1
|
Luaces JP, Toro-Urrego N, Otero-Losada M, Capani F. What do we know about blood-testis barrier? current understanding of its structure and physiology. Front Cell Dev Biol 2023; 11:1114769. [PMID: 37397257 PMCID: PMC10307970 DOI: 10.3389/fcell.2023.1114769] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Blood-testis barrier (BTB) creates a particular compartment in the seminiferous epithelium. Contacting Sertoli cell-Sertoli cell plasma membranes possess specialized junction proteins which present a complex dynamic of formation and dismantling. Thus, these specialized structures facilitate germ cell movement across the BTB. Junctions are constantly rearranged during spermatogenesis while the BTB preserves its barrier function. Imaging methods are essential to studying the dynamic of this sophisticated structure in order to understand its functional morphology. Isolated Sertoli cell cultures cannot represent the multiple interactions of the seminiferous epithelium and in situ studies became a fundamental approach to analyze BTB dynamics. In this review, we discuss the contributions of high-resolution microscopy studies to enlarge the body of morphofunctional data to understand the biology of the BTB as a dynamic structure. The first morphological evidence of the BTB was based on a fine structure of the junctions, which was resolved with Transmission Electron Microscopy. The use of conventional Fluorescent Light Microscopy to examine labelled molecules emerged as a fundamental technique for elucidating the precise protein localization at the BTB. Then laser-scanning confocal microscopy allowed the study of three-dimensional structures and complexes at the seminiferous epithelium. Several junction proteins, like the transmembrane, scaffold and signaling proteins, were identified in the testis using traditional animal models. BTB morphology was analyzed in different physiological conditions as the spermatocyte movement during meiosis, testis development, and seasonal spermatogenesis, but also structural elements, proteins, and BTB permeability were studied. Under pathological, pharmacological, or pollutant/toxic conditions, there are significant studies that provide high-resolution images which help to understand the dynamic of the BTB. Notwithstanding the advances, further research using new technologies is required to gain information on the BTB. Super-resolution light microscopy is needed to provide new research with high-quality images of targeted molecules at a nanometer-scale resolution. Finally, we highlight research areas that warrant future studies, pinpointing new microscopy approaches and helping to improve our ability to understand this barrier complexity.
Collapse
Affiliation(s)
- J. P. Luaces
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS.UAI-CONICET, Buenos Aires, Argentina
| | - N. Toro-Urrego
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS.UAI-CONICET, Buenos Aires, Argentina
| | - M. Otero-Losada
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS.UAI-CONICET, Buenos Aires, Argentina
| | - F. Capani
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS.UAI-CONICET, Buenos Aires, Argentina
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
2
|
Corpuz-Hilsabeck M, Culty M. Impact of endocrine disrupting chemicals and pharmaceuticals on Sertoli cell development and functions. Front Endocrinol (Lausanne) 2023; 14:1095894. [PMID: 36793282 PMCID: PMC9922725 DOI: 10.3389/fendo.2023.1095894] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/04/2023] [Indexed: 02/01/2023] Open
Abstract
Sertoli cells play essential roles in male reproduction, from supporting fetal testis development to nurturing male germ cells from fetal life to adulthood. Dysregulating Sertoli cell functions can have lifelong adverse effects by jeopardizing early processes such as testis organogenesis, and long-lasting processes such as spermatogenesis. Exposure to endocrine disrupting chemicals (EDCs) is recognized as contributing to the rising incidence of male reproductive disorders and decreasing sperm counts and quality in humans. Some drugs also act as endocrine disruptors by exerting off-target effects on endocrine tissues. However, the mechanisms of toxicity of these compounds on male reproduction at doses compatible with human exposure are still not fully resolved, especially in the case of mixtures, which remain understudied. This review presents first an overview of the mechanisms regulating Sertoli cell development, maintenance, and functions, and then surveys what is known on the impact of EDCs and drugs on immature Sertoli cells, including individual compounds and mixtures, and pinpointing at knowledge gaps. Performing more studies on the impact of mixtures of EDCs and drugs at all ages is crucial to fully understand the adverse outcomes these chemicals may induce on the reproductive system.
Collapse
|
3
|
mTORC1/C2 regulate spermatogenesis in Eriocheir sinensis via alterations in the actin filament network and cell junctions. Cell Tissue Res 2022; 390:293-313. [PMID: 36044078 DOI: 10.1007/s00441-022-03680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/23/2022] [Indexed: 11/02/2022]
Abstract
Spermatogenesis is a finely regulated process of germ cell proliferation and differentiation that leads to the production of sperm in seminiferous tubules. Although the mammalian target of rapamycin (mTOR) signaling pathway is crucial for spermatogenesis in mammals, its functions and molecular mechanisms in spermatogenesis remain largely unknown in nonmammalian species, particularly in Crustacea. In this study, we first identified es-Raptor (the core component of mTOR complex 1) and es-Rictor (the core component of mTOR complex 2) from the testis of Eriocheir sinensis. Dynamic localization of es-Raptor and es-Rictor implied that these proteins were indispensable for the spermatogenesis of E. sinensis. Furthermore, es-Raptor and es-Rictor knockdown results showed that the mature sperm failed to be released, causing almost empty lumens in the testis. We investigated the reasons for these effects and found that the actin-based cytoskeleton was disrupted in the knockdown groups. In addition, the integrity of the testis barrier (similar to the blood-testis barrier in mammals) was impaired and affected the expression of cell junction proteins. Further study revealed that es-Raptor and es-Rictor may regulate spermatogenesis via both mTORC1- and mTORC2-dependent mechanisms that involve es-rpS6 and es-Akt/es-PKC, respectively. Moreover, to explore the testis barrier in E. sinensis, we established a cadmium chloride (CdCl2)-induced testis barrier damage model as a positive control. Morphological and immunofluorescence results were similar to those of the es-Raptor and es-Rictor knockdown groups. Altogether, es-Raptor and es-Rictor were important for spermatogenesis through maintenance of the actin filament network and cell junctions in E. sinensis.
Collapse
|
4
|
Wang L, Li L, Wu X, Wong CKC, Perrotta A, Silvestrini B, Sun F, Cheng CY. mTORC1/rpS6 and p-FAK-Y407 signaling regulate spermatogenesis: Insights from studies of the adjudin pharmaceutical/toxicant model. Semin Cell Dev Biol 2021; 121:53-62. [PMID: 33867214 DOI: 10.1016/j.semcdb.2021.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 01/01/2023]
Abstract
In rodents and humans, the major cellular events at spermatogenesis include self-renewal of spermatogonial stem cells and undifferentiated spermatogonia via mitosis, commitment of spermatogonia to differentiation and transformation to spermatocytes, meiosis, spermiogenesis, and the release of spermatozoa at spermiation. While details of the morphological changes during these cellular events have been delineated, knowledge gap exists between the morphological changes in the seminiferous epithelium and the underlying molecular mechanism(s) that regulate these cellular events. Even though many of the regulatory proteins and biomolecules that modulate spermatogenesis are known based on studies using genetic models, the underlying regulatory mechanism(s), in particular signaling pathways/proteins, remain unexplored since much of the information regarding the signaling regulation is unknown. Studies in the past decade, however, have unequivocally demonstrated that the testis is using several signaling proteins and/or pathways to regulate multiple cellular events to modulate spermatogenesis. These include mTORC1/rpS6/Akt1/2 and p-FAK-Y407. While selective inhibitors and/or agonists and antagonists are available to examine some of these signaling proteins, their use have limitations due to their specificities and also potential systemic cytotoxicity. On the other hand, the use of genetic models has had profound implications for our understanding of the molecular regulation of spermatogenesis, and these knockout (null) models have also revealed the factors that are critical for spermatogenesis. Nonetheless, additional studies using in vitro and in vivo models are necessary to unravel the signaling pathways involved in regulating seminiferous epithelial cycle. Emerging data from studies, such as the use of the adjudin pharmaceutical/toxicant model, have illustrated that this non-hormonal male contraceptive drug is utilizing specific signaling pathways/proteins to induce specific defects in spermatogenesis, yielding mechanistic insights on the regulation of spermatogenesis. We sought to review these recent data in this article, highlighting an interesting approach that can be considered for future studies.
Collapse
Affiliation(s)
- Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaolong Wu
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Chris K C Wong
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Adolfo Perrotta
- Department of Translational & Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Fei Sun
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China.
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China; The Population Council, Center for Biomedical Research, 1230 York Ave, New York, NY 10065, United States.
| |
Collapse
|
5
|
Wang L, Yan M, Li H, Wu S, Ge R, Wong CKC, Silvestrini B, Sun F, Cheng CY. The Non-hormonal Male Contraceptive Adjudin Exerts its Effects via MAPs and Signaling Proteins mTORC1/rpS6 and FAK-Y407. Endocrinology 2021; 162:5936120. [PMID: 33094326 PMCID: PMC8244566 DOI: 10.1210/endocr/bqaa196] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 12/12/2022]
Abstract
Adjudin, 1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide (formerly called AF-2364), is a nonhormonal male contraceptive, since it effectively induces reversible male infertility without perturbing the serum concentrations of follicle stimulating hormone (FSH), testosterone, and inhibin B based on studies in rats and rabbits. Adjudin was shown to exert its effects preferentially by perturbing the testis-specific actin-rich adherens junction (AJ) at the Sertoli-spermatid interface known as apical ectoplasmic specialization (apical ES), thereby effectively inducing spermatid exfoliation. Adjudin did not perturb germ cell development nor germ cell function. Also, it had no effects on Sertoli cell-cell AJ called basal ectoplasmic specialization (basal ES), which, together with tight junction constitute the blood-testis barrier (BTB), unless an acute dose of adjudin was used. Adjudin also did not perturb the population of spermatogonial stem cells nor Sertoli cells in the testis. However, the downstream signaling protein(s) utilized by adjudin to induce transient male infertility remains unexplored. Herein, using adult rats treated with adjudin and monitored changes in the phenotypes across the seminiferous epithelium between 6 and 96 h in parallel with the steady-state protein levels of an array of signaling and cytoskeletal regulatory proteins, recently shown to be involved in apical ES, basal ES and BTB function. It was shown that adjudin exerts its contraceptive effects through changes in microtubule associated proteins (MAPs) and signaling proteins mTORC1/rpS6 and p-FAK-Y407. These findings are important to not only study adjudin-mediated male infertility but also the biology of spermatogenesis.
Collapse
Affiliation(s)
- Lingling Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York
| | - Ming Yan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Huitao Li
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Siwen Wu
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Renshan Ge
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chris K C Wong
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Hong Kong, China
| | | | - Fei Sun
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
- Correspondence: C. Yan Cheng, PhD, Senior Scientist, The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, New York 10065. E-mail:
| |
Collapse
|
6
|
Wang L, Yan M, Wong CKC, Ge R, Wu X, Sun F, Cheng CY. Microtubule-associated proteins (MAPs) in microtubule cytoskeletal dynamics and spermatogenesis. Histol Histopathol 2020; 36:249-265. [PMID: 33174615 DOI: 10.14670/hh-18-279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The microtubule (MT) cytoskeleton in Sertoli cells, a crucial cellular structure in the seminiferous epithelium of adult mammalian testes that supports spermatogenesis, was studied morphologically decades ago. However, its biology, in particular the involving regulatory biomolecules and the underlying mechanism(s) in modulating MT dynamics, are only beginning to be revealed in recent years. This lack of studies in delineating the biology of MT cytoskeletal dynamics undermines other studies in the field, in particular the plausible therapeutic treatment and management of male infertility and fertility since studies have shown that the MT cytoskeleton is one of the prime targets of toxicants. Interestingly, much of the information regarding the function of actin-, MT- and intermediate filament-based cytoskeletons come from studies using toxicant models including some genetic models. During the past several years, there have been some advances in studying the biology of MT cytoskeleton in the testis, and many of these studies were based on the use of pharmaceutical/toxicant models. In this review, we summarize the results of these findings, illustrating the importance of toxicant/pharmaceutical models in unravelling the biology of MT dynamics, in particular the role of microtubule-associated proteins (MAPs), a family of regulatory proteins that modulate MT dynamics but also actin- and intermediate filament-based cytoskeletons. We also provide a timely hypothetical model which can serve as a guide to design functional experiments to study how the MT cytoskeleton is regulated during spermatogenesis through the use of toxicants and/or pharmaceutical agents.
