1
|
Soliani L, Alcalá San Martín A, Balsells S, Hernando‐Davalillo C, Ortigoza‐Escobar JD. Chromosome Microarray Analysis for the Investigation of Deletions in Pediatric Movement Disorders: A Systematic Review of the Literature. Mov Disord Clin Pract 2023; 10:547-557. [PMID: 37070051 PMCID: PMC10105116 DOI: 10.1002/mdc3.13711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/19/2023] [Accepted: 02/19/2023] [Indexed: 03/06/2023] Open
Abstract
Background Chromosome microarray analysis (CMA) can detect copy number variants (CNV) beyond the resolution of standard G-banded karyotyping. De novo or inherited microdeletions may cause autosomal dominant movement disorders. Objectives The purpose of this study was to analyze the clinical characteristics, associated features, and genetic information of children with deletions in known genes that cause movement disorders and to make recommendations regarding the diagnostic application of CMA. Methods Clinical cases published in English were identified in scientific databases (PubMed, ClinVar, and DECIPHER) from January 1998 to July 2019 following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Cases with deletions or microdeletions greater than 300 kb were selected. Information collected included age, sex, movement disorders, associated features, and the size and location of the deletion. Duplications or microduplications were not included. Results A total of 18.097 records were reviewed, and 171 individuals were identified. Ataxia (30.4%), stereotypies (23.9%), and dystonia (21%) were the most common movement disorders. A total of 16% of the patients demonstrated more than one movement disorder. The most common associated features were intellectual disability or developmental delay (78.9%) and facial dysmorphism (57.8%). The majority (77.7%) of microdeletions were smaller than 5 Mb. We find no correlation between movement disorders, their associated features, and the size of microdeletions. Conclusions Our results support the use of CMA as an investigational test in children with movement disorders. As the majority of identified articles were case reports and small case series (low quality), future efforts should focus on larger prospective studies to examine the causation of microdeletions in pediatric movement disorders.
Collapse
Affiliation(s)
- Luca Soliani
- IRCCS Istituto delle Scienze Neurologiche di Bologna UOC Neuropsichiatria dell'età PediatricaBolognaItaly
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC) Università di BolognaBolognaItaly
| | - Adrián Alcalá San Martín
- Department of Genetic and Molecular Medicine and Pediatric Institute of Rare DiseasesHospital Sant Joan de Déu BarcelonaBarcelonaSpain
| | - Sol Balsells
- Department of StatisticsInstitut de Recerca Sant Joan de DéuBarcelonaSpain
| | - Cristina Hernando‐Davalillo
- Department of Genetic and Molecular Medicine and Pediatric Institute of Rare DiseasesHospital Sant Joan de Déu BarcelonaBarcelonaSpain
| | - Juan Darío Ortigoza‐Escobar
- U‐703 Centre for Biomedical Research on Rare Diseases (CIBER‐ER)Instituto de Salud Carlos IIIBarcelonaSpain
- Movement Disorders Unit, Pediatric Neurology Department, Institut de RecercaHospital Sant Joan de Déu BarcelonaBarcelonaSpain
- European Reference Network for Rare Neurological Diseases (ERN‐RND)BarcelonaSpain
| |
Collapse
|
2
|
Ren J, Gan S, Zheng S, Li M, An Y, Yuan S, Gu X, Zhang L, Hou Y, Du Q, Zhang G, Shen W. Genotype-phenotype pattern analysis of pathogenic PAX9 variants in Chinese Han families with non-syndromic oligodontia. Front Genet 2023; 14:1142776. [PMID: 37056289 PMCID: PMC10086135 DOI: 10.3389/fgene.2023.1142776] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/09/2023] [Indexed: 03/30/2023] Open
Abstract
