1
|
Fantozzi MC, Reguera-Gomez M, Beldomenico PM, Mas-Coma S, Bargues MD, Valero MA. Variability of Calodium hepaticum eggs from sigmodontine host species through geometric morphometric analysis. J Helminthol 2022; 96:e75. [PMID: 36250383 DOI: 10.1017/s0022149x22000669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Calodium hepaticum is a zoonotic nematode with a worldwide distribution. Although the host range of C. hepaticum includes a wide spectrum of mammals (including humans), this parasite is predominantly associated with the families Muridae and Cricetidae. Several Sigmodontinae species from Argentina were found to be infected by C. hepaticum, with a high prevalence in Akodon azarae. The present study focuses on C. hepaticum eggs from natural infection of three species of sigmodontine rodents from Argentina. Eggs were genetically characterized (intergenic 18S rRNA region). The objectives of this work are: (i) to propose a new analytical methodology; and (ii) to morphologically characterize C. hepaticum eggs, from three Sigmodontinae species (A. azarae, Calomys callidus and Oligoryzomys flavescens). Analyses were made by the Computer Image Analysis System based on the new standardized measurements and geometric morphometric tools. The resulting factor maps clearly illustrate global size differences in the parasite eggs from the three Sigmodontinae species analysed. The degree of similarity between egg populations was assessed through pairwise Mahalanobis distances, showing that the largest distances were detected between parasite eggs from C. callidus and O. flavescens. Herein, the phenotypical plasticity of C. hepaticum eggs is shown. Significant positive correlations were obtained between each egg parasite principal component 1 and rodent corporal characteristics: weight; liver weight; rodent length; and rodent body condition. The usefulness of the geometric morphometric analysis in studies of the relationship between C. hepaticum and its host must be highlighted. The high prevalence observed in A. azarae, associated with the wide size range of the parasite eggs evidenced by principal component analysis, suggests A. azarae to be the Sigmodontinae host species that plays the most important role as reservoir host for C. hepaticum in the New World.
Collapse
Affiliation(s)
- M C Fantozzi
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICIVET LITORAL), Universidad Nacional del Litoral- CONICET, Esperanza, Santa Fe, Argentina
| | - M Reguera-Gomez
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | - P M Beldomenico
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICIVET LITORAL), Universidad Nacional del Litoral- CONICET, Esperanza, Santa Fe, Argentina
| | - S Mas-Coma
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
- Consorcio Centro de Investigación Biomédica en Red (CIBER), Área de Enfermedades Infecciosas (CIBERINFEC), ISC III, Madrid, Spain
| | - M D Bargues
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
- Consorcio Centro de Investigación Biomédica en Red (CIBER), Área de Enfermedades Infecciosas (CIBERINFEC), ISC III, Madrid, Spain
| | - M A Valero
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
- Consorcio Centro de Investigación Biomédica en Red (CIBER), Área de Enfermedades Infecciosas (CIBERINFEC), ISC III, Madrid, Spain
| |
Collapse
|
2
|
Fantozzi MC, Sanchez JP, Lareschi M, Beldomenico PM. Effects of host factors on the dynamics of fleas (Siphonaptera) in Sigmodontinae rodents (Cricetidae) from El Espinal Ecoregion, Argentina. Acta Trop 2022; 225:106177. [PMID: 34627759 DOI: 10.1016/j.actatropica.2021.106177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 11/25/2022]
Abstract
We investigated the patterns of flea infestation in wild populations of eight Sigmodontinae rodent species: Akodon azarae, Calomys callidus, Calomys venustus, Holochilus chacarius, Necromys lasiurus, Oligoryzomys flavescens, Oligoryzomys nigripes and Oxymycterus rufus. Rodents were captured in systematic trapping sessions carried out along 2 years at two localities from El Espinal Ecoregion, Argentina. Mean flea intensity, occurrence (presence/absence) of flea infestation, richness and diversity were compared for different ages, body condition, sex and rodent tribes (Akodontini, Oryzomyini and Phyllotini). A total of 376 fleas of the following species and subspecies were collected: Craneopsylla minerva wolffhuegeli, Polygenis (Neopolygenis) pradoi, Polygenis (Polygenis) axius axius, and Polygenis (Polygenis) byturus. The most important factor driving flea infestation was the rodent tribe, with Phyllotini showing the highest values of occurrence, abundance and species richness. Only C. m. wolffhuegeli was affected by the sex of the host. Age and body condition of the hosts did not affect flea infestation. Our results contribute to knowledge of the ecology of fleas on rodent hosts in El Espinal Ecoregion. The relevance of host taxonomy as driver of flea dynamics highlight the importance of considering host community structures at the time of studying the ecology of parasites.
Collapse
Affiliation(s)
- M Cecilia Fantozzi
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICIVET LITORAL), Universidad Nacional del Litoral- CONICET, Argentina.
| | - Juliana P Sanchez
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires-CITNOBA (CONICET-UNNOBA), Ruta Provincial 32Km3,5, 2700 Pergamino, Argentina.
| | - Marcela Lareschi
- Centro de Estudios Parasitológicos y de Vectores, CEPAVE (CCT CONICET La Plata-UNLP), Bv. 120 s/n e/ 60 y 61, 1900 La Plata, Argentina.
| | - Pablo M Beldomenico
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICIVET LITORAL), Universidad Nacional del Litoral- CONICET, Argentina.
| |
Collapse
|
3
|
Fischer S, Franke A, Imholt C, Gethmann J, Spierling NG, Jacob J, Beer M, Hoffmann D, Ulrich RG. Patchy Occurrence of Cowpox Virus in Voles from Germany. Vector Borne Zoonotic Dis 2020; 20:471-475. [PMID: 32013767 DOI: 10.1089/vbz.2019.2530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cowpox virus (CPXV), genus Orthopoxvirus, family Poxviridae, is a zoonotic pathogen in Eurasian wild rodents. High seroprevalences have been reported previously for vole and murine species in Europe. In contrast, viral DNA was only rarely detected, and very few reservoir-derived CPXV isolates exist. In this study, CPXV DNA and CPXV-reactive antibodies were monitored in wild small mammals for 5 years in four German federal states. Screening of liver tissues of 3966 animals by CPXV real-time PCR (qPCR) revealed five voles of two species positive for CPXV DNA. Two positive bank voles (Myodes glareolus) and two positive common voles (Microtus arvalis) originated from two plots in Baden-Wuerttemberg. One positive bank vole originated from Mecklenburg-Western Pomerania. None of the small mammals from Thuringia and North Rhine-Westphalia was positive in the qPCR. CPXV antigen-based indirect immunofluorescence assays of 654 highly diluted chest cavity fluid samples detected two bank voles and two common voles from the same sites in Baden-Wuerttemberg to be highly seroreactive. Five animals were CPXV DNA positive, and four other animals were orthopoxvirus seropositive. Our study indicates both a very low prevalence and a patchy occurrence of CPXV in common and bank voles and absence in other rodent and shrew species in Germany. The multiple detection of infected voles at one site in Baden-Wuerttemberg and continued detection in a region of Mecklenburg-Western Pomerania classify these regions as potential endemic foci.
