszoospermia patients. Therefore, we explored the function and mechanism of TULP2 in male reproduction. TULP2 was specifically expressed in the testis and localized to spermatids. Studies on Tulp2 knockout mice demonstrated that the loss of TULP2 led to male sterility; on the one hand, increases in elongated spermatid apoptosis and restricted spermatid release resulted in a decreased sperm count; on the other hand, the abnormal differentiation of spermatids induced defective sperm tail structures and reduced ATP contents, influencing sperm motility. Transcriptome sequencing of mouse testis revealed the potential target molecular network of TULP2, which played its role in spermatogenesis by regulating specific transcripts related to the cytoskeleton, apoptosis, RNA metabolism and biosynthesis, and energy metabolism. We also explored the potential regulator of TULP2 protein function by using immunoprecipitation and mass spectrometry analysis, indicating that TUPL2 might be recognized by CCT8 and correctly folded by the CCT complex to play a role in spermiogenesis. Our results demonstrated the important role of TULP2 in spermatid differentiation and male fertility, which could provide an effective target for the clinical diagnosis and treatment of patients with oligo-astheno-teratozoospermia, and enrich the biological theory of the role of RBPs in male reproduction.
Collapse
Affiliation(s)
- Meimei Zheng
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China.,Reproductive Medicine Center of No. 960 Hospital of PLA, Jinan, China
| | - Xu Chen
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Yiqiang Cui
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Wen Li
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Haiqian Dai
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Qiuling Yue
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Hao Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Ying Zheng
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Hui Zhu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Crespo D, Assis LHC, Zhang YT, Safian D, Furmanek T, Skaftnesmo KO, Norberg B, Ge W, Choi YC, den Broeder MJ, Legler J, Bogerd J, Schulz RW. Insulin-like 3 affects zebrafish spermatogenic cells directly and via Sertoli cells. Commun Biol 2021; 4:204. [PMID: 33589679 PMCID: PMC7884674 DOI: 10.1038/s42003-021-01708-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/13/2021] [Indexed: 01/31/2023] Open
Abstract
Pituitary hormones can use local signaling molecules to regulate target tissue functions. In adult zebrafish testes, follicle-stimulating hormone (Fsh) strongly increases the production of insulin-like 3 (Insl3), a Leydig cell-derived growth factor found in all vertebrates. Little information is available regarding Insl3 function in adult spermatogenesis. The Insl3 receptors Rxfp2a and 2b were expressed by type A spermatogonia and Sertoli and myoid cells, respectively, in zebrafish testis tissue. Loss of insl3 increased germ cell apoptosis in males starting at 9 months of age, but spermatogenesis appeared normal in fully fertile, younger adults. Insl3 changed the expression of 409 testicular genes. Among others, retinoic acid (RA) signaling was up- and peroxisome proliferator-activated receptor gamma (Pparg) signaling was down-regulated. Follow-up studies showed that RA and Pparg signaling mediated Insl3 effects, resulting in the increased production of differentiating spermatogonia. This suggests that Insl3 recruits two locally active nuclear receptor pathways to implement pituitary (Fsh) stimulation of spermatogenesis.
Collapse
Affiliation(s)
- Diego Crespo
- grid.5477.10000000120346234Reproductive Biology Group, Division Developmental Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands ,grid.10917.3e0000 0004 0427 3161Present Address: Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Luiz H. C. Assis
- grid.5477.10000000120346234Reproductive Biology Group, Division Developmental Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands
| | - Yu Ting Zhang
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Fujian, PR China ,grid.449133.80000 0004 1764 3555Present Address: Institute of Oceanography, Minjiang University, Fuzhou, PR China
| | - Diego Safian
- grid.5477.10000000120346234Reproductive Biology Group, Division Developmental Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands ,grid.4818.50000 0001 0791 5666Present Address: Experimental Zoology Group and Aquaculture and Fisheries Group, Department of Animal Science, Wageningen University, Wageningen, The Netherlands
| | - Tomasz Furmanek
- grid.10917.3e0000 0004 0427 3161Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Kai Ove Skaftnesmo
- grid.10917.3e0000 0004 0427 3161Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Birgitta Norberg
- grid.10917.3e0000 0004 0427 3161Institute of Marine Research, Austevoll Research Station, Storebø, Norway
| | - Wei Ge
- grid.437123.00000 0004 1794 8068Center of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau China
| | - Yung-Ching Choi
- grid.437123.00000 0004 1794 8068Center of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau China
| | - Marjo J. den Broeder
- grid.5477.10000000120346234Division of Toxicology, Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Juliette Legler
- grid.5477.10000000120346234Division of Toxicology, Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jan Bogerd
- grid.5477.10000000120346234Reproductive Biology Group, Division Developmental Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands
| | - Rüdiger W. Schulz
- grid.5477.10000000120346234Reproductive Biology Group, Division Developmental Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands ,grid.10917.3e0000 0004 0427 3161Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| |
Collapse
|
16
|
Shalini V, Bhaduri U, Ravikkumar AC, Rengarajan A, Satyanarayana RMR. Genome-wide occupancy reveals the localization of H1T2 (H1fnt) to repeat regions and a subset of transcriptionally active chromatin domains in rat spermatids. Epigenetics Chromatin 2021; 14:3. [PMID: 33407810 PMCID: PMC7788777 DOI: 10.1186/s13072-020-00376-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/23/2020] [Indexed: 11/10/2022] Open
Abstract
Background H1T2/H1FNT is a germ cell-specific linker histone variant expressed during spermiogenesis specifically in round and elongating spermatids. Infertile phenotype of homozygous H1T2 mutant male mice revealed the essential function of H1T2 for the DNA condensation and histone-to-protamine replacement in spermiogenesis. However, the mechanism by which H1T2 imparts the inherent polarity within spermatid nucleus including the additional protein partners and the genomic domains occupied by this linker histone are unknown. Results Sequence analysis revealed the presence of Walker motif, SR domains and putative coiled-coil domains in the C-terminal domain of rat H1T2 protein. Genome-wide occupancy analysis using highly specific antibody against the CTD of H1T2 demonstrated the binding of H1T2 to the LINE L1 repeat elements and to a significant percentage of the genic regions (promoter-TSS, exons and introns) of the rat spermatid genome. Immunoprecipitation followed by mass spectrometry analysis revealed the open chromatin architecture of H1T2 occupied chromatin encompassing the H4 acetylation and other histone PTMs characteristic of transcriptionally active chromatin. In addition, the present study has identified the interacting protein partners of H1T2-associated chromatin mainly as nucleo-skeleton components, RNA-binding proteins and chaperones. Conclusions Linker histone H1T2 possesses unique domain architecture which can account for the specific functions associated with chromatin remodeling events facilitating the initiation of histone to transition proteins/protamine transition in the polar apical spermatid genome. Our results directly establish the unique function of H1T2 in nuclear shaping associated with spermiogenesis by mediating the interaction between chromatin and nucleo-skeleton, positioning the epigenetically specialized chromatin domains involved in transcription coupled histone replacement initiation towards the apical pole of round/elongating spermatids.