Background: Non-syndromic oligodontia is characterized by the absence of six or more permanent teeth, excluding third molars, and can have aesthetic, masticatory, and psychological consequences. Previous studies have shown that PAX9 is associated with autosomal dominant forms of oligodontia but the precise molecular mechanisms are still unknown.Methods: Whole-exome and Sanger sequencing were performed on a cohort of approximately 28 probands with NSO, for mutation analysis. Bioinformatic analysis was performed on the potential variants. Immunofluorescence assay, western blotting, and qPCR were used to explore the preliminary functional impact of the variant PAX9 proteins. We reviewed PAX9-related NSO articles in PubMed to analyze the genotype-phenotype correlations.Results: We identified three novel PAX9 variants in Chinese Han families: c.152G>T (p.Gly51Val), c.239delC (p.Thr82Profs*3), and c.409C>T (q.Gln137Ter). In addition, two previously reported missense variants were identified: c.140G>C (p.Arg47Pro) and c.146C>T (p.Ser49Leu) (reference sequence NM_006194.4). Structural modeling revealed that all missense variants were located in the highly conserved paired domain. The other variants led to premature termination of the protein, causing structural impairment of the PAX9 protein. Immunofluorescence assay showed abnormal subcellular localizations of the missense variants (R47P, S49L, and G51V). In human dental pulp stem cells, western blotting and qPCR showed decreased expression of PAX9 variants (c.140G>C, p.R47P, and c.152G>T, p.G51V) compared with the wild-type group at both the transcription and translation levels. A review of published papers identified 64 PAX9 variants related to NSO and found that the most dominant feature was the high incidence of missing upper second molars, first molars, second premolars, and lower second molars.Conclusion: Three novel PAX9 variants were identified in Chinese Han families with NSO. These results extend the variant spectrum of PAX9 and provide a foundation for genetic diagnosis and counseling.
Collapse
Affiliation(s)
- Jiabao Ren
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Sifang Gan
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | | | - Meikang Li
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Yilin An
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Shuo Yuan
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Xiuge Gu
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Li Zhang
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Yan Hou
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Qingqing Du
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Guozhong Zhang
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Wenjing Shen
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
- *Correspondence: Wenjing Shen,
| |
Collapse
|
3
|
Villafuerte B, Natera-de-Benito D, González A, Mori MA, Palomares M, Nevado J, García-Miñaur S, Lapunzina P, González-Granado LI, Allende LM, Moreno JC. The Brain-Lung-Thyroid syndrome (BLTS): A novel deletion in chromosome 14q13.2-q21.1 expands the phenotype to humoral immunodeficiency. Eur J Med Genet 2018; 61:393-398. [DOI: 10.1016/j.ejmg.2018.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/13/2017] [Accepted: 02/17/2018] [Indexed: 12/11/2022]
|
4
|
Bonczek O, Balcar V, Šerý O. PAX9
gene mutations and tooth agenesis: A review. Clin Genet 2017; 92:467-476. [DOI: 10.1111/cge.12986] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 01/30/2017] [Accepted: 01/30/2017] [Indexed: 11/27/2022]
Affiliation(s)
- O. Bonczek
- Laboratory of DNA Diagnostics, Department of Biochemistry, Faculty of Science; Masaryk University; Brno Czech Republic
- Laboratory of Animal Embryology, Institute of Animal Physiology and Genetics; The Academy of Sciences of the Czech Republic; Brno Czech Republic
| | - V.J. Balcar
- Laboratory of Neurochemistry, Bosch Institute and Discipline of Anatomy and Histology, School of medical sciences, Sydney Medical School; The University of Sydney; Sydney NSW Australia
| | - O. Šerý
- Laboratory of DNA Diagnostics, Department of Biochemistry, Faculty of Science; Masaryk University; Brno Czech Republic