Collapse
Affiliation(s)
- Stefan Fischer
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Annika Franke
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Christian Imholt
- Institute for Plant Protection in Horticulture and Forests, Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Vertebrate Research, Münster, Germany
| | - Jörn Gethmann
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Nastasja G Spierling
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Jens Jacob
- Institute for Plant Protection in Horticulture and Forests, Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Vertebrate Research, Münster, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
4
|
Wanelik KM, Begon M, Arriero E, Bradley JE, Friberg IM, Jackson JA, Taylor CH, Paterson S. Transcriptome-wide analysis reveals different categories of response to a standardised immune challenge in a wild rodent. Sci Rep 2020; 10:7444. [PMID: 32366957 PMCID: PMC7198573 DOI: 10.1038/s41598-020-64307-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/14/2020] [Indexed: 11/09/2022] Open
Abstract
Individuals vary in their immune response and, as a result, some are more susceptible to infectious disease than others. Little is known about the nature of this individual variation in natural populations, or which components of immune pathways are most responsible, but defining this underlying landscape of variation is an essential first step to understanding the drivers of this variation and, ultimately, predicting the outcome of infection. We describe transcriptome-wide variation in response to a standardised immune challenge in wild field voles. We find that genes (hereafter 'markers') can be categorised into a limited number of types. For the majority of markers, the response of an individual is dependent on its baseline expression level, with significant enrichment in this category for conventional immune pathways. Another, moderately sized, category contains markers for which the responses of different individuals are also variable but independent of their baseline expression levels. This category lacks any enrichment for conventional immune pathways. We further identify markers which display particularly high individual variability in response, and could be used as markers of immune response in larger studies. Our work shows how a standardised challenge performed on a natural population can reveal the patterns of natural variation in immune response.
Collapse
Affiliation(s)
- Klara M Wanelik
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.
| | - Mike Begon
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Elena Arriero
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.,Department of Biodiversity, Ecology and Evolution, University Complutense of Madrid, Madrid, Spain
| | - Janette E Bradley
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Ida M Friberg
- School of Environment and Life Sciences, University of Salford, Salford, United Kingdom
| | - Joseph A Jackson
- School of Environment and Life Sciences, University of Salford, Salford, United Kingdom
| | | | - Steve Paterson
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
5
|
Gilg O, Bollache L, Afonso E, Yannic G, Schmidt NM, Hansen LH, Hansen J, Sittler B, Lang J, Meyer N, Sabard B, Gilg V, Lang A, Lebbar M, Haukisalmi V, Henttonen H, Moreau J. Are gastrointestinal parasites associated with the cyclic population dynamics of their arctic lemming hosts? Int J Parasitol Parasites Wildl 2019; 10:6-12. [PMID: 31321206 PMCID: PMC6612653 DOI: 10.1016/j.ijppaw.2019.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/23/2019] [Accepted: 06/24/2019] [Indexed: 11/24/2022]
Abstract
Many rodents, including most populations of arctic lemmings (genus Dicrostonyx and Lemmus), have cyclic population dynamics. Among the numerous hypotheses which have been proposed and tested to explain this typical characteristic of some terrestrial vertebrate communities, trophic interactions have often been presented as the most likely drivers of these periodic fluctuations. The possible role of parasites has, however, only seldom been assessed. In this study, we genetically measured the prevalence of two endoparasite taxa, eimerians and cestodes, in 372 faecal samples from collared lemmings, over a five year period and across three distant sites in Northeast Greenland. Prevalence of cestodes was low (2.7% over all sites and years) and this taxon was only found at one site (although in 4 out of 5 years) in adult hosts. By contrast, we found high prevalence for eimerians (77.7% over all sites and years), which occurred at all sites, in every year, for both age classes (at the Hochstetter Forland site where both adult and juvenile faeces were collected) and regardless of reproductive and social status inferred from the characteristics of the lemming nests where the samples had been collected. Prevalence of eimerians significantly varied among years (not among sites) and was higher for juvenile than for adult lemmings at the Hochstetter Forland site. However, higher prevalence of eimerians (P t ) was only associated with lower lemming density (N t ) at one of the three sites and we found no delayed density dependence between N t and P t+1 to support the parasite hypothesis. Our results show that there is no clear relation between lemming density and eimerian faecal prevalence in Northeast Greenland and hence no evidence that eimerians could be driving the cyclic population dynamics of collared lemmings in this region.
Collapse
Affiliation(s)
- Olivier Gilg
- Laboratoire Chrono-environnement, UMR 6249 CNRS-UFC, Université de Franche-Comté, 25000, Besançon, France
- Groupe de Recherche en Ecologie Arctique, 16 rue de Vernot, 21440, Francheville, France
| | - Loïc Bollache
- Laboratoire Chrono-environnement, UMR 6249 CNRS-UFC, Université de Franche-Comté, 25000, Besançon, France
- Groupe de Recherche en Ecologie Arctique, 16 rue de Vernot, 21440, Francheville, France
| | - Eve Afonso
- Laboratoire Chrono-environnement, UMR 6249 CNRS-UFC, Université de Franche-Comté, 25000, Besançon, France
| | - Glenn Yannic
- Groupe de Recherche en Ecologie Arctique, 16 rue de Vernot, 21440, Francheville, France
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France
| | - Niels Martin Schmidt
- Arctic Research Centre, Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Lars Holst Hansen
- Arctic Research Centre, Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Jannik Hansen
- Arctic Research Centre, Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Benoît Sittler
- Groupe de Recherche en Ecologie Arctique, 16 rue de Vernot, 21440, Francheville, France
- Chair for Nature Conservation and Landscape Ecology, Tennenbacherstrasse 4, 79106, Freiburg, Germany
| | - Johannes Lang
- Groupe de Recherche en Ecologie Arctique, 16 rue de Vernot, 21440, Francheville, France
- Clinic for Birds, Reptiles, Amphibians and Fish, Working Group for Wildlife Biology, Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | - Nicolas Meyer
- Laboratoire Chrono-environnement, UMR 6249 CNRS-UFC, Université de Franche-Comté, 25000, Besançon, France
- Groupe de Recherche en Ecologie Arctique, 16 rue de Vernot, 21440, Francheville, France
| | - Brigitte Sabard
- Groupe de Recherche en Ecologie Arctique, 16 rue de Vernot, 21440, Francheville, France
| | - Vladimir Gilg
- Groupe de Recherche en Ecologie Arctique, 16 rue de Vernot, 21440, Francheville, France
| | - Anita Lang
- Groupe de Recherche en Ecologie Arctique, 16 rue de Vernot, 21440, Francheville, France
- Nonnenrötherstr. 14a, 35423, Lich, Germany
| | - Mathilde Lebbar
- UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| | | | | | - Jérôme Moreau
- Groupe de Recherche en Ecologie Arctique, 16 rue de Vernot, 21440, Francheville, France
- UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| |
Collapse
|
6
|
Antibodies and coinfection drive variation in nematode burdens in wild mice. Int J Parasitol 2018; 48:785-792. [DOI: 10.1016/j.ijpara.2018.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/04/2018] [Accepted: 04/11/2018] [Indexed: 12/19/2022]
|
7
|
Reynolds MG, Guagliardo SAJ, Nakazawa YJ, Doty JB, Mauldin MR. Understanding orthopoxvirus host range and evolution: from the enigmatic to the usual suspects. Curr Opin Virol 2018; 28:108-115. [PMID: 29288901 DOI: 10.1016/j.coviro.2017.11.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 11/16/2022]
Abstract
In general, orthopoxviruses can be considered as falling into one of three host-utilization categories: highly specialized, single-host; broad host range; or 'cryptic', the last encompassing those viruses about which very little is known. Single-host viruses tend to exploit abundant hosts that have consistent patterns of interaction. For these viruses, observed genome reduction and loss of presumptive host-range genes is thought to be a consequence of relaxed selection. In contrast, the large genome size retained among broad host range orthopoxviruses suggests these viruses may depend on multiple host species for persistence in nature. Our understanding of the ecologic requirements of orthopoxviruses is strongly influenced by geographic biases in data collection. This hinders our ability to predict potential sources for emergence of orthopoxvirus-associated infections.