Collapse
Affiliation(s)
- Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA.,Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ming Yan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Chris K C Wong
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Renshan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaolong Wu
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - Fei Sun
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA.,The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
7
|
Modulating the Blood–Testis Barrier Towards Increasing Drug Delivery. Trends Pharmacol Sci 2020; 41:690-700. [DOI: 10.1016/j.tips.2020.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022]
|
8
|
Endogenously produced LG3/4/5-peptide protects testes against toxicant-induced injury. Cell Death Dis 2020; 11:436. [PMID: 32513914 PMCID: PMC7280515 DOI: 10.1038/s41419-020-2608-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/22/2022]
Abstract
Laminin-α2 chain is one of the major constituent proteins of the basement membrane in the mammalian testis. The laminin-type globular (LG) domains of LG3, 4 and 5 (LG3/4/5, an 80 kDa fragment) can be cleaved from laminin-α2 chain at the C-terminus via the action of matrix metalloproteinase 9 (MMP-9). This LG3/4/5 is a biologically active fragment, capable of modulating the Sertoli cell blood–testis barrier (BTB) function by tightening the barrier both in vitro and in vivo. Overexpression of LG3/4/5 cloned into a mammalian expression vector pCI-neo in Sertoli cells in a Sertoli cell in vitro model with a functional BTB also protected Sertoli cells from cadmium chloride (CdCl2, an environmental toxicant) mediated cell injury. Importantly, overexpression of LG3/4/5 in the testis in vivo was found to block or rescue cadmium-induced BTB disruption and testis injury. LG3/4/5 was found to exert its BTB and spermatogenesis promoting effects through corrective spatiotemporal expression of actin- and MT-based regulatory proteins by maintaining the cytoskeletons in the testis, illustrating the therapeutic implication of this novel bioactive fragment.
Collapse
|
9
|
Mao BP, Ge R, Cheng CY. Role of microtubule +TIPs and -TIPs in spermatogenesis – Insights from studies of toxicant models. Reprod Toxicol 2020; 91:43-52. [DOI: 10.1016/j.reprotox.2019.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/10/2019] [Accepted: 11/18/2019] [Indexed: 12/19/2022]
|
10
|
Wu S, Yan M, Li L, Mao B, Wong CKC, Ge R, Lian Q, Cheng CY. mTORC1/rpS6 and spermatogenic function in the testis-insights from the adjudin model. Reprod Toxicol 2019; 89:54-66. [PMID: 31278979 PMCID: PMC6825331 DOI: 10.1016/j.reprotox.2019.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/12/2019] [Accepted: 07/02/2019] [Indexed: 12/13/2022]
Abstract
mTORC1/rpS6 signaling complex promoted Sertoli blood-testis barrier (BTB) remodeling by perturbing Sertoli cell-cell adhesion site known as the basal ectoplasmic specialization (ES). mTORC1/rpS6 complex also promoted disruption of spermatid adhesion at the Sertoli-spermatid interface called the apical ES. Herein, we performed analyses using the adjudin (a non-hormonal male contraceptive drug under development) model, wherein adjudin was known to perturb apical and basal ES function when used at high dose. Through direct administration of adjudin to the testis, adjudin at doses that failed to perturb BTB integrity per se, overexpression of an rpS6 phosphomimetic (i.e., constitutively active) mutant (i.e., p-rpS6-MT) that modified BTB function considerably potentiated adjudin efficacy. This led to disorderly spatial expression of proteins necessary to maintain the proper cytoskeletal organization of F-actin and microtubules (MTs) across the seminiferous epithelium, leading to germ cell exfoliation and aspermatogenesis. These findings yielded important insights regarding the role of mTORC1/rpS6 signaling complex in regulating BTB homeostasis.
Collapse
Affiliation(s)
- Siwen Wu
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, 10065, United States
| | - Ming Yan
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China
| | - Linxi Li
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, 10065, United States
| | - Baiping Mao
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, 10065, United States
| | - Chris K C Wong
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Hong Kong, China
| | - Renshan Ge
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Qingquan Lian
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - C Yan Cheng
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, 10065, United States.
| |
Collapse
|
11
|
Mao B, Li L, Yan M, Wong CKC, Silvestrini B, Li C, Ge R, Lian Q, Cheng CY. F5-Peptide and mTORC1/rpS6 Effectively Enhance BTB Transport Function in the Testis-Lesson From the Adjudin Model. Endocrinology 2019; 160:1832-1853. [PMID: 31157869 PMCID: PMC6637795 DOI: 10.1210/en.2019-00308] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/26/2019] [Indexed: 01/04/2023]
Abstract
During spermatogenesis, the blood-testis barrier (BTB) undergoes cyclic remodeling that is crucial to support the transport of preleptotene spermatocytes across the immunological barrier at stage VIII to IX of the epithelial cycle. Studies have shown that this timely remodeling of the BTB is supported by several endogenously produced barrier modifiers across the seminiferous epithelium, which include the F5-peptide and the ribosomal protein S6 [rpS6; a downstream signaling molecule of the mammalian target of rapamycin complex 1 (mTORC1)] signaling protein. Herein, F5-peptide and a quadruple phosphomimetic (and constitutively active) mutant of rpS6 [i.e., phosphorylated (p-)rpS6-MT] that are capable of inducing reversible immunological barrier remodeling, by making the barrier "leaky" transiently, were used for their overexpression in the testis to induce BTB opening. We sought to examine whether this facilitated the crossing of the nonhormonal male contraceptive adjudin at the BTB when administered by oral gavage, thereby effectively improving its BTB transport to induce germ cell adhesion and aspermatogenesis. Indeed, it was shown that combined overexpression of F5-peptide and p-rpS6-MT and a low dose of adjudin, which by itself had no noticeable effects on spermatogenesis, was capable of perturbing the organization of actin- and microtubule (MT)-based cytoskeletons through changes in the spatial expression of actin- and MT-binding/regulatory proteins to the corresponding cytoskeleton. These findings thus illustrate the possibility of delivering drugs to any target organ behind a blood-tissue barrier by modifying the tight junction permeability barrier using endogenously produced barrier modifiers based on findings from this adjudin animal model.
Collapse
Affiliation(s)
- Baiping Mao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linxi Li
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ming Yan
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York
- Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China
| | - Chris K C Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | | | - Chao Li
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Renshan Ge
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingquan Lian
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Correspondence: C. Yan Cheng, PhD, The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, New York 10065. E-mail:
| |
Collapse
|
12
|
Yan M, Li L, Mao B, Li H, Li SYT, Mruk D, Silvestrini B, Lian Q, Ge R, Cheng CY. mTORC1/rpS6 signaling complex modifies BTB transport function: an in vivo study using the adjudin model. Am J Physiol Endocrinol Metab 2019; 317:E121-E138. [PMID: 31112404 PMCID: PMC6689739 DOI: 10.1152/ajpendo.00553.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/30/2019] [Accepted: 05/05/2019] [Indexed: 12/13/2022]
Abstract
Studies have shown that the mTORC1/rpS6 signaling cascade regulates Sertoli cell blood-testis barrier (BTB) dynamics. For instance, specific inhibition of mTORC1 by treating Sertoli cells with rapamycin promotes the Sertoli cell barrier, making it "tighter." However, activation of mTORC1 by overexpressing a full-length rpS6 cDNA clone (i.e., rpS6-WT, wild type) in Sertoli cells promotes BTB remodeling, making the barrier "leaky." Also, there is an increase in rpS6 and p-rpS6 (phosphorylated and activated rpS6) expression at the BTB in testes at stages VIII-IX of the epithelial cycle, and it coincides with BTB remodeling to support the transport of preleptotene spermatocytes across the barrier, illustrating that rpS6 is a BTB-modifying signaling protein. Herein, we used a constitutively active, quadruple phosphomimetic mutant of rpS6, namely p-rpS6-MT of p-rpS6-S235E/S236E/S240E/S244E, wherein Ser (S) was converted to Glu (E) at amino acid residues 235, 236, 240, and 244 from the NH2 terminus by site-directed mutagenesis, for its overexpression in rat testes in vivo using the Polyplus in vivo jet-PEI transfection reagent with high transfection efficiency. Overexpression of this p-rpS6-MT was capable of inducing BTB remodeling, making the barrier "leaky." This thus promoted the entry of the nonhormonal male contraceptive adjudin into the adluminal compartment in the seminiferous epithelium to induce germ cell exfoliation. Combined overexpression of p-rpS6-MT with a male contraceptive (e.g., adjudin) potentiated the drug bioavailability by modifying the BTB. This approach thus lowers intrinsic drug toxicity due to a reduced drug dose, further characterizing the biology of BTB transport function.
Collapse
Affiliation(s)
- Ming Yan
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, New York
| | - Linxi Li
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, New York
- Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University , Wenzhou, Zhejiang , China
| | - Baiping Mao
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, New York
- Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University , Wenzhou, Zhejiang , China
| | - Huitao Li
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, New York
- Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University , Wenzhou, Zhejiang , China
| | - Stephen Y T Li
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, New York
| | - Dolores Mruk
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, New York
| | | | - Qingquan Lian
- Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University , Wenzhou, Zhejiang , China
| | - Renshan Ge
- Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University , Wenzhou, Zhejiang , China
| | - C Yan Cheng
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, New York
| |
Collapse
|
13
|
Chen K, Chen S, Xu J, Yu Y, Liu Z, Tan A, Huang Y. Maelstrom regulates spermatogenesis of the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 109:43-51. [PMID: 30970276 DOI: 10.1016/j.ibmb.2019.03.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/03/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
The spermatogenesis of animal is essential for the reproduction and a very large number of genes participate in this procession. The Maelstrom (Mael) is identified essential for spermatogenesis in both Drosophila and mouse, though the mechanisms appear to differ. It was initially found that Mael gene is necessary for axis specification of oocytes in Drosophila, and recent studies suggested that Mael participates in the piRNA pathway. In this study, we obtained Bombyx mori Mael mutants by using a binary transgenic CRISPR/Cas9 system and analyzed the function of Mael in B. mori, a model lepidopteran insect. The results showed that BmMael is not necessary for piRNA pathway in the ovary of silkworm, whereas it might be essential for transposon elements (TEs) repression in testis. The BmMael mutation resulted in male sterility, and further analysis established that BmMael was essential for spermatogenesis. The spermatogenesis defects occurred in the elongation stage and resulted in nuclei concentration arrest. RNA-seq and qRT-PCR analyses demonstrated that spermatogenesis defects were associated with tight junctions and apoptosis. We also found that BmMael was not involved in the silkworm sex determination pathway. Our data provide insights into the biological function of BmMael in male spermatogenesis and might be useful for developing novel methods to control lepidopteron pests.
Collapse
Affiliation(s)
- Kai Chen
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuqing Chen
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ye Yu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zulian Liu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Anjiang Tan
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
14
|
Bai S, Cheng L, Zhang Y, Zhu C, Zhu Z, Zhu R, Cheng CY, Ye L, Zheng K. A germline-specific role for the mTORC2 component Rictor in maintaining spermatogonial differentiation and intercellular adhesion in mouse testis. Mol Hum Reprod 2019. [PMID: 29518209 DOI: 10.1093/molehr/gay009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
STUDY QUESTION What is the physiological role of Rictor in spermatogenic cells? SUMMARY ANSWER Germline expression of Rictor regulates spermatogonial differentiation and has an essential role in coordinating germ cells and Sertoli cells in maintaining intact cell-cell adhesion dynamics and cytoskeleton-based architecture in the seminiferous epithelium. WHAT IS KNOWN ALREADY The mechanistic target of rapamycin (mTOR) resides in its functions as the catalytic subunits of the structurally and functionally distinct mTORC1 and mTORC2 complexes. In the mammalian testis, mTORC1 regulates spermatogonial stem cell self-renewal and differentiation, whereas mTORC2 is required for Sertoli cell function. In contrast to mTORC1, mTORC2 has been much less well studied. Rictor is a distinct component of the mTORC2 complex. STUDY DESIGN, SIZE, DURATION We investigated the effects of germ cell-specific ablation of Rictor on testicular development by using a mouse model of germline-specific ablation of Rictor. PARTICIPANTS/MATERIALS, SETTING, METHODS We analyzed the in-vivo functions of Rictor through different methods including histology, immunofluorescent staining, chromosome spreads, blood-testis barrier (BTB) integrity assays and RNA sequencing. MAIN RESULTS AND THE ROLE OF CHANCE Mutant mice did not show a defect in meiotic synapsis or recombination, but exhibited compromised spermatogonial differentiation potential, disorganized cell-cell junctions, impaired BTB dynamics and defective spermiogenesis. Concomitantly, RNA-seq profiling revealed that many genes involved in adhesion and migration were expressed inappropriately. LARGE SCALE DATA RNA-seq data are published in the SRA database (PRJNA419273). LIMITATIONS REASONS FOR CAUTION A detailed analysis of the mechanisms underlying the phenotype needs further investigations. WIDER IMPLICATIONS OF THE FINDINGS Our work provides previously unidentified in-vivo evidence that germline expression of Rictor plays a role in maintaining spermatogonial differentiation and cell-cell adhesion. These findings are important for understanding the regulation of spermatogenesis and have clinical implications for the effect of mTOR inhibitors on human fertility. STUDY FUNDING AND COMPETING INTEREST(S) This study was supported by National Key R&D Program of China (2016YFA0500902), National Natural Science Foundation of China (31471228 and 31771653), Jiangsu Science Foundation for Distinguished Young Scholars (BK20150047), and Natural Science Foundation of Jiangsu Province (BK20140897, 14KJA180005 and 14KJB310004) to K.Z. The authors declare no competing or financial interests.
