1
|
Sambolino A, Alves F, Rodriguez M, Weyn M, Ferreira R, Correia AM, Rosso M, Kaufmann M, Cordeiro N, Dinis A. Phthalates and fatty acid markers in free-ranging cetaceans from an insular oceanic region: Ecological niches as drivers of contamination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124693. [PMID: 39122173 DOI: 10.1016/j.envpol.2024.124693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 07/15/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Plastic additives, such as phthalates, are ubiquitous contaminants that can have detrimental impacts on marine organisms and overall ecosystems' health. Valuable information about the status and resilience of marine ecosystems can be obtained through the monitoring of key indicator species, such as cetaceans. In this study, fatty acid profiles and phthalates were examined in blubber biopsies of free-ranging individuals from two delphinid species (short-finned pilot whale - Globicephala macrorhynchus, n = 45; common bottlenose dolphin - Tursiops truncatus, n = 39) off Madeira Island (NE Atlantic). This investigation aimed to explore the relations between trophic niches (epipelagic vs. mesopelagic), contamination levels, and the health status of individuals within different ecological and biological groups (defined by species, residency patterns and sex). Multivariate analysis of selected dietary fatty acids revealed a clear niche segregation between the two species. Di-n-butylphthalate (DBP), diethyl phthalate (DEP), and bis(2-ethylhexyl) phthalate (DEHP) were the most prevalent among the seven studied phthalates, with the highest concentration reached by DEHP in a bottlenose dolphin (4697.34 ± 113.45 ng/g). Phthalates esters (PAEs) concentration were higher in bottlenose dolphins (Mean ∑ PAEs: 947.56 ± 1558.34 ng/g) compared to pilot whales (Mean ∑ PAEs: 229.98 ± 158.86 ng/g). In bottlenose dolphins, DEHP was the predominant phthalate, whereas in pilot whales, DEP and DBP were more prevalent. Health markers suggested pilot whales might suffer from poorer physiological conditions than bottlenose dolphins, although high metabolic differences were seen between the two species. Phthalate levels showed no differences by ecological or biological groups, seasons, or years. This study is the first to assess the extent of plastic additive contamination in free-ranging cetaceans from a remote oceanic island system, underscoring the intricate relationship between ecological niches and contaminant exposure. Monitoring these chemicals and their potential impacts is vital to assess wild population health, inform conservation strategies, and protect critical species and habitats.
Collapse
Affiliation(s)
- Annalisa Sambolino
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Madeira Island, Portugal; LB3, Faculty of Exact Science and Engineering, University of Madeira, Funchal, Madeira Island, Portugal; Faculty of Life Sciences, University of Madeira, Funchal, Madeira Island, Portugal.
| | - Filipe Alves
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Madeira Island, Portugal; Faculty of Life Sciences, University of Madeira, Funchal, Madeira Island, Portugal
| | - Marta Rodriguez
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Madeira Island, Portugal; LB3, Faculty of Exact Science and Engineering, University of Madeira, Funchal, Madeira Island, Portugal
| | - Mieke Weyn
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Madeira Island, Portugal; Faculty of Life Sciences, University of Madeira, Funchal, Madeira Island, Portugal; Department of Biology, University of Évora, Évora, Portugal
| | - Rita Ferreira
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Madeira Island, Portugal; Faculty of Life Sciences, University of Madeira, Funchal, Madeira Island, Portugal
| | - Ana M Correia
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Matosinhos, Portugal; FCUP-Faculty of Sciences, University of Porto, Porto, Portugal
| | - Massimiliano Rosso
- International Center for Environmental Monitoring - CIMA Research Foundation, Savona, Italy
| | - Manfred Kaufmann
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Madeira Island, Portugal; Faculty of Life Sciences, University of Madeira, Funchal, Madeira Island, Portugal
| | - Nereida Cordeiro
- LB3, Faculty of Exact Science and Engineering, University of Madeira, Funchal, Madeira Island, Portugal; CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Matosinhos, Portugal
| | - Ana Dinis
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Madeira Island, Portugal; Faculty of Life Sciences, University of Madeira, Funchal, Madeira Island, Portugal
| |
Collapse
|
2
|
Yin S, Yao DR, Song Y, Heng W, Ma X, Han H, Gao W. Wearable and Implantable Soft Robots. Chem Rev 2024; 124:11585-11636. [PMID: 39392765 DOI: 10.1021/acs.chemrev.4c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Soft robotics presents innovative solutions across different scales. The flexibility and mechanical characteristics of soft robots make them particularly appealing for wearable and implantable applications. The scale and level of invasiveness required for soft robots depend on the extent of human interaction. This review provides a comprehensive overview of wearable and implantable soft robots, including applications in rehabilitation, assistance, organ simulation, surgical tools, and therapy. We discuss challenges such as the complexity of fabrication processes, the integration of responsive materials, and the need for robust control strategies, while focusing on advances in materials, actuation and sensing mechanisms, and fabrication techniques. Finally, we discuss the future outlook, highlighting key challenges and proposing potential solutions.
Collapse
Affiliation(s)
- Shukun Yin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Dickson R Yao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Yu Song
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Wenzheng Heng
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Xiaotian Ma
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Hong Han
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
3
|
Escánez A, Marrero-Pérez J, Dromby M, Pimentel-González A, Dias E, García-Pastor EM, Weyn M, Ferreira R, Montañés-Pérez A, Fernandez M, Dinis A, Alves F. Isotope-based inferences of the trophic niche of short-finned pilot whales in the Webbnesia. MARINE ENVIRONMENTAL RESEARCH 2024; 201:106700. [PMID: 39208766 DOI: 10.1016/j.marenvres.2024.106700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/30/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Knowledge of predator-prey interactions is key in ecological studies and understanding ecosystem function, yet this is still poorly explored in the deep-sea environment. Carbon (δ13C: 13C/12C) and nitrogen (δ15N: 15N/14N) stable isotope ratios of a deep-diving species, the short-finned pilot whale (Globicephala macrorhynchus), were used to explore knowledge gaps on its ecological niche and foraging habitats in the Webbnesia marine ecoregion (Tenerife Island, n = 27 animals vs. Madeira, n = 31; 500 km apart) where animals display distinct levels of site fidelity. Specifically, we tested whether intraspecific isotopic variation results from differences between geographic areas (due to possible foraging plasticity between regions), sexes, and/or years (2015-2020) using Generalized Linear Models. In general, significant differences (p < 0.05) were found in the stable isotope profiles of pilot whales between the two archipelagos, which were also reflected in their isotopic niche. The higher mean and wider range of δ15N values in Tenerife suggest that pilot whales consume prey of higher trophic levels and more diverse than Madeira. The higher mean and wider range of δ13C values in Madeira suggest that in that island, pilot whales rely on prey from more diverse habitats. There was significant variation between some years, but not between sexes. Finally, we discuss pilot whales' foraging strategies worldwide and infer the reliance on benthic or benthopelagic food sources in the Webbnesia.
Collapse
Affiliation(s)
- Alejandro Escánez
- MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Madeira, Portugal; Department of Ecology and Animal Biology, Campus As Lagoas-Marcosende, University of Vigo, Vigo, Spain; Asociación Tonina, La Laguna, Santa Cruz de Tenerife, Spain.
| | | | - Morgane Dromby
- Oceanic Observatory of Madeira, Madeira Tecnopolo, Funchal, Portugal; Faculty of Sciences and Technology, Universidade do Algarve, Faro, Portugal
| | | | - Ester Dias
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Matosinhos, Portugal
| | | | - Mieke Weyn
- MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Madeira, Portugal; Department of Biology, University of Évora, Portugal; Faculty of Life Sciences, University of Madeira, Funchal, Portugal
| | - Rita Ferreira
- MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Madeira, Portugal; Oceanic Observatory of Madeira, Madeira Tecnopolo, Funchal, Portugal; Faculty of Life Sciences, University of Madeira, Funchal, Portugal
| | | | - Marc Fernandez
- MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Madeira, Portugal; Faculty of Life Sciences, University of Madeira, Funchal, Portugal
| | - Ana Dinis
- MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Madeira, Portugal; Oceanic Observatory of Madeira, Madeira Tecnopolo, Funchal, Portugal; Faculty of Life Sciences, University of Madeira, Funchal, Portugal
| | - Filipe Alves
- MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Madeira, Portugal; Oceanic Observatory of Madeira, Madeira Tecnopolo, Funchal, Portugal; Faculty of Life Sciences, University of Madeira, Funchal, Portugal
| |
Collapse
|
4
|
Tennessen JB, Holt MM, Wright BM, Hanson MB, Emmons CK, Giles DA, Hogan JT, Thornton SJ, Deecke VB. Males miss and females forgo: Auditory masking from vessel noise impairs foraging efficiency and success in killer whales. GLOBAL CHANGE BIOLOGY 2024; 30:e17490. [PMID: 39254237 DOI: 10.1111/gcb.17490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 09/11/2024]
Abstract
Understanding how the environment mediates an organism's ability to meet basic survival requirements is a fundamental goal of ecology. Vessel noise is a global threat to marine ecosystems and is increasing in intensity and spatiotemporal extent due to growth in shipping coupled with physical changes to ocean soundscapes from ocean warming and acidification. Odontocetes rely on biosonar to forage, yet determining the consequences of vessel noise on foraging has been limited by the challenges of observing underwater foraging outcomes and measuring noise levels received by individuals. To address these challenges, we leveraged a unique acoustic and movement dataset from 25 animal-borne biologging tags temporarily attached to individuals from two populations of fish-eating killer whales (Orcinus orca) in highly transited coastal waters to (1) test for the effects of vessel noise on foraging behaviors-searching (slow-click echolocation), pursuit (buzzes), and capture and (2) investigate the mechanism of interference. For every 1 dB increase in maximum noise level, there was a 4% increase in the odds of searching for prey by both sexes, a 58% decrease in the odds of pursuit by females and a 12.5% decrease in the odds of prey capture by both sexes. Moreover, all but one deep (≥75 m) foraging attempt with noise ≥110 dB re 1 μPa (15-45 kHz band; n = 6 dives by n = 4 whales) resulted in failed prey capture. These responses are consistent with an auditory masking mechanism. Our findings demonstrate the effects of vessel noise across multiple phases of odontocete foraging, underscoring the importance of managing anthropogenic inputs into soundscapes to achieve conservation objectives for acoustically sensitive species. While the timescales for recovering depleted prey species may span decades, these findings suggest that complementary actions to reduce ocean noise in the short term offer a critical pathway for recovering odontocete foraging opportunities.
Collapse
Affiliation(s)
- Jennifer B Tennessen
- Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, Washington, USA
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| | - Marla M Holt
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| | - Brianna M Wright
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
| | - M Bradley Hanson
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| | - Candice K Emmons
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| | | | | | - Sheila J Thornton
- Pacific Science Enterprise Centre, Fisheries and Oceans Canada, West Vancouver, British Columbia, Canada
| | - Volker B Deecke
- Institute of Science and Environment, University of Cumbria, Ambleside, Cumbria, UK
| |
Collapse
|
5
|
Arranz P, De la Cruz-Modino R, Sprogis KR. Investigating the effects of underwater noise from two vessels on the behaviour of short-finned pilot whales. MARINE ENVIRONMENTAL RESEARCH 2024; 199:106574. [PMID: 38833806 DOI: 10.1016/j.marenvres.2024.106574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
Multiple whale-watching vessels may operate around cetaceans at any one time, and targeted animals may experience underwater noise effects. We hypothesised that the cumulative noise of two vessels with low source levels (SLs) will elicit lower behavioural disturbance in short-finned pilot whales (Globicephala macrorhynchus) compared to a single vessel with a higher SL. We measured the behaviour of whales during 26 controls (stationary vessel >300 m) and 44 treatments off Tenerife (Canary Islands, Spain). Treatments consisted of vessel approaches mimicking whale-watch scenarios (distance ∼60 m, speed 1.5 kn). Approaches with two simultaneous vessels, with maximum cumulative mid and low-frequency (0.2-110 kHz) weighted source levels (SLsMF-LF) 137-143 dB, did not affect mother-calf pairs' resting, nursing, diving, respiration rate or inter-breath interval. However, a louder single vessel approach with twin petrol engines at SLsMF-LF 139-151 dB significantly decreased the proportion of time resting for the mother. The results suggest that if a single or two vessels are present, if the cumulative SL is < 143 dB, the behavioural disturbance on the whales will be negligible. By examining noise effects from multiple vessels on the behaviour of pilot whales, the importance of incorporating a noise threshold into whale-watching guidelines was emphasised.
Collapse
Affiliation(s)
- P Arranz
- Departmento de Biología Animal, Edafología y Geología, Universidad de La Laguna, Tenerife, Spain.
| | - R De la Cruz-Modino
- Instituto Universitario de Investigación Social y Turismo, Universidad de La Laguna, Tenerife, Spain.
| | - K R Sprogis
- The UWA Oceans Institute and School of Biological Sciences, The University of Western Australia, Great Southern Marine Research Facility, Albany, WA 6330, Australia.
| |
Collapse
|
6
|
Chevallay M, Guinet C, Goulet-Tran D, Jeanniard du Dot T. Sealing the deal - Antarctic fur seals' active hunting tactics to capture small evasive prey revealed by miniature sonar tags. J Exp Biol 2024; 227:jeb246937. [PMID: 38634142 DOI: 10.1242/jeb.246937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
The ability of predators to adopt hunting tactics that minimise escape reactions from prey is crucial for efficient foraging, and depends on detection capabilities and locomotor performance of both predators and prey. Here, we investigated the efficiency of a small pinniped, the Antarctic fur seal (Arctocephalus gazella) at exploiting their small prey by describing for the first time their fine-scale predator-prey interactions. We compared these with those from another diving predator, the southern elephant seal (Mirounga leonina) that forage on the same prey type. We used data recorded by a newly developed sonar tag that combines active acoustics with ultrahigh-resolution movement sensors to study simultaneously the fine-scale behaviour of both Antarctic fur seals and prey during predator-prey interactions in more than 1200 prey capture events for eight female Antarctic fur seals. Our results showed that Antarctic fur seals and their prey detect each other at the same time, i.e. 1-2 s before the strike, forcing Antarctic fur seals to display reactive fast-moving chases to capture their prey. In contrast, southern elephant seals detect their prey up to 10 s before the strike, allowing them to approach their prey stealthily without triggering an escape reaction. The active hunting tactics used by Antarctic fur seals is probably very energy consuming compared with the stalking tactics used by southern elephant seals but might be compensated for by the consumption of faster-moving larger prey. We suggest that differences in manoeuvrability, locomotor performance and detection capacities and in pace of life between Antarctic fur seals and southern elephant seals might explain these differences in hunting styles.