- Laboratory of Animal Embryology, Institute of Animal Physiology and Genetics; The Academy of Sciences of the Czech Republic; Brno Czech Republic
| |
Collapse
|
5
|
Gentile M, De Mattia D, Pansini A, Schettini F, Buonadonna AL, Capozza M, Ficarella R, Laforgia N. 14q13 distal microdeletion encompassingNKX2-1andPAX9: Patient report and refinement of the associated phenotype. Am J Med Genet A 2016; 170:1884-8. [DOI: 10.1002/ajmg.a.37691] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/15/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Mattia Gentile
- Department of Medical Genetics; Hospital Di Venere - ASL BARI; Bari Italy
| | - Delia De Mattia
- Neonatology and NICU; Department of Biochemical Sciences and Human Oncology; University of Bari; Bari Italy
| | - Angela Pansini
- Department of Medical Genetics; Hospital Di Venere - ASL BARI; Bari Italy
| | - Federico Schettini
- Neonatology and NICU; Department of Biochemical Sciences and Human Oncology; University of Bari; Bari Italy
| | | | - Manuela Capozza
- Neonatology and NICU; Department of Biochemical Sciences and Human Oncology; University of Bari; Bari Italy
| | - Romina Ficarella
- Department of Medical Genetics; Hospital Di Venere - ASL BARI; Bari Italy
| | - Nicola Laforgia
- Neonatology and NICU; Department of Biochemical Sciences and Human Oncology; University of Bari; Bari Italy
| |
Collapse
|
6
|
Thorwarth A, Schnittert-Hübener S, Schrumpf P, Müller I, Jyrch S, Dame C, Biebermann H, Kleinau G, Katchanov J, Schuelke M, Ebert G, Steininger A, Bönnemann C, Brockmann K, Christen HJ, Crock P, deZegher F, Griese M, Hewitt J, Ivarsson S, Hübner C, Kapelari K, Plecko B, Rating D, Stoeva I, Ropers HH, Grüters A, Ullmann R, Krude H. Comprehensive genotyping and clinical characterisation reveal 27 novel NKX2-1 mutations and expand the phenotypic spectrum. J Med Genet 2014; 51:375-87. [PMID: 24714694 DOI: 10.1136/jmedgenet-2013-102248] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND NKX2-1 encodes a transcription factor with large impact on the development of brain, lung and thyroid. Germline mutations of NKX2-1 can lead to dysfunction and malformations of these organs. Starting from the largest coherent collection of patients with a suspected phenotype to date, we systematically evaluated frequency, quality and spectrum of phenotypic consequences of NKX2-1 mutations. METHODS After identifying mutations by Sanger sequencing and array CGH, we comprehensively reanalysed the phenotype of affected patients and their relatives. We employed electrophoretic mobility shift assay (EMSA) to detect alterations of NKX2-1 DNA binding. Gene expression was monitored by means of in situ hybridisation and compared with the expression level of MBIP, a candidate gene presumably involved in the disorders and closely located in close genomic proximity to NKX2-1. RESULTS Within 101 index patients, we detected 17 point mutations and 10 deletions. Neurological symptoms were the most consistent finding (100%), followed by lung affection (78%) and thyroidal dysfunction (75%). Novel symptoms associated with NKX2-1 mutations comprise abnormal height, bouts of fever and cardiac septum defects. In contrast to previous reports, our data suggest that missense mutations in the homeodomain of NKX2-1 not necessarily modify its DNA binding capacity and that this specific type of mutations may be associated with mild pulmonary phenotypes such as asthma. Two deletions did not include NKX2-1, but MBIP, whose expression spatially and temporarily coincides with NKX2-1 in early murine development. CONCLUSIONS The high incidence of NKX2-1 mutations strongly recommends the routine screen for mutations in patients with corresponding symptoms. However, this analysis should not be confined to the exonic sequence alone, but should take advantage of affordable NGS technology to expand the target to adjacent regulatory sequences and the NKX2-1 interactome in order to maximise the yield of this diagnostic effort.