Collapse
Affiliation(s)
- Shun Bai
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Le Cheng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yingwen Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Chunsen Zhu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Zhiping Zhu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Ruping Zhu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, USA
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Ke Zheng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
15
|
Li L, Tang EI, Chen H, Lian Q, Ge R, Silvestrini B, Cheng CY. Sperm Release at Spermiation Is Regulated by Changes in the Organization of Actin- and Microtubule-Based Cytoskeletons at the Apical Ectoplasmic Specialization-A Study Using the Adjudin Model. Endocrinology 2017; 158:4300-4316. [PMID: 29040437 PMCID: PMC5711386 DOI: 10.1210/en.2017-00660] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/05/2017] [Indexed: 12/20/2022]
Abstract
The mechanism that regulates sperm release at spermiation is unknown. Herein, we used an animal model wherein rats were treated with adjudin, 1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide, via oral gavage to induce premature release of elongating/elongated spermatids, followed by round spermatids and spermatocytes. Spermatid release mimicking spermiation occurred within 6 to 12 hours following adjudin treatment and, by 96 hours, virtually all tubules were devoid of elongating/elongated spermatids. Using this model, we tracked the organization of F-actin and microtubules (MTs) by immunofluorescence microscopy, and the association of actin or MT regulatory proteins that either promote or demolish cytoskeletal integrity through changes in the organization of actin microfilaments or MTs by coimmunoprecipitation. Adjudin treatment induced an increase in the association of (1) epidermal growth factor receptor pathway substrate 8 (an actin barbed-end capping and bundling protein) or formin 1 (an actin nucleator) with actin and (2) end-binding protein 1 (an MT stabilizing protein) with MT shortly after adjudin exposure (at 6 hours), in an attempt to maintain spermatid adhesion to the Sertoli cell at the apical ectoplasmic specialization (ES). However, this was followed by a considerable decline of their steady-state protein levels, replacing with an increase in association of (1) actin-related protein 3 (a branched actin nucleator that converts actin filaments into a branched/unbundled network) with actin and (2) MT affinity-regulating kinase 4 (an MT destabilizing protein kinase) with MTs by 12 hours after adjudin treatment. These latter changes thus promoted actin and MT disorganization, leading to apical ES disruption and the release of elongating/elongated spermatids, mimicking spermiation. In summary, spermiation is a cytoskeletal-dependent event, involving regulatory proteins that modify cytoskeletal organization.
Collapse
Affiliation(s)
- Linxi Li
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, New York, New York 10065
- 2Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Elizabeth I. Tang
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, New York, New York 10065
| | - Haiqi Chen
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, New York, New York 10065
| | - Qingquan Lian
- 2Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Renshan Ge
- 2Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | | | - C. Yan Cheng
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, New York, New York 10065
| |
Collapse
|
16
|
Li L, Gao Y, Chen H, Jesus T, Tang E, Li N, Lian Q, Ge RS, Cheng CY. Cell polarity, cell adhesion, and spermatogenesis: role of cytoskeletons. F1000Res 2017; 6:1565. [PMID: 28928959 PMCID: PMC5580414 DOI: 10.12688/f1000research.11421.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/21/2017] [Indexed: 01/13/2023] Open
Abstract
In the rat testis, studies have shown that cell polarity, in particular spermatid polarity, to support spermatogenesis is conferred by the coordinated efforts of the Par-, Crumbs-, and Scribble-based polarity complexes in the seminiferous epithelium. Furthermore, planar cell polarity (PCP) is conferred by PCP proteins such as Van Gogh-like 2 (Vangl2) in the testis. On the other hand, cell junctions at the Sertoli cell–spermatid (steps 8–19) interface are exclusively supported by adhesion protein complexes (for example, α6β1-integrin-laminin-α3,β3,γ3 and nectin-3-afadin) at the actin-rich apical ectoplasmic specialization (ES) since the apical ES is the only anchoring device in step 8–19 spermatids. For cell junctions at the Sertoli cell–cell interface, they are supported by adhesion complexes at the actin-based basal ES (for example, N-cadherin-β-catenin and nectin-2-afadin), tight junction (occludin-ZO-1 and claudin 11-ZO-1), and gap junction (connexin 43-plakophilin-2) and also intermediate filament-based desmosome (for example, desmoglein-2-desmocollin-2). In short, the testis-specific actin-rich anchoring device known as ES is crucial to support spermatid and Sertoli cell adhesion. Accumulating evidence has shown that the Par-, Crumbs-, and Scribble-based polarity complexes and the PCP Vangl2 are working in concert with actin- or microtubule-based cytoskeletons (or both) and these polarity (or PCP) protein complexes exert their effects through changes in the organization of the cytoskeletal elements across the seminiferous epithelium of adult rat testes. As such, there is an intimate relationship between cell polarity, cell adhesion, and cytoskeletal function in the testis. Herein, we critically evaluate these recent findings based on studies on different animal models. We also suggest some crucial future studies to be performed.
Collapse
Affiliation(s)
- Linxi Li
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, New York, USA.,The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ying Gao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, New York, USA
| | - Haiqi Chen
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, New York, USA
| | - Tito Jesus
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, New York, USA
| | - Elizabeth Tang
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, New York, USA
| | - Nan Li
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, New York, USA
| | - Qingquan Lian
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ren-Shan Ge
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, New York, USA
| |
Collapse
|
17
|
Wen Q, Tang EI, Gao Y, Jesus TT, Chu DS, Lee WM, Wong CKC, Liu YX, Xiao X, Silvestrini B, Cheng CY. Signaling pathways regulating blood-tissue barriers - Lesson from the testis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:141-153. [PMID: 28450047 DOI: 10.1016/j.bbamem.2017.04.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 12/12/2022]
Abstract
Signaling pathways that regulate blood-tissue barriers are important for studying the biology of various blood-tissue barriers. This information, if deciphered and better understood, will provide better therapeutic management of diseases particularly in organs that are sealed by the corresponding blood-tissue barriers from systemic circulation, such as the brain and the testis. These barriers block the access of antibiotics and/or chemotherapeutical agents across the corresponding barriers. Studies in the last decade using the blood-testis barrier (BTB) in rats have demonstrated the presence of several signaling pathways that are crucial to modulate BTB function. Herein, we critically evaluate these findings and provide hypothetical models regarding the underlying mechanisms by which these signaling molecules/pathways modulate BTB dynamics. This information should be carefully evaluated to examine their applicability in other tissue barriers which shall benefit future functional studies in the field. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Qing Wen
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Elizabeth I Tang
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Ying Gao
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Tito T Jesus
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Darren S Chu
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Will M Lee
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Chris K C Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiang Xiao
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou 310013, Zhejiang, China
| | | | - C Yan Cheng
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States.
| |
Collapse
|
18
|
Cheng YH, Xia W, Wong EWP, Xie QR, Shao J, Liu T, Quan Y, Zhang T, Yang X, Geng K, Silvestrini B, Cheng CY. Adjudin--A Male Contraceptive with Other Biological Activities. ACTA ACUST UNITED AC 2016; 9:63-73. [PMID: 26510796 DOI: 10.2174/1872214809666151029113043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/28/2015] [Accepted: 10/28/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Adjudin has been explored as a male contraceptive for the last 15 years since its initial synthesis in the late 1990s. More than 50 papers have been published and listed in PubMed in which its mechanism that induces exfoliation of germ cells from the seminiferous epithelium, such as its effects on actin microfilaments at the apical ES (ectoplasmic specialization, a testis-specific actin-rich anchoring junction) has been delineated. OBJECTIVE Recent studies have demonstrated that, besides its activity to induce germ cell exfoliation from the seminiferous epithelium to cause reversible infertility in male rodents, adjudin possesses other biological activities, which include anti-cancer, anti-inflammation in the brain, and anti-ototoxicity induced by gentamicin in rodents. Results of these findings likely spark the interest of investigators to explore other medical use of this and other indazole-based compounds, possibly mediated by the signaling pathway(s) in the mitochondria of mammalian cells following treatment with adjudin. In this review, we carefully evaluate these recent findings. METHODS Papers published and listed at www.pubmed.org and patents pertinent to adjudin and its related compounds were searched. Findings were reviewed and critically evaluated, and summarized herein. RESULTS Adjudin is a novel compound that possesses anti-spermatogenetic activity. Furthermore, it possesses anti-cancer, anti-inflammation, anti-neurodegeneration, and anti-ototoxicity activities based on studies using different in vitro and in vivo models. CONCLUSION Studies on adjudin should be expanded to better understand its biological activities so that it can become a useful drug for treatment of other ailments besides serving as a male contraceptive.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Chuen-Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, New York 10065, United States of America.
| |
Collapse
|
19
|
Rescue of perfluorooctanesulfonate (PFOS)-mediated Sertoli cell injury by overexpression of gap junction protein connexin 43. Sci Rep 2016; 6:29667. [PMID: 27436542 PMCID: PMC4951654 DOI: 10.1038/srep29667] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 06/21/2016] [Indexed: 12/21/2022] Open
Abstract
Perfluorooctanesulfonate (PFOS) is an environmental toxicant used in developing countries, including China, as a stain repellent for clothing, carpets and draperies, but it has been banned in the U.S. and Canada since the late 2000s. PFOS perturbed the Sertoli cell tight junction (TJ)-permeability barrier, causing disruption of actin microfilaments in cell cytosol, perturbing the localization of cell junction proteins (e.g., occluden-ZO-1, N-cadherin-ß-catenin). These changes destabilized Sertoli cell blood-testis barrier (BTB) integrity. These findings suggest that human exposure to PFOS might induce BTB dysfunction and infertility. Interestingly, PFOS-induced Sertoli cell injury associated with a down-regulation of the gap junction (GJ) protein connexin43 (Cx43). We next investigated if overexpression of Cx43 in Sertoli cells could rescue the PFOS-induced cell injury. Indeed, overexpression of Cx43 in Sertoli cells with an established TJ-barrier blocked the disruption in PFOS-induced GJ-intercellular communication, resulting in the re-organization of actin microfilaments, which rendered them similar to those in control cells. Furthermore, cell adhesion proteins that utilized F-actin for attachment became properly distributed at the cell-cell interface, resealing the disrupted TJ-barrier. In summary, Cx43 is a good target that might be used to manage PFOS-induced reproductive dysfunction.
Collapse
|
20
|
Li N, Lee WM, Cheng CY. Overexpression of plastin 3 in Sertoli cells disrupts actin microfilament bundle homeostasis and perturbs the tight junction barrier. SPERMATOGENESIS 2016; 6:e1206353. [PMID: 27559491 DOI: 10.1080/21565562.2016.1206353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 06/07/2016] [Accepted: 06/20/2016] [Indexed: 02/08/2023]
Abstract
Throughout the epithelial cycle of spermatogenesis, actin microfilaments arranged as bundles near the Sertoli cell plasma membrane at the Sertoli cell-cell interface that constitute the blood-testis barrier (BTB) undergo extensive re-organization by converting between bundled and unbundled/branched configuration to give plasticity to the F-actin network. This is crucial to accommodate the transport of preleptotene spermatocytes across the BTB. Herein, we sought to examine changes in the actin microfilament organization at the Sertoli cell BTB using an in vitro model since Sertoli cells cultured in vitro is known to establish a functional tight junction (TJ)-permeability barrier that mimics the BTB in vivo. Plastin 3, a known actin microfilament cross-linker and bundling protein, when overexpressed in Sertoli cells using a mammalian expression vector pCI-neo was found to perturb the Sertoli cell TJ-barrier function even though its overexpression increased the overall actin bundling activity in these cells. Furthermore, plastin 3 overexpression also perturbed the localization and distribution of BTB-associated proteins, such as occludin-ZO1 and N-cadherin-β-catenin, this thus destabilized the barrier function. Collectively, these data illustrate that a delicate balance of actin microfilaments between organized in bundles vs. an unbundled/branched configuration is crucial to confer the homeostasis of the BTB and its integrity.