Collapse
Affiliation(s)
- Mary G Reynolds
- United States Centers for Disease Control and Prevention, Division of High-Consequence Pathogens and Pathology, Poxvirus and Rabies Branch, 1600 Clifton Rd., NE Atlanta, GA 30333, USA.
| | - Sarah Anne J Guagliardo
- United States Centers for Disease Control and Prevention, Division of High-Consequence Pathogens and Pathology, Poxvirus and Rabies Branch, 1600 Clifton Rd., NE Atlanta, GA 30333, USA; United States Centers for Disease Control and Prevention, Epidemic Intelligence Service, 1600 Clifton Rd., NE Atlanta, GA 30333, USA
| | - Yoshinori J Nakazawa
- United States Centers for Disease Control and Prevention, Division of High-Consequence Pathogens and Pathology, Poxvirus and Rabies Branch, 1600 Clifton Rd., NE Atlanta, GA 30333, USA
| | - Jeffrey B Doty
- United States Centers for Disease Control and Prevention, Division of High-Consequence Pathogens and Pathology, Poxvirus and Rabies Branch, 1600 Clifton Rd., NE Atlanta, GA 30333, USA
| | - Matthew R Mauldin
- United States Centers for Disease Control and Prevention, Division of High-Consequence Pathogens and Pathology, Poxvirus and Rabies Branch, 1600 Clifton Rd., NE Atlanta, GA 30333, USA
| |
Collapse
|
8
|
Wanelik KM, Burthe SJ, Harris MP, Nunn MA, Godfray HCJ, Sheldon BC, McLean AR, Wanless S. Investigating the effects of age-related spatial structuring on the transmission of a tick-borne virus in a colonially breeding host. Ecol Evol 2017; 7:10930-10940. [PMID: 29299270 PMCID: PMC5743484 DOI: 10.1002/ece3.3612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 09/20/2017] [Accepted: 10/16/2017] [Indexed: 11/11/2022] Open
Abstract
Higher pathogen and parasite transmission is considered a universal cost of colonial breeding due to the physical proximity of colony members. However, this has rarely been tested in natural colonies, which are structured entities, whose members interact with a subset of individuals and differ in their infection histories. We use a population of common guillemots, Uria aalge, infected by a tick-borne virus, Great Island virus, to explore how age-related spatial structuring can influence the infection costs borne by different members of a breeding colony. Previous work has shown that the per-susceptible risk of infection (force of infection) is different for prebreeding (immature) and breeding (adult) guillemots which occupy different areas of the colony. We developed a mathematical model which showed that this difference in infection risk can only be maintained if mixing between these age groups is low. To estimate mixing between age groups, we recorded the movements of 63 individually recognizable, prebreeding guillemots in four different parts of a major colony in the North Sea during the breeding season. Prebreeding guillemots infrequently entered breeding areas (in only 26% of watches), though with marked differences in frequency of entry among individuals and more entries toward the end of the breeding season. Once entered, the proportion of time spent in breeding areas by prebreeding guillemots also varied between different parts of the colony. Our data and model predictions indicate low levels of age-group mixing, limiting exposure of breeding guillemots to infection. However, they also suggest that prebreeding guillemots have the potential to play an important role in driving infection dynamics. This highlights the sensitivity of breeding colonies to changes in the behavior of their members-a subject of particular importance in the context of global environmental change.
Collapse
Affiliation(s)
- Klara M. Wanelik
- Department of ZoologyUniversity of OxfordOxfordUK
- Centre for Ecology & HydrologyWallingfordUK
- Institute of Integrative BiologyUniversity of LiverpoolLiverpoolUK
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Kallio ER, Helle H, Koskela E, Mappes T, Vapalahti O. Age-related effects of chronic hantavirus infection on female host fecundity. J Anim Ecol 2015; 84:1264-72. [PMID: 25965086 DOI: 10.1111/1365-2656.12387] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 05/05/2015] [Indexed: 12/24/2022]
Abstract
1. Pathogens often cause detrimental effects to their hosts and, consequently, may influence host population dynamics that may, in turn, feed back to pathogen transmission dynamics. Understanding fitness effects of pathogens upon animal host populations can help to predict the risks that zoonotic pathogens pose to humans. 2. Here we determine whether chronic infection by Puumala hantavirus (PUUV) affects important fitness-related traits, namely the probability of breeding, reproductive effort and mother and offspring condition, in the bank vole (Myodes glareolus). Using 9 years empirical data in a PUUV endemic area in Central Finland, we found differences between reproductive characteristics of PUUV-infected and uninfected female bank voles. 3. Young infected females had a significantly higher, and old individuals lower, likelihood of reproducing than uninfected animals during the middle of the breeding season. The implication is that PUUV infection may have long-term deleterious effects that are observed at old age, while in young individuals, the infection may enhance breeding probability by directing resources towards current breeding. 4. Moreover, PUUV infection was related with the mother's body condition. Infected mothers were in poorer condition than uninfected mothers in the early breeding season, but were in better condition than uninfected mothers during the middle of the breeding season. Offspring body condition was positively associated with mother's body condition, which, in turn, was related to the PUUV infection status of the mother. 5. Our findings indicate that chronic infection may affect the reproduction of female hosts, but the effect is dependent on the host age. The effect of chronic hantavirus infection was small and density-independent and hence unlikely to contribute to the cyclic population dynamics of the host. However, the effects on a female's reproductive output might affect the abundance of young susceptible individuals in the population and hence influence the transmission and persistence of the pathogen. Although experimental and long-term capture-mark-recapture studies are required to further clarify the fitness effects of hantavirus infection and their consequences for pathogen dynamics, this study shows that the infection may have complex effects that are dependent on the age of the individual and the time of the breeding season.
Collapse
Affiliation(s)
- Eva R Kallio
- Department of Biological and Environmental Science, University of Jyvaskyla, P.O. Box 35, FI-40014, Jyvaskyla, Finland.,Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Heikki Helle
- Department of Biological and Environmental Science, University of Jyvaskyla, P.O. Box 35, FI-40014, Jyvaskyla, Finland
| | - Esa Koskela
- Department of Biological and Environmental Science, University of Jyvaskyla, P.O. Box 35, FI-40014, Jyvaskyla, Finland
| | - Tapio Mappes
- Department of Biological and Environmental Science, University of Jyvaskyla, P.O. Box 35, FI-40014, Jyvaskyla, Finland
| | - Olli Vapalahti
- Department of Virology, Haartman Institute, University of Helsinki, P.O. Box 21, FI-00014, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, P.O. Box 66, FI-00014, Helsinki, Finland.,HUSLAB, Department of Virology and Immunology, Hospital District of Helsinki and Uusimaa, FI-00029, Helsinki, Finland
| |
Collapse
|
10
|
TURNER AK, BELDOMENICO PM, BOWN K, BURTHE SJ, JACKSON JA, LAMBIN X, BEGON M. Host-parasite biology in the real world: the field voles of Kielder. Parasitology 2014; 141:997-1017. [PMID: 24612619 PMCID: PMC4047648 DOI: 10.1017/s0031182014000171] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/20/2013] [Accepted: 01/22/2014] [Indexed: 12/21/2022]
Abstract
Research on the interactions between the field voles (Microtus agrestis) of Kielder Forest and their natural parasites dates back to the 1930s. These early studies were primarily concerned with understanding how parasites shape the characteristic cyclic population dynamics of their hosts. However, since the early 2000s, research on the Kielder field voles has expanded considerably and the system has now been utilized for the study of host-parasite biology across many levels, including genetics, evolutionary ecology, immunology and epidemiology. The Kielder field voles therefore represent one of the most intensely and broadly studied natural host-parasite systems, bridging theoretical and empirical approaches to better understand the biology of infectious disease in the real world. This article synthesizes the body of work published on this system and summarizes some important insights and general messages provided by the integrated and multidisciplinary study of host-parasite interactions in the natural environment.