Collapse
Affiliation(s)
- Mathilde Chevallay
- Centre d'Etudes Biologiques de Chizé, Centre National de la Recherche Scientifique, 79360 Villiers-en-Bois, France
| | - Christophe Guinet
- Centre d'Etudes Biologiques de Chizé, Centre National de la Recherche Scientifique, 79360 Villiers-en-Bois, France
| | - Didier Goulet-Tran
- Centre d'Etudes Biologiques de Chizé, Centre National de la Recherche Scientifique, 79360 Villiers-en-Bois, France
| | - Tiphaine Jeanniard du Dot
- Centre d'Etudes Biologiques de Chizé, Centre National de la Recherche Scientifique, 79360 Villiers-en-Bois, France
| |
Collapse
|
7
|
Braun CD, Della Penna A, Arostegui MC, Afonso P, Berumen ML, Block BA, Brown CA, Fontes J, Furtado M, Gallagher AJ, Gaube P, Golet WJ, Kneebone J, Macena BCL, Mucientes G, Orbesen ES, Queiroz N, Shea BD, Schratwieser J, Sims DW, Skomal GB, Snodgrass D, Thorrold SR. Linking vertical movements of large pelagic predators with distribution patterns of biomass in the open ocean. Proc Natl Acad Sci U S A 2023; 120:e2306357120. [PMID: 38150462 PMCID: PMC10666118 DOI: 10.1073/pnas.2306357120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/23/2023] [Indexed: 12/29/2023] Open
Abstract
Many predator species make regular excursions from near-surface waters to the twilight (200 to 1,000 m) and midnight (1,000 to 3,000 m) zones of the deep pelagic ocean. While the occurrence of significant vertical movements into the deep ocean has evolved independently across taxonomic groups, the functional role(s) and ecological significance of these movements remain poorly understood. Here, we integrate results from satellite tagging efforts with model predictions of deep prey layers in the North Atlantic Ocean to determine whether prey distributions are correlated with vertical habitat use across 12 species of predators. Using 3D movement data for 344 individuals who traversed nearly 1.5 million km of pelagic ocean in [Formula: see text]42,000 d, we found that nearly every tagged predator frequented the twilight zone and many made regular trips to the midnight zone. Using a predictive model, we found clear alignment of predator depth use with the expected location of deep pelagic prey for at least half of the predator species. We compared high-resolution predator data with shipboard acoustics and selected representative matches that highlight the opportunities and challenges in the analysis and synthesis of these data. While not all observed behavior was consistent with estimated prey availability at depth, our results suggest that deep pelagic biomass likely has high ecological value for a suite of commercially important predators in the open ocean. Careful consideration of the disruption to ecosystem services provided by pelagic food webs is needed before the potential costs and benefits of proceeding with extractive activities in the deep ocean can be evaluated.
Collapse
Affiliation(s)
- Camrin D. Braun
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA02543
| | - Alice Della Penna
- Institute of Marine Science, University of Auckland, Auckland1010, New Zealand
- School of Biological Sciences, University of Auckland, Auckland1010, New Zealand
| | - Martin C. Arostegui
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA02543
| | - Pedro Afonso
- Institute of Marine Sciences - OKEANOS, University of the Azores, Horta9901-862, Portugal
| | - Michael L. Berumen
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal23955, Kingdom of Saudi Arabia
| | - Barbara A. Block
- Hopkins Marine Station, Stanford University, Pacific Grove, CA93950
| | - Craig A. Brown
- National Oceanic and Atmospheric Administration Fisheries, Southeast Fisheries Science Center, Miami, FL33149
| | - Jorge Fontes
- Institute of Marine Sciences - OKEANOS, University of the Azores, Horta9901-862, Portugal
| | - Miguel Furtado
- Institute of Marine Sciences - OKEANOS, University of the Azores, Horta9901-862, Portugal
| | | | - Peter Gaube
- Applied Physics Laboratory–University of Washington, Seattle, WA98105
| | - Walter J. Golet
- The School of Marine Sciences, The University of Maine, Orono, ME04469
- The Gulf of Maine Research Institute, Portland, ME04101
| | - Jeff Kneebone
- Anderson Cabot Center for Ocean Life at the New England Aquarium, Boston, MA02110
| | - Bruno C. L. Macena
- Institute of Marine Sciences - OKEANOS, University of the Azores, Horta9901-862, Portugal
| | - Gonzalo Mucientes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão4485-661, Portugal
| | - Eric S. Orbesen
- National Oceanic and Atmospheric Administration Fisheries, Southeast Fisheries Science Center, Miami, FL33149
| | - Nuno Queiroz
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão4485-661, Portugal
| | | | | | - David W. Sims
- Marine Biological Association, PlymouthPL1 2PB, United Kingdom
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, SouthamptonSO14 3ZH, United Kingdom
| | | | - Derke Snodgrass
- National Oceanic and Atmospheric Administration Fisheries, Southeast Fisheries Science Center, Miami, FL33149
| | - Simon R. Thorrold
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA02543
| |
Collapse
|
8
|
Li G, Wong TW, Shih B, Guo C, Wang L, Liu J, Wang T, Liu X, Yan J, Wu B, Yu F, Chen Y, Liang Y, Xue Y, Wang C, He S, Wen L, Tolley MT, Zhang AM, Laschi C, Li T. Bioinspired soft robots for deep-sea exploration. Nat Commun 2023; 14:7097. [PMID: 37925504 PMCID: PMC10625581 DOI: 10.1038/s41467-023-42882-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023] Open
Abstract
The deep ocean, Earth's untouched expanse, presents immense challenges for exploration due to its extreme pressure, temperature, and darkness. Unlike traditional marine robots that require specialized metallic vessels for protection, deep-sea species thrive without such cumbersome pressure-resistant designs. Their pressure-adaptive forms, unique propulsion methods, and advanced senses have inspired innovation in designing lightweight, compact soft machines. This perspective addresses challenges, recent strides, and design strategies for bioinspired deep-sea soft robots. Drawing from abyssal life, it explores the actuation, sensing, power, and pressure resilience of multifunctional deep-sea soft robots, offering game-changing solutions for profound exploration and operation in harsh conditions.
Collapse
Affiliation(s)
- Guorui Li
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, China.
- Science and Technology on Underwater Vehicle Technology Laboratory, Harbin Engineering University, Harbin, China.
- College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China.
| | - Tuck-Whye Wong
- Center for X-Mechanics, Zhejiang University, Hangzhou, China
- Department of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Benjamin Shih
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Chunyu Guo
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, China
- Science and Technology on Underwater Vehicle Technology Laboratory, Harbin Engineering University, Harbin, China
- College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China
| | - Luwen Wang
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou, China
| | - Jiaqi Liu
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Tao Wang
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, China
- Science and Technology on Underwater Vehicle Technology Laboratory, Harbin Engineering University, Harbin, China
- College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China
| | - Xiaobo Liu
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, China
- Science and Technology on Underwater Vehicle Technology Laboratory, Harbin Engineering University, Harbin, China
- College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China
| | - Jiayao Yan
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, MA, USA
| | - Baosheng Wu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Fajun Yu
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, China
- Science and Technology on Underwater Vehicle Technology Laboratory, Harbin Engineering University, Harbin, China
| | - Yunsai Chen
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, China
| | | | - Yaoting Xue
- Center for X-Mechanics, Zhejiang University, Hangzhou, China
| | - Chengjun Wang
- Center for X-Mechanics, Zhejiang University, Hangzhou, China
| | - Shunping He
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Li Wen
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Michael T Tolley
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, MA, USA
| | - A-Man Zhang
- Science and Technology on Underwater Vehicle Technology Laboratory, Harbin Engineering University, Harbin, China
- College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China
| | - Cecilia Laschi
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Tiefeng Li
- Center for X-Mechanics, Zhejiang University, Hangzhou, China.
| |
Collapse
|
9
|
Lea M, Tainsh LW, Mattlin R, Torres L, Vinette Herrin K, Thompson DR, Hindell MA. The benthic-pelagic continuum: Age class and sex differences in the use of the vertical dimension by a rare pinniped. Ecol Evol 2023; 13:e10601. [PMID: 37928196 PMCID: PMC10622853 DOI: 10.1002/ece3.10601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 11/07/2023] Open
Abstract
Sea lions as a group, display strong site fidelity, and varying degrees of vulnerability to environmental change, disease and fisheries interactions. One of the rarest pinnipeds, the New Zealand sea lion (NZSL, Phocarctos hookeri) has a very restricted breeding range. At Campbell Island/Motu Ihupuku, one of the two primary breeding sites, at-sea foraging behaviour is unknown. We hypothesised that NZSL of various sex and age classes would utilise the water column differently due to differing physiological constraints and therefore have different accessibility to prey resources. We tested whether sea lion diving behaviour varied in relation to (i) age and sex class, (ii) time of day and (iii) water depth. We also hypothesised that the proportion of benthic/pelagic diving, and consequently risk of fisheries interaction, would vary in relation to age and sex. Satellite telemetry tags were deployed on 25 NZSL from a range of age/sex classes recording dive depth, duration and location. Adult females and juveniles used inshore, benthic habitats, while sub-adult males also utilised benthic habitats, they predominantly used pelagic habitat at greater distances from the island. Adult females and juveniles exhibited shorter dives than the same age/sex classes at the Auckland Islands, suggesting a lower dive effort for these age/sex classes at Campbell Island/Motu Ihupuku. Adult females dived more frequently than other age/sex classes, likely operating closer to their physiological limits; however, further data for this age class is needed. Sub-adult male use of pelagic prey may increase their exposure to mid-water trawls; however, further research detailing the degree of spatial overlap with fisheries is required. This study highlights the utility of spatially explicit dive data to predict vertical habitat use, niche separation of various age and sex classes of marine predators and attribute potential fisheries interaction risk in relation to predator habitat use.
Collapse
Affiliation(s)
- Mary‐Anne Lea
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTasmaniaAustralia
| | - Lachlan W. Tainsh
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTasmaniaAustralia
| | - Rob Mattlin
- Marine Wildlife Research, LtdNelsonNew Zealand
| | - Leigh Torres
- Department of Fisheries and Wildlife, Marine Mammal Institute, Hatfield Marine Science CenterOregon State UniversityNewportOregonUSA
| | | | | | - Mark A. Hindell
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTasmaniaAustralia
| |
Collapse
|
10
|
Costa DP, Favilla AB. Field physiology in the aquatic realm: ecological energetics and diving behavior provide context for elucidating patterns and deviations. J Exp Biol 2023; 226:jeb245832. [PMID: 37843467 DOI: 10.1242/jeb.245832] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Comparative physiology has developed a rich understanding of the physiological adaptations of organisms, from microbes to megafauna. Despite extreme differences in size and a diversity of habitats, general patterns are observed in their physiological adaptations. Yet, many organisms deviate from the general patterns, providing an opportunity to understand the importance of ecology in determining the evolution of unusual adaptations. Aquatic air-breathing vertebrates provide unique study systems in which the interplay between ecology, physiology and behavior is most evident. They must perform breath-hold dives to obtain food underwater, which imposes a physiological constraint on their foraging time as they must resurface to breathe. This separation of two critical resources has led researchers to investigate these organisms' physiological adaptations and trade-offs. Addressing such questions on large marine animals is best done in the field, given the difficulty of replicating the environment of these animals in the lab. This Review examines the long history of research on diving physiology and behavior. We show how innovative technology and the careful selection of research animals have provided a holistic understanding of diving mammals' physiology, behavior and ecology. We explore the role of the aerobic diving limit, body size, oxygen stores, prey distribution and metabolism. We then identify gaps in our knowledge and suggest areas for future research, pointing out how this research will help conserve these unique animals.
Collapse
Affiliation(s)
- Daniel P Costa
- Institute of Marine Sciences, Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Arina B Favilla
- Institute of Marine Sciences, Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| |
Collapse
|
11
|
Laeta M, Oliveira JA, Siciliano S, Lambert O, Jensen FH, Galatius A. Cranial asymmetry in odontocetes: a facilitator of sonic exploration? ZOOLOGY 2023; 160:126108. [PMID: 37633185 DOI: 10.1016/j.zool.2023.126108] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/28/2023]
Abstract
Directional cranial asymmetry is an intriguing condition that has evolved in all odontocetes which has mostly been associated with sound production for echolocation. In this study, we investigated how cranial asymmetry varies across odontocete species both in terms of quality (i.e., shape), and quantity (magnitude of deviation from symmetry). We investigated 72 species across all ten families of Odontoceti using two-dimensional geometric morphometrics. The average asymmetric shape was largely consistent across odontocetes - the rostral tip, maxillae, antorbital notches and braincase, as well as the suture crest between the frontal and interparietal bones were displaced to the right, whereas the nasal septum and premaxillae showed leftward shifts, in concert with an enlargement of the right premaxilla and maxilla. A clear phylogenetic signal related to asymmetric shape variation was identified across odontocetes using squared-change parsimony. The magnitude of asymmetry was widely variable across Odontoceti, with greatest asymmetry in Kogiidae, Monodontidae and Globicephalinae, followed by Physeteridae, Platanistidae and Lipotidae, while the asymmetry was lowest in Lissodelphininae, Phocoenidae, Iniidae and Pontoporiidae. Ziphiidae presented a wide spectrum of asymmetry. Generalized linear models explaining magnitude of asymmetry found associations with click source level while accounting for cranial size. Using phylogenetic generalized least squares, we reconfirm that source level and centroid size significantly predict the level of cranial asymmetry, with more asymmetric marine taxa generally consisting of bigger species emitting higher output sonar signal, i.e. louder sounds. Both characteristics theoretically support foraging at depth, the former by allowing extended diving and the latter being adaptive for prey detection at longer distances. Thus, cranial asymmetry seems to be an evolutionary pathway that allows odontocetes to devote more space for sound-generating structures associated with echolocation and thus increases biosonar search range and foraging efficiency beyond simple phylogenetic scaling predictions.