Collapse
Affiliation(s)
- Nan Li
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research , New York, NY, USA
| | - Will M Lee
- School of Biological Sciences, University of Hong Kong , Hong Kong, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research , New York, NY, USA
| |
Collapse
|
21
|
Li N, Cheng CY. Mammalian target of rapamycin complex (mTOR) pathway modulates blood-testis barrier (BTB) function through F-actin organization and gap junction. Histol Histopathol 2016; 31:961-8. [PMID: 26957088 DOI: 10.14670/hh-11-753] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
mTOR (mammalian target of rapamycin) is one of the most important signaling molecules in mammalian cells which regulates an array of cellular events, ranging from cell metabolism to cell proliferation. Based on the association of mTOR with the core component proteins, such as Raptor or Rictor, mTOR can become the mTORC1 (mammalian target of rapamycin complex 1) or mTORC2, respectively. Studies have shown that during the epithelial cycle of spermatogenesis, mTORC1 promotes remodeling and restructuring of the blood-testis barrier (BTB) in vitro and in vivo, making the Sertoli cell tight junction (TJ)-permeability barrier "leaky"; whereas mTORC2 promotes BTB integrity, making the Sertoli cell TJ-barrier "tighter". These contrasting effects, coupled with the spatiotemporal expression of the core signaling proteins at the BTB that confer the respective functions of mTORC1 vs. mTORC2 thus provide a unique mechanism to modulate BTB dynamics, allowing or disallowing the transport of biomolecules and also preleptotene spermatocytes across the immunological barrier. More importantly, studies have shown that these changes to BTB dynamics conferred by mTORC1 and mTORC2 are mediated by changes in the organization of the actin microfilament networks at the BTB, and involve gap junction (GJ) intercellular communication. Since GJ has recently been shown to be crucial to reboot spermatogenesis and meiosis following toxicant-induced aspermatogenesis, these findings thus provide new insightful information regarding the integration of mTOR and GJ to regulate spermatogenesis.
Collapse
Affiliation(s)
- Nan Li
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA. or
| |
Collapse
|
22
|
Chen H, Mruk DD, Xia W, Bonanomi M, Silvestrini B, Cheng CY. Effective Delivery of Male Contraceptives Behind the Blood-Testis Barrier (BTB) - Lesson from Adjudin. Curr Med Chem 2016; 23:701-13. [PMID: 26758796 PMCID: PMC4845722 DOI: 10.2174/0929867323666160112122724] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 12/18/2014] [Accepted: 01/11/2016] [Indexed: 12/15/2022]
Abstract
The blood-testis barrier (BTB) is one of the tightest blood-tissue barriers in the mammalian body. It divides the seminiferous epithelium of the seminiferous tubule, the functional unit of the testis, where spermatogenesis takes place, into the basal and the adluminal (apical) compartments. Functionally, the BTB provides a unique microenvironment for meiosis I/II and post-meiotic spermatid development which take place exclusively in the apical compartment, away from the host immune system, and it contributes to the immune privilege status of testis. However, the BTB also poses major obstacles in developing male contraceptives (e.g., adjudin) that exert their effects on germ cells in the apical compartment, such as by disrupting spermatid adhesion to the Sertoli cell, causing germ cell exfoliation from the testis. Besides the tight junction (TJ) between adjacent Sertoli cells at the BTB that restricts the entry of contraceptives from the microvessels in the interstitium to the adluminal compartment, drug transporters, such as P-glycoprotein and multidrug resistance-associated protein 1 (MRP1), are also present that actively pump drugs out of the testis, limiting drug bioavailability. Recent advances in drug formulations, such as drug particle micronization (<50 μm) and co-grinding of drug particles with ß-cyclodextrin have improved bioavailability of contraceptives via considerable increase in solubility. Herein, we discuss development in drug formulations using adjudin as an example. We also put emphasis on the possible use of nanotechnology to deliver adjudin to the apical compartment with multidrug magnetic mesoporous silica nanoparticles. These advances in technology will significantly enhance our ability to develop effective non-hormonal male contraceptives for men.
Collapse
Affiliation(s)
| | | | | | | | | | - Chuen-Yan Cheng
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York 10065, USA..
| |
Collapse
|
23
|
Li N, Mruk DD, Mok KW, Li MWM, Wong CKC, Lee WM, Han D, Silvestrini B, Cheng CY. Connexin 43 reboots meiosis and reseals blood-testis barrier following toxicant-mediated aspermatogenesis and barrier disruption. FASEB J 2015; 30:1436-52. [PMID: 26678449 DOI: 10.1096/fj.15-276527] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/30/2015] [Indexed: 11/11/2022]
Abstract
Earlier studies have shown that rats treated with an acute dose of 1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide (adjudin, a male contraceptive under development) causes permanent infertility due to irreversible blood-testis barrier (BTB) disruption even though the population of undifferentiated spermatogonia remains similar to normal rat testes, because spermatogonia fail to differentiate into spermatocytes to enter meiosis. Since other studies have illustrated the significance of connexin 43 (Cx43)-based gap junction in maintaining the homeostasis of BTB in the rat testis and the phenotypes of Sertoli cell-conditional Cx43 knockout mice share many of the similarities of the adjudin-treated rats, we sought to examine if overexpression of Cx43 in these adjudin-treated rats would reseal the disrupted BTB and reinitiate spermatogenesis. A full-length Cx43 cloned into mammalian expression vector pCI-neo was used to transfect testes of adjudin-treated ratsversusempty vector. It was found that overexpression of Cx43 indeed resealed the Sertoli cell tight junction-permeability barrier based on a functionalin vivoassay in tubules displaying signs of meiosis as noted by the presence of round spermatids. Thus, these findings suggest that overexpression of Cx43 reinitiated spermatogenesis at least through the steps of meiosis to generate round spermatids in testes of rats treated with an acute dose of adjudin that led to aspermatogenesis. It was also noted that the round spermatids underwent eventual degeneration with the formation of multinucleated cells following Cx43 overexpression due to the failure of spermiogenesis because no elongating/elongated spermatids were detected in any of the tubules examined. The mechanism by which overexpression of Cx43 reboots meiosis and rescues BTB function was also examined. In summary, overexpression of Cx43 in the testis with aspermatogenesis reboots meiosis and reseals toxicant-induced BTB disruption, even though it fails to support round spermatids to enter spermiogenesis.-Li, N., Mruk, D. D., Mok, K.-W., Li, M. W. M., Wong, C. K. C., Lee, W. M., Han, D., Silvestrini, B., Cheng, C. Y. Connexin 43 reboots meiosis and reseals blood-testis barrier following toxicant-mediated aspermatogenesis and barrier disruption.
Collapse
Affiliation(s)
- Nan Li
- *The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA; Department of Biology, Hong Kong Baptist University, Hong Kong, China; School of Biological Sciences, University of Hong Kong, Hong Kong, China; Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; and S.B.M. Srl Pharmaceuticals, Rome, Italy
| | - Dolores D Mruk
- *The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA; Department of Biology, Hong Kong Baptist University, Hong Kong, China; School of Biological Sciences, University of Hong Kong, Hong Kong, China; Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; and S.B.M. Srl Pharmaceuticals, Rome, Italy
| | - Ka-Wai Mok
- *The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA; Department of Biology, Hong Kong Baptist University, Hong Kong, China; School of Biological Sciences, University of Hong Kong, Hong Kong, China; Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; and S.B.M. Srl Pharmaceuticals, Rome, Italy
| | - Michelle W M Li
- *The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA; Department of Biology, Hong Kong Baptist University, Hong Kong, China; School of Biological Sciences, University of Hong Kong, Hong Kong, China; Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; and S.B.M. Srl Pharmaceuticals, Rome, Italy
| | - Chris K C Wong
- *The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA; Department of Biology, Hong Kong Baptist University, Hong Kong, China; School of Biological Sciences, University of Hong Kong, Hong Kong, China; Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; and S.B.M. Srl Pharmaceuticals, Rome, Italy
| | - Will M Lee
- *The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA; Department of Biology, Hong Kong Baptist University, Hong Kong, China; School of Biological Sciences, University of Hong Kong, Hong Kong, China; Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; and S.B.M. Srl Pharmaceuticals, Rome, Italy
| | - Daishu Han
- *The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA; Department of Biology, Hong Kong Baptist University, Hong Kong, China; School of Biological Sciences, University of Hong Kong, Hong Kong, China; Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; and S.B.M. Srl Pharmaceuticals, Rome, Italy
| | - Bruno Silvestrini
- *The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA; Department of Biology, Hong Kong Baptist University, Hong Kong, China; School of Biological Sciences, University of Hong Kong, Hong Kong, China; Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; and S.B.M. Srl Pharmaceuticals, Rome, Italy
| | - C Yan Cheng
- *The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA; Department of Biology, Hong Kong Baptist University, Hong Kong, China; School of Biological Sciences, University of Hong Kong, Hong Kong, China; Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; and S.B.M. Srl Pharmaceuticals, Rome, Italy
| |
Collapse
|
24
|
AKAP9, a Regulator of Microtubule Dynamics, Contributes to Blood-Testis Barrier Function. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 186:270-84. [PMID: 26687990 DOI: 10.1016/j.ajpath.2015.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/02/2015] [Accepted: 10/13/2015] [Indexed: 01/23/2023]
Abstract
The blood-testis barrier (BTB), formed between adjacent Sertoli cells, undergoes extensive remodeling to facilitate the transport of preleptotene spermatocytes across the barrier from the basal to apical compartments of the seminiferous tubules for further development and maturation into spermatozoa. The actin cytoskeleton serves unique structural and supporting roles in this process, but little is known about the role of microtubules and their regulators during BTB restructuring. The large isoform of the cAMP-responsive scaffold protein AKAP9 regulates microtubule dynamics and nucleation at the Golgi. We found that conditional deletion of Akap9 in mice after the initial formation of the BTB at puberty leads to infertility. Akap9 deletion results in marked alterations in the organization of microtubules in Sertoli cells and a loss of barrier integrity despite a relatively intact, albeit more apically localized F-actin and BTB tight junctional proteins. These changes are accompanied by a loss of haploid spermatids due to impeded meiosis. The barrier, however, progressively reseals in older Akap9 null mice, which correlates with a reduction in germ cell apoptosis and a greater incidence of meiosis. However, spermiogenesis remains defective, suggesting additional roles for AKAP9 in this process. Together, our data suggest that AKAP9 and, by inference, the regulation of the microtubule network are critical for BTB function and subsequent germ cell development during spermatogenesis.
Collapse
|
25
|
Li N, Tang EI, Cheng CY. Regulation of blood-testis barrier by actin binding proteins and protein kinases. Reproduction 2015; 151:R29-41. [PMID: 26628556 DOI: 10.1530/rep-15-0463] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/01/2015] [Indexed: 12/13/2022]
Abstract
The blood-testis barrier (BTB) is an important ultrastructure in the testis, since the onset of meiosis and spermiogenesis coincides with the establishment of a functional barrier in rodents and humans. It is also noted that a delay in the assembly of a functional BTB following treatment of neonatal rats with drugs such as diethylstilbestrol or adjudin also delays the first wave of spermiation. While the BTB is one of the tightest blood-tissue barriers, it undergoes extensive remodeling, in particular, at stage VIII of the epithelial cycle to facilitate the transport of preleptotene spermatocytes connected in clones across the immunological barrier. Without this timely transport of preleptotene spermatocytes derived from type B spermatogonia, meiosis will be arrested, causing aspermatogenesis. Yet the biology and regulation of the BTB remains largely unexplored since the morphological studies in the 1970s. Recent studies, however, have shed new light on the biology of the BTB. Herein, we critically evaluate some of these findings, illustrating that the Sertoli cell BTB is regulated by actin-binding proteins (ABPs), likely supported by non-receptor protein kinases, to modulate the organization of actin microfilament bundles at the site. Furthermore, microtubule-based cytoskeleton is also working in concert with the actin-based cytoskeleton to confer BTB dynamics. This timely review provides an update on the unique biology and regulation of the BTB based on the latest findings in the field, focusing on the role of ABPs and non-receptor protein kinases.