Collapse
Affiliation(s)
- A. K. TURNER
- Institute of Integrative Biology, University of
Liverpool, UK
| | - P. M. BELDOMENICO
- Institute of Integrative Biology, University of
Liverpool, UK
- National Centre for Zoonosis Research, University
of Liverpool, UK
- Laboratorio de Ecología de Enfermedades,
Instituto de Ciencias Veterinarias del Litoral, Universidad Nacional del
Litoral – Consejo de Investigaciones Científicas y Técnicas (UNL – CONICET),
Esperanza, Argentina
| | - K. BOWN
- Institute of Integrative Biology, University of
Liverpool, UK
- School of Environment & Life Sciences,
University of Salford, UK
| | - S. J. BURTHE
- Institute of Integrative Biology, University of
Liverpool, UK
- National Centre for Zoonosis Research, University
of Liverpool, UK
- Centre for Ecology & Hydrology, Natural
Environmental Research Council, Edinburgh,
UK
| | - J. A. JACKSON
- Institute of Integrative Biology, University of
Liverpool, UK
- Institute of Biological, Environmental and Rural
Sciences, University of Aberystwyth, UK
| | - X. LAMBIN
- School of Biological Sciences, University of
Aberdeen, UK
| | - M. BEGON
- Institute of Integrative Biology, University of
Liverpool, UK
| |
Collapse
|
11
|
|
12
|
Eberhardt AT, Costa SA, Marini MR, Racca A, Baldi CJ, Robles MR, Moreno PG, Beldomenico PM. Parasitism and physiological trade-offs in stressed capybaras. PLoS One 2013; 8:e70382. [PMID: 23894644 PMCID: PMC3722164 DOI: 10.1371/journal.pone.0070382] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 06/19/2013] [Indexed: 01/21/2023] Open
Abstract
Parasites play a key role in regulating wildlife population dynamics, but their impact on the host appears to be context-dependent. Evidence indicates that a synergistic interaction between stress, host condition and parasites is implicated in this phenomenon, but more studies are needed to better understand this context-dependency. With the goal to assess the net effect of two types of chronic stress on various host-parasite interactions, we conducted an experiment in capybaras to evaluate the impact of food restriction and physical restraint on the infection intensity of specific gastrointestinal nematodes and coccidia, and how these stressors affected the growth, body condition, and some immuno-physiological parameters. Our hypothesis was that both forms of stress would result in an alteration in the host-parasite interactions, with deteriorated condition and reduced immunological investment leading to high parasite burdens and vice versa. Stressed capybaras had significantly higher coccidia infection intensities; but among individuals that were smaller, those stressed consistently showed lower helminth burdens than controls. Both stress treatments had a marked negative impact on growth and body condition, but concomitantly they had a significant positive effect on some components of the immune system. Our results suggest, on the one hand, that during prolonged periods of stress capybaras preventatively invest in some components of their immunity, such as innate humoural defenses and cells that combat helminths, which could be considered a stress-dependent prophylaxis. On the other hand, stress was found to cause greater infection intensities of protozoans but lower burdens of nematodes, indicating that the relationship between stress, physiological trade-offs and infection depends on the type of parasite in question. Moreover, both findings might be related in a causal way, as one of the immunological parameters enhanced in stressed capybaras is associated with the immune response to control helminths.
Collapse
Affiliation(s)
- Ayelen T Eberhardt
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral - Consejo de Investigaciones Científicas y Técnicas (UNL - CONICET). Esperanza, Santa Fe, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Wei Y, Neal P, Telfer S, Begon M. Statistical analysis of an endemic disease from a capture–recapture experiment. J Appl Stat 2012. [DOI: 10.1080/02664763.2012.725467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Population density and seasonality effects on Sin Nombre virus transmission in North American deermice (Peromyscus maniculatus) in outdoor enclosures. PLoS One 2012; 7:e37254. [PMID: 22768034 PMCID: PMC3387171 DOI: 10.1371/journal.pone.0037254] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 04/16/2012] [Indexed: 12/22/2022] Open
Abstract
Surveys of wildlife host-pathogen systems often document clear seasonal variation in transmission; conclusions concerning the relationship between host population density and transmission vary. In the field, effects of seasonality and population density on natural disease cycles are challenging to measure independently, but laboratory experiments may poorly reflect what happens in nature. Outdoor manipulative experiments are an alternative that controls for some variables in a relatively natural environment. Using outdoor enclosures, we tested effects of North American deermouse (Peromyscus maniculatus) population density and season on transmission dynamics of Sin Nombre hantavirus. In early summer, mid-summer, late summer, and fall 2007–2008, predetermined numbers of infected and uninfected adult wild deermice were released into enclosures and trapped weekly or bi-weekly. We documented 18 transmission events and observed significant seasonal effects on transmission, wounding frequency, and host breeding condition. Apparent differences in transmission incidence or wounding frequency between high- and low-density treatments were not statistically significant. However, high host density was associated with a lower proportion of males with scrotal testes. Seasonality may have a stronger influence on disease transmission dynamics than host population density, and density effects cannot be considered independent of seasonality.
Collapse
|
15
|
Turner AK, Begon M, Jackson JA, Paterson S. Evidence for selection at cytokine loci in a natural population of field voles (Microtus agrestis). Mol Ecol 2012; 21:1632-46. [PMID: 22364125 DOI: 10.1111/j.1365-294x.2012.05501.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Individuals in natural populations are frequently exposed to a wide range of pathogens. Given the diverse profile of gene products involved in responses to different types of pathogen, this potentially results in complex pathogen-specific selection pressures acting on a broad spectrum of immune system genes in wild animals. Thus far, studies into the evolution of immune genes in natural populations have focused almost exclusively on the Major Histocompatibility Complex (MHC). However, the MHC represents only a fraction of the immune system and there is a need to broaden research in wild species to include other immune genes. Here, we examine the evidence for natural selection in a range of non-MHC genes in a natural population of field voles (Microtus agrestis). We concentrate primarily on genes encoding cytokines, signalling molecules critical in eliciting and mediating immune responses and identify signatures of natural selection acting on several of these genes. In particular, genetic diversity within Interleukin 1 beta and Interleukin 2 appears to have been maintained through balancing selection. Taken together with previous findings that polymorphism within these genes is associated with variation in resistance to multiple pathogens, this suggests that pathogen-mediated selection may be an important force driving genetic diversity at cytokine loci in voles and other natural populations. These results also suggest that, along with the MHC, preservation of genetic variation within cytokine genes should be a priority for the conservation genetics of threatened wildlife populations.