Collapse
Affiliation(s)
- Maíra Laeta
- Setor de Mastozoologia, Departamento de Vertebrados, Museu Nacional/Universidade Federal do Rio de Janeiro, 20941-160 Rio de Janeiro, RJ, Brazil.
| | - João A Oliveira
- Setor de Mastozoologia, Departamento de Vertebrados, Museu Nacional/Universidade Federal do Rio de Janeiro, 20941-160 Rio de Janeiro, RJ, Brazil
| | - Salvatore Siciliano
- Departamento de Ciências Biológicas, Escola Nacional de Saúde Pública Sergio Arouca/Fiocruz, 21040-360 Rio de Janeiro, RJ, Brazil; Grupo de Estudos de Mamíferos Marinhos da Região dos Lagos (GEMM-Lagos), Rua São José, 1.260, Praia Seca, 28970-000 Araruama, RJ, Brazil
| | - Olivier Lambert
- D.O. Terre et Histoire de la Vie, Institut royal des Sciences naturelles de Belgique, 1000 Brussels, Belgium
| | - Frants H Jensen
- Section for Marine Mammal Research, Department of Ecoscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, MA 02543, USA; Biology Department, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| | - Anders Galatius
- Section for Marine Mammal Research, Department of Ecoscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| |
Collapse
|
12
|
Pérez-Jorge S, Oliveira C, Rivas EI, Prieto R, Cascão I, Wensveen PJ, Miller PJO, Silva MA. Predictive model of sperm whale prey capture attempts from time-depth data. MOVEMENT ECOLOGY 2023; 11:33. [PMID: 37291674 DOI: 10.1186/s40462-023-00393-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/11/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND High-resolution sound and movement recording tags offer unprecedented insights into the fine-scale foraging behaviour of cetaceans, especially echolocating odontocetes, enabling the estimation of a series of foraging metrics. However, these tags are expensive, making them inaccessible to most researchers. Time-Depth Recorders (TDRs), which have been widely used to study diving and foraging behaviour of marine mammals, offer a more affordable alternative. Unfortunately, data collected by TDRs are bi-dimensional (time and depth only), so quantifying foraging effort from those data is challenging. METHODS A predictive model of the foraging effort of sperm whales (Physeter macrocephalus) was developed to identify prey capture attempts (PCAs) from time-depth data. Data from high-resolution acoustic and movement recording tags deployed on 12 sperm whales were downsampled to 1 Hz to match the typical TDR sampling resolution and used to predict the number of buzzes (i.e., rapid series of echolocation clicks indicative of PCAs). Generalized linear mixed models were built for dive segments of different durations (30, 60, 180 and 300 s) using multiple dive metrics as potential predictors of PCAs. RESULTS Average depth, variance of depth and variance of vertical velocity were the best predictors of the number of buzzes. Sensitivity analysis showed that models with segments of 180 s had the best overall predictive performance, with a good area under the curve value (0.78 ± 0.05), high sensitivity (0.93 ± 0.06) and high specificity (0.64 ± 0.14). Models using 180 s segments had a small difference between observed and predicted number of buzzes per dive, with a median of 4 buzzes, representing a difference in predicted buzzes of 30%. CONCLUSIONS These results demonstrate that it is possible to obtain a fine-scale, accurate index of sperm whale PCAs from time-depth data alone. This work helps leveraging the potential of time-depth data for studying the foraging ecology of sperm whales and the possibility of applying this approach to a wide range of echolocating cetaceans. The development of accurate foraging indices from low-cost, easily accessible TDR data would contribute to democratize this type of research, promote long-term studies of various species in several locations, and enable analyses of historical datasets to investigate changes in cetacean foraging activity.
Collapse
Affiliation(s)
- Sergi Pérez-Jorge
- Institute of Marine Sciences - OKEANOS & Institute of Marine Research - IMAR, University of the Azores, Horta, Portugal.
| | - Cláudia Oliveira
- Institute of Marine Sciences - OKEANOS & Institute of Marine Research - IMAR, University of the Azores, Horta, Portugal
| | | | - Rui Prieto
- Institute of Marine Sciences - OKEANOS & Institute of Marine Research - IMAR, University of the Azores, Horta, Portugal
| | - Irma Cascão
- Institute of Marine Sciences - OKEANOS & Institute of Marine Research - IMAR, University of the Azores, Horta, Portugal
| | - Paul J Wensveen
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Patrick J O Miller
- Sea Mammal Research Unit, School of Biology, University of St Andrews, St Andrews, Scotland
| | - Mónica A Silva
- Institute of Marine Sciences - OKEANOS & Institute of Marine Research - IMAR, University of the Azores, Horta, Portugal
| |
Collapse
|
13
|
Madsen PT, Siebert U, Elemans CPH. Toothed whales use distinct vocal registers for echolocation and communication. Science 2023; 379:928-933. [PMID: 36862790 DOI: 10.1126/science.adc9570] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Echolocating toothed whales (odontocetes) capture fast-moving prey in dark marine environments, which critically depends on their ability to generate powerful, ultrasonic clicks. How their supposedly air-driven sound source can produce biosonar clicks at depths of >1000 meters, while also producing rich vocal repertoires to mediate complex social communication, remains unknown. We show that odontocetes possess a sound production system based on air driven through nasal passages that is functionally analogous to laryngeal and syringeal sound production. Tissue vibration in different registers produces distinct echolocation and communication signals across all major odontocete clades, and thus provides a physiological basis for classifying their vocal repertoires. The vocal fry register is used by species from porpoises to sperm whales for generating powerful, highly air-efficient echolocation clicks.
Collapse
Affiliation(s)
- Peter T Madsen
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, 25761 Büsum, Germany
| | - Coen P H Elemans
- Sound Communication and Behavior Group, Department of Biology, University of Southern Denmark, 5230 Odense M, Denmark
| |
Collapse
|
14
|
Booth CG, Guilpin M, Darias-O’Hara AK, Ransijn JM, Ryder M, Rosen D, Pirotta E, Smout S, McHuron EA, Nabe-Nielsen J, Costa DP. Estimating energetic intake for marine mammal bioenergetic models. CONSERVATION PHYSIOLOGY 2023; 11:coac083. [PMID: 36756464 PMCID: PMC9900471 DOI: 10.1093/conphys/coac083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 11/08/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Bioenergetics is the study of how animals achieve energetic balance. Energetic balance results from the energetic expenditure of an individual and the energy they extract from their environment. Ingested energy depends on several extrinsic (e.g prey species, nutritional value and composition, prey density and availability) and intrinsic factors (e.g. foraging effort, success at catching prey, digestive processes and associated energy losses, and digestive capacity). While the focus in bioenergetic modelling is often on the energetic costs an animal incurs, the robust estimation of an individual's energy intake is equally critical for producing meaningful predictions. Here, we review the components and processes that affect energy intake from ingested gross energy to biologically useful net energy (NE). The current state of knowledge of each parameter is reviewed, shedding light on research gaps to advance this field. The review highlighted that the foraging behaviour of many marine mammals is relatively well studied via biologging tags, with estimates of success rate typically assumed for most species. However, actual prey capture success rates are often only assumed, although we note studies that provide approaches for its estimation using current techniques. A comprehensive collation of the nutritional content of marine mammal prey species revealed a robust foundation from which prey quality (comprising prey species, size and energy density) can be assessed, though data remain unavailable for many prey species. Empirical information on various energy losses following ingestion of prey was unbalanced among marine mammal species, with considerably more literature available for pinnipeds. An increased understanding and accurate estimate of each of the components that comprise a species NE intake are an integral part of bioenergetics. Such models provide a key tool to investigate the effects of disturbance on marine mammals at an individual and population level and to support effective conservation and management.
Collapse
Affiliation(s)
- Cormac G Booth
- Corresponding author: SMRU Consulting, Scottish Oceans Institute, University of St Andrews, East Sands, St Andrews, KY16 8LB, UK.
| | | | - Aimee-Kate Darias-O’Hara
- SMRU Consulting, Scottish Oceans Institute, University of St Andrews, East Sands, St Andrews, KY16 8LB, UK
| | - Janneke M Ransijn
- Sea Mammal Research Unit, Scottish Oceans Institute, East Sands, University of St. Andrews, St. Andrews, KY16 8LB, UK
| | - Megan Ryder
- SMRU Consulting, Scottish Oceans Institute, University of St Andrews, East Sands, St Andrews, KY16 8LB, UK
| | - Dave Rosen
- Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall,
Vancouver, BC V6T 1Z4, Canada
| | - Enrico Pirotta
- Centre for Research into Ecological and Environmental Modelling,
The Observatory, Buchanan
Gardens, University of St. Andrews, St. Andrews,
KY16 9LZ, UK
| | - Sophie Smout
- Sea Mammal Research Unit, Scottish Oceans Institute, East Sands, University of St. Andrews, St. Andrews, KY16 8LB, UK
| | - Elizabeth A McHuron
- Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington, 3737 Brooklyn Ave NE, Seattle, WA, 98105, USA
| | - Jacob Nabe-Nielsen
- Marine Mammal Research, Department of Ecoscience, Aarhus University, Aarhus, DK-4000
Roskilde, Denmark
| | - Daniel P Costa
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, 130
McAlister Way, Santa Cruz, CA, 95064, USA
| |
Collapse
|
15
|
Abstract
Modification of cerebral vasculature helps to cushion the brains of whales and dolphins against injury.
Collapse
Affiliation(s)
- Terrie M Williams
- Department of Ecology and Evolutionary Biology, University of California - Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
16
|
Lanzetti A, Coombs EJ, Portela Miguez R, Fernandez V, Goswami A. The ontogeny of asymmetry in echolocating whales. Proc Biol Sci 2022; 289:20221090. [PMID: 35919995 PMCID: PMC9346347 DOI: 10.1098/rspb.2022.1090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/12/2022] [Indexed: 12/14/2022] Open
Abstract
Extreme asymmetry of the skull is one of the most distinctive traits that characterizes toothed whales (Odontoceti, Cetacea). The origin and function of cranial asymmetry are connected to the evolution of echolocation, the ability to use high-frequency sounds to navigate the surrounding environment. Although this novel phenotype must arise through changes in cranial development, the ontogeny of cetacean asymmetry has never been investigated. Here we use three-dimensional geometric morphometrics to quantify the changes in degree of asymmetry and skull shape during prenatal and postnatal ontogeny for five genera spanning odontocete diversity (oceanic dolphins, porpoises and beluga). Asymmetry in early ontogeny starts low and tracks phylogenetic relatedness of taxa. Distantly related taxa that share aspects of their ecology overwrite these initial differences via heterochronic shifts, ultimately converging on comparable high levels of skull asymmetry. Porpoises maintain low levels of asymmetry into maturity and present a decelerated rate of growth, probably retained from the ancestral condition. Ancestral state reconstruction of allometric trajectories demonstrates that both paedomorphism and peramorphism contribute to cranial shape diversity across odontocetes. This study provides a striking example of how divergent developmental pathways can produce convergent ecological adaptations, even for some of the most unusual phenotypes exhibited among vertebrates.
Collapse
Affiliation(s)
- Agnese Lanzetti
- Department of Life Sciences, Natural History Museum, Cromwell Road, Kensington, London SW7 5BD, UK
| | - Ellen J. Coombs
- Department of Vertebrate Zoology, Smithsonian National Museum of Natural History, PO Box 37012, MRC 108, Washington, DC 20013-7012, USA
| | - Roberto Portela Miguez
- Department of Life Sciences, Natural History Museum, Cromwell Road, Kensington, London SW7 5BD, UK
| | | | - Anjali Goswami
- Department of Life Sciences, Natural History Museum, Cromwell Road, Kensington, London SW7 5BD, UK
| |
Collapse
|
17
|
Verhelst P, Reubens J, Coeck J, Moens T, Simon J, Van Wichelen J, Westerberg H, Wysujack K, Righton D. Mapping silver eel migration routes in the North Sea. Sci Rep 2022; 12:318. [PMID: 35013394 PMCID: PMC8748739 DOI: 10.1038/s41598-021-04052-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/13/2021] [Indexed: 11/09/2022] Open
Abstract
Recent developments in tracking technology resulted in the mapping of various marine spawning migration routes of the European eel (Anguilla anguilla). However, migration routes in the North Sea have rarely been studied, despite many large European rivers and hence potential eel growing habitat discharge into the North Sea. In this study, we present the most comprehensive map to date with migration routes by silver European eels in the North Sea and document for the first time successful eel migration through the English Channel. Migration tracks were reconstructed for 42 eels tagged in Belgium and 12 in Germany. Additionally, some eels moved up north to exit the North Sea over the British Isles, confirming the existence of two different routes, even for eels exiting from a single river catchment. Furthermore, we observed a wide range in migration speeds (6.8–45.2 km day−1). We hypothesize that these are likely attributed to water currents, with eels migrating through the English Channel being significantly faster than eels migrating northward.