Collapse
Affiliation(s)
- Vasantha Shalini
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - Utsa Bhaduri
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India.,Department of Life Sciences, University of Trieste, Trieste, Italy.,European Union's H2020 TRIM-NET ITN, Marie Sklodowska-Curie Actions (MSCA), Leiden, The Netherlands
| | - Anjhana C Ravikkumar
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - Anusha Rengarajan
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - Rao M R Satyanarayana
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India.
| |
Collapse
|
17
|
Zheng C, Ouyang YC, Jiang B, Lin X, Chen J, Dong MZ, Zhuang X, Yuan S, Sun QY, Han C. Non-canonical RNA polyadenylation polymerase FAM46C is essential for fastening sperm head and flagellum in mice†. Biol Reprod 2020; 100:1673-1685. [PMID: 31087039 DOI: 10.1093/biolre/ioz083] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/24/2019] [Accepted: 05/13/2019] [Indexed: 01/21/2023] Open
Abstract
Family with sequence similarity 46, member C (FAM46C) is a highly conserved non-canonical RNA polyadenylation polymerase that is abundantly expressed in human and mouse testes and is frequently mutated in patients with multiple myeloma. However, its physiological role remains largely unknown. In this study, we found that FAM46C is specifically localized to the manchette of spermatids in mouse testes, a transient microtubule-based structure mainly involved in nuclear shaping and intra-flagellar protein traffic. Gene knockout of FAM46C in mice resulted in male sterility, characterized by the production of headless spermatozoa in testes. Sperm heads were intermittently found in the epididymides of FAM46C knockout mice, but their fertilization ability was severely compromised based on the results of intracytoplasmic sperm injection assays. Interestingly, our RNA-sequencing analyses of FAM46C knockout testes revealed that mRNA levels of only nine genes were significantly altered compared to wild-type ones (q < 0.05). When considering alternate activities for FAM46C, in vitro assays demonstrated that FAM46C does not exhibit protein kinase or AMPylation activity against general substrates. Together, our data show that FAM46C in spermatids is a novel component in fastening the sperm head and flagellum.
Collapse
Affiliation(s)
- Chunwei Zheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Savaid Medical School, Beijing, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Binjie Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiwen Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jian Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ming-Zhe Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xinjie Zhuang
- Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Shuiqiao Yuan
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Savaid Medical School, Beijing, China
| |
Collapse
|
18
|
Zheng JT, Lin CX, Fang ZY, Li HD. Intron Retention as a Mode for RNA-Seq Data Analysis. Front Genet 2020; 11:586. [PMID: 32733531 PMCID: PMC7358572 DOI: 10.3389/fgene.2020.00586] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/14/2020] [Indexed: 12/16/2022] Open
Abstract
Intron retention (IR) is an alternative splicing mode whereby introns, rather than being spliced out as usual, are retained in mature mRNAs. It was previously considered a consequence of mis-splicing and received very limited attention. Only recently has IR become of interest for transcriptomic data analysis owing to its recognized roles in gene expression regulation and associations with complex diseases. In this article, we first review the function of IR in regulating gene expression in a number of biological processes, such as neuron differentiation and activation of CD4+ T cells. Next, we briefly review its association with diseases, such as Alzheimer's disease and cancers. Then, we describe state-of-the-art methods for IR detection, including RNA-seq analysis tools IRFinder and iREAD, highlighting their underlying principles and discussing their advantages and limitations. Finally, we discuss the challenges for IR detection and potential ways in which IR detection methods could be improved.
Collapse
Affiliation(s)
- Jian-Tao Zheng
- Hunan Provincial Key Lab on Bioinformatics, Center for Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
| | - Cui-Xiang Lin
- Hunan Provincial Key Lab on Bioinformatics, Center for Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
| | - Zhao-Yu Fang
- School of Mathematics and Statistics, Central South University, Changsha, China
| | - Hong-Dong Li
- Hunan Provincial Key Lab on Bioinformatics, Center for Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
| |
Collapse
|
19
|
Cesari E, Loiarro M, Naro C, Pieraccioli M, Farini D, Pellegrini L, Pagliarini V, Bielli P, Sette C. Combinatorial control of Spo11 alternative splicing by modulation of RNA polymerase II dynamics and splicing factor recruitment during meiosis. Cell Death Dis 2020; 11:240. [PMID: 32303676 PMCID: PMC7165175 DOI: 10.1038/s41419-020-2443-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 11/29/2022]
Abstract
Homologous recombination and chromosome segregation in meiosis rely on the timely expression of two splice variants of the endonuclease SPO11, named α and β, which respectively skip or include exon 2. However, in spite of its physiological importance, the mechanism underlying Spo11 alternative splicing in meiosis is still unknown. By screening the activity of factors that are predicted to bind the alternatively spliced region of Spo11, we identified hnRNPH as a key regulator of SPO11α splicing in mouse spermatocytes. Although hnRNPH was not upregulated in meiosis concomitantly with the switch in splicing, its recruitment to Spo11 pre-mRNA was favored by selective modulation of RNA polymerase II (RNAPII) phosphorylation and processivity in proximity of exon 2. The hnRNPH binding sites were localized near those of splicing factors that promote SPO11β splicing, suggesting that hnRNPH favors exon 2 skipping by competing out positive regulators. Indeed, hnRNPH binds proximal to a consensus motif for Sam68, a positive regulator of SPO11β splicing in vitro and in vivo, and it interferes with Sam68 binding to the Spo11 pre-mRNA. Thus, our work reveals that modulation of RNAPII dynamics in concert with hnRNPH recruitment exerts a combinatorial control of the timely regulated Spo11 splicing during meiosis.
Collapse
Affiliation(s)
- Eleonora Cesari
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168, Rome, Italy.,Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, 00143, Rome, Italy
| | - Maria Loiarro
- Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, 00143, Rome, Italy
| | - Chiara Naro
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168, Rome, Italy.,Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, 00143, Rome, Italy
| | - Marco Pieraccioli
- Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, 00143, Rome, Italy
| | - Donatella Farini
- Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, 00143, Rome, Italy.,Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Livia Pellegrini
- Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, 00143, Rome, Italy.,Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Vittoria Pagliarini
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168, Rome, Italy.,Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, 00143, Rome, Italy
| | - Pamela Bielli
- Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, 00143, Rome, Italy.,Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168, Rome, Italy. .,Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, 00143, Rome, Italy.
| |
Collapse
|
20
|
Naro C, Pellegrini L, Jolly A, Farini D, Cesari E, Bielli P, de la Grange P, Sette C. Functional Interaction between U1snRNP and Sam68 Insures Proper 3' End Pre-mRNA Processing during Germ Cell Differentiation. Cell Rep 2020; 26:2929-2941.e5. [PMID: 30865884 DOI: 10.1016/j.celrep.2019.02.058] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 01/15/2019] [Accepted: 02/14/2019] [Indexed: 01/02/2023] Open
Abstract
Male germ cells express the widest repertoire of transcript variants in mammalian tissues. Nevertheless, factors and mechanisms underlying such pronounced diversity are largely unknown. The splicing regulator Sam68 is highly expressed in meiotic cells, and its ablation results in defective spermatogenesis. Herein, we uncover an extensive splicing program operated by Sam68 across meiosis, primarily characterized by alternative last exon (ALE) regulation in genes of functional relevance for spermatogenesis. Lack of Sam68 preferentially causes premature transcript termination at internal polyadenylation sites, a feature observed also upon depletion of the spliceosomal U1snRNP in somatic cells. Notably, Sam68-regulated ALEs are characterized by proximity between U1snRNP and Sam68 binding motifs. We demonstrate a physical association between Sam68 and U1snRNP and show that U1snRNP recruitment to Sam68-regulated ALEs is impaired in Sam68-/- germ cells. Thus, our study reveals an unexpected cooperation between Sam68 and U1snRNP that insures proper processing of transcripts essential for male fertility.