Collapse
Affiliation(s)
- Nan Li
- The Mary M. Wohlford Laboratory for Male Contraceptive ResearchCenter for Biomedical Research, Population Council, 1230 York Avenue, New York, New York 10065, USA
| | - Elizabeth I Tang
- The Mary M. Wohlford Laboratory for Male Contraceptive ResearchCenter for Biomedical Research, Population Council, 1230 York Avenue, New York, New York 10065, USA
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive ResearchCenter for Biomedical Research, Population Council, 1230 York Avenue, New York, New York 10065, USA
| |
Collapse
|
26
|
Cheng YH, Jenardhanan P, Mathur PP, Qian X, Xia W, Silvestrini B, Cheng CY. Interaction of oligomeric breast cancer resistant protein (BCRP) with adjudin: a male contraceptive with anti-cancer activity. Curr Mol Pharmacol 2015; 7:147-53. [PMID: 25620224 DOI: 10.2174/1874467208666150126154049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/14/2014] [Accepted: 12/19/2014] [Indexed: 01/16/2023]
Abstract
Breast cancer resistant protein (BCRP, ABCG2) is an ATP-binding cassette (ABC) transporter, which together with two other ABC efflux drug pumps, namely P-glycoprotein (P-gp, ABCB1) and multidrug resistance-related protein 1 (MRP1, ABCC1) is the most important multidrug resistance protein foun d in eukaryotic cells including cells in the testis. However, unlike P-gp and MRP1, which are components of the Sertoli cell blood-testis barrier (BTB), BCRP is not expressed at the BTB in rodents and human testes. Instead, BCRP is expressed by peritubular myoid cells and endothelial cells of the lymphatic vessel in the tunica propria, residing outside the BTB. As such, the testis is equipped with two levels of defense against xenobiotics or drugs, preventing these harmful substances from entering the adluminal compartment to perturb meiosis and post-meiotic spermatid development: one at the level of the BTB conferred by P-gp and MRP1 and one at the tunica propria conferred by BCRP. The presence of drug transporters at the tunica propria as well as at the Sertoli cell BTB thus poses significant obstacles in developing non-hormonal contraceptives if these drugs (e.g., adjudin) exert their effects in germ cells behind the BTB, such as in the adluminal (apical) compartment of the seminiferous epithelium. Herein, we summarize recent findings pertinent to adjudin, a non-hormonal male contraceptive, and molecular interactions of adjudin with BCRP so that this information can be helpful to devise delivery strategies to evade BCRP in the tunica propria to improve its bioavailability in the testis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chuen Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York 10065, USA.
| |
Collapse
|
27
|
Cheng CY. Toxicants target cell junctions in the testis: Insights from the indazole-carboxylic acid model. SPERMATOGENESIS 2015; 4:e981485. [PMID: 26413399 PMCID: PMC4581065 DOI: 10.4161/21565562.2014.981485] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 10/23/2014] [Indexed: 12/31/2022]
Abstract
There are numerous types of junctions in the seminiferous epithelium which are integrated with, and critically dependent on the Sertoli cell cytoskeleton. These include the basal tight junctions between Sertoli cells that form the main component of the blood–testis barrier, the basal ectoplasmic specializations (basal ES) and basal tubulobulbar complexes (basal TBC) between Sertoli cells; as well as apical ES and apical TBC between Sertoli cells and the developing spermatids that orchestrate spermiogenesis and spermiation. These junctions, namely TJ, ES, and TBC interact with actin microfilament-based cytoskeleton, which together with the desmosomal junctions that interact with the intermediate filament-based cytoskeleton plus the highly polarized microtubule-based cytoskeleton are working in concert to move spermatocytes and spermatids between the basal and luminal aspect of the seminiferous epithelium. In short, these various junctions are structurally complexed with the actin- and microtubule-based cytoskeleton or intermediate filaments of the Sertoli cell. Studies have shown toxicants (e.g., cadmium, bisphenol A (BPA), perfluorooctanesulfonate (PFOS), phthalates, and glycerol), and some male contraceptives under development (e.g., adjudin, gamendazole), exert their effects, at least in part, by targeting cell junctions in the testis. The disruption of Sertoli–Sertoli cell and Sertoli–germ cell junctions, results in the loss of germ cells from the seminiferous epithelium. Adjudin, a potential male contraceptive under investigation in our laboratory, produces loss of spermatids from the seminiferous tubules through disruption of the Sertoli cell spermatid junctions and disruption of the Sertoli cell cytoskeleton. The molecular and structural changes associated with adjudin administration are described, to provide an example of the profile of changes caused by disturbance of Sertoli-germ cell and also Sertoli cell-cell junctions.
Collapse
Affiliation(s)
- C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research; Center for Biomedical Research; Population Council ; New York, NY USA
| |
Collapse
|
28
|
Fairchild MJ, Smendziuk CM, Tanentzapf G. A somatic permeability barrier around the germline is essential for Drosophila spermatogenesis. Development 2014; 142:268-81. [PMID: 25503408 DOI: 10.1242/dev.114967] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interactions between the soma and germline are essential for gametogenesis. In the Drosophila testis, differentiating germ cells are encapsulated by two somatic cells that surround the germline throughout spermatogenesis. chickadee (chic), the fly ortholog of Profilin, mediates soma-germline interactions. Knockdown of Chic in the soma results in sterility and severely disrupted spermatogenesis due to defective encapsulation. To study this defect further, we developed a permeability assay to analyze whether the germline is isolated from the surrounding environment by the soma. We find that germline encapsulation by the soma is, by itself, insufficient for the formation of a permeability barrier, but that such a barrier gradually develops during early spermatogenesis. Thus, germline stem cells, gonialblasts and early spermatogonia are not isolated from the outside environment. By late spermatocyte stages, however, a permeability barrier is formed by the soma. Furthermore, we find that, concomitant with formation of the permeability barrier, septate junction markers are expressed in the soma and localize to junctional sites connecting the two somatic cells that surround the germline. Importantly, knockdown of septate junction components also disrupts the permeability barrier. Finally, we show that germline differentiation is delayed when the permeability barrier is compromised. We propose that the permeability barrier around the germline serves an important regulatory function during spermatogenesis by shaping the signaling events that take place between the soma and the germline.
Collapse
Affiliation(s)
- Michael J Fairchild
- Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Christopher M Smendziuk
- Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver V6T 1Z3, Canada
| |
Collapse
|
29
|
Gungor-Ordueri NE, Celik-Ozenci C, Cheng CY. Fascin 1 is an actin filament-bundling protein that regulates ectoplasmic specialization dynamics in the rat testis. Am J Physiol Endocrinol Metab 2014; 307:E738-53. [PMID: 25159326 PMCID: PMC4216949 DOI: 10.1152/ajpendo.00113.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the testis, spermatids are polarized cells, with their heads pointing toward the basement membrane during maturation. This polarity is crucial to pack the maximal number of spermatids in the seminiferous epithelium so that millions of sperms can be produced daily. A loss of spermatid polarity is detected after rodents are exposed to toxicants (e.g., cadmium) or nonhormonal male contraceptives (e.g., adjudin), which is associated with a disruption on the expression and/or localization of polarity proteins. In the rat testis, fascin 1, an actin-bundling protein found in mammalian cells, was expressed by Sertoli and germ cells. Fascin 1 was a component of the ectoplasmic specialization (ES), a testis-specific anchoring junction known to confer spermatid adhesion and polarity. Its expression in the seminiferous epithelium was stage specific. Fascin 1 was localized to the basal ES at the Sertoli cell-cell interface of the blood-testis barrier in all stages of the epithelial cycle, except it diminished considerably at late stage VIII. Fascin 1 was highly expressed at the apical ES at stage VII-early stage VIII and restricted to the step 19 spermatids. Its knockdown by RNAi that silenced fascin 1 by ~70% in Sertoli cells cultured in vitro was found to perturb the tight junction-permeability barrier via a disruption of F-actin organization. Knockdown of fascin 1 in vivo by ~60-70% induced defects in spermatid polarity, which was mediated by a mislocalization and/or downregulation of actin-bundling proteins Eps8 and palladin, thereby impeding F-actin organization and disrupting spermatid polarity. In summary, these findings provide insightful information on spermatid polarity regulation.
Collapse
Affiliation(s)
- N Ece Gungor-Ordueri
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York; and
| | - Ciler Celik-Ozenci
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York; and
| |
Collapse
|
30
|
Li MW, Xiao X, Mruk DD, Lam YL, Lee WM, Lui WY, Bonanomi M, Silvestrini B, Cheng CY. Actin-binding protein drebrin E is involved in junction dynamics during spermatogenesis. SPERMATOGENESIS 2014; 1:123-136. [PMID: 22319661 DOI: 10.4161/spmg.1.2.16393] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The actin-based cytoskeleton plays a critical role in the seminiferous epithelium during spermatogenesis by conferring cell shape, adhesion, structural support and cell polarity to both Sertoli and developing germ cells, which are essential for spermatogonial stem cell renewal, maintenance of the stem cell niche, cell cycle progression, mitosis, meiosis, spermiogenesis and spermiation. However, few functional studies are found in the literature, which explore the functional significance of actin dynamics in these events. This by and large is due to a lack of information on the proteins that regulate actin dynamics. Herein, we report drebrin E is an integrated component of the apical ectoplasmic specialization (apical ES) and the basal ES at the blood-testis barrier (BTB) in the seminiferous epithelium of the adult rat testis. Using immunohistochemistry and dual-labeled immunofluorescence analysis, drebrin E was found to display a stage-specific localization at the apical ES, as well as at the basal ES at the BTB during the seminiferous epithelial cycle of spermatogenesis. Drebrin E was first detected in stage V tubules at the basal ES with the highest expression at the BTB at stages V and VI, but it diminished considerably by stages VII and VIII and was almost non-detectable until stage IV. At the apical ES, drebrin E was also first detected at stage V, surrounding the entire head of the elongating spermatid, but by stage VI its localization had "shifted" to localize most intensely and almost exclusively to the concave side of the spermatid head. In stage VII tubules, drebrin E co-localized with actin, as well as with two other actin regulatory proteins Eps8 (epidermal growth factor receptor pathway substrate 8, an actin capping and bundling protein) and Arp3 (actin-related protein 3, a component of the Arp2/3 complex known to regulate actin nucleation and branching). The localization of drebrin E at the apical ES was compromised following treatment of rats with adjudin, which is known to exert its destructive effects primarily at the apical ES by inducing premature loss of elongating/elongated spermatids from the epithelium, mimicking "spermiation." Instead of being restricted to the concave side of spermatid heads, drebrin E was found to be mis-localized in the seminiferous epithelium of adjudin-treated rats; it was also present on the convex side of elongating spermatids, but these cells were mis-oriented so that their heads no longer pointed toward the basement membrane. The expression of drebrin E by Sertoli cells was also found to be modulated by TGFβ3 and TNFα. Since Arp3, but not Eps8, was found to bind drebrin E; and cytokines were also shown to affect the cellular distribution of drebrin E and enhance the interaction between drebrin E and Arp3, these findings illustrate that cytokines may regulate BTB dynamics during the epithelial cycle by recruiting drebrin E and Arp3 to the BTB microenvironment to induce changes in the configuration of actin filament bundles at the basal ES. In summary, these findings illustrate drebrin E is working in concert with Arp3 to regulate actin filament bundles at both the apical and the basal ES in the testis, conferring adhesion and cell polarity at both sites during spermatogenesis.