Collapse
Affiliation(s)
- Pieterjan Verhelst
- Marine Biology Research Group, Ghent University, Krijgslaan 281, 9000, Ghent, Belgium. .,Research Institute for Nature and Forest (INBO), Aquatic Management, Havenlaan 88, bus 73, 1000, Brussels, Belgium.
| | - Jan Reubens
- Flanders Marine Institute (VLIZ), Wandelaarkaai 7, 8400, Ostend, Belgium
| | - Johan Coeck
- Research Institute for Nature and Forest (INBO), Aquatic Management, Havenlaan 88, bus 73, 1000, Brussels, Belgium
| | - Tom Moens
- Marine Biology Research Group, Ghent University, Krijgslaan 281, 9000, Ghent, Belgium
| | - Janek Simon
- Institute of Inland Fisheries E.V. Potsdam Sacrow, Im Königswald 2, 14469, Potsdam, Germany
| | - Jeroen Van Wichelen
- Research Institute for Nature and Forest (INBO), Aquatic Management, Havenlaan 88, bus 73, 1000, Brussels, Belgium
| | - Håkan Westerberg
- Institute of Freshwater Research, Swedish University of Agricultural Sciences (SLU), 178 93, Drottningholm, Sweden
| | - Klaus Wysujack
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, 27572, Bremerhaven, Germany
| | - David Righton
- Centre for Environment, Fisheries, and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, NR33 0HT, UK
| |
Collapse
|
18
|
Braun CD, Arostegui MC, Thorrold SR, Papastamatiou YP, Gaube P, Fontes J, Afonso P. The Functional and Ecological Significance of Deep Diving by Large Marine Predators. ANNUAL REVIEW OF MARINE SCIENCE 2022; 14:129-159. [PMID: 34416123 DOI: 10.1146/annurev-marine-032521-103517] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Many large marine predators make excursions from surface waters to the deep ocean below 200 m. Moreover, the ability to access meso- and bathypelagic habitats has evolved independently across marine mammals, reptiles, birds, teleost fishes, and elasmobranchs. Theoretical and empirical evidence suggests a number of plausible functional hypotheses for deep-diving behavior. Developing ways to test among these hypotheses will, however, require new ways to quantify animal behavior and biophysical oceanographic processes at coherent spatiotemporal scales. Current knowledge gaps include quantifying ecological links between surface waters and mesopelagic habitats and the value of ecosystem services provided by biomass in the ocean twilight zone. Growing pressure for ocean twilight zone fisheries creates an urgent need to understand the importance of the deep pelagic ocean to large marine predators.
Collapse
Affiliation(s)
- Camrin D Braun
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA;
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Martin C Arostegui
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA;
- Air-Sea Interaction and Remote Sensing Department, Applied Physics Laboratory, University of Washington, Seattle, Washington 98105, USA
| | - Simon R Thorrold
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA;
| | - Yannis P Papastamatiou
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, Florida 33181, USA
| | - Peter Gaube
- Air-Sea Interaction and Remote Sensing Department, Applied Physics Laboratory, University of Washington, Seattle, Washington 98105, USA
| | - Jorge Fontes
- Okeanos and Institute of Marine Research, University of the Azores, 9901-862 Horta, Portugal
| | - Pedro Afonso
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA;
- Okeanos and Institute of Marine Research, University of the Azores, 9901-862 Horta, Portugal
| |
Collapse
|
19
|
Visser F, Keller OA, Oudejans MG, Nowacek DP, Kok ACM, Huisman J, Sterck EHM. Risso's dolphins perform spin dives to target deep-dwelling prey. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202320. [PMID: 34966548 PMCID: PMC8633802 DOI: 10.1098/rsos.202320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 10/29/2021] [Indexed: 06/14/2023]
Abstract
Foraging decisions of deep-diving cetaceans can provide fundamental insight into food web dynamics of the deep pelagic ocean. Cetacean optimal foraging entails a tight balance between oxygen-conserving dive strategies and access to deep-dwelling prey of sufficient energetic reward. Risso's dolphins (Grampus griseus) displayed a thus far unknown dive strategy, which we termed the spin dive. Dives started with intense stroking and right-sided lateral rotation. This remarkable behaviour resulted in a rapid descent. By tracking the fine-scale foraging behaviour of seven tagged individuals, matched with prey layer recordings, we tested the hypothesis that spin dives are foraging dives targeting deep-dwelling prey. Hunting depth traced the diel movement of the deep scattering layer, a dense aggregation of prey, that resides deep during the day and near-surface at night. Individuals shifted their foraging strategy from deep spin dives to shallow non-spin dives around dusk. Spin dives were significantly faster, steeper and deeper than non-spin dives, effectively minimizing transit time to bountiful mesopelagic prey, and were focused on periods when the migratory prey might be easier to catch. Hence, whereas Risso's dolphins were mostly shallow, nocturnal foragers, their spin dives enabled extended and rewarding diurnal foraging on deep-dwelling prey.
Collapse
Affiliation(s)
- Fleur Visser
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, The Netherlands
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB, Den Burg, Texel, The Netherlands
- Kelp Marine Research, 1624 CJ, Hoorn, The Netherlands
| | - Onno A. Keller
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, The Netherlands
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB, Den Burg, Texel, The Netherlands
- Department of Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | | | - Douglas P. Nowacek
- Nicholas School of the Environment, Duke University Marine Laboratory, Beaufort, NC 28516, USA
- Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Annebelle C. M. Kok
- Kelp Marine Research, 1624 CJ, Hoorn, The Netherlands
- Institute of Biology, Leiden University, PO Box 9509, 2300 RA, Leiden, The Netherlands
- Scripps Institution of Oceanography, UCSD, La Jolla 92093–0205, USA
| | - Jef Huisman
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, The Netherlands
| | - Elisabeth H. M. Sterck
- Department of Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
- Animal Science Department, Biomedical Primate Research Centre, 2288 GJ, Rijswijk, The Netherlands
| |
Collapse
|
20
|
Decreased resting and nursing in short-finned pilot whales when exposed to louder petrol engine noise of a hybrid whale-watch vessel. Sci Rep 2021; 11:21195. [PMID: 34764300 PMCID: PMC8585943 DOI: 10.1038/s41598-021-00487-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/05/2021] [Indexed: 11/22/2022] Open
Abstract
Vessel noise is a primary driver of behavioural disturbance in cetaceans, which are targeted during whale-watch activities. Despite the growing, global effort for implementing best-practice principles, to date, there are no regulations on whale-watch vessel noise levels. Here, we test the hypothesis that a whale-watch vessel with a low noise emission will not elicit short-term behavioural responses in toothed whales compared to a vessel with a louder engine. We measured behavioural responses (n = 36) of short-finned pilot whales (Globicephala macrorhynchus) to whale-watch vessel approaches (range 60 m, speed 1.5 kn). Treatment approaches with a quieter electric engine (136-140 dB) compared to the same vessel with a louder petrol engine (151-139 dB) (low-frequency-mid-frequency weighted source levels, re 1 µPa RMS @ 1 m) were examined. Focal whales were resting mother and calves in small group sizes. During petrol engine treatments, the mother's mean resting time decreased by 29% compared to the control (GLM, p = 0.009). The mean proportion of time nursing for the calf was significantly influenced by petrol engine vessel passes, with a 81% decrease compared to the control (GLM, p = 0.01). There were no significant effects on behaviour from the quieter electric engine. Thus, to minimise disturbance on the activity budget of pilot whales, whale-watch vessels would ideally have source levels as low as possible, below 150 dB re 1 µPa RMS @ 1 m and perceived above ambient noise.
Collapse
|
21
|
Wright BM, Deecke VB, Ellis GM, Trites AW, Ford JKB. Behavioral context of echolocation and prey-handling sounds produced by killer whales ( Orcinus orca) during pursuit and capture of Pacific salmon ( Oncorhynchus spp.). MARINE MAMMAL SCIENCE 2021; 37:1428-1453. [PMID: 34690418 PMCID: PMC8519075 DOI: 10.1111/mms.12836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 06/13/2023]
Abstract
Availability of preferred salmonid prey and a sufficiently quiet acoustic environment in which to forage are critical to the survival of resident killer whales (Orcinus orca) in the northeastern Pacific. Although piscivorous killer whales rely on echolocation to locate and track prey, the relationship between echolocation, movement, and prey capture during foraging by wild individuals is poorly understood. We used acoustic biologging tags to relate echolocation behavior to prey pursuit and capture during successful feeding dives by fish-eating killer whales in coastal British Columbia, Canada. The significantly higher incidence and rate of echolocation prior to fish captures compared to afterward confirms its importance in prey detection and tracking. Extremely rapid click sequences (buzzes) were produced before or concurrent with captures of salmon at depths typically exceeding 50 m, and were likely used by killer whales for close-range prey targeting, as in other odontocetes. Distinctive crunching and tearing sounds indicative of prey-handling behavior occurred at relatively shallow depths following fish captures, matching concurrent observations that whales surfaced with fish prior to consumption and often shared prey. Buzzes and prey-handling sounds are potentially useful acoustic signals for estimating foraging efficiency and determining if resident killer whales are meeting their energetic requirements.
Collapse
Affiliation(s)
- Brianna M. Wright
- Pacific Biological StationFisheries and Oceans CanadaNanaimoBritish ColumbiaCanada
- Marine Mammal Research Unit, Institute for the Oceans and FisheriesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Volker B. Deecke
- Institute of Science, Natural Resources and Outdoor StudiesUniversity of CumbriaAmblesideCumbriaUnited Kingdom
| | - Graeme M. Ellis
- Pacific Biological StationFisheries and Oceans CanadaNanaimoBritish ColumbiaCanada
| | - Andrew W. Trites
- Marine Mammal Research Unit, Institute for the Oceans and FisheriesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - John K. B. Ford
- Pacific Biological StationFisheries and Oceans CanadaNanaimoBritish ColumbiaCanada
- Marine Mammal Research Unit, Institute for the Oceans and FisheriesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
22
|
Pavlov V, Vincent C, Mikkelsen B, Lebeau J, Ridoux V, Siebert U. Form, function, and divergence of a generic fin shape in small cetaceans. PLoS One 2021; 16:e0255464. [PMID: 34379664 PMCID: PMC8357180 DOI: 10.1371/journal.pone.0255464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/18/2021] [Indexed: 11/18/2022] Open
Abstract
Tail flukes as well as the dorsal fin are the apomorphic traits of cetaceans which appeared during the evolutionary process of adaptation to the aquatic life. Both appendages present a wing-like shape associated with lift generation and low drag. We hypothesized that the evolution of fins as lifting structures led to a generic wing design, where the dimensionless parameters of the fin cross-sections are invariant with respect to the body length and taxonomy of small cetaceans (Hypothesis I). We also hypothesized that constraints on variability of a generic fin shape are associated with the primary function of the fin as a fixed or flapping hydrofoil (Hypothesis II). To verify these hypotheses, we examined how the variation in the fin's morphological traits is linked to the primary function, species and body length. Hydrodynamic characteristics of the fin cross-sections were examined with the CFD software and compared with similar engineered airfoils. Generic wing design of both fins was found in a wing-like planform and a streamlined cross-sectional geometry optimized for lift generation. Divergence in a generic fin shape both on the planform and cross-sectional level was found to be related with the fin specialization in fixed or flapping hydrofoil function. Cross-sections of the dorsal fin were found to be optimized for the narrow range of small angles of attack. Cross-sections of tail flukes were found to be more stable for higher angles of attack and had gradual stall characteristics. The obtained results provide an insight into the divergent evolutionary pathways of a generic wing-like shape of the fins of cetaceans under specific demands of thrust production, swimming stability and turning control.
Collapse
Affiliation(s)
- Vadim Pavlov
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, United States of America
- Institute for Terrestrial and Aquatic Wildlife Research, The University of Veterinary Medicine Hannover, Foundation, Buesum, Germany
| | - Cecile Vincent
- Centre d’Études Biologiques de Chizé, Université de La Rochelle, La Rochelle, France
| | - Bjarni Mikkelsen
- Havstovan/Faroe Marine Research Institute, Tórshavn, Faroe Islands
| | - Justine Lebeau
- Scripps Research Institute, La Jolla, CA, United States of America
| | - Vincent Ridoux
- Centre d’Études Biologiques de Chizé, Université de La Rochelle, La Rochelle, France
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, The University of Veterinary Medicine Hannover, Foundation, Buesum, Germany
| |
Collapse
|
23
|
Rowlands CE, McLellan WA, Rommel SA, Costidis AM, Yopak KE, Koopman HN, Glandon HL, Ann Pabst D. Comparative morphology of the spinal cord and associated vasculature in shallow versus deep diving cetaceans. J Morphol 2021; 282:1415-1431. [PMID: 34228354 DOI: 10.1002/jmor.21395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 12/19/2022]
Abstract
The cetacean vertebral canal houses the spinal cord and arterial supply to and venous drainage from the entire central nervous system (CNS). Thus, unlike terrestrial mammals, the cetacean spinal cord lies within a highly vascularized space. We compared spinal cord size and vascular volumes within the vertebral canal across a sample of shallow and deep diving odontocetes. We predicted that the (a) spinal cord, a metabolically expensive tissue, would be relatively small, while (b) volumes of vascular structures would be relatively large, in deep versus shallow divers. Our sample included the shallow diving Tursiops truncatus (n = 2) and Delphinus delphis (n = 3), and deep diving Kogia breviceps (n = 2), Mesoplodon europaeus (n = 2), and Ziphius cavirostris (n = 1). Whole, frozen vertebral columns were cross-sectioned at each intervertebral disc, scaled photographs of vertebral canal contents acquired, and cross-sectional areas of structures digitally measured. Areas were multiplied by vertebral body lengths and summed to calculated volumes of neural and vascular structures. Allometric analyses revealed that the spinal cord scaled with negative allometry (b = 0.51 ± 0.13) with total body mass (TBM), and at a rate significantly lower than that of terrestrial mammals. As predicted, the spinal cord represented a smaller percentage of the total vertebral canal volume in the deep divers relative to shallow divers studied, as low as 2.8% in Z. cavirostris. Vascular volume scaled with positive allometry (b = 1.2 ± 0.22) with TBM and represented up to 96.1% (Z. cavirostris) of the total vertebral canal volume. The extreme deep diving beaked whales possessed 22-35 times more vascular volume than spinal cord volume within the vertebral canal, compared with the 6-10 ratio in the shallow diving delphinids. These data offer new insights into morphological specializations of neural and vascular structures that may contribute to differential diving capabilities across odontocete cetaceans.