Collapse
Affiliation(s)
- Chiara Naro
- Institute of Human Anatomy and Cell Biology, Catholic University of the Sacred Hearth, 00168 Rome, Italy; IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Livia Pellegrini
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata," 00133 Rome, Italy; IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Ariane Jolly
- GenoSplice Technology, iPEPS-ICM, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Donatella Farini
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata," 00133 Rome, Italy; IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Eleonora Cesari
- Institute of Human Anatomy and Cell Biology, Catholic University of the Sacred Hearth, 00168 Rome, Italy; IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Pamela Bielli
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata," 00133 Rome, Italy; IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Pierre de la Grange
- GenoSplice Technology, iPEPS-ICM, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Claudio Sette
- Institute of Human Anatomy and Cell Biology, Catholic University of the Sacred Hearth, 00168 Rome, Italy; IRCCS Fondazione Santa Lucia, 00143 Rome, Italy.
| |
Collapse
|
21
|
Song H, Wang L, Chen D, Li F. The Function of Pre-mRNA Alternative Splicing in Mammal Spermatogenesis. Int J Biol Sci 2020; 16:38-48. [PMID: 31892844 PMCID: PMC6930371 DOI: 10.7150/ijbs.34422] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 09/20/2019] [Indexed: 01/05/2023] Open
Abstract
Alternative pre-mRNA splicing plays important roles in co-transcriptional and post-transcriptional regulation of gene expression functioned during many developmental processes, such as spermatogenesis. The studies focusing on alternative splicing on spermatogenesis supported the notion that the development of testis is regulated by a higher level of alternative splicing than other tissues. Here, we aim to review the mechanisms underlying alternative splicing, particularly the splicing variants functioned in the process of spermatogenesis and the male infertility. There are five points regarding the alternative splicing including ⅰ) a brief introduction of alternative pre-mRNA splicing; ⅱ) the alternative splicing events in spermatogenesis-associated genes enriched in different stages of spermatogenesis; ⅲ) the mechanisms of alternative splicing regulation, such as splicing factors and m6A demethylation; ⅳ) the splice site recognition and alternative splicing, including the production and degradation of abnormal transcripts caused by gene variations and nonsense-mediated mRNA decay, respectively; ⅴ) abnormal alternative splicing correlated with male infertility. Taking together, this review highlights the impacts of alternative splicing and splicing variants in mammal spermatogenesis and provides new insights of the potential application of the alternative splicing into the therapy of male infertility.
Collapse
Affiliation(s)
- Huibin Song
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ling Wang
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Dake Chen
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Fenge Li
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, PR China
| |
Collapse
|
22
|
Butler ML, Bormann JM, Weaber RL, Grieger DM, Rolf MM. Selection for bull fertility: a review. Transl Anim Sci 2019; 4:423-441. [PMID: 32705001 PMCID: PMC6994025 DOI: 10.1093/tas/txz174] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/28/2019] [Indexed: 11/20/2022] Open
Abstract
Fertility is a critically important factor in cattle production because it directly relates to the ability to produce the offspring necessary to offset costs in production systems. Female fertility has received much attention and has been enhanced through assisted reproductive technologies, as well as genetic selection; however, improving bull fertility has been largely ignored. Improvements in bull reproductive performance are necessary to optimize the efficiency of cattle production. Selection and management to improve bull fertility not only have the potential to increase conception rates but also have the capacity to improve other economically relevant production traits. Bull fertility has reportedly been genetically correlated with traits such as average daily gain, heifer pregnancy, and calving interval. Published studies show that bull fertility traits are low to moderately heritable, indicating that improvements in bull fertility can be realized through selection. Although female fertility has continued to progress according to increasing conception rates, the reported correlation between male and female fertility is low, indicating that male fertility cannot be improved by selection for female fertility. Correlations between several bull fertility traits, such as concentration, number of spermatozoa, motility, and number of spermatozoa abnormalities, vary among studies. Using male fertility traits in selection indices would provide producers with more advanced selection tools. The objective of this review was to discuss current beef bull fertility measurements and to discuss the future of genetic evaluation of beef bull fertility and potential genetic improvement strategies.
Collapse
Affiliation(s)
- Madison L Butler
- Department of Animal Science, Kansas State University, Manhattan, KS
| | | | - Robert L Weaber
- Department of Animal Science, Kansas State University, Manhattan, KS
| | - David M Grieger
- Department of Animal Science, Kansas State University, Manhattan, KS
| | - Megan M Rolf
- Department of Animal Science, Kansas State University, Manhattan, KS
| |
Collapse
|
23
|
Maezawa S, Yukawa M, Alavattam KG, Barski A, Namekawa SH. Dynamic reorganization of open chromatin underlies diverse transcriptomes during spermatogenesis. Nucleic Acids Res 2019; 46:593-608. [PMID: 29126117 PMCID: PMC5778473 DOI: 10.1093/nar/gkx1052] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/02/2017] [Indexed: 12/14/2022] Open
Abstract
During spermatogenesis, germ cells undergo massive cellular reconstruction and dynamic chromatin remodeling to facilitate highly diverse transcriptomes, which are required for the production of functional sperm. However, it remains unknown how germline chromatin is organized to promote the dynamic, complex transcriptomes of spermatogenesis. Here, using ATAC-seq, we establish the varied landscape of open chromatin during spermatogenesis. We identify the reorganization of accessible chromatin in intergenic and intronic regions during the mitosis-to-meiosis transition. During the transition, mitotic-type open chromatin is closed while the de novo formation of meiotic-type open chromatin takes place. Contrastingly, differentiation processes such as spermatogonial differentiation and the meiosis-to-postmeiosis transition involve chromatin closure without the de novo formation of accessible chromatin. In spermiogenesis, the germline-specific Polycomb protein SCML2 promotes the closure of open chromatin at autosomes for gene suppression. Paradoxically, we identify the massive de novo formation of accessible chromatin when the sex chromosomes undergo meiotic sex chromosome inactivation, and this is also mediated by SCML2. These results reveal meiotic sex chromosome inactivation as an active process for chromatin organization. Together, our results unravel the genome-wide, dynamic reorganization of open chromatin and reveal mechanisms that underlie diverse transcriptomes during spermatogenesis.
Collapse
Affiliation(s)
- So Maezawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| | - Masashi Yukawa
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA.,Division of Allergy and Immunology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kris G Alavattam
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| | - Artem Barski
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA.,Division of Allergy and Immunology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Satoshi H Namekawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| |
Collapse
|
24
|
Abstract
KIT is a receptor tyrosine kinase that after binding to its ligand stem cell factor activates signaling cascades linked to biological processes such as proliferation, differentiation, migration and cell survival. Based on studies performed on SCF and/or KIT mutant animals that presented anemia, sterility, and/or pigmentation disorders, KIT signaling was mainly considered to be involved in the regulation of hematopoiesis, gametogenesis, and melanogenesis. More recently, novel animal models and ameliorated cellular and molecular techniques have led to the discovery of a widen repertoire of tissue compartments and functions that are being modulated by KIT. This is the case for the lung, heart, nervous system, gastrointestinal tract, pancreas, kidney, liver, and bone. For this reason, the tyrosine kinase inhibitors that were originally developed for the treatment of hemato-oncological diseases are being currently investigated for the treatment of non-oncological disorders such as asthma, rheumatoid arthritis, and alzheimer's disease, among others. The beneficial effects of some of these tyrosine kinase inhibitors have been proven to depend on KIT inhibition. This review will focus on KIT expression and regulation in healthy and pathologic conditions other than cancer. Moreover, advances in the development of anti-KIT therapies, including tyrosine kinase inhibitors, and their application will be discussed.