Collapse
Affiliation(s)
- Anne Thorwarth
- Institute for Experimental Pediatric Endocrinology, Charité University Medicine, Berlin, Germany Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Sarah Schnittert-Hübener
- Institute for Experimental Pediatric Endocrinology, Charité University Medicine, Berlin, Germany
| | - Pamela Schrumpf
- Institute for Experimental Pediatric Endocrinology, Charité University Medicine, Berlin, Germany
| | - Ines Müller
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Sabine Jyrch
- Institute for Experimental Pediatric Endocrinology, Charité University Medicine, Berlin, Germany
| | - Christof Dame
- Department of Neonatology, Charité University Medicine, Berlin, Germany
| | - Heike Biebermann
- Institute for Experimental Pediatric Endocrinology, Charité University Medicine, Berlin, Germany
| | - Gunnar Kleinau
- Institute for Experimental Pediatric Endocrinology, Charité University Medicine, Berlin, Germany
| | - Juri Katchanov
- Department of Neurology, Charité University Medicine, Berlin, Germany
| | - Markus Schuelke
- Department of Neuropediatrics, Charité University Medicine, Berlin, Germany
| | - Grit Ebert
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Anne Steininger
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Carsten Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Knut Brockmann
- Interdisciplinary Pediatric Center for Children with Developmental Disabilities and Severe Chronic Disorders, University Medical Center, Georg August University, Göttingen, Germany
| | - Hans-Jürgen Christen
- Department for Neuropediatrics, Children's and Youth Hospital "Auf der Bult", Hannover, Germany
| | - Patricia Crock
- Division of Pediatric Endocrinology & Diabetes, John Hunter Children's Hospital, Newcastle, Australia
| | - Francis deZegher
- Department of Woman and Child, University of Leuven, Leuven, Belgium
| | - Matthias Griese
- Dr. von Haunersches Kinderspital, Member of the German Center for Lung Research, University of Munich, Munich, Germany
| | - Jacqueline Hewitt
- Division of Endocrinology & Diabetes, Royal Children's Hospital Melbourne, Melbourne, Australia
| | - Sten Ivarsson
- Department of Clinical Sciences- Pediatric Endocrinology, University Hospital MAS, Malmö, Sweden
| | - Christoph Hübner
- Department of Neuropediatrics, Charité University Medicine, Berlin, Germany
| | - Klaus Kapelari
- Department of Pediatric and Adolescent Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Barbara Plecko
- Division of Child Neurology, University Childrens Hospital Zurich, Zurich, Switzerland
| | - Dietz Rating
- Department for Neuropediatrics, Heidelberg University Hospital, Heidelberg, Germany
| | - Iva Stoeva
- Department of Paediatric Endocrinology Screening and Functional Endocrine Diagnostics, University Paediatric Hospital, Medical University Sofia, Sofia, Bulgaria
| | | | - Annette Grüters
- Institute for Experimental Pediatric Endocrinology, Charité University Medicine, Berlin, Germany
| | | | - Heiko Krude
- Institute for Experimental Pediatric Endocrinology, Charité University Medicine, Berlin, Germany
| |
Collapse
|
7
|
Lee WC, Yamaguchi T, Watanabe C, Kawaguchi A, Takeda M, Kim YI, Haga S, Tomoyasu Y, Ishida H, Maki K, Park SB, Kimura R. Association of common PAX9 variants with permanent tooth size variation in non-syndromic East Asian populations. J Hum Genet 2012; 57:654-9. [DOI: 10.1038/jhg.2012.90] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Mitsiadis TA, Luder HU. Genetic basis for tooth malformations: from mice to men and back again. Clin Genet 2011; 80:319-29. [DOI: 10.1111/j.1399-0004.2011.01762.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
Inzelberg R, Weinberger M, Gak E. Benign hereditary chorea: an update. Parkinsonism Relat Disord 2011; 17:301-7. [PMID: 21292530 DOI: 10.1016/j.parkreldis.2011.01.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 01/04/2011] [Accepted: 01/05/2011] [Indexed: 12/13/2022]
Abstract
Benign hereditary chorea (BHC, MIM 118700) is a rare autosomal dominant disorder manifesting with chorea in conjunction with hypothyroidism and respiratory problems, a triad also named "brain-lung-thyroid syndrome". BHC is characterized by childhood onset with minimal or no progression into adult life and normal cognitive function. The genetic basis of BHC has been partially resolved, when mutations in the TTF1 gene on chromosome 14q13 encoding the thyroid transcription factor-1 have been identified in a number of BHC patients, suggesting that aberration of TTF1 transcriptional function or haploinsufficiency is associated with this disorder. TTF1 (also known as TITF1, TEBP or NKX2-1), belonging to the NKX2 homeodomain transcription factor family, has been implicated in several important molecular pathways essential for brain, thyroid and lung morphogenesis. Clinical evaluation of TTF1 gene mutations carrier patients exposed the involvement of each of the triad's components characterized by heterogeneity between index cases and even within families. This review highlights the current updates on expanded clinical aspects of BHC, imaging and treatment experience, its genetic markers, proposed molecular mechanisms, animal models and link to cancer.