Collapse
Affiliation(s)
- Carrie E Rowlands
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - William A McLellan
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Sentiel A Rommel
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Alexander M Costidis
- Virginia Aquarium Stranding Response Program, Virginia Aquarium and Marine Science Center, Virginia Beach, Virginia, USA
| | - Kara E Yopak
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Heather N Koopman
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Hillary L Glandon
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - D Ann Pabst
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| |
Collapse
|
24
|
Adachi T, Takahashi A, Costa DP, Robinson PW, Hückstädt LA, Peterson SH, Holser RR, Beltran RS, Keates TR, Naito Y. Forced into an ecological corner: Round-the-clock deep foraging on small prey by elephant seals. SCIENCE ADVANCES 2021; 7:7/20/eabg3628. [PMID: 33980496 PMCID: PMC8115928 DOI: 10.1126/sciadv.abg3628] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/22/2021] [Indexed: 06/01/2023]
Abstract
Small mesopelagic fishes dominate the world's total fish biomass, yet their ecological importance as prey for large marine animals is poorly understood. To reveal the little-known ecosystem dynamics, we identified prey, measured feeding events, and quantified the daily energy balance of 48 deep-diving elephant seals throughout their oceanic migrations by leveraging innovative technologies: animal-borne smart accelerometers and video cameras. Seals only attained positive energy balance after feeding 1000 to 2000 times per day on small fishes, which required continuous deep diving (80 to 100% of each day). Interspecies allometry suggests that female elephant seals have exceptional diving abilities relative to their body size, enabling them to exploit a unique foraging niche on small but abundant mesopelagic fish. This unique foraging niche requires extreme round-the-clock deep diving, limiting the behavioral plasticity of elephant seals to a changing mesopelagic ecosystem.
Collapse
Affiliation(s)
- Taiki Adachi
- National Institute of Polar Research, Tachikawa, Tokyo, Japan.
| | | | - Daniel P Costa
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Patrick W Robinson
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Luis A Hückstädt
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, CA, USA
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Sarah H Peterson
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Rachel R Holser
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Roxanne S Beltran
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Theresa R Keates
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Yasuhiko Naito
- National Institute of Polar Research, Tachikawa, Tokyo, Japan
| |
Collapse
|
25
|
Malinka CE, Tønnesen P, Dunn CA, Claridge DE, Gridley T, Elwen SH, Teglberg Madsen P. Echolocation click parameters and biosonar behaviour of the dwarf sperm whale ( Kogia sima). J Exp Biol 2021; 224:224/6/jeb240689. [PMID: 33771935 DOI: 10.1242/jeb.240689] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/11/2021] [Indexed: 11/20/2022]
Abstract
Dwarf sperm whales (Kogia sima) are small toothed whales that produce narrow-band high-frequency (NBHF) echolocation clicks. Such NBHF clicks, subject to high levels of acoustic absorption, are usually produced by small, shallow-diving odontocetes, such as porpoises, in keeping with their short-range echolocation and fast click rates. Here, we sought to address the problem of how the little-studied and deep-diving Kogia can hunt with NBHF clicks in the deep sea. Specifically, we tested the hypotheses that Kogia produce NBHF clicks with longer inter-click intervals (ICIs), higher directionality and higher source levels (SLs) compared with other NBHF species. We did this by deploying an autonomous deep-water vertical hydrophone array in the Bahamas, where no other NBHF species are present, and by taking opportunistic recordings of a close-range Kogia sima in a South African harbour. Parameters from on-axis clicks (n=46) in the deep revealed very narrow-band clicks (root mean squared bandwidth, BWRMS, of 3±1 kHz), with SLs of up to 197 dB re. 1 µPa peak-to-peak (μPapp) at 1 m, and a half-power beamwidth of 8.8 deg. Their ICIs (mode of 245 ms) were much longer than those of porpoises (<100 ms), suggesting an inspection range that is longer than detection ranges of single prey, perhaps to facilitate auditory streaming of a complex echo scene. On-axis clicks in the shallow harbour (n=870) had ICIs and SLs in keeping with source parameters of other NBHF cetaceans. Thus, in the deep, dwarf sperm whales use a directional, but short-range echolocation system with moderate SLs, suggesting a reliable mesopelagic prey habitat.
Collapse
Affiliation(s)
- Chloe E Malinka
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| | - Pernille Tønnesen
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| | - Charlotte A Dunn
- Bahamas Marine Mammal Research Organisation (BMMRO), Sandy Point, Abaco, Bahamas.,Sea Mammal Research Unit, University of St Andrews, St Andrews KY16 8LB, UK
| | - Diane E Claridge
- Bahamas Marine Mammal Research Organisation (BMMRO), Sandy Point, Abaco, Bahamas.,Sea Mammal Research Unit, University of St Andrews, St Andrews KY16 8LB, UK
| | - Tess Gridley
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch 7605, South Africa.,Sea Search Research and Conservation, Muizenberg, Cape Town 7945, South Africa
| | - Simon H Elwen
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch 7605, South Africa.,Sea Search Research and Conservation, Muizenberg, Cape Town 7945, South Africa
| | | |
Collapse
|
26
|
Pedersen MB, Tønnesen P, Malinka CE, Ladegaard M, Johnson M, Aguilar de Soto N, Madsen PT. Echolocation click parameters of short-finned pilot whales (Globicephala macrorhynchus) in the wild. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:1923. [PMID: 33765819 DOI: 10.1121/10.0003762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Short-finned pilot whales (Globicephala macrorhynchus) are large, deep-diving predators with diverse foraging strategies, but little is known about their echolocation. To quantify the source properties of short-finned pilot whale clicks, we made 15 deployments off the coast of Tenerife of a deep-water hydrophone array consisting of seven autonomous time-synced hydrophone recorders (SoundTraps), enabling acoustic localization and quantification of click source parameters. Of 8185 recorded pilot whale clicks, 47 were classified as being recorded on-axis, with a mean peak-to-peak source level (SL) of 181 ± 7 dB re 1 μPa, a centroid frequency of 40 ± 4 kHz, and a duration of 57 ± 23 μs. A fit to a piston model yielded an estimated half-power (-3 dB) beam width of 13.7° [95% confidence interval (CI) 13.2°-14.5°] and a mean directivity index (DI) of 22.6 dB (95% CI 22.5-22.9 dB). These measured SLs and DIs are surprisingly low for a deep-diving toothed whale, suggesting we sampled the short-finned pilot whales in a context with little need for operating a long-range biosonar. The substantial spectral overlap with beaked whale clicks emitted in similar deep-water habitats implies that pilot whale clicks may constitute a common source of false detections in beaked whale passive acoustic monitoring efforts.
Collapse
Affiliation(s)
- M B Pedersen
- Marine Bioacoustics Lab, Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - P Tønnesen
- Marine Bioacoustics Lab, Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - C E Malinka
- Marine Bioacoustics Lab, Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - M Ladegaard
- Marine Bioacoustics Lab, Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - M Johnson
- Aarhus Institute of Advanced Studies, Aarhus University, 8000 Aarhus C, Denmark
| | - N Aguilar de Soto
- Biodiversidad, Ecología Marina y Conservación (BIOECOMAC), University of La Laguna, 38206 La Laguna, Tenerife, Canary Islands, Spain
| | - P T Madsen
- Marine Bioacoustics Lab, Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
27
|
Laeta M, Ruenes GF, Siciliano S, Oliveira JA, Galatius A. Variation in cranial asymmetry among the Delphinoidea. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
The remarkable directional cranial asymmetry of odontocete skulls has been proposed to be related to sound production. We investigated the variation in quality and quantity of cranial asymmetry in the superfamily Delphinoidea using geometric morphometrics and then investigated the relationship between asymmetry and aspects of sound production. In the average asymmetric shape, the dorsal aspect of the skull outline and interparietal suture crest were displaced to the right, while the nasal septum, nasal bones and right premaxilla were displaced to the left. The nasal bone, premaxilla and maxilla were all larger on the right side. Three delphinoid families presented similar expressions of asymmetry; however, the magnitude of the asymmetry varied. The Monodontidae showed the greatest magnitude of asymmetry, whereas the Phocoenidae were much less asymmetric. The most speciose family, the Delphinidae, presented a wide spectrum of asymmetry, with globicephalines and lissodelphinines among the most and least asymmetric species, respectively. Generalized linear models explaining the magnitude of asymmetry with characteristics of echolocation clicks, habitat use and size revealed associations with source level, dive depth and centroid size. This supports a relationship between asymmetry and sound production, with more asymmetric species emitting louder sounds. For example, louder clicks would be beneficial for prey detection at longer ranges in deeper waters.
Collapse
Affiliation(s)
- Maíra Laeta
- Programa de Pós-graduação em Biodiversidade e Biologia Evolutiva, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Setor de Mastozoologia, Departamento de Vertebrados, Museu Nacional/Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Grupo de Estudos de Mamíferos Marinhos da Região dos Lagos, Praia Seca, Araruama, RJ, Brazil
| | - Greicy F Ruenes
- Programa de Pós-graduação em Ecologia e Recursos Naturais, Universidade Estadual do Norte Fluminense “Darcy Ribeiro”, Campos dos Goytacazes, RJ, Brazil
- Laboratório de Ecologia de Mamíferos, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, Brazil
| | - Salvatore Siciliano
- Laboratório de Biodiversidade, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
- Grupo de Estudos de Mamíferos Marinhos da Região dos Lagos, Praia Seca, Araruama, RJ, Brazil
| | - João A Oliveira
- Setor de Mastozoologia, Departamento de Vertebrados, Museu Nacional/Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Anders Galatius
- Marine Mammal Research, Department of Bioscience, Aarhus University, Roskilde, Denmark
| |
Collapse
|
28
|
Coombs EJ, Clavel J, Park T, Churchill M, Goswami A. Wonky whales: the evolution of cranial asymmetry in cetaceans. BMC Biol 2020; 18:86. [PMID: 32646447 PMCID: PMC7350770 DOI: 10.1186/s12915-020-00805-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/01/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Unlike most mammals, toothed whale (Odontoceti) skulls lack symmetry in the nasal and facial (nasofacial) region. This asymmetry is hypothesised to relate to echolocation, which may have evolved in the earliest diverging odontocetes. Early cetaceans (whales, dolphins, and porpoises) such as archaeocetes, namely the protocetids and basilosaurids, have asymmetric rostra, but it is unclear when nasofacial asymmetry evolved during the transition from archaeocetes to modern whales. We used three-dimensional geometric morphometrics and phylogenetic comparative methods to reconstruct the evolution of asymmetry in the skulls of 162 living and extinct cetaceans over 50 million years. RESULTS In archaeocetes, we found asymmetry is prevalent in the rostrum and also in the squamosal, jugal, and orbit, possibly reflecting preservational deformation. Asymmetry in odontocetes is predominant in the nasofacial region. Mysticetes (baleen whales) show symmetry similar to terrestrial artiodactyls such as bovines. The first significant shift in asymmetry occurred in the stem odontocete family Xenorophidae during the Early Oligocene. Further increases in asymmetry occur in the physeteroids in the Late Oligocene, Squalodelphinidae and Platanistidae in the Late Oligocene/Early Miocene, and in the Monodontidae in the Late Miocene/Early Pliocene. Additional episodes of rapid change in odontocete skull asymmetry were found in the Mid-Late Oligocene, a period of rapid evolution and diversification. No high-probability increases or jumps in asymmetry were found in mysticetes or archaeocetes. Unexpectedly, no increases in asymmetry were recovered within the highly asymmetric ziphiids, which may result from the extreme, asymmetric shape of premaxillary crests in these taxa not being captured by landmarks alone. CONCLUSIONS Early ancestors of living whales had little cranial asymmetry and likely were not able to echolocate. Archaeocetes display high levels of asymmetry in the rostrum, potentially related to directional hearing, which is lost in early neocetes-the taxon including the most recent common ancestor of living cetaceans. Nasofacial asymmetry becomes a significant feature of Odontoceti skulls in the Early Oligocene, reaching its highest levels in extant taxa. Separate evolutionary regimes are reconstructed for odontocetes living in acoustically complex environments, suggesting that these niches impose strong selective pressure on echolocation ability and thus increased cranial asymmetry.
Collapse
Affiliation(s)
- Ellen J Coombs
- Genetics, Evolution, and Environment Department, University College London, Gower Street, London, WC1E 6BT, UK.