Collapse
|
25
|
Meng L, Xu W, Zhu Y, Zhang N, Shao C, Liu Y, Chen S. Molecular characterization and expression analysis of strbp in Chinese tongue sole (Cynoglossus semilaevis). Theriogenology 2018; 118:225-232. [DOI: 10.1016/j.theriogenology.2018.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/11/2022]
|
26
|
Bai S, Fu K, Yin H, Cui Y, Yue Q, Li W, Cheng L, Tan H, Liu X, Guo Y, Zhang Y, Xie J, He W, Wang Y, Feng H, Xin C, Zhang J, Lin M, Shen B, Sun Z, Guo X, Zheng K, Ye L. Sox30 initiates transcription of haploid genes during late meiosis and spermiogenesis in mouse testes. Development 2018; 145:dev.164855. [PMID: 29866902 DOI: 10.1242/dev.164855] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/23/2018] [Indexed: 12/17/2022]
Abstract
Transcription factors of the Sox protein family contain a DNA-binding HMG box and are key regulators of progenitor cell fate. Here, we report that expression of Sox30 is restricted to meiotic spermatocytes and postmeiotic haploids. Sox30 mutant males are sterile owing to spermiogenic arrest at the early round spermatid stage. Specifically, in the absence of Sox30, proacrosomic vesicles fail to form a single acrosomal organelle, and spermatids arrest at step 2-3. Although most Sox30 mutant spermatocytes progress through meiosis, accumulation of diplotene spermatocytes indicates a delayed or impaired transition from meiotic to postmeiotic stages. Transcriptome analysis of isolated stage-specific spermatogenic cells reveals that Sox30 controls a core postmeiotic gene expression program that initiates as early as the late meiotic cell stage. ChIP-seq analysis shows that Sox30 binds to specific DNA sequences in mouse testes, and its genomic occupancy correlates positively with expression of many postmeiotic genes including Tnp1, Hils1, Ccdc54 and Tsks These results define Sox30 as a crucial transcription factor that controls the transition from a late meiotic to a postmeiotic gene expression program and subsequent round spermatid development.
Collapse
Affiliation(s)
- Shun Bai
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Kaiqiang Fu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Huiqi Yin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Yiqiang Cui
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Qiuling Yue
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Wenbo Li
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Le Cheng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Huanhuan Tan
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Xiaofei Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Yingwen Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Jie Xie
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Wenxiu He
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Yuanyuan Wang
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Hua Feng
- Omics Core of Bio-Med Big Data Center, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Changpeng Xin
- Omics Core of Bio-Med Big Data Center, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Jinwen Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Mingyan Lin
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Zheng Sun
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Ke Zheng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| |
Collapse
|
27
|
RNA processing in the male germline: Mechanisms and implications for fertility. Semin Cell Dev Biol 2018; 79:80-91. [DOI: 10.1016/j.semcdb.2017.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/04/2017] [Accepted: 10/09/2017] [Indexed: 12/22/2022]
|
28
|
Lecluze E, Jégou B, Rolland AD, Chalmel F. New transcriptomic tools to understand testis development and functions. Mol Cell Endocrinol 2018; 468:47-59. [PMID: 29501799 DOI: 10.1016/j.mce.2018.02.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 12/16/2022]
Abstract
The testis plays a central role in the male reproductive system - secreting several hormones including male steroids and producing male gametes. A complex and coordinated molecular program is required for the proper differentiation of testicular cell types and maintenance of their functions in adulthood. The testicular transcriptome displays the highest levels of complexity and specificity across all tissues in a wide range of species. Many studies have used high-throughput sequencing technologies to define the molecular dynamics and regulatory networks in the testis as well as to identify novel genes or gene isoforms expressed in this organ. This review intends to highlight the complementarity of these transcriptomic studies and to show how the use of different sequencing protocols contribute to improve our global understanding of testicular biology.
Collapse
Affiliation(s)
- Estelle Lecluze
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, Environnement et travail) - UMR_S1085, F-35000 Rennes, France
| | - Bernard Jégou
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, Environnement et travail) - UMR_S1085, F-35000 Rennes, France
| | - Antoine D Rolland
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, Environnement et travail) - UMR_S1085, F-35000 Rennes, France
| | - Frédéric Chalmel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, Environnement et travail) - UMR_S1085, F-35000 Rennes, France.
| |
Collapse
|
29
|
Nicolini P, Amorín R, Han Y, Peñagaricano F. Whole-genome scan reveals significant non-additive effects for sire conception rate in Holstein cattle. BMC Genet 2018; 19:14. [PMID: 29486732 PMCID: PMC5830072 DOI: 10.1186/s12863-018-0600-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 02/21/2018] [Indexed: 01/04/2023] Open
Abstract
Background Service sire has a considerable impact on reproductive success in dairy cattle. Most gene mapping studies for bull fertility have focused on additive effects, while non-additive effects have been largely ignored. The main goal of this study was to assess the relevance of non-additive effects on Sire Conception Rate (SCR) in Holstein dairy cattle. The analysis included 7.5 k Holstein bulls with both SCR records and 57.8 k single nucleotide polymorphism (SNP) markers spanning the entire genome. Results The importance of non-additive effects was evaluated using an efficient two-step mixed model-based approach. Four genomic regions located on chromosomes BTA8, BTA9, BTA13 and BTA17 showed marked dominance and/or recessive effects. Most of these regions harbor genes, such as ADAM28, DNAJA1, TBC1D20, SPO11, PIWIL3 and TMEM119, that are directly implicated in testis development, male germ line maintenance, and sperm maturation. Conclusions This study provides further evidence for the relevance of non-additive effects in fitness-related traits, such as male fertility. In addition, these findings may point out new strategies for improving service sire fertility in dairy cattle via marker-assisted selection.
Collapse
Affiliation(s)
- Paula Nicolini
- Department of Animal Sciences, University of Florida, 2250 Shealy Drive, Gainesville, FL, 32611, USA.,Polo de Desarrollo Universitario, Universidad de la República, Tacuarembó, Uruguay
| | - Rocío Amorín
- Department of Animal Sciences, University of Florida, 2250 Shealy Drive, Gainesville, FL, 32611, USA
| | - Yi Han
- Department of Animal Sciences, University of Florida, 2250 Shealy Drive, Gainesville, FL, 32611, USA
| | - Francisco Peñagaricano
- Department of Animal Sciences, University of Florida, 2250 Shealy Drive, Gainesville, FL, 32611, USA. .,University of Florida Genetics Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
30
|
1700108J01Rik and 1700101O22Rik are mouse testis-specific long non-coding RNAs. Histochem Cell Biol 2018; 149:517-527. [PMID: 29411102 DOI: 10.1007/s00418-018-1642-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2018] [Indexed: 01/29/2023]
Abstract
Long non-coding RNAs (lncRNAs; > 200 nucleotides in length) have attracted attention as fine-tuners of gene expression. However, little is known about the cell- and stage-specific expression pattern and function of lncRNAs in spermatogenesis. The purpose of this study was to identify mouse testis-associated lncRNAs using a combination of computational and experimental approaches. We first used the FANTOM5 database to survey lncRNA expression in the mouse testis and performed reverse transcription quantitative polymerase chain reaction (real-time PCR) and in situ hybridization (ISH) analyses. In silico analysis showed that most of the highly expressed lncRNAs in the adult mouse testis were testis-specific lncRNAs and were expressed at and following the initiation of spermatogenesis. We selected the antisense lncRNA 1700108J01Rik and long intergenic non-coding RNA 1700101O22Rik from the most highly expressed lncRNAs in the adult testis for further analysis. Real-time PCR analysis confirmed that 1700108J01Rik and 1700101O22Rik were specifically expressed in the testis. ISH analysis revealed that the two mouse-testis-specific lncRNAs were expressed exclusively in testicular germ cells in meiotic prophase and the round spermatid stage, which coincide with the period of transcriptional reactivation during spermatogenesis. The cytoplasmic distribution of these lncRNAs revealed by ISH suggests their involvement in post-transcriptional gene regulation rather than in epigenetic or transcriptional regulation. Our data provide new insight into testis-associated lncRNAs that will be useful in expression and functional studies of spermatogenesis.