Collapse
Affiliation(s)
- Andrew K Turner
- Institute of Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | | | | | | |
Collapse
|
16
|
Babayan SA, Allen JE, Bradley JE, Geuking MB, Graham AL, Grencis RK, Kaufman J, McCoy KD, Paterson S, Smith KGC, Turnbaugh PJ, Viney ME, Maizels RM, Pedersen AB. Wild immunology: converging on the real world. Ann N Y Acad Sci 2011; 1236:17-29. [PMID: 22032399 DOI: 10.1111/j.1749-6632.2011.06251.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recently, the Centre for Immunity, Infection and Evolution sponsored a one-day symposium entitled "Wild Immunology." The CIIE is a new Wellcome Trust-funded initiative with the remit to connect evolutionary biology and ecology with research in immunology and infectious diseases in order to gain an interdisciplinary perspective on challenges to global health. The central question of the symposium was, "Why should we try to understand infection and immunity in wild systems?" Specifically, how does the immune response operate in the wild and how do multiple coinfections and commensalism affect immune responses and host health in these wild systems? The symposium brought together a broad program of speakers, ranging from laboratory immunologists to infectious disease ecologists, working on wild birds, unmanaged animals, wild and laboratory rodents, and on questions ranging from the dynamics of coinfection to how commensal bacteria affect the development of the immune system. The meeting on wild immunology, organized by Amy Pedersen, Simon Babayan, and Rick Maizels, was held at the University of Edinburgh on 30 June 2011.
Collapse
Affiliation(s)
- Simon A Babayan
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Kings Buildings, Edinburgh, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tack DM, Reynolds MG. Zoonotic Poxviruses Associated with Companion Animals. Animals (Basel) 2011; 1:377-95. [PMID: 26486622 PMCID: PMC4513476 DOI: 10.3390/ani1040377] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 11/02/2011] [Accepted: 11/15/2011] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Contemporary enthusiasm for the ownership of exotic animals and hobby livestock has created an opportunity for the movement of poxviruses—such as monkeypox, cowpox, and orf—outside their traditional geographic range bringing them into contact with atypical animal hosts and groups of people not normally considered at risk. It is important that pet owners and practitioners of human and animal medicine develop a heightened awareness for poxvirus infections and understand the risks that can be associated with companion animals and livestock. This article reviews the epidemiology and clinical features of zoonotic poxviruses that are most likely to affect companion animals. Abstract Understanding the zoonotic risk posed by poxviruses in companion animals is important for protecting both human and animal health. The outbreak of monkeypox in the United States, as well as current reports of cowpox in Europe, point to the fact that companion animals are increasingly serving as sources of poxvirus transmission to people. In addition, the trend among hobbyists to keep livestock (such as goats) in urban and semi-urban areas has contributed to increased parapoxvirus exposures among people not traditionally considered at high risk. Despite the historic notoriety of poxviruses and the diseases they cause, poxvirus infections are often missed. Delays in diagnosing poxvirus-associated infections in companion animals can lead to inadvertent human exposures. Delays in confirming human infections can result in inappropriate treatment or prolonged recovery. Early recognition of poxvirus-associated infections and application of appropriate preventive measures can reduce the spread of virus between companion animals and their owners. This review will discuss the epidemiology and clinical features associated with the zoonotic poxvirus infections most commonly associated with companion animals.
Collapse
Affiliation(s)
- Danielle M Tack
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | - Mary G Reynolds
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| |
Collapse
|
18
|
Bown KJ, Lambin X, Telford G, Heyder-Bruckner D, Ogden NH, Birtles RJ. The common shrew (Sorex araneus): a neglected host of tick-borne infections? Vector Borne Zoonotic Dis 2011; 11:947-53. [PMID: 21453011 DOI: 10.1089/vbz.2010.0185] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although the importance of rodents as reservoirs for a number of tick-borne infections is well established, comparatively little is known about the potential role of shrews, despite them occupying similar habitats. To address this, blood and tick samples were collected from common shrews (Sorex araneus) and field voles (Microtus agrestis), a known reservoir of various tick-borne infections, from sites located within a plantation forest in northern England over a 2-year period. Of 647 blood samples collected from shrews, 121 (18.7%) showed evidence of infection with Anaplasma phagocytophilum and 196 (30.3%) with Babesia microti. By comparison, of 1505 blood samples from field voles, 96 (6.4%) were positive for A. phagocytophilum and 458 (30.4%) for Ba. microti. Both species were infested with the ticks Ixodes ricinus and Ixodes trianguliceps, although they had different burdens: on average, shrews carried almost six times as many I. trianguliceps larvae, more than twice as many I. ricinus larvae, and over twice as many nymphs (both tick species combined). The finding that the nymphs collected from shrews were almost exclusively I. trianguliceps highlights that this species is the key vector of these infections in this small mammal community. These findings suggest that common shrews are a reservoir of tick-borne infections and that the role of shrews in the ecology and epidemiology of tick-borne infections elsewhere needs to be comprehensively investigated.
Collapse
Affiliation(s)
- Kevin J Bown
- Department of Veterinary Pathology, University of Liverpool, Neston, Cheshire, United Kingdom.
| | | | | | | | | | | |
Collapse
|
19
|
Kinnunen PM, Henttonen H, Hoffmann B, Kallio ER, Korthase C, Laakkonen J, Niemimaa J, Palva A, Schlegel M, Ali HS, Suominen P, Ulrich RG, Vaheri A, Vapalahti O. Orthopox virus infections in Eurasian wild rodents. Vector Borne Zoonotic Dis 2011; 11:1133-40. [PMID: 21453121 DOI: 10.1089/vbz.2010.0170] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The genus Orthopoxvirus includes variola (smallpox) virus and zoonotic cowpox virus (CPXV). All orthopoxviruses (OPV) are serologically cross-reactive and cross-protective, and after the cessation of smallpox vaccination, CPXV and other OPV infections represent an emerging threat to human health. In this respect CPXV, with its reservoir in asymptomatically infected wild rodents, is of special importance. In Europe, clinical cowpox has been diagnosed in both humans and animals. The main objective of this study was to elucidate the prevalence of OPV infections in wild rodents in different parts of Eurasia and to compare the performance of three real-time polymerase chain reaction (PCR) methods in detecting OPV DNA in wildlife samples. We investigated 962 wild rodents from Northern Europe (Finland), Central Europe (Germany), and Northern Asia (Siberia, Russia) for the presence of OPV antibodies. According to a CPXV antigen-based immunofluorescence assay, animals from 13 of the 17 locations (76%) showed antibodies. Mean seroprevalence was 33% in Finland (variation between locations 0%-69%), 32% in Germany (0%-43%), and 3.2% (0%-15%) in Siberia. We further screened tissue samples from 513 of the rodents for OPV DNA using up to three real-time PCRs. Three rodents from two German and one Finnish location were OPV DNA positive. The amplicons were 96% to 100% identical to available CPXV sequences. Further, we demonstrated OPV infections as far east as the Baikal region and occurring in hamster and two other rodent species, ones previously unnoticed as possible reservoir hosts. Based on serological and PCR findings, Eurasian wild rodents are frequently but nonpersistently infected with OPVs. Results from three real-time PCR methods were highly concordant. This study extends the geographic range and wildlife species diversity in which OPV (or CPXV) viruses are naturally circulating.