- Department of Life Sciences, Natural History Museum, London, Cromwell Road, London, SW7 5BD, UK.
| | - Julien Clavel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - Travis Park
- Department of Life Sciences, Natural History Museum, London, Cromwell Road, London, SW7 5BD, UK
- Department of Earth Sciences, University of Oxford, Oxford, OX1 3AN, UK
| | - Morgan Churchill
- Department of Biology, University of Wisconsin-Oshkosh, Oshkosh, WI, 54901, USA
| | - Anjali Goswami
- Genetics, Evolution, and Environment Department, University College London, Gower Street, London, WC1E 6BT, UK
- Department of Life Sciences, Natural History Museum, London, Cromwell Road, London, SW7 5BD, UK
- Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
29
|
Goldbogen JA, Cade DE, Wisniewska DM, Potvin J, Segre PS, Savoca MS, Hazen EL, Czapanskiy MF, Kahane-Rapport SR, DeRuiter SL, Gero S, Tønnesen P, Gough WT, Hanson MB, Holt MM, Jensen FH, Simon M, Stimpert AK, Arranz P, Johnston DW, Nowacek DP, Parks SE, Visser F, Friedlaender AS, Tyack PL, Madsen PT, Pyenson ND. Why whales are big but not bigger: Physiological drivers and ecological limits in the age of ocean giants. Science 2020; 366:1367-1372. [PMID: 31831666 DOI: 10.1126/science.aax9044] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 10/31/2019] [Indexed: 12/27/2022]
Abstract
The largest animals are marine filter feeders, but the underlying mechanism of their large size remains unexplained. We measured feeding performance and prey quality to demonstrate how whale gigantism is driven by the interplay of prey abundance and harvesting mechanisms that increase prey capture rates and energy intake. The foraging efficiency of toothed whales that feed on single prey is constrained by the abundance of large prey, whereas filter-feeding baleen whales seasonally exploit vast swarms of small prey at high efficiencies. Given temporally and spatially aggregated prey, filter feeding provides an evolutionary pathway to extremes in body size that are not available to lineages that must feed on one prey at a time. Maximum size in filter feeders is likely constrained by prey availability across space and time.
Collapse
Affiliation(s)
- J A Goldbogen
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA.
| | - D E Cade
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA
| | - D M Wisniewska
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA
| | - J Potvin
- Department of Physics, Saint Louis University, St. Louis, MO, USA
| | - P S Segre
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA
| | - M S Savoca
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA
| | - E L Hazen
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA.,Environmental Research Division, National Oceanic and Atmospheric Administration, Southwest Fisheries Science Center, Monterey, CA, USA.,Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - M F Czapanskiy
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA
| | - S R Kahane-Rapport
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA
| | - S L DeRuiter
- Mathematics and Statistics Department, Calvin University, Grand Rapids, MI, USA
| | - S Gero
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - P Tønnesen
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - W T Gough
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA
| | - M B Hanson
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - M M Holt
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - F H Jensen
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - M Simon
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, Nuuk, Greenland
| | - A K Stimpert
- Moss Landing Marine Laboratories, Moss Landing, CA, USA
| | - P Arranz
- Biodiversity, Marine Ecology and Conservation Group, Department of Animal Biology, University of La Laguna, La Laguna, Spain
| | - D W Johnston
- Nicholas School of the Environment, Duke University Marine Laboratory, Beaufort, NC, USA
| | - D P Nowacek
- Pratt School of Engineering, Duke University, Durham, NC, USA
| | - S E Parks
- Department of Biology, Syracuse University, Syracuse, NY, USA
| | - F Visser
- Department of Freshwater and Marine Ecology, IBED, University of Amsterdam, Amsterdam, Netherlands.,Department of Coastal Systems, NIOZ and Utrecht University, Utrecht, Netherlands.,Kelp Marine Research, Hoorn, Netherlands
| | - A S Friedlaender
- Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - P L Tyack
- Sea Mammal Research Unit, School of Biology, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| | - P T Madsen
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark.,Aarhus Institute of Advanced Studies, Aarhus University, DK-8000 Aarhus C, Denmark
| | - N D Pyenson
- Department of Paleobiology, National Museum of Natural History, Washington, DC, USA.,Department of Paleontology and Geology, Burke Museum of Natural History and Culture, Seattle, WA, USA
| |
Collapse
|
30
|
Alves F, Dromby M, Baptista V, Ferreira R, Correia AM, Weyn M, Valente R, Froufe E, Rosso M, Sousa-Pinto I, Dinis A, Dias E, Teodósio MA. Ecophysiological traits of highly mobile large marine predators inferred from nucleic acid derived indices. Sci Rep 2020; 10:4752. [PMID: 32179865 PMCID: PMC7075925 DOI: 10.1038/s41598-020-61769-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/26/2020] [Indexed: 11/28/2022] Open
Abstract
Nucleic acid-derived indices such as RNA/DNA ratios have been successfully applied as ecophysiological indicators to assess growth, nutritional condition and health status in marine organisms given that they provide a measure of tissue protein reserves, which is known to vary depending on changes in the environment. Yet, the use of these biochemical indices on highly mobile large predators is scarce. In this study, we tested the applicability of using nucleic acids to provide insights on the ecophysiological traits of two marine mammal species (common bottlenose dolphins and short-finned pilot whales) and explored potential related factors (species, sex, season, and residency pattern), using skin tissue (obtained from biopsy darts) of apparently healthy and adult free-ranging animals. Significantly higher RNA/DNA ratios were obtained for bottlenose dolphins (p < 0.001), and for visitor pilot whales when compared with resident pilot whales (p = 0.001). No significant changes were found between the sexes. Based on the percentile approach, the samples contain individuals in a general good condition (as the 10th percentile is not closer to the mean than the 75th percentile), suggesting that the studied region of Macaronesia may be considered an adequate habitat. The combination of this effective tool with genetic sexing and photographic-identification provided an overall picture of ecosystem health, and although with some limitations and still being a first approach, it has the applicability to be used in other top predators and ecosystems.
Collapse
Affiliation(s)
- F Alves
- MARE - Marine and Environmental Sciences Centre, ARDITI, Madeira, Portugal. .,OOM - Oceanic Observatory of Madeira, Funchal, Portugal.
| | - M Dromby
- OOM - Oceanic Observatory of Madeira, Funchal, Portugal.,Faculty of Sciences and Technology, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - V Baptista
- CCMAR - Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - R Ferreira
- MARE - Marine and Environmental Sciences Centre, ARDITI, Madeira, Portugal.,OOM - Oceanic Observatory of Madeira, Funchal, Portugal
| | - A M Correia
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal.,Department of Biology, Faculty of Sciences, University of Porto - FCUP, Porto, Portugal
| | - M Weyn
- OOM - Oceanic Observatory of Madeira, Funchal, Portugal.,Marine Biology Research Group, Ghent University, Ghent, Belgium
| | - R Valente
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal.,Department of Biology, Faculty of Sciences, University of Porto - FCUP, Porto, Portugal
| | - E Froufe
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
| | - M Rosso
- CIMA Research Foundation, Savona, Italy
| | - I Sousa-Pinto
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal.,Department of Biology, Faculty of Sciences, University of Porto - FCUP, Porto, Portugal
| | - A Dinis
- MARE - Marine and Environmental Sciences Centre, ARDITI, Madeira, Portugal.,OOM - Oceanic Observatory of Madeira, Funchal, Portugal
| | - E Dias
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
| | - M A Teodósio
- Faculty of Sciences and Technology, Universidade do Algarve, Campus de Gambelas, Faro, Portugal.,CCMAR - Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| |
Collapse
|
31
|
Voigt CC, Kravchenko K, Liechti F, Bumrungsri S. Skyrocketing Flights as a Previously Unrecognized Behaviour of Open-Space Foraging Bats. ACTA CHIROPTEROLOGICA 2020. [DOI: 10.3161/15081109acc2019.21.2.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Christian C. Voigt
- Department Evolutionary Ecology Leibniz Institute for Zoo and Wildlife Research Alfred-Kowalke-Strasse 17, 10315 Berlin, Germany
| | - Kseniia Kravchenko
- Department Evolutionary Ecology Leibniz Institute for Zoo and Wildlife Research Alfred-Kowalke-Strasse 17, 10315 Berlin, Germany
| | - Felix Liechti
- Swiss Ornithological Institute, Seerose 1, CH-6204 Sempach, Switzerland
| | - Sara Bumrungsri
- Department of Biology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
32
|
Fear of Killer Whales Drives Extreme Synchrony in Deep Diving Beaked Whales. Sci Rep 2020; 10:13. [PMID: 32029750 PMCID: PMC7005263 DOI: 10.1038/s41598-019-55911-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/13/2019] [Indexed: 11/21/2022] Open
Abstract
Fear of predation can induce profound changes in the behaviour and physiology of prey species even if predator encounters are infrequent. For echolocating toothed whales, the use of sound to forage exposes them to detection by eavesdropping predators, but while some species exploit social defences or produce cryptic acoustic signals, deep-diving beaked whales, well known for mass-strandings induced by navy sonar, seem enigmatically defenceless against their main predator, killer whales. Here we test the hypothesis that the stereotyped group diving and vocal behaviour of beaked whales has benefits for abatement of predation risk and thus could have been driven by fear of predation over evolutionary time. Biologging data from 14 Blainville’s and 12 Cuvier’s beaked whales show that group members have an extreme synchronicity, overlapping vocal foraging time by 98% despite hunting individually, thereby reducing group temporal availability for acoustic detection by killer whales to <25%. Groups also perform a coordinated silent ascent in an unpredictable direction, covering a mean of 1 km horizontal distance from their last vocal position. This tactic sacrifices 35% of foraging time but reduces by an order of magnitude the risk of interception by killer whales. These predator abatement behaviours have likely served beaked whales over millions of years, but may become maladaptive by playing a role in mass strandings induced by man-made predator-like sonar sounds.
Collapse
|
33
|
Jensen FH, Keller OA, Tyack PL, Visser F. Dynamic biosonar adjustment strategies in deep-diving Risso's dolphins driven partly by prey evasion. ACTA ACUST UNITED AC 2020; 223:jeb.216283. [PMID: 31822550 DOI: 10.1242/jeb.216283] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/02/2019] [Indexed: 11/20/2022]
Abstract
Toothed whales have evolved flexible biosonar systems to find, track and capture prey in diverse habitats. Delphinids, phocoenids and iniids adjust inter-click intervals and source levels gradually while approaching prey. In contrast, deep-diving beaked and sperm whales maintain relatively constant inter-click intervals and apparent output levels during the approach followed by a rapid transition into the foraging buzz, presumably to maintain a long-range acoustic scene in a multi-target environment. However, it remains unknown whether this rapid biosonar adjustment strategy is shared by delphinids foraging in deep waters. To test this, we investigated biosonar adjustments of a deep-diving delphinid, the Risso's dolphin (Grampus griseus). We analyzed inter-click interval and apparent output level adjustments recorded from sound recording tags to quantify in situ sensory adjustment during prey capture attempts. Risso's dolphins did not follow typical (20logR) biosonar adjustment patterns seen in shallow-water species, but instead maintained stable repetition rates and output levels up to the foraging buzz. Our results suggest that maintaining a long-range acoustic scene to exploit complex, multi-target prey layers is a common strategy amongst deep-diving toothed whales. Risso's dolphins transitioned rapidly into the foraging buzz just like beaked whales during most foraging attempts, but employed a more gradual biosonar adjustment in a subset (19%) of prey approaches. These were characterized by higher speeds and minimum specific acceleration, indicating higher prey capture efforts associated with evasive prey. Thus, tracking and capturing evasive prey using biosonar may require a more gradual switch between multi-target echolocation and single-target tracking.
Collapse
Affiliation(s)
- Frants H Jensen
- Aarhus Institute of Advanced Studies, Aarhus University, 8000 Aarhus C, Denmark .,Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Onno A Keller
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research and Utrecht University, P.O. Box 59, 1790 AB Den Burg Texel, The Netherlands.,Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands.,Department of Animal Ecology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Peter L Tyack
- Scottish Oceans Institute, School of Biology, University of St Andrews, East Sands, St Andrews KY16 8LB, UK
| | - Fleur Visser
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research and Utrecht University, P.O. Box 59, 1790 AB Den Burg Texel, The Netherlands.,Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands.,Kelp Marine Research, 1624CJ Hoorn, The Netherlands
| |
Collapse
|
34
|
Halsey LG, Iosilevskii G. The energetics of 'airtime': estimating swim power from breaching behaviour in fishes and cetaceans. ACTA ACUST UNITED AC 2020; 223:jeb.216036. [PMID: 31767731 DOI: 10.1242/jeb.216036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/20/2019] [Indexed: 11/20/2022]
Abstract
Displays of maximum swimming speeds are rare in the laboratory and the wild, limiting our understanding of the top-end athletic capacities of aquatic vertebrates. However, jumps out of the water - exhibited by a diversity of fish and cetaceans - might sometimes represent a behaviour comprising maximum burst effort. We collected data on such breaching behaviour for 14 fish and cetacean species primarily from online videos, to calculate breaching speed. From newly derived formulae based on the drag coefficient and hydrodynamic efficiency, we also calculated the associated power. The fastest breaching speeds were exhibited by species 2 m in length, peaking at nearly 11 m s-1; as species size decreases below this, the fastest breaches become slower, while species larger than 2 m do not show a systematic pattern. The power associated with the fastest breaches was consistently ∼50 W kg-1 (equivalent to 200 W kg-1 muscle) in species from 20 cm to 2 m in length, suggesting that this value may represent a universal (conservative) upper boundary. And it is similar to the maximum recorded power output per muscle mass recorded in any species of similar size, suggesting that some breaches could indeed be representative of maximum capability.