Collapse
Affiliation(s)
- Rivka Inzelberg
- Joseph Sagol Neuroscience Center, Department of Neurology, Sheba Medical Center, 52621 Tel Hashomer, Israel.
| | | | | |
Collapse
|
10
|
Abstract
The PAX (paired box) genes are a family of transcription factors critical for fetal growth and organogenesis. Abnormalities of PAX2, PAX3, PAX6, and PAX9 are associated with various congenital craniofacial anomalies, including tooth abnormalities. We present here a boy with oligodontia and language delay. Dental x-rays showed that he lacked primary molars and was missing most of his permanent teeth. A genome-wide, single-nucleotide polymorphism-based microarray revealed a de novo 223-kb heterozygous deletion on 14q13.3 that included the PAX9 gene. In addition, the array showed 2 copies of the X chromosome and 1 copy of the Y chromosome, diagnostic for Klinefelter syndrome. The findings in this patient illustrate the role of the PAX9 gene in tooth development and provide the first example of a de novo deletion of 14q13.3 manifesting primarily with oligodontia. This report also supports the utility of genome-wide microarrays in determining the genetic cause of craniofacial abnormalities.
Collapse
|
11
|
Mendoza-Fandino GA, Gee JM, Ben-Dor S, Gonzalez-Quevedo C, Lee K, Kobayashi Y, Hartiala J, Myers RM, Leal SM, Allayee H, Patel PI. A novel g.-1258G>A mutation in a conserved putative regulatory element of PAX9 is associated with autosomal dominant molar hypodontia. Clin Genet 2010; 80:265-72. [PMID: 21443745 DOI: 10.1111/j.1399-0004.2010.01529.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mutations in the transcription factor PAX9 which plays a critical role in the switching of odontogenic potential from the epithelium to the mesenchyme during tooth development cause autosomal dominant non-syndromic hypodontia primarily affecting molars. Linkage analysis on a family segregating autosomal dominant molar hypodontia with markers flanking and within PAX9 yielded a maximum multipoint LOD score of 3.6. No sequence variants were detected in the coding or 5'- and 3'-untranslated regions (UTRs) of PAX9. However, we identified a novel g.-1258G>A sequence variant in all affected individuals of the family but not in the unaffected family members or in 3088 control chromosomes. This mutation is within a putative 5'-regulatory sequence upstream of PAX9 highly conserved in primates, somewhat conserved in ungulates and carnivores but not conserved in rodents. Bioinformatics analysis of the sequence determined that there was no abolition or creation of a putative binding site for known transcription factors. Based on our previous findings that haploinsufficiency for PAX9 leads to hypodontia, we postulate that the g.-1258G>A variant reduces the expression of PAX9 which underlies the hypodontia phenotype in this family.