Collapse
Affiliation(s)
- Michelle Wm Li
- Center for Biomedical Research; The Population Council; New York, NY USA
| | - Xiang Xiao
- Center for Biomedical Research; The Population Council; New York, NY USA
| | - Dolores D Mruk
- Center for Biomedical Research; The Population Council; New York, NY USA
| | - Yee-Ling Lam
- Center for Biomedical Research; The Population Council; New York, NY USA
| | - Will M Lee
- School of Biological Sciences; The University of Hong Kong; Hong Kong, China
| | - Wing-Yee Lui
- School of Biological Sciences; The University of Hong Kong; Hong Kong, China
| | | | | | - C Yan Cheng
- Center for Biomedical Research; The Population Council; New York, NY USA
| |
Collapse
|
31
|
Tang EI, Xiao X, Mruk DD, Qian XJ, Mok KW, Jenardhanan P, Lee WM, Mathur PP, Cheng CY. Microtubule affinity-regulating kinase 4 (MARK4) is a component of the ectoplasmic specialization in the rat testis. SPERMATOGENESIS 2014; 2:117-126. [PMID: 22670221 PMCID: PMC3364792 DOI: 10.4161/spmg.20724] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During the seminiferous epithelial cycle of spermatogenesis, the ectoplasmic specialization (ES, a testis-specific adherens junction, AJ, type) maintains the polarity of elongating/elongated spermatids and confers adhesion to Sertoli cells in the seminiferous epithelium, and known as the apical ES. On the other hand, the ES is also found at the Sertoli-Sertoli cell interface at the blood-testis barrier (BTB) known as basal ES, which together with the tight junction (TJ), maintains Sertoli cell polarity and adhesion, creating a functional barrier that limits paracellular transport of substances across the BTB. However, the apical and basal ES are segregated and restricted to the adluminal compartment and the BTB, respectively. During the transit of preleptotene spermatocytes across the BTB and the release of sperm at spermiation at stage VIII of the seminiferous epithelial cycle, both the apical and basal ES undergo extensive restructuring to facilitate cell movement at these sites. The regulation of these events, in particular their coordination, remains unclear. Studies in other epithelia have shown that the tubulin cytoskeleton is intimately related to cell movement, and MARK [microtubule-associated protein (MAP)/microtubule affinity-regulating kinase] family kinases are crucial regulators of tubulin cytoskeleton stability. Herein MARK4, the predominant member of the MARK protein family in the testis, was shown to be expressed by both Sertoli and germ cells. MARK4 was also detected at the apical and basal ES, displaying highly restrictive spatiotemporal expression at these sites, as well as co-localizing with markers of the apical and basal ES. The expression of MARK4 was found to be stage-specific during the epithelial cycle, structurally associating with α-tubulin and the desmosomal adaptor plakophilin-2, but not with actin-based BTB proteins occludin, β-catenin and Eps8 (epidermal growth factor receptor pathway substrate 8, an actin bundling and barbed end capping protein). More importantly, it was shown that the expression of MARK4 tightly associated with the integrity of the apical ES because a diminished expression of MARK4 associated with apical ES disruption that led to the detachment of elongating/elongated spermatids from the epithelium. These findings thus illustrate that the integrity of apical ES, an actin-based and testis-specific AJ, is dependent not only on the actin filament network, but also on the tubulin-based cytoskeleton.
Collapse
|
32
|
Mruk DD, Cheng CY. Testin and actin are key molecular targets of adjudin, an anti-spermatogenic agent, in the testis. SPERMATOGENESIS 2014; 1:137-146. [PMID: 22319662 DOI: 10.4161/spmg.1.2.16449] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 05/12/2011] [Indexed: 12/13/2022]
Abstract
Earlier studies have shown adjudin to cause aspermatogenesis by depleting virtually all germ cells from the seminiferous epithelium, leading to transient infertility; spermatogenesis and fertility were re-established several weeks later after germ cell proliferation and differentiation were reinitiated by spermatogonia. While adjudin is known to exert its initial effects at the apical ectoplasmic specialization (a testis-specific atypical anchoring junction), thereby perturbing spermatid adhesion, its molecular target(s) at this site is not known. Herein, we report the production of a specific antibody against adjudin after this compound was conjugated to an adjuvant (i.e., keyhole limpet hemocyanin) to maximize immune response in rabbits. This antibody was utilized for co-immunoprecipitation by using an affinity resin to pull-down the binding partners of adjudin. Using this approach coupled with mass spectrometry and immunoblotting, we show testin (a protein largely restricted to the apical ES in the adult testis) and actin-myosin to be molecular targets of adjudin. These findings provide a platform for future functional studies, not only to better understand the molecular mechanism behind adjudin-induced germ cell loss from the seminiferous epithelium, but also to understand the molecular basis of spermiation.
Collapse
Affiliation(s)
- Dolores D Mruk
- Center for Biomedical Research; The Population Council; New York, NY USA
| | | |
Collapse
|
33
|
Chihara M, Nakamura T, Sakakibara N, Otsuka S, Ichii O, Kon Y. The Onset of Heat-Induced Testicular Calcification in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2480-92. [DOI: 10.1016/j.ajpath.2014.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 05/29/2014] [Accepted: 06/04/2014] [Indexed: 11/27/2022]
|
34
|
Xiao X, Mruk DD, Tang EI, Massarwa R, Mok KW, Li N, Wong CKC, Lee WM, Snapper SB, Shilo BZ, Schejter ED, Cheng CY. N-wasp is required for structural integrity of the blood-testis barrier. PLoS Genet 2014; 10:e1004447. [PMID: 24967734 PMCID: PMC4072540 DOI: 10.1371/journal.pgen.1004447] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 05/02/2014] [Indexed: 01/06/2023] Open
Abstract
During spermatogenesis, the blood-testis barrier (BTB) segregates the adluminal (apical) and basal compartments in the seminiferous epithelium, thereby creating a privileged adluminal environment that allows post-meiotic spermatid development to proceed without interference of the host immune system. A key feature of the BTB is its continuous remodeling within the Sertoli cells, the major somatic component of the seminiferous epithelium. This remodeling is necessary to allow the transport of germ cells towards the seminiferous tubule interior, while maintaining intact barrier properties. Here we demonstrate that the actin nucleation promoting factor Neuronal Wiskott-Aldrich Syndrome Protein (N-WASP) provides an essential function necessary for BTB restructuring, and for maintaining spermatogenesis. Our data suggests that the N-WASP-Arp2/3 actin polymerization machinery generates branched-actin arrays at an advanced stage of BTB remodeling. These arrays are proposed to mediate the restructuring process through endocytic recycling of BTB components. Disruption of N-WASP in Sertoli cells results in major structural abnormalities to the BTB, including mis-localization of critical junctional and cytoskeletal elements, and leads to disruption of barrier function. These impairments result in a complete arrest of spermatogenesis, underscoring the critical involvement of the somatic compartment of the seminiferous tubules in germ cell maturation. Mammalian spermatogenesis takes place within a sheltered environment, whereby somatic Sertoli cells protect and guide germ cells as they mature and differentiate. A key structure generated by the protective Sertoli cell epithelium is the blood-testis barrier (BTB), a composite of junctional and cytoskeletal elements, which prevents exposure of post-meiotic spermatids to the immune system. The BTB is a highly dynamic structure, which needs to be dismantled and rapidly rebuilt, in order to allow passage of maturing preleptotene spermatocytes, without compromising their isolation. Here we show that N-WASP, a conserved facilitator of formation of branched actin microfilament arrays, provides a function that is essential for maintenance of an intact BTB. Genetic disruption of N-WASP in mouse Sertoli cells leads to loss of BTB impermeability, resulting in a complete arrest of spermatogenesis at early and post-meiotic stages. Based on the localization patterns of key elements, we propose that branched-actin filaments participate in recycling of BTB materials to ensure the dynamic and efficient maintenance of this structure, one of a series of blood-tissue barriers that preserve privileged organ environments.
Collapse
Affiliation(s)
- Xiang Xiao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Dolores D. Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Elizabeth I. Tang
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - R'ada Massarwa
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Ka Wai Mok
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Nan Li
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Chris K. C. Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Will M. Lee
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Scott B. Snapper
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ben-Zion Shilo
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Eyal D. Schejter
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
- * E-mail: (EDS); (CYC)
| | - C. Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, United States of America
- * E-mail: (EDS); (CYC)
| |
Collapse
|
35
|
Cheng CY, Lie PPY, Wong EWP, Mruk DD. Focal adhesion kinase and actin regulatory/binding proteins that modulate F-actin organization at the tissue barrier: Lesson from the testis. Tissue Barriers 2014; 1:e24252. [PMID: 24665388 PMCID: PMC3875635 DOI: 10.4161/tisb.24252] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 03/07/2013] [Accepted: 03/09/2013] [Indexed: 11/28/2022] Open
Abstract
Focal adhesion kinase (FAK), as its name implied, is an important mediator of integrin-based signaling function in mammalian cells at the focal adhesion complex (FAC, also known as focal contact) at the cell-extracellular matrix interface. FAK is intimately related to cell movement, such as in macrophages, fibroblasts and also tumor cells. In the testis, however, FAK and two of its phosphorylated forms, p-FAK-Tyr407 and -Tyr397, are not found at the FAC since there is no ultrastructure analogous or similar to FAC in the mammalian testis vs. other epithelia. Instead, FAK and its two phosphorylated forms are detected along the seminiferous epithelium in the rat testis at the cell-cell interface in a testis-specific adherens junction (AJ) known as the ectoplasmic specialization (ES). ES is an F-actin-rich ultrastructure in which bundles of actin filaments are sandwiched in-between plasma membrane and cisternae of endoplasmic reticulum not found in other mammalian epithelial/endothelial cells. The ES is restricted to the interface of Sertoli cells and spermatids (step 8–19) known as the apical ES, and to the Sertoli cell-cell interface known as the basal ES. Interestingly, the basal ES is also an integrated component of the blood-testis barrier (BTB), coexisting with tight junction (TJ) and gap junction (GJ), and it is conceivable that actin filament bundles at the ES undergo extensive organization, converting from their “bundled” to “de-bundled/branching” configuration to facilitate transport of germ cells across the epithelium and at the BTB during the epithelial cycle. A recent report (Lie et al. PNAS 109:12562–12567, 2012) has demonstrated that the stage-specific and spatiotemporal expression of p-FAK-Tyr407 and -Tyr397 are crucial to the regulation of these events via their stage-specific and spatiotemporal expression during the epithelial cycle mediated by their effects on the organization of the actin filament bundles at the ES, involving actin binding/regulatory proteins. In this Commentary, we will critically evaluate these findings in light of other recent reports in the field. While these ideas are based on studies in the BTB in the rat testis, this information should be applicable and helpful to investigators studying other tissue barriers.
Collapse
Affiliation(s)
- C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research; Center for Biomedical Research; Population Council; New York, NY USA
| | - Pearl P Y Lie
- The Mary M. Wohlford Laboratory for Male Contraceptive Research; Center for Biomedical Research; Population Council; New York, NY USA
| | - Elissa W P Wong
- The Mary M. Wohlford Laboratory for Male Contraceptive Research; Center for Biomedical Research; Population Council; New York, NY USA
| | - Dolores D Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research; Center for Biomedical Research; Population Council; New York, NY USA
| |
Collapse
|
36
|
Gungor-Ordueri NE, Mruk DD, Wan HT, Wong EWP, Celik-Ozenci C, Lie PPY, Cheng CY. New insights into FAK function and regulation during spermatogenesis. Histol Histopathol 2014; 29:977-89. [PMID: 24578181 DOI: 10.14670/hh-29.977] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Germ cell transport across the seminiferous epithelium during the epithelial cycle is crucial to spermatogenesis, although molecular mechanism(s) that regulate these events remain unknown. Studies have shown that spatiotemporal expression of crucial regulatory proteins during the epithelial cycle represents an efficient and physiologically important mechanism to regulate spermatogenesis without involving de novo synthesis of proteins and/or expression of genes. Herein, we critically review the role of focal adhesion kinase (FAK) in coordinating the transport of spermatids and preleptotene spermatocytes across the epithelium and the BTB, respectively, along the apical ectoplasmic specialization (ES) - blood-testis barrier - basement membrane (BM) functional axis during spermatogenesis. In the testis, p-FAK-Tyr³⁸⁷ and p-FAK-Tyr⁴⁰⁷ are spatiotemporally expressed during the epithelial cycle at the actin-rich anchoring junction known as ES, regulating cell adhesion at the Sertoli-spermatid (apical ES) and Sertoli cell-cell (basal ES) interface. Phosphorylated forms of FAK exert their effects by regulating the homeostasis of F-actin at the ES, mediated via their effects on actin polymerization so that microfilaments are efficiently re-organized, such as from their "bundled" to "de-bundled/branched" configuration and vice versa during the epithelial cycle to facilitate the transport of: (i) spermatids across the epithelium, and (ii) preleptotene spermatocytes across the BTB. In summary, p-FAK-Tyr⁴⁰⁷ and p-FAK-Tyr³⁸⁷ are important regulators of spermatogenesis which serve as molecular switches that turn "on" and "off" adhesion function at the apical ES and the basal ES/BTB, mediated via their spatiotemporal expression during the epithelial cycle. A hypothetical model depicting the role of these two molecular switches is also proposed.