Collapse
|
31
|
Rha J, Jones SK, Fidler J, Banerjee A, Leung SW, Morris KJ, Wong JC, Inglis GAS, Shapiro L, Deng Q, Cutler AA, Hanif AM, Pardue MT, Schaffer A, Seyfried NT, Moberg KH, Bassell GJ, Escayg A, García PS, Corbett AH. The RNA-binding protein, ZC3H14, is required for proper poly(A) tail length control, expression of synaptic proteins, and brain function in mice. Hum Mol Genet 2018; 26:3663-3681. [PMID: 28666327 DOI: 10.1093/hmg/ddx248] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 06/20/2017] [Indexed: 12/30/2022] Open
Abstract
A number of mutations in genes that encode ubiquitously expressed RNA-binding proteins cause tissue specific disease. Many of these diseases are neurological in nature revealing critical roles for this class of proteins in the brain. We recently identified mutations in a gene that encodes a ubiquitously expressed polyadenosine RNA-binding protein, ZC3H14 (Zinc finger CysCysCysHis domain-containing protein 14), that cause a nonsyndromic, autosomal recessive form of intellectual disability. This finding reveals the molecular basis for disease and provides evidence that ZC3H14 is essential for proper brain function. To investigate the role of ZC3H14 in the mammalian brain, we generated a mouse in which the first common exon of the ZC3H14 gene, exon 13 is removed (Zc3h14Δex13/Δex13) leading to a truncated ZC3H14 protein. We report here that, as in the patients, Zc3h14 is not essential in mice. Utilizing these Zc3h14Δex13/Δex13mice, we provide the first in vivo functional characterization of ZC3H14 as a regulator of RNA poly(A) tail length. The Zc3h14Δex13/Δex13 mice show enlarged lateral ventricles in the brain as well as impaired working memory. Proteomic analysis comparing the hippocampi of Zc3h14+/+ and Zc3h14Δex13/Δex13 mice reveals dysregulation of several pathways that are important for proper brain function and thus sheds light onto which pathways are most affected by the loss of ZC3H14. Among the proteins increased in the hippocampi of Zc3h14Δex13/Δex13 mice compared to control are key synaptic proteins including CaMK2a. This newly generated mouse serves as a tool to study the function of ZC3H14 in vivo.
Collapse
Affiliation(s)
- Jennifer Rha
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.,Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University, Atlanta, GA 30322, USA
| | - Stephanie K Jones
- Department of Biology.,Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA 30322, USA
| | - Jonathan Fidler
- Department of Anesthesiology, Emory University School of Medicine & Research Division, Atlanta VA Medical Center, Atlanta, GA 30322, USA
| | | | | | - Kevin J Morris
- Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University, Atlanta, GA 30322, USA.,Department of Biology
| | - Jennifer C Wong
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - George Andrew S Inglis
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA 30322, USA.,Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lindsey Shapiro
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA 30322, USA.,Graduate Program in Neuroscience, Emory University, Atlanta, GA 30322, USA
| | - Qiudong Deng
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Alicia A Cutler
- Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University, Atlanta, GA 30322, USA.,Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Adam M Hanif
- Department of Opthamology, Emory University School of Medicine & Research Division, & Atlanta VA Medical Center, Atlanta, GA 30322, USA
| | - Machelle T Pardue
- Department of Opthamology, Emory University School of Medicine & Research Division, & Atlanta VA Medical Center, Atlanta, GA 30322, USA
| | - Ashleigh Schaffer
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4955, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kenneth H Moberg
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Andrew Escayg
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA 30322, USA
| | - Paul S García
- Department of Anesthesiology, Emory University School of Medicine & Research Division, Atlanta VA Medical Center, Atlanta, GA 30322, USA
| | | |
Collapse
|
32
|
Lehtiniemi T, Kotaja N. Germ granule-mediated RNA regulation in male germ cells. Reproduction 2017; 155:R77-R91. [PMID: 29038333 DOI: 10.1530/rep-17-0356] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/09/2017] [Accepted: 10/16/2017] [Indexed: 12/13/2022]
Abstract
Germ cells have exceptionally diverse transcriptomes. Furthermore, the progress of spermatogenesis is accompanied by dramatic changes in gene expression patterns, the most drastic of them being near-to-complete transcriptional silencing during the final steps of differentiation. Therefore, accurate RNA regulatory mechanisms are critical for normal spermatogenesis. Cytoplasmic germ cell-specific ribonucleoprotein (RNP) granules, known as germ granules, participate in posttranscriptional regulation in developing male germ cells. Particularly, germ granules provide platforms for the PIWI-interacting RNA (piRNA) pathway and appear to be involved both in piRNA biogenesis and piRNA-targeted RNA degradation. Recently, other RNA regulatory mechanisms, such as the nonsense-mediated mRNA decay pathway have also been associated to germ granules providing new exciting insights into the function of germ granules. In this review article, we will summarize our current knowledge on the role of germ granules in the control of mammalian male germ cell's transcriptome and in the maintenance of fertility.
Collapse
Affiliation(s)
| | - Noora Kotaja
- Institute of BiomedicineUniversity of Turku, Turku, Finland
| |
Collapse
|
33
|
|
34
|
Naro C, Sette C. Timely-regulated intron retention as device to fine-tune protein expression. Cell Cycle 2017; 16:1321-1322. [PMID: 28594251 DOI: 10.1080/15384101.2017.1337983] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Chiara Naro
- a Department of Biomedicine and Prevention , University of Rome "Tor Vergata," Rome , Italy.,b Laboratory of Neuroembryology , Fondazione Santa Lucia IRCCS , Rome , Italy
| | - Claudio Sette
- a Department of Biomedicine and Prevention , University of Rome "Tor Vergata," Rome , Italy.,b Laboratory of Neuroembryology , Fondazione Santa Lucia IRCCS , Rome , Italy
| |
Collapse
|
35
|
An Orchestrated Intron Retention Program in Meiosis Controls Timely Usage of Transcripts during Germ Cell Differentiation. Dev Cell 2017; 41:82-93.e4. [PMID: 28366282 PMCID: PMC5392497 DOI: 10.1016/j.devcel.2017.03.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 01/24/2017] [Accepted: 03/03/2017] [Indexed: 12/11/2022]
Abstract
Global transcriptome reprogramming during spermatogenesis ensures timely expression of factors in each phase of male germ cell differentiation. Spermatocytes and spermatids require particularly extensive reprogramming of gene expression to switch from mitosis to meiosis and to support gamete morphogenesis. Here, we uncovered an extensive alternative splicing program during this transmeiotic differentiation. Notably, intron retention was largely the most enriched pattern, with spermatocytes showing generally higher levels of retention compared with spermatids. Retained introns are characterized by weak splice sites and are enriched in genes with strong relevance for gamete function. Meiotic intron-retaining transcripts (IRTs) were exclusively localized in the nucleus. However, differently from other developmentally regulated IRTs, they are stable RNAs, showing longer half-life than properly spliced transcripts. Strikingly, fate-mapping experiments revealed that IRTs are recruited onto polyribosomes days after synthesis. These studies reveal an unexpected function for regulated intron retention in modulation of the timely expression of select transcripts during spermatogenesis.
Collapse
|
36
|
|
37
|
Da Ros M, Lehtiniemi T, Olotu O, Fischer D, Zhang FP, Vihinen H, Jokitalo E, Sironen A, Toppari J, Kotaja N. FYCO1 and autophagy control the integrity of the haploid male germ cell-specific RNP granules. Autophagy 2016; 13:302-321. [PMID: 27929729 PMCID: PMC5324852 DOI: 10.1080/15548627.2016.1261319] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Ribonucleoprotein (RNP) granules play a major role in compartmentalizing cytoplasmic RNA regulation. Haploid round spermatids that have exceptionally diverse transcriptomes are characterized by a unique germ cell-specific RNP granule, the chromatoid body (CB). The CB shares many characteristics with somatic RNP granules but also has germline-specific features. The CB appears to be a central structure in PIWI-interacting RNA (piRNA)-targeted RNA regulation. Here, we identified a novel CB component, FYCO1, which is involved in the intracellular transport of autophagic vesicles in somatic cells. We demonstrated that the CB is associated with autophagic activity. Induction of autophagy leads to the recruitment of lysosomal vesicles onto the CB in a FYCO1-dependent manner as demonstrated by the analysis of a germ cell-specific Fyco1 conditional knockout mouse model. Furthermore, in the absence of FYCO1, the integrity of the CB was affected and the CB was fragmented. Our results suggest that RNP granule homeostasis is regulated by FYCO1-mediated autophagy.