Collapse
Affiliation(s)
- Paula M Kinnunen
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Delayed density-dependent prevalence of Sin Nombre virus infection in deer mice (Peromyscus maniculatus) in central and western Montana. J Wildl Dis 2011; 47:56-63. [PMID: 21269997 DOI: 10.7589/0090-3558-47.1.56] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Understanding how transmission of zoonoses takes place within reservoir populations, such as Sin Nombre virus (SNV) among deer mice (Peromyscus maniculatus), is important in determining the risk of exposure to other hosts, including humans. In this study, we examined the relationship between deer mouse populations and the prevalence of antibodies to SNV, a system where the effect of host population abundance on transmission is debated. We examined the relationship between abundance of deer mice in late summer-early autumn and SNV antibody prevalence the following spring-early summer (termed delayed density-dependent [DDD] prevalence of infection) at both regional and local scales, using 12 live-trapping grids for 11-14 yr, across central and western Montana. When all trapping grids were combined (regional scale), there was a significant DDD relationship for individual months and when months within seasons were averaged. However, within individual grids (local scale), evidence of DDD prevalence of infection was observed consistently at only one location. These findings suggest that, although there is evidence of DDD prevalence of infection at regional scales, it is not always apparent at local scales, possibly because the regional pattern of DDD infection prevalence is driven by differences in abundance and prevalence among sites, rather than in autumn-spring delays. Transmission of SNV may be more complex than the original hypothesis of autumn-spring delayed density dependence suggests. This complexity is also supported by recent modeling studies. Empirical investigations are needed to determine the duration and determinants of time-lagged abundance and antibody prevalence. Our study suggests predicting local, human exposure risk to SNV in spring, based on deer mouse abundance in autumn, is unlikely to be a reliable public health tool, particularly at local scales.
Collapse
|
21
|
JACKSON JOSEPHA, BEGON MICHAEL, BIRTLES RICHARD, PATERSON STEVE, FRIBERG IDAM, HALL AMY, LOWE ANN, RALLI CATRIONA, TURNER ANDREW, ZAWADZKA MALGORZATA, BRADLEY JANETTEE. The analysis of immunological profiles in wild animals: a case study on immunodynamics in the field vole, Microtus agrestis. Mol Ecol 2010; 20:893-909. [DOI: 10.1111/j.1365-294x.2010.04907.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Bown KJ, Lambin X, Ogden NH, Begon M, Telford G, Woldehiwet Z, Birtles RJ. Delineating Anaplasma phagocytophilum ecotypes in coexisting, discrete enzootic cycles. Emerg Infect Dis 2010; 15:1948-54. [PMID: 19961674 PMCID: PMC3044514 DOI: 10.3201/eid1512.090178] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The emerging tick-borne pathogen Anaplasma phagocytophilum is under increasing scrutiny for the existence of subpopulations that are adapted to different natural cycles. Here, we characterized the diversity of A. phagocytophilum genotypes circulating in a natural system that includes multiple hosts and at least 2 tick species, Ixodes ricinus and the small mammal specialist I. trianguliceps. We encountered numerous genotypes, but only 1 in rodents, with the remainder limited to deer and host-seeking I. ricinus ticks. The absence of the rodent-associated genotype from host-seeking I. ricinus ticks was notable because we demonstrated that rodents fed a large proportion of the I. ricinus larval population and that these larvae were abundant when infections caused by the rodent-associated genotype were prevalent. These observations are consistent with the conclusion that genotypically distinct subpopulations of A. phagocytophilum are restricted to coexisting but separate enzootic cycles and suggest that this restriction may result from specific vector compatibility.
Collapse
|
23
|
Coltherd JC, Morgan C, Judge J, Smith LA, Hutchings MR. The effects of parasitism on recapture rates of wood mice (Apodemus sylvaticus). WILDLIFE RESEARCH 2010. [DOI: 10.1071/wr09159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context. In studies of population dynamics, disease ecology and prevalence, point-sampling of data is a widely used sampling technique and capture–mark–recapture (CMR) is the most popular method of point sampling. Population estimates based on CMR are sensitive to deviations from the assumptions of the models such as equal catchability of all animals. Although consistent deviations from these assumptions can be accounted for in a robust statistical framework (e.g. identification of trap-shy animals), transient effects cannot be adequately incorporated in the statistical models and thus are expected to affect the accuracy of model predictions. In natural animal populations, parasitism is often transient but inevitable and studies showing behavioural changes, e.g. foraging strategies, as a result of infection are numerous. Thus, parasitism may represent a transient source of heterogeneity of trapping probability in small mammal populations and may affect accuracy of wildlife sampling techniques.
Aims. The aim of the present study was to quantify the effect of parasitic status on capture rates of wood mice (Apodemus sylvaticus), and thus the potential for parasitism to act as a source of bias in wildlife sampling techniques such as CMR.
Methods. In total, 41 wood mice were successfully captured, marked and released from two study sites in two different years, with weight, sex and faecal egg counts (FEC; used as a measure of the level of parasitism) recorded at every capture.
Key results. In both studies, FEC was positively correlated with the capture rate of mice and the number of different traps in which an individual was caught.
Conclusions. We conclude that parasitism affects the rate of capture of wood mice and has the potential to represent a significant source of heterogeneity in trapping probability.
Implications. The consistent results of these two small studies suggest that wildlife point-sampling techniques may be biased by the parasitic status of the animals, which has potentially significant and far-reaching implications for wildlife population studies and disease-prevalence studies.
Collapse
|
24
|
Beldomenico PM, Telfer S, Lukomski L, Gebert S, Bennett M, Begon M. Host condition and individual risk of cowpox virus infection in natural animal populations: cause or effect? Epidemiol Infect 2009; 137:1295-301. [PMID: 19144246 PMCID: PMC2952828 DOI: 10.1017/s0950268808001866] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Recent studies have provided evidence that endemic pathogens may affect dynamics in animals. However, such studies have not typically considered that infected individuals might have a preceding underlying poor condition. We examined whether individuals in poor condition are more likely to become infected by an endemic pathogen, using as a system the dynamics of cowpox virus in field voles. With data from monthly sampled vole populations, a nested case-control study evaluated whether susceptible individuals with poorer condition had higher probabilities of contracting cowpox. The influence of condition was found to be considerable, especially for males. At times when a susceptible male with good body condition had a relatively low probability of becoming infected, a susceptible male with poor body condition was twice as likely to contract cowpox; if this male was also anaemic, the chances were almost quadrupled. We discuss the care needed when interpreting the findings of wildlife disease studies.
Collapse
|
25
|
The vicious circle and infection intensity: The case of Trypanosoma microti in field vole populations. Epidemics 2009; 1:162-7. [DOI: 10.1016/j.epidem.2009.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 05/23/2009] [Accepted: 05/26/2009] [Indexed: 11/22/2022] Open
|
26
|
Host-pathogen time series data in wildlife support a transmission function between density and frequency dependence. Proc Natl Acad Sci U S A 2009; 106:7905-9. [PMID: 19416827 DOI: 10.1073/pnas.0809145106] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A key aim in epidemiology is to understand how pathogens spread within their host populations. Central to this is an elucidation of a pathogen's transmission dynamics. Mathematical models have generally assumed that either contact rate between hosts is linearly related to host density (density-dependent) or that contact rate is independent of density (frequency-dependent), but attempts to confirm either these or alternative transmission functions have been rare. Here, we fit infection equations to 6 years of data on cowpox virus infection (a zoonotic pathogen) for 4 natural populations to investigate which of these transmission functions is best supported by the data. We utilize a simple reformulation of the traditional transmission equations that greatly aids the estimation of the relationship between density and host contact rate. Our results provide support for an infection rate that is a saturating function of host density. Moreover, we find strong support for seasonality in both the transmission coefficient and the relationship between host contact rate and host density, probably reflecting seasonal variations in social behavior and/or host susceptibility to infection. We find, too, that the identification of an appropriate loss term is a key component in inferring the transmission mechanism. Our study illustrates how time series data of the host-pathogen dynamics, especially of the number of susceptible individuals, can greatly facilitate the fitting of mechanistic disease models.