Collapse
Affiliation(s)
- N Ece Gungor-Ordueri
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, USA
| | - Dolores D Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, USA
| | - Hin-ting Wan
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, USA
| | - Elissa W P Wong
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, USA
| | - Ciler Celik-Ozenci
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Pearl P Y Lie
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, USA
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, USA. OR
| |
Collapse
|
37
|
Paul C, Robaire B. Impaired function of the blood-testis barrier during aging is preceded by a decline in cell adhesion proteins and GTPases. PLoS One 2013; 8:e84354. [PMID: 24391944 PMCID: PMC3877286 DOI: 10.1371/journal.pone.0084354] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 11/14/2013] [Indexed: 11/21/2022] Open
Abstract
With increasing age comes many changes in the testis, including germ cell loss. Cell junctions in the testis tether both seminiferous epithelial and germ cells together and assist in the formation of the blood-testis barrier (BTB), which limits transport of biomolecules, ions and electrolytes from the basal to the adluminal compartment and protects post-meiotic germ cells. We hypothesize that as male rats age the proteins involved in forming the junctions decrease and that this alters the ability of the BTB to protect the germ cells. Pachytene spermatocytes were isolated from Brown Norway rat testes at 4 (young) and 18 (aged) months of age using STA-PUT velocity sedimentation technique. RNA was extracted and gene expression was assessed using Affymetrix rat 230 2.0 whole rat genome microarrays. Microarray data were confirmed by q-RT-PCR and protein expression by Western blotting. Of the genes that were significantly decreased by at least 1.5 fold, 70 were involved in cell adhesion; of these, at least 20 are known to be specifically involved in junction dynamics within the seminiferous epithelium. The mRNA and protein levels of Jam2, Ocln, cdh2 (N-cadherin), ctnna (α-catenin), and cldn11 (involved in adherens junctions), among others, were decreased by approximately 50% in aged spermatocytes. In addition, the GTPases Rac1 and cdc42, involved in the recruitment of cadherins to the adherens junctions, were similarly decreased. It is therefore not surprising that with lower expression of these proteins that the BTB becomes diminished with age. We saw, using a FITC tracer, a gradual collapse of the BTB between 18 and 24 months. This provides the opportunity for harmful substances and immune cells to cross the BTB and cause the disruption of spermatogenesis that is observed with increasing age.
Collapse
Affiliation(s)
- Catriona Paul
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Bernard Robaire
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
- Department of Obstetrics and Gynecology, McGill University, Montréal, Canada
- * E-mail:
| |
Collapse
|
38
|
Mok KW, Mruk DD, Cheng CY. Regulation of blood-testis barrier (BTB) dynamics during spermatogenesis via the "Yin" and "Yang" effects of mammalian target of rapamycin complex 1 (mTORC1) and mTORC2. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 301:291-358. [PMID: 23317821 DOI: 10.1016/b978-0-12-407704-1.00006-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In mammalian testes, haploid spermatozoa are formed from diploid spermatogonia during spermatogenesis, which is a complicated cellular process. While these cellular events were reported in the 1960s and 1970s, the underlying molecular mechanism(s) that regulates these events remained unexplored until the past ∼10 years. For instance, adhesion proteins were shown to be integrated components at the Sertoli cell-cell interface and/or the Sertoli-spermatid interface in the late 1980s. But only until recently, studies have demonstrated that some of the adhesion proteins serve as the platform for signal transduction that regulates cell adhesion. In this chapter, a brief summary and critical discussion are provided on the latest findings regarding these cell-adhesion proteins in the testis and their relationship to spermatogenesis. Moreover, antagonistic effects of two mammalian target of rapamycin (mTOR) complexes, known as mTORC1 and mTORC2, on cell-adhesion function in the testis are discussed. Finally, a hypothetic model is presented to depict how these two mTOR-signaling complexes having the "yin" and "yang" antagonistic effects on the Sertoli cell tight junction (TJ)-permeability barrier can maintain the blood-testis barrier (BTB) integrity during the epithelial cycle while preleptotene spermatocytes are crossing the BTB.
Collapse
Affiliation(s)
- Ka Wai Mok
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, USA
| | | | | |
Collapse
|
39
|
Chihara M, Otsuka S, Ichii O, Kon Y. Vitamin A deprivation affects the progression of the spermatogenic wave and initial formation of the blood-testis barrier, resulting in irreversible testicular degeneration in mice. J Reprod Dev 2013; 59:525-35. [PMID: 23934320 PMCID: PMC3934156 DOI: 10.1262/jrd.2013-058] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The blood testis-barrier (BTB) is essential for maintaining homeostasis in the
seminiferous epithelium. Although many studies have reported that vitamin A (VA) is
required for the maintenance of spermatogenesis, the relationships between the BTB,
spermatogenesis and VA have not been elucidated. In this study, we analyzed BTB
assembly and spermatogenesis in the testes of mice fed the VA-deficient (VAD) diet
from the prepubertal period to adulthood. During the prepubertal period, no changes
were observed in the initiation and progression of the first spermatogenic wave in
mice fed the VAD diet. However, the numbers of preleptotene/leptotene spermatocytes
derived from the second spermatogenic wave onwards were decreased, and initial BTB
formation was also delayed, as evidenced by the decreased expression of mRNAs
encoding BTB components and VA signaling molecules. From 60 days postpartum, mice fed
the VAD diet exhibited apoptosis of germ cells, arrest of meiosis, disruption of the
BTB, and dramatically decreased testis size. Furthermore, vacuolization and
calcification were observed in the seminiferous epithelium of adult mice fed the VAD
diet. Re-initiation of spermatogenesis by VA replenishment in adult mice fed the VAD
diet rescued BTB assembly after when the second spermatogenic wave initiated from the
arrested spermatogonia reached the preleptotene/leptotene spermatocytes. These
results suggested that BTB integrity was regulated by VA metabolism with meiotic
progression and that the impermeable BTB was required for persistent spermatogenesis
rather than meiotic initiation. In conclusion, consumption of the VAD diet led to
critical defects in spermatogenesis progression and altered the dynamics of BTB
assembly.
Collapse
Affiliation(s)
- Masataka Chihara
- Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | |
Collapse
|
40
|
Chihara M, Ikebuchi R, Otsuka S, Ichii O, Hashimoto Y, Suzuki A, Saga Y, Kon Y. Mice stage-specific claudin 3 expression regulates progression of meiosis in early stage spermatocytes. Biol Reprod 2013; 89:3. [PMID: 23677978 DOI: 10.1095/biolreprod.113.107847] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Claudin 3 is a protein component of the tight junction strands. Tight junctions between adjacent Sertoli cells form the blood-testis barrier (BTB). During spermatogenesis, seminiferous stage-specific expression of claudin 3 is believed to regulate the migration of preleptotene/leptotene spermatocytes across the BTB. Here, we determined the cell types expressing claudin 3 in adult mouse testis and investigated spermatogenesis after testis-specific in vivo knockdown of claudin 3. The results of in situ hybridization revealed that claudin 3 mRNA was predominantly expressed in germ cells near the basal lamina of seminiferous tubules at stages VI-IX. Furthermore, claudin 3 protein was localized not only to the BTB but also to the cell membrane of STRA8-expressing preleptotene/leptotene spermatocytes in the testis of adult ICR.Cg-Tg(Stra8-EGFP)1Ysa/YsaRbrc mice. Although claudin 3 knockdown did not affect BTB integrity, it did cause a partial delay in spermatocyte migration across the BTB. Moreover, claudin 3 knockdown resulted in a prolonged preleptotene phase during spermatogenesis. These data indicate that the seminiferous stage-specific expression and localization of claudin 3 during spermatogenesis regulate the progression of meiosis by promoting germ cell migration across the BTB.
Collapse
Affiliation(s)
- Masataka Chihara
- Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Wan HT, Mruk DD, Wong CKC, Cheng CY. The apical ES-BTB-BM functional axis is an emerging target for toxicant-induced infertility. Trends Mol Med 2013; 19:396-405. [PMID: 23643465 DOI: 10.1016/j.molmed.2013.03.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/27/2013] [Accepted: 03/29/2013] [Indexed: 02/06/2023]
Abstract
Testes are sensitive to toxicants, such as cadmium and phthalates, which disrupt a local functional axis in the seminiferous epithelium known as the 'apical ectoplasmic specialization (apical ES)-blood-testis barrier (BTB)-basement membrane (BM)'. Following exposure, toxicants contact the basement membrane and activate the Sertoli cell, which perturbs its signaling function. Thus, toxicants can modulate signaling and/or cellular events at the apical ES-BTB-BM axis, perturbing spermatogenesis without entering the epithelium. Toxicants also enter the epithelium via drug transporters to potentiate their damaging effects, and downregulation of efflux transporters by toxicants impedes BTB function such that toxicants remain in the epithelium and efficiently disrupt spermatogenesis. These findings support a novel model of toxicant-induced disruption of spermatogenesis that could be interfered with using small molecules.
Collapse
Affiliation(s)
- Hin-Ting Wan
- Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, USA
| | | | | | | |
Collapse
|
42
|
Qian X, Mruk DD, Wong EWP, Lie PPY, Cheng CY. Palladin is a regulator of actin filament bundles at the ectoplasmic specialization in adult rat testes. Endocrinology 2013; 154:1907-20. [PMID: 23546604 PMCID: PMC3628023 DOI: 10.1210/en.2012-2269] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In rat testes, the ectoplasmic specialization (ES) at the Sertoli-Sertoli and Sertoli-spermatid interface known as the basal ES at the blood-testis barrier and the apical ES in the adluminal compartment, respectively, is a testis-specific adherens junction. The remarkable ultrastructural feature of the ES is the actin filament bundles that sandwiched in between the cisternae of endoplasmic reticulum and apposing plasma membranes. Although these actin filament bundles undergo extensive reorganization to switch between their bundled and debundled state to facilitate blood-testis barrier restructuring and spermatid adhesion/transport, the regulatory molecules underlying these events remain unknown. Herein we report findings of an actin filament cross-linking/bundling protein palladin, which displayed restrictive spatiotemporal expression at the apical and the basal ES during the epithelial cycle. Palladin structurally interacted and colocalized with Eps8 (epidermal growth factor receptor pathway substrate 8, an actin barbed end capping and bundling protein) and Arp3 (actin related protein 3, which together with Arp2 form the Arp2/3 complex to induce branched actin nucleation, converting bundled actin filaments to an unbundled/branched network), illustrating its role in regulating actin filament bundle dynamics at the ES. A knockdown of palladin in Sertoli cells in vitro with an established tight junction (TJ)-permeability barrier was found to disrupt the TJ function, which was associated with a disorganization of actin filaments that affected protein distribution at the TJ. Its knockdown in vivo also perturbed F-actin organization that led to a loss of spermatid polarity and adhesion, causing defects in spermatid transport and spermiation. In summary, palladin is an actin filament regulator at the ES.
Collapse
Affiliation(s)
- Xiaojing Qian
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, New York 10065, USA
| | | | | | | | | |
Collapse
|
43
|
Wan HT, Mruk DD, Wong CKC, Cheng CY. Targeting testis-specific proteins to inhibit spermatogenesis: lesson from endocrine disrupting chemicals. Expert Opin Ther Targets 2013; 17:839-55. [PMID: 23600530 DOI: 10.1517/14728222.2013.791679] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Exposure to endocrine disrupting chemicals (EDCs) has recently been linked to declining fertility in men in both developed and developing countries. Since many EDCs possess intrinsic estrogenic or androgenic activities, thus, the gonad is one of the major targets of EDCs. AREAS COVERED For the past 2 decades, studies found in the literature regarding the disruptive effects of these EDCs on reproductive function in human males and also rodents were mostly focused on oxidative stress-induced germ cell apoptosis, disruption of steroidogenesis, abnormal sperm production and disruption of spermatogenesis in particular cell adhesion function and the blood-testis-barrier (BTB) function. Herein, we highlight recent findings in the field illustrating testis-specific proteins are also targets of EDCs. EXPERT OPINION This information should be helpful in developing better therapeutic approach to manage ECD-induced reproductive toxicity. This information is also helpful to identify potential targets for male contraceptive development.