Collapse
Affiliation(s)
- Lewis G Halsey
- Department of Life Sciences, University of Roehampton, London, SW15 4JD, UK
| | - Gil Iosilevskii
- Faculty of Aerospace Engineering, Technion, Haifa 32000, Israel
| |
Collapse
|
35
|
Kroeger JP, McLellan WA, Arthur LH, Velten BP, Singleton EM, Kinsey ST, Pabst DA. Locomotor muscle morphology of three species of pelagic delphinids. J Morphol 2020; 281:170-182. [DOI: 10.1002/jmor.21089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/31/2019] [Accepted: 09/09/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Jacqueline P. Kroeger
- Department of Biology and Marine BiologyUniversity of North Carolina Wilmington Wilmington North Carolina
| | - William A. McLellan
- Department of Biology and Marine BiologyUniversity of North Carolina Wilmington Wilmington North Carolina
| | - Logan H. Arthur
- Department of Biology and Marine BiologyUniversity of North Carolina Wilmington Wilmington North Carolina
| | - Brandy P. Velten
- Department of Biology and Marine BiologyUniversity of North Carolina Wilmington Wilmington North Carolina
| | - Emily M. Singleton
- Department of Biology and Marine BiologyUniversity of North Carolina Wilmington Wilmington North Carolina
| | - Stephen T. Kinsey
- Department of Biology and Marine BiologyUniversity of North Carolina Wilmington Wilmington North Carolina
| | - D. Ann Pabst
- Department of Biology and Marine BiologyUniversity of North Carolina Wilmington Wilmington North Carolina
| |
Collapse
|
36
|
Pearson HC, Jones PW, Brandon TP, Stockin KA, Machovsky-Capuska GE. A biologging perspective to the drivers that shape gregariousness in dusky dolphins. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2763-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Deep-diving pilot whales make cheap, but powerful, echolocation clicks with 50 µL of air. Sci Rep 2019; 9:15720. [PMID: 31673021 PMCID: PMC6823382 DOI: 10.1038/s41598-019-51619-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 09/02/2019] [Indexed: 11/10/2022] Open
Abstract
Echolocating toothed whales produce powerful clicks pneumatically to detect prey in the deep sea where this long-range sensory channel makes them formidable top predators. However, air supplies for sound production compress with depth following Boyle’s law suggesting that deep-diving whales must use very small air volumes per echolocation click to facilitate continuous sensory flow in foraging dives. Here we test this hypothesis by analysing click-induced acoustic resonances in the nasal air sacs, recorded by biologging tags. Using 27000 clicks from 102 dives of 23 tagged pilot whales (Globicephala macrorhynchus), we show that click production requires only 50 µL of air/click at 500 m depth increasing gradually to 100 µL at 1000 m. With such small air volumes, the metabolic cost of sound production is on the order of 40 J per dive which is a negligible fraction of the field metabolic rate. Nonetheless, whales must make frequent pauses in echolocation to recycle air between nasal sacs. Thus, frugal use of air and periodic recycling of very limited air volumes enable pilot whales, and likely other toothed whales, to echolocate cheaply and almost continuously throughout foraging dives, providing them with a strong sensory advantage in diverse aquatic habitats.
Collapse
|
38
|
Krüger A, Fabrizius A, Mikkelsen B, Siebert U, Folkow LP, Burmester T. Transcriptome analysis reveals a high aerobic capacity in the whale brain. Comp Biochem Physiol A Mol Integr Physiol 2019; 240:110593. [PMID: 31676411 DOI: 10.1016/j.cbpa.2019.110593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/30/2019] [Accepted: 10/22/2019] [Indexed: 01/04/2023]
Abstract
The brain of diving mammals is repeatedly exposed to low oxygen conditions (hypoxia) that would have caused severe damage to most terrestrial mammals. Some whales may dive for >2 h with their brain remaining active. Many of the physiological adaptations of whales to diving have been investigated, but little is known about the molecular mechanisms that enable their brain to survive sometimes prolonged periods of hypoxia. Here, we have used an RNA-Seq approach to compare the mRNA levels in the brains of whales with those of cattle, which serves as a terrestrial relative. We sequenced the transcriptomes of the brains from cattle (Bos taurus), killer whale (Orcinus orca), and long-finned pilot whale (Globicephala melas). Further, the brain transcriptomes of cattle, minke whale (Balaenoptera acutorostrata) and bowhead whale (Balaena mysticetus), which were available in the databases, were included. We found a high expression of genes related to oxidative phosphorylation and the respiratory electron chain in the whale brains. In the visual cortex of whales, transcripts related to the detoxification of reactive oxygen species were more highly expressed than in the visual cortex of cattle. These findings indicate a high oxidative capacity in the whale brain that might help to maintain aerobic metabolism in periods of reduced oxygen availability during dives.
Collapse
Affiliation(s)
- Alena Krüger
- Institute of Zoology, University of Hamburg, Germany.
| | | | | | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, D-25761 Büsum, Germany.
| | - Lars P Folkow
- University of Tromsø - The Arctic University of Norway, NO-9037 Tromsø, Norway.
| | | |
Collapse
|
39
|
Tennessen JB, Holt MM, Ward EJ, Hanson MB, Emmons CK, Giles DA, Hogan JT. Hidden Markov models reveal temporal patterns and sex differences in killer whale behavior. Sci Rep 2019; 9:14951. [PMID: 31628371 PMCID: PMC6802385 DOI: 10.1038/s41598-019-50942-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/18/2019] [Indexed: 11/09/2022] Open
Abstract
Behavioral data can be important for effective management of endangered marine predators, but can be challenging to obtain. We utilized suction cup-attached biologging tags equipped with stereo hydrophones, triaxial accelerometers, triaxial magnetometers, pressure and temperature sensors, to characterize the subsurface behavior of an endangered population of killer whales (Orcinus orca). Tags recorded depth, acoustic and movement behavior on fish-eating killer whales in the Salish Sea between 2010-2014. We tested the hypotheses that (a) distinct behavioral states can be characterized by integrating movement and acoustic variables, (b) subsurface foraging occurs in bouts, with distinct periods of searching and capture temporally separated from travel, and (c) the probabilities of transitioning between behavioral states differ by sex. Using Hidden Markov modeling of two acoustic and four movement variables, we identified five temporally distinct behavioral states. Persistence in the same state on a subsequent dive had the greatest likelihood, with the exception of deep prey pursuit, indicating that behavior was clustered in time. Additionally, females spent more time at the surface than males, and engaged in less foraging behavior. These results reveal significant complexity and sex differences in subsurface foraging behavior, and underscore the importance of incorporating behavior into the design of conservation strategies.
Collapse
Affiliation(s)
- Jennifer B Tennessen
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA. .,Lynker Technologies, Leesburg, VA, USA.
| | - Marla M Holt
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Eric J Ward
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - M Bradley Hanson
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Candice K Emmons
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Deborah A Giles
- Department of Wildlife, Fish, & Conservation Biology, University of California, Davis, CA, USA.,University of Washington, Friday Harbor Laboratories, Friday Harbor, WA, USA
| | | |
Collapse
|
40
|
Martin MJ, Elwen SH, Kassanjee R, Gridley T. To buzz or burst-pulse? The functional role of Heaviside's dolphin, Cephalorhynchus heavisidii, rapidly pulsed signals. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
41
|
Ngô MC, Heide-Jørgensen MP, Ditlevsen S. Understanding narwhal diving behaviour using Hidden Markov Models with dependent state distributions and long range dependence. PLoS Comput Biol 2019; 15:e1006425. [PMID: 30870414 PMCID: PMC6417660 DOI: 10.1371/journal.pcbi.1006425] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/28/2019] [Indexed: 11/24/2022] Open
Abstract
Diving behaviour of narwhals is still largely unknown. We use Hidden Markov models (HMMs) to describe the diving behaviour of a narwhal and fit the models to a three-dimensional response vector of maximum dive depth, duration of dives and post-dive surface time of 8,609 dives measured in East Greenland over 83 days, an extraordinarily long and rich data set. Narwhal diving patterns have not been analysed like this before, but in studies of other whale species, response variables have been assumed independent. We extend the existing models to allow for dependence between state distributions, and show that the dependence has an impact on the conclusions drawn about the diving behaviour. We try several HMMs with 2, 3 or 4 states, and with independent and dependent log-normal and gamma distributions, respectively, and different covariates to characterize dive patterns. In particular, diurnal patterns in diving behaviour is inferred, by using periodic B-splines with boundary knots in 0 and 24 hours. Narwhals live in pristine environments. However, the increase in average temperatures in the Arctic and the concomitant loss of summer sea ice, as well as increased human activities, such as ship traffic and mineral exploration leading to increased noise pollution, are changing the environment, and therefore probably also the behavior and well-being of the narwhal. Here, we use probabilistic models to unravel the diving and feeding behavior of a male narwhal, tagged in East Greenland in 2013, and followed for more than two months. The goal is to gain knowledge of the whales’ normal behavior, to be able to later detect possible changes in behavior due to climatic changes and human influences. We find that the narwhal uses around two thirds of its time searching for food, it typically feeds during deep dives (more than 350m), and it can have extended periods, up to 3 days, without feeding activity.
Collapse
Affiliation(s)
- Manh Cuong Ngô
- Greenland Institute of Natural Resources, Nuuk, Greenland
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mads Peter Heide-Jørgensen
- Greenland Institute of Natural Resources, Nuuk, Greenland
- Greenland Institute of Natural Resources, c/o Greenland Representation, Copenhagen, Denmark
| | - Susanne Ditlevsen
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
42
|
Arranz P, Benoit-Bird KJ, Friedlaender AS, Hazen EL, Goldbogen JA, Stimpert AK, DeRuiter SL, Calambokidis J, Southall BL, Fahlman A, Tyack PL. Diving Behavior and Fine-Scale Kinematics of Free-Ranging Risso's Dolphins Foraging in Shallow and Deep-Water Habitats. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
43
|
Shearer JM, Quick NJ, Cioffi WR, Baird RW, Webster DL, Foley HJ, Swaim ZT, Waples DM, Bell JT, Read AJ. Diving behaviour of Cuvier's beaked whales ( Ziphius cavirostris) off Cape Hatteras, North Carolina. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181728. [PMID: 30891284 PMCID: PMC6408375 DOI: 10.1098/rsos.181728] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/09/2019] [Indexed: 05/07/2023]
Abstract
Cuvier's beaked whales exhibit exceptionally long and deep foraging dives. The species is little studied due to their deep-water, offshore distribution and limited time spent at the surface. We used LIMPET satellite tags to study the diving behaviour of Cuvier's beaked whales off Cape Hatteras, North Carolina from 2014 to 2016. We deployed 11 tags, recording 3242 h of behaviour data, encompassing 5926 dives. Dive types were highly bimodal; deep dives (greater than 800 m, n = 1408) had a median depth of 1456 m and median duration of 58.9 min; shallow dives (50-800 m, n = 4518) were to median depths of 280 m with a median duration of 18.7 min. Most surface intervals were very short (median 2.2 min), but all animals occasionally performed extended surface intervals. We found no diel differences in dive depth or the percentage of time spent deep diving, but whales spent significantly more time near the surface at night. Other populations of this species exhibit similar dive patterns, but with regional differences in depth, duration and inter-dive intervals. Satellite-linked tags allow for the collection of long periods of dive records, including the occurrence of anomalous behaviours, bringing new insights into the lives of these deep divers.
Collapse
Affiliation(s)
- Jeanne M. Shearer
- Duke Marine Lab, University Program in Ecology, 135 Duke Marine Lab Rd, Beaufort, NC 28516, USA
| | - Nicola J. Quick
- Duke University Marine Lab, 135 Duke Marine Lab Rd, Beaufort, NC 28516, USA
| | - William R. Cioffi
- Duke Marine Lab, University Program in Ecology, 135 Duke Marine Lab Rd, Beaufort, NC 28516, USA
| | - Robin W. Baird
- Cascadia Research Collective, 218 ½ W 4th Ave, Olympia, WA 98501, USA
| | - Daniel L. Webster
- Cascadia Research Collective, 218 ½ W 4th Ave, Olympia, WA 98501, USA
| | - Heather J. Foley
- Duke University Marine Lab, 135 Duke Marine Lab Rd, Beaufort, NC 28516, USA
| | - Zachary T. Swaim
- Duke University Marine Lab, 135 Duke Marine Lab Rd, Beaufort, NC 28516, USA
| | - Danielle M. Waples
- Duke University Marine Lab, 135 Duke Marine Lab Rd, Beaufort, NC 28516, USA
| | - Joel T. Bell
- Environmental Conservation – Marine Resources Section (EV53), Naval Facilities Engineering Command Atlantic, Norfolk, VA 23508, USA
| | - Andrew J. Read
- Duke University Marine Lab, 135 Duke Marine Lab Rd, Beaufort, NC 28516, USA
| |
Collapse
|
44
|
Beasley I, Cherel Y, Robinson S, Betty E, Hagihara R, Gales R. Stomach contents of long-finned pilot whales, Globicephala melas mass-stranded in Tasmania. PLoS One 2019; 14:e0206747. [PMID: 30640963 PMCID: PMC6331100 DOI: 10.1371/journal.pone.0206747] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/18/2018] [Indexed: 11/30/2022] Open
Abstract
New data are reported from analyses of stomach contents from 114 long-finned pilot whales mass-stranded at four locations around Tasmania, Australia from 1992–2006. Identifiable prey remains were recovered from 84 (74%) individuals, with 30 (26%) individuals (17 females and 13 males) having empty stomachs. Prey remains comprised 966 identifiable lower beaks and 1244 upper beaks, belonging to 17 families (26 species) of cephalopods. Ommastrephidae spp. were the most important cephalopod prey accounting for 16.9% by number and 45.6% by reconstructed mass. Lycoteuthis lorigera was the next most important, followed by Ancistrocheirus lesueurii. Multivariate statistics identified significant differences in diet among the four stranding locations. Long-finned pilot whales foraging off Southern Australia appear to be targeting a diverse assemblage of prey (≥10 species dominated by cephalopods). This is compared to other similar studies from New Zealand and some locations in the Northern Hemisphere, where the diet has been reported to be primarily restricted to ≤3 species dominated by cephalopods. This study emphasises the importance of cephalopods as primary prey for Southern long-finned pilot whales and other marine vertebrates, and has increased our understanding of long-finned pilot whale diet in Southern Ocean waters.