Collapse
Affiliation(s)
- Matteo Da Ros
- a Institute of Biomedicine, Department of Physiology , University of Turku , Turku , Finland.,b Department of Cellular and Molecular Biology , Faculty of Medicine, University of Ottawa , Ottawa , ON , Canada
| | - Tiina Lehtiniemi
- a Institute of Biomedicine, Department of Physiology , University of Turku , Turku , Finland
| | - Opeyemi Olotu
- a Institute of Biomedicine, Department of Physiology , University of Turku , Turku , Finland
| | - Daniel Fischer
- c Natural Resources Institute Finland (Luke), Green Technology , Jokioinen , Finland
| | - Fu-Ping Zhang
- a Institute of Biomedicine, Department of Physiology , University of Turku , Turku , Finland.,d Turku Center for Disease Modeling, University of Turku , Turku , Finland
| | - Helena Vihinen
- e Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki , Helsinki , Finland
| | - Eija Jokitalo
- e Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki , Helsinki , Finland
| | - Anu Sironen
- c Natural Resources Institute Finland (Luke), Green Technology , Jokioinen , Finland
| | - Jorma Toppari
- a Institute of Biomedicine, Department of Physiology , University of Turku , Turku , Finland.,f Department of Pediatrics , University of Turku and Turku University Hospital , Turku , Finland
| | - Noora Kotaja
- a Institute of Biomedicine, Department of Physiology , University of Turku , Turku , Finland
| |
Collapse
|
38
|
Mukherjee A, Koli S, Reddy KVR. Rapamycin (Sirolimus) alters mechanistic target of rapamycin pathway regulation and microRNA expression in mouse meiotic spermatocytes. Andrology 2016; 3:979-90. [PMID: 26311343 DOI: 10.1111/andr.12075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 06/01/2015] [Accepted: 06/20/2015] [Indexed: 11/30/2022]
Abstract
Mechanistic target of rapamycin (mTOR) is a signal transduction pathway that modulates translation initiation in several animals including mammals. Rapamaycin, an allosteric inhibitor of mTOR pathway, is often used as an immunosuppressive drug following kidney transplantation and causes gonadal dysfunction and defects in spermatogenesis. The molecular mechanism behind rapamycin-mediated testicular dysfunction is not known. We have therefore explored the contribution of rapamycin in mTOR regulation and microRNA (miRNA) expression in mouse spermatocytes, the intermediate stage of spermatogenesis, where meiosis takes place. In the present study, we optimized the isolation of highly pure and viable spermatocytes by flow sorting, treated them with rapamycin, and investigated the expression of mTOR and downstream effector molecules. Western blot and immunocytochemical analysis confirm that rapamycin treatment suppresses mTOR and phopsphorylated P70S6 kinase activities in spermatocytes, but not that of phosphorylated 4E-binding protein 1. Also, rapamycin treatment modulates the expression of several spermatocyte-specific miRNAs. To complement these finding an in vivo study was also performed. In silico prediction of target genes of these miRNAs and their functional pathway analysis revealed that, several of them are involved in crucial biological process, cellular process and catalytic activities. miRNA-transcription factor (TF) network analysis enlisted different TFs propelling the transcription machineries of these miRNAs. In silico prediction followed by quatitative real-time PCR revealed two of these TFs namely, PU.1 and CCCTC binding factor (CTCF) are down and upregulated, respectively, which may be the reason of the altered expression of miRNAs following rapamycin treatment. In conclusion, for the first time, the present study provides insight into how rapamycin regulates mTOR pathway and spermatocyte-specific miRNA expression which in turn, regulate expression of target genes post-transcriptionally.
Collapse
Affiliation(s)
- A Mukherjee
- Division of Molecular Immunology and Microbiology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, Mumbai, India
| | - S Koli
- Division of Molecular Immunology and Microbiology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, Mumbai, India
| | - K V R Reddy
- Division of Molecular Immunology and Microbiology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, Mumbai, India
| |
Collapse
|
39
|
Williams PA, Krug MS, McMillan EA, Peake JD, Davis TL, Cocklin S, Strochlic TI. Phosphorylation of the RNA-binding protein Dazl by MAPKAP kinase 2 regulates spermatogenesis. Mol Biol Cell 2016; 27:2341-50. [PMID: 27280388 PMCID: PMC4966976 DOI: 10.1091/mbc.e15-11-0773] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 06/03/2016] [Indexed: 01/28/2023] Open
Abstract
Developing male germ cells are exquisitely sensitive to stress and rely on RNA-binding proteins for posttranscriptional gene expression. Phosphorylation of the germ cell–specific RNA-binding protein deleted in azoospermia-like (Dazl) by the stress-activated protein kinase MK2 is a negative regulator of spermatogenesis. Developing male germ cells are exquisitely sensitive to environmental insults such as heat and oxidative stress. An additional characteristic of these cells is their unique dependence on RNA-binding proteins for regulating posttranscriptional gene expression and translational control. Here we provide a mechanistic link unifying these two features. We show that the germ cell–specific RNA-binding protein deleted in azoospermia-like (Dazl) is phosphorylated by MAPKAP kinase 2 (MK2), a stress-induced protein kinase activated downstream of p38 MAPK. We demonstrate that phosphorylation of Dazl by MK2 on an evolutionarily conserved serine residue inhibits its interaction with poly(A)-binding protein, resulting in reduced translation of Dazl-regulated target RNAs. We further show that transgenic expression of wild-type human Dazl but not a phosphomimetic form in the Drosophila male germline can restore fertility to flies deficient in boule, the Drosophila orthologue of human Dazl. These results illuminate a novel role for MK2 in spermatogenesis, expand the repertoire of RNA-binding proteins phosphorylated by this kinase, and suggest that signaling by the p38-MK2 pathway is a negative regulator of spermatogenesis via phosphorylation of Dazl.
Collapse
Affiliation(s)
- Patrick A Williams
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Michael S Krug
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Emily A McMillan
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Jasmine D Peake
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Tara L Davis
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Simon Cocklin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Todd I Strochlic
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102
| |
Collapse
|
40
|
Fanourgakis G, Lesche M, Akpinar M, Dahl A, Jessberger R. Chromatoid Body Protein TDRD6 Supports Long 3' UTR Triggered Nonsense Mediated mRNA Decay. PLoS Genet 2016; 12:e1005857. [PMID: 27149095 PMCID: PMC4858158 DOI: 10.1371/journal.pgen.1005857] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/20/2016] [Indexed: 02/08/2023] Open
Abstract
Chromatoid bodies (CBs) are spermiogenesis-specific organelles of largely unknown function. CBs harbor various RNA species, RNA-associated proteins and proteins of the tudor domain family like TDRD6, which is required for a proper CB architecture. Proteome analysis of purified CBs revealed components of the nonsense-mediated mRNA decay (NMD) machinery including UPF1. TDRD6 is essential for UPF1 localization to CBs, for UPF1-UPF2 and UPF1-MVH interactions. Upon removal of TDRD6, the association of several mRNAs with UPF1 and UPF2 is disturbed, and the long 3’ UTR-stimulated but not the downstream exon-exon junction triggered pathway of NMD is impaired. Reduced association of the long 3’ UTR mRNAs with UPF1 and UPF2 correlates with increased stability and enhanced translational activity. Thus, we identified TDRD6 within CBs as required for mRNA degradation, specifically the extended 3’ UTR-triggered NMD pathway, and provide evidence for the requirement of NMD in spermiogenesis. This function depends on TDRD6-promoted assembly of mRNA and decay enzymes in CBs. Tudor-domain containing protein 6 (TDRD6) is a central component of the chromatoid body (CB) in male germ cells. Chromatoid bodies, which are present in spermatids, contain RNA and protein, are not enclosed by membranes, and typically reside close to the nucleus. Without TDRD6, a much distorted CB structure is observed, and this work asked for the functional contribution of TDRD6 to spermatids. We found that TDRD6 is required for localization of an RNA degradation machinery to the CB. This so-called nonsense mediated decay (NMD) machinery, known from somatic cells, destroys mRNAs that feature premature stop codons. Absence of TDRD6 significantly impairs one specific mechanism of NMD, which depends on long 3’ untranslated regions of the transcripts. Thus, the CB component TDRD6 acts in the assembly of the NMD machinery in the CB.