Collapse
|
27
|
Charbonnel N, Deter J, Chaval Y, Laakkonen J, Henttonen H, Voutilainen L, Vapalahti O, Vaheri A, Morand S, Cosson JF. Serological evidence of viruses naturally associated with the montane water vole (Arvicola scherman) in eastern France. Vector Borne Zoonotic Dis 2009; 8:763-7. [PMID: 18752422 DOI: 10.1089/vbz.2007.0167] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We surveyed 12 populations of the montane water vole (Arvicola scherman), previously known as the fossorial form of the water vole A. terrestris, in eastern France for antibodies (immunoglobulin G) to Puumala virus (PUUV), lymphocytic choriomeningitis virus (LCMV), and cowpox virus (CPXV). Antibodies to PUUV were found in 9 (5.5%) of 164 voles from 7 populations, antibodies to LCMV were found in 13 (26.0%) of 50 voles from 2 populations, and antibodies to CPXV were found in 66 (41.8%) of 158 voles from 7 populations. Antibody status to CPXV was statistically associated with the phase of the A. scherman population density cycle and the percentage of grassland areas surrounding the sampling sites.
Collapse
Affiliation(s)
- Nathalie Charbonnel
- Centre de Biologie et de Gestion des Populations, INRA EFPA, Campus International de Baillarguet, Montferrier s/Lez Cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Effects of abundance on infection in natural populations: field voles and cowpox virus. Epidemics 2008; 1:35-46. [PMID: 21352750 DOI: 10.1016/j.epidem.2008.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 10/01/2008] [Accepted: 10/06/2008] [Indexed: 11/24/2022] Open
Abstract
Detailed results on the dynamics of cowpox virus infection in four natural populations of the field vole, Microtus agrestis, are presented. Populations were sampled every 4 weeks (8 weeks in mid-winter) for 6 years. The purpose was to examine the relationships between overall or susceptible host abundance (N, S) and both the number of infected hosts (I) and the prevalence of infection (I/N). Overall, both I and I/N increased with N. However, evidence for a threshold abundance, below which infection was not found, was at best equivocal in spite of the wide range of abundances sampled. Cross-correlation analyses reflected annual and multi-annual cycles in N, I, S and I/N, but whereas N was most strongly correlated with contemporary values of I and I/N, in the case of S, the strongest correlations were with values 1 to 2 months preceding the values of I and I/N. There was no evidence for a 'juvenile dilution effect' (prevalence decreasing with abundance as new susceptibles flush into the population) and only weak evidence of a time-delayed effect of abundance on the number infected. We argue that these effects may occur only in systems with characteristics that are not found here. Transfer function analyses, which have been neglected in epidemiology, were applied. These models, with ln(S) as the input parameter, in spite of their simplicity, could be linked closely to conventional formulations of the transmission process and were highly effective in predicting the number infected. By contrast, transfer function models with ln(N) as the input parameter were less successful in predicting the number infected and/or were more complex and more difficult to interpret. Nonetheless, overall, we contend that while monitoring numbers susceptible has most to offer, monitoring overall abundance may provide valuable insights into the dynamics of infection.
Collapse
|
29
|
Beldomenico PM, Telfer S, Gebert S, Lukomski L, Bennett M, Begon M. The dynamics of health in wild field vole populations: a haematological perspective. J Anim Ecol 2008; 77:984-97. [PMID: 18564292 PMCID: PMC2980900 DOI: 10.1111/j.1365-2656.2008.01413.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. Pathogens have been proposed as potentially important drivers of population dynamics, but while a few studies have investigated the impact of specific pathogens, the wealth of information provided by general indices of health has hardly been exploited. By evaluating haematological parameters in wild populations, our knowledge of the dynamics of health and infection may be better understood. 2. Here, haematological dynamics in natural populations of field voles are investigated to determine environmental and host factors associated with indicators of inflammatory response (counts of monocytes and neutrophils) and of condition: measures of immunological investment (lymphocyte counts) and aerobic capacity (red blood cell counts). 3. Individuals from three field vole populations were sampled monthly for 2 years. Comparisons with individuals kept under controlled conditions facilitated interpretation of field data. Mixed effects models were developed for each cell type to evaluate separately the effects of various factors on post-juvenile voles and mature breeding females. 4. There were three well-characterized 'physiological' seasons. The immunological investment appeared lowest in winter (lowest lymphocyte counts), but red blood cells were at their highest levels and indices of inflammatory response at their lowest. Spring was characterized by a fall in red blood cell counts and peaks in indicators of inflammatory response. During the course of summer-autumn, red blood cell counts recovered, the immunological investment increased and the indicators of inflammatory response decreased. 5. Poor body condition appeared to affect the inflammatory response (lower neutrophil and monocyte peaks) and the immunological investment (lower lymphocyte counts), providing evidence that the capacity to fight infection is dependent upon host condition. 6. Breeding early in the year was most likely in females in better condition (high lymphocyte and red blood cell counts). 7. All the haematological parameters were affected adversely by high population densities.
Collapse
|
30
|
Parasite interactions in natural populations: insights from longitudinal data. Parasitology 2008; 135:767-81. [PMID: 18474121 DOI: 10.1017/s0031182008000395] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The physiological and immunological state of an animal can be influenced by current infections and infection history. Consequently, both ongoing and previous infections can affect host susceptibility to another parasite, the biology of the subsequent infection (e.g. infection length) and the impact of infection on host morbidity (pathology). In natural populations, most animals will be infected by a succession of different parasites throughout the course of their lives, with probably frequent concomitant infections. The relative timing of different infections experienced by a host (i.e. the sequence of infection events), and the effects on factors such as host susceptibility and host survival, can only be derived from longitudinal data on individual hosts. Here we review some of the evidence for the impact of co-infection on host susceptibility, infection biology and pathology focusing on insights obtained from both longitudinal studies in humans and experiments that explicitly consider the sequence of infection. We then consider the challenges posed by longitudinal infection data collected from natural populations of animals. We illustrate their usefulness using our data of microparasite infections associated with field vole (Microtus agrestis) populations to examine impacts on susceptibility and infection length. Our primary aim is to describe an analytical approach that can be used on such data to identify interactions among the parasites. The preliminary analyses presented here indicate both synergistic and antagonistic interactions between microparasites within this community and emphasise that such interactions could have significant impacts on host-parasite fitness and dynamics.
Collapse
|
31
|
Affiliation(s)
- Richard S Ostfeld
- Cary Institute of Ecosystem Studies, PO Box AB, 65 Sharon Turnpike, Millbrook, New York 12545, USA.
| |
Collapse
|
32
|
Burthe S, Telfer S, Begon M, Bennett M, Smith A, Lambin X. Cowpox virus infection in natural field vole Microtus agrestis populations: significant negative impacts on survival. J Anim Ecol 2008; 77:110-9. [PMID: 18177331 DOI: 10.1111/j.1365-2656.2007.01302.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. Cowpox virus is an endemic virus circulating in populations of wild rodents. It has been implicated as a potential cause of population cycles in field voles Microtus agrestis L., in Britain, owing to a delayed density-dependent pattern in prevalence, but its impact on field vole demographic parameters is unknown. This study tests the hypothesis that wild field voles infected with cowpox virus have a lower probability of survival than uninfected individuals. 2. The effect of cowpox virus infection on the probability of an individual surviving to the next month was investigated using longitudinal data collected over 2 years from four grassland sites in Kielder Forest, UK. This effect was also investigated at the population level, by examining whether infection prevalence explained temporal variation in survival rates, once other factors influencing survival had been controlled for. 3. Individuals with a probability of infection, P(I), of 1 at a time when base survival rate was at median levels had a 22.4% lower estimated probability of survival than uninfected individuals, whereas those with a P(I) of 0.5 had a 10.4% lower survival. 4. At the population level, survival rates also decreased with increasing cowpox prevalence, with lower survival rates in months of higher cowpox prevalence. 5. Simple matrix projection models with 28 day time steps and two stages, with 71% of voles experiencing cowpox infection in their second month of life (the average observed seroprevalence at the end of the breeding season) predict a reduction in 28-day population growth rate during the breeding season from lambda = 1.62 to 1.53 for populations with no cowpox infection compared with infected populations. 6. This negative correlation between cowpox virus infection and field vole survival, with its potentially significant effect on population growth rate, is the first for an endemic pathogen in a cyclic population of wild rodents.