Collapse
Affiliation(s)
- G A Mendoza-Fandino
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Maccabelli G, Pichiecchio A, Guala A, Ponzio M, Palesi F, Maranzana RT D, Poloni GU, Bastianello S, Danesino C. Advanced magnetic resonance imaging in benign hereditary chorea: Study of two familial cases. Mov Disord 2010; 25:2670-4. [DOI: 10.1002/mds.23281] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
13
|
Pinho T, Silva-Fernandes A, Bousbaa H, Maciel P. Mutational analysis of MSX1 and PAX9 genes in Portuguese families with maxillary lateral incisor agenesis. Eur J Orthod 2010; 32:582-8. [DOI: 10.1093/ejo/cjp155] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Carré A, Szinnai G, Castanet M, Sura-Trueba S, Tron E, Broutin-L'Hermite I, Barat P, Goizet C, Lacombe D, Moutard ML, Raybaud C, Raynaud-Ravni C, Romana S, Ythier H, Léger J, Polak M. Five new TTF1/NKX2.1 mutations in brain-lung-thyroid syndrome: rescue by PAX8 synergism in one case. Hum Mol Genet 2009; 18:2266-76. [PMID: 19336474 DOI: 10.1093/hmg/ddp162] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Thyroid transcription factor 1 (NKX2-1/TITF1) mutations cause brain-lung-thyroid syndrome, characterized by congenital hypothyroidism (CH), infant respiratory distress syndrome (IRDS) and benign hereditary chorea (BHC). The objectives of the present study were (i) detection of NKX2-1 mutations in patients with CH associated with pneumopathy and/or BHC, (ii) functional analysis of new mutations in vitro and (iii) description of the phenotypic spectrum of brain-lung-thyroid syndrome. We identified three new heterozygous missense mutations (L176V, P202L, Q210P), a splice site mutation (376-2A-->G), and one deletion of NKX2-1 at 14q13. Functional analysis of the three missense mutations revealed loss of transactivation capacity on the human thyroglobulin enhancer/promoter. Interestingly, we showed that deficient transcriptional activity of NKX2-1-P202L was completely rescued by cotransfected PAX8-WT, whereas the synergistic effect was abolished by L176V and Q210P. The clinical spectrum of 6 own and 40 published patients with NKX2-1 mutations ranged from the complete triad of brain-lung-thyroid syndrome (50%), brain and thyroid disease (30%), to isolated BHC (13%). Thyroid morphology was normal (55%) and compensated hypothyroidism occurred in 61%. Lung disease occurred in 54% of patients (IRDS at term 76%; recurrent pulmonary infections 24%). On follow-up, 20% developed severe chronic interstitial lung disease, and 16% died. In conclusion, we describe five new NKX2.1 mutations with, for the first time, complete rescue by PAX8 of the deficient transactivating capacity in one case. Additionally, our review shows that the majority of affected patients display neurological and/or thyroidal problems and that, although less frequent, lung disease is responsible for a considerable mortality.
Collapse
Affiliation(s)
- Aurore Carré
- University Paris-Descartes, INSERM U845, 75270 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
De Coster PJ, Marks LA, Martens LC, Huysseune A. Dental agenesis: genetic and clinical perspectives. J Oral Pathol Med 2008; 38:1-17. [PMID: 18771513 DOI: 10.1111/j.1600-0714.2008.00699.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dental agenesis is the most common developmental anomaly in humans and is frequently associated with several other oral abnormalities. Whereas the incidence of missing teeth may vary considerably depending on dentition, gender, and demographic or geographic profiles, distinct patterns of agenesis have been detected in the permanent dentition. These frequently involve the last teeth of a class to develop (I2, P2, M3) suggesting a possible link with evolutionary trends. Hypodontia can either occur as an isolated condition (non-syndromic hypodontia) involving one (80% of cases), a few (less than 10%) or many teeth (less than 1%), or can be associated with a systemic condition or syndrome (syndromic hypodontia), essentially reflecting the genetically and phenotypically heterogeneity of the condition. Based on our present knowledge of genes and transcription factors that are involved in tooth development, it is assumed that different phenotypic forms are caused by different genes involving different interacting molecular pathways, providing an explanation not only for the wide variety in agenesis patterns but also for associations of dental agenesis with other oral anomalies. At present, the list of genes involved in human non-syndromic hypodontia includes not only those encoding a signaling molecule (TGFA) and transcription factors (MSX1 and PAX9) that play critical roles during early craniofacial development, but also genes coding for a protein involved in canonical Wnt signaling (AXIN2), and a transmembrane receptor of fibroblast growth factors (FGFR1). Our objective was to review the current literature on the molecular mechanisms that are responsible for selective dental agenesis in humans and to present a detailed overview of syndromes with hypodontia and their causative genes. These new perspectives and future challenges in the field of identification of possible candidate genes involved in dental agenesis are discussed.
Collapse
Affiliation(s)
- P J De Coster
- Department of Paediatric Dentistry and Special Care, Paecamed Research, Ghent University, Ghent, Belgium.
| | | | | | | |
Collapse
|