Collapse
Affiliation(s)
- Grigorios Fanourgakis
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Mathias Lesche
- Deep Sequencing Group SFB 655, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Müge Akpinar
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Andreas Dahl
- Deep Sequencing Group SFB 655, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Rolf Jessberger
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- * E-mail:
| |
Collapse
|
41
|
Sutherland JM, Siddall NA, Hime GR, McLaughlin EA. RNA binding proteins in spermatogenesis: an in depth focus on the Musashi family. Asian J Androl 2016; 17:529-36. [PMID: 25851660 PMCID: PMC4492041 DOI: 10.4103/1008-682x.151397] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Controlled gene regulation during gamete development is vital for maintaining reproductive potential. During the complex process of mammalian spermatogenesis, male germ cells experience extended periods of the inactive transcription despite heavy translational requirements for continued growth and differentiation. Hence, spermatogenesis is highly reliant on mechanisms of posttranscriptional regulation of gene expression, facilitated by RNA binding proteins (RBPs), which remain abundantly expressed throughout this process. One such group of proteins is the Musashi family, previously identified as critical regulators of testis germ cell development and meiosis in Drosophila, and also shown to be vital to sperm development and reproductive potential in the mouse. This review describes the role and function of RBPs within the scope of male germ cell development, focusing on our recent knowledge of the Musashi proteins in spermatogenesis. The functional mechanisms utilized by RBPs within the cell are outlined in depth, and the significance of sub-cellular localization and stage-specific expression in relation to the mode and impact of posttranscriptional regulation is also highlighted. We emphasize the historical role of the Musashi family of RBPs in stem cell function and cell fate determination, as originally characterized in Drosophila and Xenopus, and conclude with our current understanding of the differential roles and functions of the mammalian Musashi proteins, Musashi-1 and Musashi-2, with a primary focus on our findings in spermatogenesis. This review highlights both the essential contribution of RBPs to posttranscriptional regulation and the importance of the Musashi family as master regulators of male gamete development.
Collapse
Affiliation(s)
| | | | | | - Eileen A McLaughlin
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
42
|
Yan J, Zhang H, Liu Y, Zhao F, Zhu S, Xie C, Tang TS, Guo C. Germline deletion of huntingtin causes male infertility and arrested spermiogenesis in mice. J Cell Sci 2015; 129:492-501. [PMID: 26659666 DOI: 10.1242/jcs.173666] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 12/07/2015] [Indexed: 01/28/2023] Open
Abstract
Human Huntingtin (HTT), a Huntington's disease gene, is highly expressed in the mammalian brain and testis. Simultaneous knockout of mouse Huntingtin (Htt) in brain and testis impairs male fertility, providing evidence for a link between Htt and spermatogenesis; however, the underlying mechanism remains unclear. To understand better the function of Htt in spermatogenesis, we restricted the genetic deletion specifically to the germ cells using the Cre/loxP site-specific recombination strategy and found that the resulting mice manifested smaller testes, azoospermia and complete male infertility. Meiotic chromosome spread experiments showed that the process of meiosis was normal in the absence of Htt. Notably, we found that Htt-deficient round spermatids did not progress beyond step 3 during the post-meiotic phase, when round spermatids differentiate into mature spermatozoa. Using an iTRAQ-based quantitative proteomic assay, we found that knockout of Htt significantly altered the testis protein profile. The differentially expressed proteins exhibited a remarkable enrichment for proteins involved in translation regulation and DNA packaging, suggesting that Htt might play a role in spermatogenesis by regulating translation and DNA packaging in the testis.
Collapse
Affiliation(s)
- Jinting Yan
- CAS Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Liu
- CAS Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Feilong Zhao
- CAS Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shu Zhu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengmei Xie
- CAS Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Caixia Guo
- CAS Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
43
|
Hypogonadism Associated with Cyp19a1 (Aromatase) Posttranscriptional Upregulation in Celf1 Knockout Mice. Mol Cell Biol 2015; 35:3244-53. [PMID: 26169831 DOI: 10.1128/mcb.00074-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 07/06/2015] [Indexed: 12/19/2022] Open
Abstract
CELF1 is a multifunctional RNA-binding protein that controls several aspects of RNA fate. The targeted disruption of the Celf1 gene in mice causes male infertility due to impaired spermiogenesis, the postmeiotic differentiation of male gametes. Here, we investigated the molecular reasons that underlie this testicular phenotype. By measuring sex hormone levels, we detected low concentrations of testosterone in Celf1-null mice. We investigated the effect of Celf1 disruption on the expression levels of steroidogenic enzyme genes, and we observed that Cyp19a1 was upregulated. Cyp19a1 encodes aromatase, which transforms testosterone into estradiol. Administration of testosterone or the aromatase inhibitor letrozole partly rescued the spermiogenesis defects, indicating that a lack of testosterone associated with excessive aromatase contributes to the testicular phenotype. In vivo and in vitro interaction assays demonstrated that CELF1 binds to Cyp19a1 mRNA, and reporter assays supported the conclusion that CELF1 directly represses Cyp19a1 translation. We conclude that CELF1 downregulates Cyp19a1 (Aromatase) posttranscriptionally to achieve high concentrations of testosterone compatible with spermiogenesis completion. We discuss the implications of these findings with respect to reproductive defects in men, including patients suffering from isolated hypogonadotropic hypogonadism and myotonic dystrophy type I.
Collapse
|
44
|
Komara M, Al-Shamsi AM, Ben-Salem S, Ali BR, Al-Gazali L. A Novel Single-Nucleotide Deletion (c.1020delA) in NSUN2 Causes Intellectual Disability in an Emirati Child. J Mol Neurosci 2015; 57:393-9. [PMID: 26055038 DOI: 10.1007/s12031-015-0592-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/27/2015] [Indexed: 02/08/2023]
Abstract
Intellectual disability (ID) is a major public health burden on most societies with significant socioeconomic costs. It has been shown that genetic mutations in numerous genes are responsible for a proportion of hereditary forms of ID. NOP2/Sun transfer RNA (tRNA) methyltransferase family member 2 encoded by NSUN2 gene is a highly conserved protein and has been shown to cause autosomal recessive ID type 5 (MRT5). In this study, we recruited an Emirati consanguineous family with a patient diagnosed with ID. Whole-exome sequencing revealed a homozygous variant c.1020delA in NSUN2 gene. The variants segregated in an autosomal recessive mode of inheritance in the family. This variant is novel and causes a frameshift and premature stop codon. At the messenger RNA (mRNA) level, relative expression analysis showed a decreased level of NSUN2 mRNA in the affected child compared to a healthy individual. Mutation prediction analysis and clinical investigation confirmed the pathogenic nature of the identified variant. We therefore conclude that c.1020delA mutation in NSUN2 is most likely the cause of ID in our patient.