Collapse
Affiliation(s)
- Sarah Burthe
- Department of Veterinary Pathology, University of Liverpool, Liverpool, UK
| | | | | | | | | | | |
Collapse
|
33
|
Pedersen AB, Greives TJ. The interaction of parasites and resources cause crashes in a wild mouse population. J Anim Ecol 2007; 77:370-7. [PMID: 18028357 DOI: 10.1111/j.1365-2656.2007.01321.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Populations of white-footed mice Peromyscus leucopus and deer mice Peromyscus maniculatus increase dramatically in response to food availability from oak acorn masts. These populations subsequently decline following this resource pulse, but these crashes cannot be explained solely by resource depletion, as food resources are still available as population crashes begin. 2. We hypothesized that intestinal parasites contribute to these post-mast crashes; Peromyscus are infected by many intestinal parasites that are often transmitted by density-dependent contact and can cause harm to their hosts. To test our hypothesis, we conducted a factorial experiment in natural populations by supplementing food to mimic a mast and by removal of intestinal nematodes with the drug, ivermectin. 3. Both food supplementation and the removal of intestinal nematodes lessened the rate and magnitude of the seasonal population declines as compared with control populations. However, the combination of food supplementation and removal of intestinal nematodes prevented seasonal population crashes entirely. 4. We also showed a direct effect on the condition of individuals. Faecal corticosterone levels, an indicator of the stress response, were significantly reduced in populations receiving both food supplementation and removal of intestinal nematodes. This effect was observed in autumn, before the overwinter crash observed in control populations, which may indicate that stress caused by the combination of food limitation and parasite infection is a physiological signal that predicts low winter survival and reproduction. 5. This study is one of the few to demonstrate that the interaction between resource availability and infectious disease is important for shaping host population dynamics and emphasizes that multiple factors may drive oscillations in wild animal populations.
Collapse
Affiliation(s)
- Amy B Pedersen
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| | | |
Collapse
|
34
|
Smith MJ, White A, Sherratt JA, Telfer S, Begon M, Lambin X. Disease effects on reproduction can cause population cycles in seasonal environments. J Anim Ecol 2007; 77:378-89. [PMID: 18005128 PMCID: PMC2408661 DOI: 10.1111/j.1365-2656.2007.01328.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Recent studies of rodent populations have demonstrated that certain parasites can cause juveniles to delay maturation until the next reproductive season. Furthermore, a variety of parasites may share the same host, and evidence is beginning to accumulate showing nonindependent effects of different infections. We investigated the consequences for host population dynamics of a disease-induced period of no reproduction, and a chronic reduction in fecundity following recovery from infection (such as may be induced by secondary infections) using a modified SIR (susceptible, infected, recovered) model. We also included a seasonally varying birth rate as recent studies have demonstrated that seasonally varying parameters can have important effects on long-term host–parasite dynamics. We investigated the model predictions using parameters derived from five different cyclic rodent populations. Delayed and reduced fecundity following recovery from infection have no effect on the ability of the disease to regulate the host population in the model as they have no effect on the basic reproductive rate. However, these factors can influence the long-term dynamics including whether or not they exhibit multiyear cycles. The model predicts disease-induced multiyear cycles for a wide range of realistic parameter values. Host populations that recover relatively slowly following a disease-induced population crash are more likely to show multiyear cycles. Diseases for which the period of infection is brief, but full recovery of reproductive function is relatively slow, could generate large amplitude multiyear cycles of several years in length. Chronically reduced fecundity following recovery can also induce multiyear cycles, in support of previous theoretical studies. When parameterized for cowpox virus in the cyclic field vole populations (Microtus agrestis) of Kielder Forest (northern England), the model predicts that the disease must chronically reduce host fecundity by more than 70%, following recovery from infection, for it to induce multiyear cycles. When the model predicts quasi-periodic multiyear cycles it also predicts that seroprevalence and the effective date of onset of the reproductive season are delayed density-dependent, two phenomena that have been recorded in the field.
Collapse
Affiliation(s)
- Matthew J Smith
- Department of Mathematics and the Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | | | | | | | | | | |
Collapse
|
35
|
Kallio ER, Voutilainen L, Vapalahti O, Vaheri A, Henttonen H, Koskela E, Mappes T. Endemic hantavirus infection impairs the winter survival of its rodent host. Ecology 2007; 88:1911-6. [PMID: 17824420 DOI: 10.1890/06-1620.1] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The influence of pathogens on host fitness is one of the key questions in infection ecology. Hantaviruses have coevolved with their hosts and are generally thought to have little or no effect on host survival or reproduction. We examined the effect of Puumala virus (PUUV) infection on the winter survival of bank voles (Myodes glareolus), the host of this virus. The data were collected by monitoring 22 islands over three consecutive winters (a total of 55 island populations) in an endemic area of central Finland. We show that PUUV infected bank voles had a significantly lower overwinter survival probability than antibody negative bank voles. Antibody negative female bank voles from low-density populations living on large islands had the highest survival. The results were similar at the population level as the spring population size and density were negatively correlated with PUUV prevalence in the autumn. Our results provide the first evidence for a significant effect of PUUV on host survival suggesting that hantaviruses, and endemic pathogens in general, deserve even more attention in studies of host population dynamics.
Collapse
Affiliation(s)
- Eva R Kallio
- Department of Biological and Environmental Science, P.O. Box 35, FIN-40014, University of Jyväiskylä, Finland.
| | | | | | | | | | | | | |
Collapse
|
36
|
Emelianov I. How adaptive is parasite species diversity? Int J Parasitol 2007; 37:851-60. [PMID: 17531240 DOI: 10.1016/j.ijpara.2007.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 04/11/2007] [Accepted: 04/20/2007] [Indexed: 11/18/2022]
Abstract
Has species diversity in parasites evolved as a by-product of adaptive diversification driven by competition for limited resources? Or is it a result of gradual genetic drift in isolation? One can move closer to answering these questions by evaluating the ubiquity of host switching, the key stage of adaptive diversification. Studies dealing with evolutionary role of host switching suggest that this process is extremely common in the wild, thus pointing at adaptive nature of parasite species diversity. However, most of these studies are focused on the evidence that may or may not have emerged as a consequence of host switching, - an approach potentially associated with a degree of uncertainty. After an overview of the data I am making an attempt to get a clearer view on host switching by focusing on factors that cause this phenomenon. In particular, I review theoretical work and field observations in order to identify the type of genetic host-use variance and the type of dispersal that underpin host switching. I show that host switching is likely to require generalist modifier alleles which increase the host range of individual genotypes and is likely to be promoted by wave-like patterns of dispersal. Both factors appear to be common in parasites. I conclude by outlining key areas for future research, including: (i) direct testing for divergence with gene flow, the main "footprint" of adaptive speciation; (ii) investigating the association between demography, dispersal potential and the potential to colonise novel habitats; and (iii) determining the genetic mechanisms underpinning host range variance in parasites.
Collapse
Affiliation(s)
- Igor Emelianov
- Rothamsted Research, Harpenden Hertfordshire, AL5 2JQ, UK.
| |
Collapse
|