Collapse
Affiliation(s)
- H T Wan
- Center for Biomedical Research, The Mary M. Wohlford Laboratory for Male Contraceptive Research, Population Council, 1230 York Ave, New York, NY 10065, USA
| | | | | | | |
Collapse
|
44
|
Su W, Mruk DD, Cheng CY. Regulation of actin dynamics and protein trafficking during spermatogenesis--insights into a complex process. Crit Rev Biochem Mol Biol 2013; 48:153-72. [PMID: 23339542 DOI: 10.3109/10409238.2012.758084] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the mammalian testis, extensive restructuring takes place across the seminiferous epithelium at the Sertoli-Sertoli and Sertoli-germ cell interface during the epithelial cycle of spermatogenesis, which is important to facilitate changes in the cell shape and morphology of developing germ cells. However, precise communications also take place at the cell junctions to coordinate the discrete events pertinent to spermatogenesis, namely spermatogonial renewal via mitosis, cell cycle progression and meiosis, spermiogenesis and spermiation. It is obvious that these cellular events are intimately related to the underlying actin-based cytoskeleton which is being used by different cell junctions for their attachment. However, little is known on the biology and regulation of this cytoskeleton, in particular its possible involvement in endocytic vesicle-mediated trafficking during spermatogenesis, which in turn affects cell adhesive function and communication at the cell-cell interface. Studies in other epithelia in recent years have shed insightful information on the intimate involvement of actin dynamics and protein trafficking in regulating cell adhesion and communications. The goal of this critical review is to provide an updated assessment of the latest findings in the field on how these complex processes are being regulated during spermatogenesis. We also provide a working model based on the latest findings in the field including our laboratory to provide our thoughts on an apparent complicated subject, which also serves as the framework for investigators in the field. It is obvious that this model will be rapidly updated when more data are available in future years.
Collapse
Affiliation(s)
- Wenhui Su
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY 10065, USA
| | | | | |
Collapse
|
45
|
Mok KW, Mruk DD, Lee WM, Cheng CY. Rictor/mTORC2 regulates blood-testis barrier dynamics via its effects on gap junction communications and actin filament network. FASEB J 2013; 27:1137-52. [PMID: 23288930 DOI: 10.1096/fj.12-212977] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the mammalian testis, coexisting tight junctions (TJs), basal ectoplasmic specializations, and gap junctions (GJs), together with desmosomes near the basement membrane, constitute the blood-testis barrier (BTB). The most notable feature of the BTB, however, is the extensive network of actin filament bundles, which makes it one of the tightest blood-tissue barriers. The BTB undergoes restructuring to facilitate the transit of preleptotene spermatocytes at stage VIII-IX of the epithelial cycle. Thus, the F-actin network at the BTB undergoes cyclic reorganization via a yet-to-be explored mechanism. Rictor, the key component of mTORC2 that is known to regulate actin cytoskeleton, was shown to express stage-specifically at the BTB in the seminiferous epithelium. Its expression was down-regulated at the BTB in stage VIII-IX tubules, coinciding with BTB restructuring at these stages. Using an in vivo model, a down-regulation of rictor at the BTB was also detected during adjudin-induced BTB disruption, illustrating rictor expression is positively correlated with the status of the BTB integrity. Indeed, the knockdown of rictor by RNAi was found to perturb the Sertoli cell TJ-barrier function in vitro and the BTB integrity in vivo. This loss of barrier function was accompanied by changes in F-actin organization at the Sertoli cell BTB in vitro and in vivo, associated with a loss of interaction between actin and α-catenin or ZO-1. Rictor knockdown by RNAi was also found to impede Sertoli cell-cell GJ communication, disrupting protein distribution (e.g., occludin, ZO-1) at the BTB, illustrating that rictor is a crucial BTB regulator.
Collapse
Affiliation(s)
- Ka-Wai Mok
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, USA
| | | | | | | |
Collapse
|
46
|
Su W, Wong EWP, Mruk DD, Cheng CY. The Scribble/Lgl/Dlg polarity protein complex is a regulator of blood-testis barrier dynamics and spermatid polarity during spermatogenesis. Endocrinology 2012; 153:6041-53. [PMID: 23038739 PMCID: PMC3512062 DOI: 10.1210/en.2012-1670] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
During spermatogenesis, spermiogenesis that releases sperm into the tubule lumen and restructuring of the blood-testis barrier (BTB) that accommodates the transit of preleptotene spermatocytes take place simultaneously, but at the opposite ends of the seminiferous epithelium. These events are tightly regulated and coordinated; however, neither the underlying mechanism(s) nor the involving molecules are known. Herein, the Scribble/Lgl (Lethal giant larvae)/Dlg (Discs large) polarity complex was shown to regulate spermatid polarity during spermiogenesis and tight junction (TJ)-permeability barrier via changes in protein distribution at the apical ectoplasmic specialization and the BTB during the epithelial cycle, respectively. Scribble, Lgl2, and Dlg1 were found to be expressed by Sertoli and germ cells. Scribble also displayed stage-specific expression at the BTB, being highest at stages VII-VIII, colocalizing with TJ proteins occludin and ZO-1. Unlike components of other polarity complex modules, such as partitioning-defective 6, the knockdown of which by RNA interference was found to impede Sertoli cell TJ barrier, a knockdown of the Scribble complex (i.e. simultaneous knockdown of Scribble, Lgl and Dlg or Lgl alone; but not Scribble or Dlg alone) both in vitro and in vivo promoted the TJ integrity. This was mediated by reorganizing actin filament network at the Sertoli cell-cell interface, which, in turn, affected changes in the localization and/or distribution of occludin and/or β-catenin at the BTB. These knockdowns also perturbed F-actin organization at the Sertoli cell-spermatid interface, thereby modulating spermatid adhesion and polarity at the apical ectoplasmic specialization. In summary, the Scribble/Lgl/Dlg complex participates in the regulation of BTB dynamics and spermatid adhesion/polarity in the testis.
Collapse
Affiliation(s)
- Wenhui Su
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY 10065, USA
| | | | | | | |
Collapse
|
47
|
Günther S, Fietz D, Weider K, Bergmann M, Brehm R. Effects of a murine germ cell-specific knockout of Connexin 43 on Connexin expression in testis and fertility. Transgenic Res 2012. [PMID: 23188169 DOI: 10.1007/s11248-012-9668-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Connexin 43 (Cx 43)--expressed by germ cells (GC), Sertoli cells (SC) and Leydig cells--is one of at least eleven Cx in the murine testis. A general knockout (KO) of Cx 43 in mice results in perinatal death and a SC-specific KO of Cx 43 (SCCx43KO) causes infertility of male mice by preventing the initiation of spermatogenesis. To further elucidate the role of Cx 43 in the testis, a new mouse model with a GC-specific KO of Cx 43 (GCCx43KO) was created by using the Cre/loxP recombination system. A transgenic mouse line expressing the Cre gene under the tissue non-specific alkaline phosphatase promoter and a transgenic floxed Cx 43-LacZ mouse line were mated. The resulting F1-generation was backcrossed with homozygous Cx 43 floxed mice, and offspring was genotyped. Immunohistochemical analysis of testes of different aged homozygous mice revealed normal spermatogenesis and reduced Cx 43 immunoreactions. RT-qPCR and Western blots showed a downregulation of Cx 43 mRNA and protein, and a nearly unchanged mRNA expression of Cx 26, Cx 33 and Cx 45 in pubertal and adult KO mice. Western blots revealed considerable immunoreactive bands for Cx 26 and Cx 45. Male and female homozygous GCCx43KO mice were viable and fertile. Our data suggest, in contrast to inter SC and inter SC-GC cross talk in SCCx43KO mice which depends selectively on Cx 43 expression, that Cx 43 in GC seems not to be essential in GC-SC communication, when other Cx persist to be expressed.
Collapse
Affiliation(s)
- Sabine Günther
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, Frankfurter Str. 98, 35392 Giessen, Germany
| | | | | | | | | |
Collapse
|
48
|
Su W, Mruk DD, Lie PPY, Lui WY, Cheng CY. Filamin A is a regulator of blood-testis barrier assembly during postnatal development in the rat testis. Endocrinology 2012; 153:5023-35. [PMID: 22872576 PMCID: PMC3512009 DOI: 10.1210/en.2012-1286] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The blood-testis barrier (BTB) is an important ultrastructure in the testis. A delay in its assembly during postnatal development leads to meiotic arrest. Also, a disruption of the BTB by toxicants in adult rats leads to a failure in spermatogonial differentiation. However, the regulation of BTB assembly remains unknown. Herein, filamin A, an actin filament cross-linker that is known to maintain and regulate cytoskeleton structure and function in other epithelia, was shown to be highly expressed during the assembly of Sertoli cell BTB in vitro and postnatal development of BTB in vivo, perhaps being used to maintain the actin filament network at the BTB. A knockdown of filamin A by RNA interference was found to partially perturb the Sertoli cell tight junction (TJ) permeability barrier both in vitro and in vivo. Interestingly, this down-regulating effect on the TJ barrier function after the knockdown of filamin A was associated with a mis-localization of both TJ and basal ectoplasmic specialization proteins. Filamin A knockdown also induced a disorganization of the actin filament network in Sertoli cells in vitro and in vivo. Collectively, these findings illustrate that filamin A regulates BTB assembly by recruiting these proteins to the microenvironment in the seminiferous epithelium to serve as the building blocks. In short, filamin A participates in BTB assembly by regulating protein recruitment during postnatal development in the rat testis.
Collapse
Affiliation(s)
- Wenhui Su
- Population Council, New York, New York 10065, USA
| | | | | | | | | |
Collapse
|
49
|
Mok KW, Mruk DD, Silvestrini B, Cheng CY. rpS6 Regulates blood-testis barrier dynamics by affecting F-actin organization and protein recruitment. Endocrinology 2012; 153:5036-48. [PMID: 22948214 PMCID: PMC3512016 DOI: 10.1210/en.2012-1665] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During spermatogenesis, preleptotene spermatocytes residing near the basement membrane of the seminiferous tubule must traverse the blood-testis barrier (BTB) at stage VIII-IX of the epithelial cycle to continue their development in the adluminal compartment. Unlike other blood-tissue barriers (e.g. the blood-brain barrier) that are created by the endothelial tight junction (TJ) barrier of capillaries, the BTB is created by specialized junctions between Sertoli cells in which TJ coexists with basal ectoplasmic specialization (basal ES, a testis-specific adherens junction). The basal ES is typified by the presence of tightly packed actin filament bundles sandwiched between cisternae of endoplasmic reticulum and the apposing plasma membranes of Sertoli cells. These actin filament bundles also confer unusual adhesive strength to the BTB. Yet the mechanisms by which these filamentous actin (F-actin) networks are regulated from the bundled to the debundled state to facilitate the transit of spermatocytes remain elusive. Herein, we provide evidence that ribosomal protein S6 (rpS6), the downstream signaling molecule of the mammalian target of rapamycin complex 1 (mTORC1) pathway, is a major regulator of F-actin organization and adhesion protein recruitment at the BTB. rpS6 is restrictively and spatiotemporally activated at the BTB during the epithelial cycle. An activation of rpS6 led to a disruption of the Sertoli cell TJ barrier and BTB integrity. Its silencing in vitro or in vivo by using small interfering RNA duplexes or short hairpin RNA was found to promote the Sertoli cell TJ permeability barrier by the recruitment of adhesion proteins (e.g. claudin-11 and occludin) to the BTB. Thus, rpS6 in the mTORC1 pathway regulates BTB restructuring via its effects on the F-actin organization and protein recruitment at the BTB.
Collapse
Affiliation(s)
- Ka-Wai Mok
- Center for Biomedical Research, Population Council, New York, New York 10065, USA
| | | | | | | |
Collapse
|
50
|
Kopylow K, Staege H, Schulze W, Will H, Kirchhoff C. Fibroblast growth factor receptor 3 is highly expressed in rarely dividing human type A spermatogonia. Histochem Cell Biol 2012; 138:759-72. [DOI: 10.1007/s00418-012-0991-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2012] [Indexed: 01/09/2023]
|