Collapse
Affiliation(s)
- Makanko Komara
- Department of Pathology, College of Medicine and Heath Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.
| | - Aisha M Al-Shamsi
- Department of Pediatrics, Tawam Hospital, Al-Ain, United Arab Emirates.
| | - Salma Ben-Salem
- Department of Pathology, College of Medicine and Heath Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.
| | - Bassam R Ali
- Department of Pathology, College of Medicine and Heath Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.
| | - Lihadh Al-Gazali
- Department of Pediatrics, College of Medicine and Heath Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, United Arab Emirates.
| |
Collapse
|
45
|
Abstract
microRNAs constitute a large family of approximately 21-nucleotide-long, noncoding RNAs. They emerged more than 20 years ago as key posttranscriptional regulators of gene expression. The regulatory role of these small RNA molecules has recently begun to be explored in the human reproductive system. microRNAs have been shown to play an important role in control of reproductive functions, especially in the processes of oocyte maturation, folliculogenesis, corpus luteum function, implantation, and early embryonic development. Knockout of Dicer, the cytoplasmic enzyme that cleaves the pre-miRNA to its mature form, results in postimplantation embryonic lethality in several animal models, attributing to these small RNA vital functions in reproduction and development. Another intriguing characteristic of microRNAs is their presence in body fluids in a remarkably stable form that is protected from endogenous RNase activity. In this chapter we will describe the current knowledge on microRNAs, specifically relating to human gonadal cells. We will focus on their role in the ovarian physiologic process and ovulation dysfunction, regulation of spermatogenesis and male fertility, and putative involvement in human normal and aberrant trophoblast differentiation and invasion through the process of placentation.
Collapse
|
46
|
Blanco S, Frye M. Role of RNA methyltransferases in tissue renewal and pathology. Curr Opin Cell Biol 2014; 31:1-7. [PMID: 25014650 PMCID: PMC4238901 DOI: 10.1016/j.ceb.2014.06.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 06/13/2014] [Indexed: 12/13/2022]
Abstract
Over the last five decades more than 100 types of RNA modifications have been identified in organism of all kingdoms of life, yet their function and biological relevance remain largely elusive. The recent development of transcriptome-wide techniques to detect RNA modifications such as N(6)-methyladenosine (m(6)A) and 5-methylcytidine (m(5)C) has not only created a new field of research 'the epitranscriptome' but also featured essential regulatory roles of RNA methylation in a wide range of fundamental cellular processes. Here, we discuss the current knowledge of m(6)A and m(5)C RNA methylation pathways and summarize how they impact normal tissues and contribute to human disease.
Collapse
Affiliation(s)
- Sandra Blanco
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United Kingdom
| | - Michaela Frye
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United Kingdom.
| |
Collapse
|
47
|
Kotaja N. MicroRNAs and spermatogenesis. Fertil Steril 2014; 101:1552-62. [PMID: 24882619 DOI: 10.1016/j.fertnstert.2014.04.025] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/26/2014] [Accepted: 04/15/2014] [Indexed: 12/21/2022]
Abstract
In mammals, male gametes are produced inside the testis by spermatogenesis, which has three phases: mitotic proliferation of spermatogonia, meiosis of spermatocytes, and haploid differentiation of spermatids. The genome of male germ cells is actively transcribed to produce phase-specific gene expression patterns. Male germ cells have a complex transcriptome. In addition to protein-coding messenger RNAs, many noncoding RNAs, including microRNAs (miRNAs), are produced. The miRNAs are important regulators of gene expression. They function mainly post-transcriptionally to control the stability or translation of their target messenger RNAs. The miRNAs are expressed in a cell-specific manner during spermatogenesis to participate in the control of each step of male germ cell differentiation. Genetically modified mouse models have demonstrated the importance of miRNA pathways for normal spermatogenesis, and functional studies have been designed to dissect the roles of specific miRNAs in distinct cell types. Clinical studies have exploited the well-defined expression profiles of miRNAs, and human spermatozoal or seminal plasma miRNAs have been explored as potential biomarkers for male factor infertility. This review article discusses the current findings that support the central role of miRNAs in the regulation of spermatogenesis and male fertility.
Collapse
Affiliation(s)
- Noora Kotaja
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland.
| |
Collapse
|
48
|
Sutherland JM, Fraser BA, Sobinoff AP, Pye VJ, Davidson TL, Siddall NA, Koopman P, Hime GR, McLaughlin EA. Developmental Expression of Musashi-1 and Musashi-2 RNA-Binding Proteins During Spermatogenesis: Analysis of the Deleterious Effects of Dysregulated Expression1. Biol Reprod 2014; 90:92. [DOI: 10.1095/biolreprod.113.115261] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
49
|
Li LJ, Zhang FB, Liu SY, Tian YH, Le F, Lou HY, Huang HF, Jin F. Decreased expression of SAM68 in human testes with spermatogenic defects. Fertil Steril 2014; 102:61-67.e3. [PMID: 24794312 DOI: 10.1016/j.fertnstert.2014.03.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 03/02/2014] [Accepted: 03/20/2014] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To assess the expression patterns of SAM68 in the testes of azoospermic patients with normal and abnormal spermatogenesis. DESIGN Retrospective study and in vitro study. SETTING University hospital. PATIENT(S) Testicular biopsies of azoospermic men with normal spermatogenesis (OAZ; n=20), with maturation arrest at the spermatocyte stage (MA; n=20), and with Sertoli cell-only syndrome (SCOS; n=10). INTERVENTION(S) No interventions with patients. Knockdown of Sam68 was performed in the GC-2spd(ts) cell line. MAIN OUTCOME MEASURE(S) SAM68 expression was analyzed using quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR), Western blot, and immunohistochemistry analysis in tissues. Moreover, Sam68 was knocked down in GC-2spd(ts) cells. Cell viability was measured using the MTT assay, and the apoptosis rate was detected using flow cytometry with the Annexin V-FITC kit. RESULT(S) Using qRT-PCR, the expression level of testicular SAM68 mRNA in MA and SCOS patients was statistically reduced compared with in OAZ patients. In addition, using qRT-PCR, Western blot, and immunohistochemistry analyses, mRNA and protein expressions of SAM68 were absent or barely detectable in testicular tissues in 45% (9 of 20) of patients with MA and in all patients with SCOS. Furthermore, decreased expression of Sam68 suppressed germ cell proliferation and induced apoptosis in transfected GC-2spd(ts) cells. CONCLUSION(S) Deficient SAM68 expression was observed in the human testis with MA at the spermatocyte stage and SCOS. These results may offer new perspectives on the molecular basis of abnormal spermatogenesis.
Collapse
Affiliation(s)
- Le-Jun Li
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Feng-Bin Zhang
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Shu-Yuan Liu
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Yong-Hong Tian
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Fang Le
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Hang-Ying Lou
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - He-Feng Huang
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Fan Jin
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Reproductive Genetics, National Ministry of Education (Zhejiang University), Women's Reproductive Health Laboratory of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
50
|
Regulation of spermatogenesis by small non-coding RNAs: role of the germ granule. Semin Cell Dev Biol 2014; 29:84-92. [PMID: 24755166 DOI: 10.1016/j.semcdb.2014.04.021] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 01/22/2023]
Abstract
The spermatogenic process relays in highly regulated gene expression mechanisms at the transcriptional and post-transcriptional levels to generate the male gamete that is needed for the perpetuation of the species. Small non-coding RNA pathways have been determined to participate in the post-transcriptional regulatory processes of germ cells. The most important sncRNA molecules that are critically involved in spermatogenesis belong to the miRNA and piRNAs pathways as illustrated by animal models where ablation of specific protein components displays male infertility. Several elements of these regulatory pathways have been found in the nuage or germ granule, a non-membranous cytoplasmatic structure that can be seen in spermatocytes and spermatids. This notion suggests that germ granules may act as organizer centers for silencing pathways in the germline. In general, miRNAs regulate spermatogenesis through targeting and down-regulation of specific transcripts to eventually promote sperm development. However, piRNAs are powerful repressors of transposon elements expression in the spermatogenic process. Here we describe the suggested functions that miRNA and piRNAs pathways execute in the regulation of spermatogenesis and include some recent studies in the field. Despite major strides on the detailed molecular mechanisms of sncRNAs in relation to spermatogenesis, there is plenty to discover on this fascinating regulatory program.
Collapse
|