Collapse
Affiliation(s)
- Isabel Beasley
- Snubfin Dolphin Project, Colebrook, Tasmania, Australia
- College of Science and Engineering, James Cook University, Townsville, Australia
- * E-mail:
| | - Yves Cherel
- Centre d’Etudes Biologiques de Chizé (CEBC), UMR 7372 du CNRS-Université de La Rochelle, Villiers-en-Bois, France
| | - Sue Robinson
- Invasive Species Branch, Biosecurity Tasmania, Department of Primary Industries, Parks, Water and Environment, Tasmania, Australia
| | - Emma Betty
- Institute for Applied Ecology New Zealand, School of Science, Auckland University of Technology, Auckland, New Zealand
- Institute of Natural and Mathematical Sciences, College of Sciences, Massey University, Palmerston North, New Zealand
| | - Rie Hagihara
- College of Science and Engineering, James Cook University, Townsville, Australia
| | - Rosemary Gales
- Natural Values Conservation Branch, Department of Primary Industries, Parks, Water and Environment, Tasmania, Australia
| |
Collapse
|
45
|
Alves F, Alessandrini A, Servidio A, Mendonça AS, Hartman KL, Prieto R, Berrow S, Magalhães S, Steiner L, Santos R, Ferreira R, Pérez JM, Ritter F, Dinis A, Martín V, Silva M, Aguilar de Soto N. Complex biogeographical patterns support an ecological connectivity network of a large marine predator in the north‐east Atlantic. DIVERS DISTRIB 2018. [DOI: 10.1111/ddi.12848] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Filipe Alves
- CIIMAR‐MadeiraInterdisciplinary Centre of Marine and Environmental Research of Madeira Madeira Funchal Portugal
- Oceanic Observatory of Madeira (OOM) Funchal Portugal
- MARE, Marine and Environmental Sciences Centre/ARDITI Madeira Portugal
| | - Anita Alessandrini
- CIIMAR‐MadeiraInterdisciplinary Centre of Marine and Environmental Research of Madeira Madeira Funchal Portugal
- University of Algarve Faro Portugal
| | - Antonella Servidio
- SECAC, Society for the Study of Cetaceans in the Canary Archipelago Lanzarote Spain
- Cetacean and Marine Research Institute of the Canary Islands (CEAMAR) Lanzarote Spain
| | - Ana Sofia Mendonça
- University of Algarve Faro Portugal
- MARE/Institute of Marine Research (IMAR)University of the Azores Azores Portugal
| | - Karin L. Hartman
- Risso's Dolphin Research CenterNova Atlantis Foundation Azores Portugal
| | - Rui Prieto
- MARE/Institute of Marine Research (IMAR)University of the Azores Azores Portugal
| | - Simon Berrow
- Irish Whale and Dolphin Group/Galway‐Mayo Institute of Technology Galway Ireland
| | | | | | | | - Rita Ferreira
- Oceanic Observatory of Madeira (OOM) Funchal Portugal
- MARE, Marine and Environmental Sciences Centre/ARDITI Madeira Portugal
| | - Jacobo Marrero Pérez
- Asociación Tonina Canary Islands Spain
- BIOECOMACDepartment of Animal Biology, Edaphology and GeologyUniversity of La Laguna San Cristóbal de La Laguna Spain
| | | | - Ana Dinis
- CIIMAR‐MadeiraInterdisciplinary Centre of Marine and Environmental Research of Madeira Madeira Funchal Portugal
- Oceanic Observatory of Madeira (OOM) Funchal Portugal
- MARE, Marine and Environmental Sciences Centre/ARDITI Madeira Portugal
| | - Vidal Martín
- SECAC, Society for the Study of Cetaceans in the Canary Archipelago Lanzarote Spain
| | - Mónica Silva
- MARE/Institute of Marine Research (IMAR)University of the Azores Azores Portugal
- Woods Hole Oceanographic Institution Woods Hole Massachusetts
| | - Natacha Aguilar de Soto
- BIOECOMACDepartment of Animal Biology, Edaphology and GeologyUniversity of La Laguna San Cristóbal de La Laguna Spain
| |
Collapse
|
46
|
Isojunno S, Aoki K, Curé C, Kvadsheim PH, Miller PJO. Breathing Patterns Indicate Cost of Exercise During Diving and Response to Experimental Sound Exposures in Long-Finned Pilot Whales. Front Physiol 2018; 9:1462. [PMID: 30459631 PMCID: PMC6232938 DOI: 10.3389/fphys.2018.01462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/26/2018] [Indexed: 02/05/2023] Open
Abstract
Air-breathing marine predators that target sub-surface prey have to balance the energetic benefit of foraging against the time, energetic and physiological costs of diving. Here we use on-animal data loggers to assess whether such trade-offs can be revealed by the breathing rates (BR) and timing of breaths in long-finned pilot whales (Globicephela melas). We used the period immediately following foraging dives in particular, for which respiratory behavior can be expected to be optimized for gas exchange. Breath times and fluke strokes were detected using onboard sensors (pressure, 3-axis acceleration) attached to animals using suction cups. The number and timing of breaths were quantified in non-linear mixed models that incorporated serial correlation and individual as a random effect. We found that pilot whales increased their BR in the 5–10 min period prior to, and immediately following, dives that exceeded 31 m depth. While pre-dive BRs did not vary with dive duration, the initial post-dive BR was linearly correlated with duration of >2 min dives, with BR then declining exponentially. Apparent net diving costs were 1.7 (SE 0.2) breaths per min of diving (post-dive number of breaths, above pre-dive breathing rate unrelated to dive recovery). Every fluke stroke was estimated to cost 0.086 breaths, which amounted to 80–90% average contribution of locomotion to the net diving costs. After accounting for fluke stroke rate, individuals in the small body size class took a greater number of breaths per diving minute. Individuals reduced their breathing rate (from the rate expected by diving behavior) by 13–16% during playbacks of killer whale sounds and their first exposure to 1–2 kHz naval sonar, indicating similar responses to interspecific competitor/predator and anthropogenic sounds. Although we cannot rule out individuals increasing their per-breath O2 uptake to match metabolic demand, our results suggest that behavioral responses to experimental sound exposures were not associated with increased metabolic rates in a stress response, but metabolic rates instead appear to decrease. Our results support the hypothesis that maximal performance leads to predictable (optimized) breathing patterns, which combined with further physiological measurements could improve proxies of field metabolic rates and per-stroke energy costs from animal-borne behavior data.
Collapse
Affiliation(s)
- Saana Isojunno
- Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Kagari Aoki
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | | | | | - Patrick James O'Malley Miller
- Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
47
|
Marsh L, Huvenne VAI, Jones DOB. Geomorphological evidence of large vertebrates interacting with the seafloor at abyssal depths in a region designated for deep-sea mining. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180286. [PMID: 30225016 PMCID: PMC6124127 DOI: 10.1098/rsos.180286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 07/24/2018] [Indexed: 05/23/2023]
Abstract
Exploration licences for seafloor mineral deposits have been granted across large areas of the world's oceans, with the abyssal Pacific Ocean being the primary target for polymetallic nodules-a potentially valuable source of minerals. These nodule-bearing areas support a large diversity of deep-sea life and although studies have begun to characterize the benthic fauna within the region, the ecological interactions between large bathypelagic vertebrates of the open ocean and the abyssal seafloor remain largely unknown. Here we report seafloor geomorphological alterations observed by an autonomous underwater vehicle that suggest large vertebrates could have interacted with the seafloor to a maximum depth of 4258 m in the recent geological past. Patterns of disturbance on the seafloor are broadly comparable to those recorded in other regions of the world's oceans attributed to beaked whales. These observations have important implications for baseline ecological assessments and the environmental management of potential future mining activities within this region of the Pacific.
Collapse
Affiliation(s)
- Leigh Marsh
- National Oceanography Centre, European Way, Southampton SO14 3ZH, UK
- Ocean and Earth Science, University of Southampton, Waterfront Campus, Southampton SO14 3ZH, UK
| | | | | |
Collapse
|
48
|
Bottlenose dolphin (Tursiops truncatus) sonar slacks off before touching a non-alimentary target. Behav Processes 2018; 157:337-345. [PMID: 30059762 DOI: 10.1016/j.beproc.2018.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/26/2018] [Accepted: 07/26/2018] [Indexed: 11/23/2022]
Abstract
Odontocetes modulate the rhythm of their echolocation clicks to draw information about their environment. When they approach preys to capture, they speed up their emissions to increase the sampling rate of "distant touch" and improve information update. This global acceleration turns into a "terminal buzz" also described in bats, which is a click train with drastic increase in rate, just as reaching the prey. This study documents and analyses under human care bottlenose dolphins' echolocation activity, when approaching non-alimentary targets. Four dolphins' locomotor and clicking behaviours were recorded during training sessions, when sent to immersed objects pointed by their trainers. Results illustrate that these dolphins profusely use echolocation towards immersed non-alimentary objects. They accelerate click emission when approaching the target, thus displaying a classical terminal buzz. However, their terminal buzz slackens off within a quarter of second before the end of click train. Typically, they decelerate to stop clicking just before they touch the object using their rostrum lower tip. They do not emit clicks as the contact lasts. In conclusion, when exploring inert objects, bottlenose dolphins under human accelerate clicking like other odontocetes or bats approaching preys. Bottlenose dolphins' particular slackening-off profile at the end of the buzz shows that they anticipate the moment of direct contact, and they stop just as real touch relays distant touch of the object.
Collapse
|
49
|
Bowers MT, Friedlaender AS, Janik VM, Nowacek DP, Quick NJ, Southall BL, Read AJ. Selective reactions to different killer whale call categories in two delphinid species. J Exp Biol 2018; 221:jeb162479. [PMID: 29895580 PMCID: PMC6515772 DOI: 10.1242/jeb.162479] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 04/09/2018] [Indexed: 11/20/2022]
Abstract
The risk of predation is often invoked as an important factor influencing the evolution of social organization in cetaceans, but little direct information is available about how these aquatic mammals respond to predators or other perceived threats. We used controlled playback experiments to examine the behavioral responses of short-finned pilot whales (Globicephala macrorhynchus) off Cape Hatteras, NC, USA, and Risso's dolphins (Grampus griseus) off the coast of Southern California, USA, to the calls of a potential predator, mammal-eating killer whales. We transmitted calls of mammal-eating killer whales, conspecifics and baleen whales to 10 pilot whales and four Risso's dolphins equipped with multi-sensor archival acoustic recording tags (DTAGs). Only playbacks of killer whale calls resulted in significant changes in tagged animal heading. The strong responses observed in both species occurred only following exposure to a subset of killer whale calls, all of which contained multiple non-linear properties. This finding suggests that these structural features of killer whale calls convey information about predatory risk to pilot whales and Risso's dolphins. The observed responses differed between the two species; pilot whales approached the sound source while Risso's dolphins fled following playbacks. These divergent responses likely reflect differences in anti-predator response mediated by the social structure of the two species.
Collapse
Affiliation(s)
- Matthew T Bowers
- Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University, Beaufort, NC 28516, USA
- Southall Environmental Associates, Inc., 9099 Soquel Drive, Suite 8, Aptos, CA 95003, USA
| | - Ari S Friedlaender
- Southall Environmental Associates, Inc., 9099 Soquel Drive, Suite 8, Aptos, CA 95003, USA
- Institute for Marine Sciences, University of California Santa Cruz, 115 McAllister Way, Santa Cruz, CA 95060, USA
| | - Vincent M Janik
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, East Sands, St Andrews, Fife KY16 8LB, UK
| | - Douglas P Nowacek
- Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University, Beaufort, NC 28516, USA
- Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Nicola J Quick
- Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University, Beaufort, NC 28516, USA
| | - Brandon L Southall
- Southall Environmental Associates, Inc., 9099 Soquel Drive, Suite 8, Aptos, CA 95003, USA
| | - Andrew J Read
- Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University, Beaufort, NC 28516, USA
| |
Collapse
|
50
|
Goldbogen JA, Madsen PT. The evolution of foraging capacity and gigantism in cetaceans. ACTA ACUST UNITED AC 2018; 221:221/11/jeb166033. [PMID: 29895582 DOI: 10.1242/jeb.166033] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The extant diversity and rich fossil record of cetaceans provides an extraordinary evolutionary context for investigating the relationship between form, function and ecology. The transition from terrestrial to marine ecosystems is associated with a complex suite of morphological and physiological adaptations that were required for a fully aquatic mammalian life history. Two specific functional innovations that characterize the two great clades of cetaceans, echolocation in toothed whales (Odontoceti) and filter feeding in baleen whales (Mysticeti), provide a powerful comparative framework for integrative studies. Both clades exhibit gigantism in multiple species, but we posit that large body size may have evolved for different reasons and in response to different ecosystem conditions. Although these foraging adaptations have been studied using a combination of experimental and tagging studies, the precise functional drivers and consequences of morphological change within and among these lineages remain less understood. Future studies that focus at the interface of physiology, ecology and paleontology will help elucidate how cetaceans became the largest predators in aquatic ecosystems worldwide.
Collapse
Affiliation(s)
- J A Goldbogen
- Department of Biology, Hopkins Marine Station, Stanford University, 120 Ocean View Boulevard, Pacific Grove, CA 93950, USA
| | - P T Madsen
- Zoophysiology, Department of Bioscience, Aarhus University, C.F. Møllers Allé 3, 8000 Aarhus C, Denmark.,Aarhus Institute of Advanced Studies, Høegh-Guldbergs Gade 6B, DK-8000 Aarhus C, Denmark
| |
Collapse
|